scsb.c revision 193974072f41a843678abf5f61979c748687e66b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Netra ct800 and Netra ct400 (MonteCarlo/Tonga)
* System Controller and Status Boards STREAMS driver.
*
* This driver handles all communications with the Netra ct400 and ct800
* System Controller Boards.
* I/O to the SCB is through the PCF8584 I2C controller.
* The SCB I2C interface and driver interface are provided by the
* Xilinx XCS40XL.
*
* N.B.: The design choice of using STREAMS was dictated because
* the original system monitor card had to multiplex 2 pcf8574's
* as one device.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/cred.h>
#include <sys/log.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/open.h>
#include <sys/kmem.h>
#include <sys/kstat.h>
#include <sys/signal.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/poll.h>
#include <sys/debug.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/modctl.h>
#include <sys/i2c/misc/i2c_svc.h>
#include <sys/mct_topology.h>
#include <sys/netract_gen.h>
#include <sys/scsbioctl.h>
#include <sys/scsb.h>
#include <sys/scsb_cbi.h>
#include <sys/hotplug/hpctrl.h>
#include <sys/hsc.h>
#include <sys/hscimpl.h>
#define CPCI_HOTSWAP_SUPPORT
#define ALARM_CARD_ON_SLOT 1
#define SCSB_FRU_OP_GET_REG 1
#define SCSB_FRU_OP_SET_REGBIT 2
#define SCSB_FRU_OP_GET_BITVAL 3
#define SCSB_FRU_OP_GET_REGDATA 4
/*
* (internal only)
* scsb build version format is "CCYYMMDD"
* for integer compares.
*/
#define SCSB_BUILD_VERSION "20001206"
#define MUTEX_UNINIT 0
#define MUTEX_INIT 2
static int scsb_err_threshold = 0; /* max allowed i2c errors */
static int scsb_freeze_count = 3; /* #I2C errors to indicate SCB removal */
static int scsb_shutdown_count = 5; /* #polls before passing shutdown evt */
static int scsb_in_postintr = 0; /* 1 if scsb is processing intr */
static kmutex_t *scb_intr_mutex; /* SCSB interrupt mutex */
static int nct_mutex_init = MUTEX_UNINIT;
extern int scsb_hsc_board_healthy();
static char *scsb_name = SCSB_DEVICE_NAME;
static char *scsb_clone_name = SCSB_DEVICE_NAME "clone";
static char *scsb_build_version = SCSB_BUILD_VERSION;
/*
* cb_ops section of scsb driver.
*/
static int sm_open(queue_t *, dev_t *, int, int, cred_t *);
static int sm_close(queue_t *, int, int, cred_t *);
static int sm_rput(queue_t *, mblk_t *); /* from i2c below */
static int sm_wput(queue_t *, mblk_t *); /* from above */
uint_t scsb_intr_preprocess(caddr_t arg);
void scsb_intr(caddr_t arg);
static void smf_ioctl(queue_t *, mblk_t *);
static void sm_ioc_rdwr(queue_t *, mblk_t *, int);
static int scsb_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int scsb_attach(dev_info_t *, ddi_attach_cmd_t);
static int scsb_detach(dev_info_t *, ddi_detach_cmd_t);
static int initialize_scb(scsb_state_t *);
static dev_info_t *scsb_dip; /* private copy of devinfo pointer */
static struct module_info info = {
0, SCSB_DEVICE_NAME, 0, INFPSZ, 512, 128
};
static struct qinit sm_rinit = {
sm_rput, NULL, sm_open, sm_close, NULL, &info
};
static struct qinit sm_winit = {
sm_wput, NULL, sm_open, sm_close, NULL, &info
};
struct streamtab sm_st = {
&sm_rinit, &sm_winit, NULL, NULL
};
static struct cb_ops scsb_cb_ops = {
nulldev, /* open */
nulldev, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
nodev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* cb_prop_op */
&sm_st, /* streamtab */
D_MP, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
static struct dev_ops scsb_ops = {
DEVO_REV, /* devo_rev, */
0, /* refcnt */
scsb_info, /* info */
nulldev, /* identify */
nulldev, /* probe */
scsb_attach, /* attach */
scsb_detach, /* detach */
nodev, /* reset */
&scsb_cb_ops, /* driver operations */
(struct bus_ops *)0, /* bus operations */
NULL, /* power */
ddi_quiesce_not_supported, /* devo_quiesce */
};
/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a pseudo driver */
#ifdef DEBUG
"SCB/SSB driver DBG" SCSB_BUILD_VERSION,
#else
"v1.33 Netra ct System Control/Status Board driver",
#endif
&scsb_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
/*
* local declarations and definitions
*/
#if defined(DEBUG)
uint32_t scsb_debug = 0x00000000;
#else
static uint32_t scsb_debug = 0;
#endif
static hrtime_t scb_pre_s, scb_pre_e, scb_post_s, scb_post_e;
static int scsb_pil = SCSB_INTR_PIL;
static int hsc_pil = SCSB_INTR_PIL;
static void *scsb_state;
static uint32_t scsb_global_state;
static uint32_t scsb_event_code; /* for event polling */
static struct system_info mct_system_info;
static int scsb_healthy_poll_count = 16;
static fru_id_t fru_id_table[MCT_MAX_FRUS];
static uchar_t scb_intr_regs[SCTRL_MAX_GROUP_NUMREGS];
static uint32_t evc_fifo[EVC_FIFO_SIZE];
static uint32_t evc_fifo_count = 0;
static uint32_t *evc_rptr = evc_fifo;
static uint32_t *evc_wptr = evc_fifo;
static void *evc_procs[EVC_PROCS_MAX];
static int evc_proc_count = 0;
static timeout_id_t scsb_intr_tid;
int nct_i2c_transfer(i2c_client_hdl_t i2c_hdl, i2c_transfer_t *i2c_tran);
/*
* kstat functions
*/
static int scsb_alloc_kstats(scsb_state_t *);
static void scsb_free_kstats(scsb_state_t *);
static int update_ks_leddata(kstat_t *, int);
static int update_ks_state(kstat_t *, int);
static int update_ks_topology(kstat_t *, int);
static int update_ks_evcreg(kstat_t *, int);
/*
* local functions
*/
static void free_resources(dev_info_t *, scsb_state_t *, int);
static i2c_transfer_t *scsb_alloc_i2ctx(i2c_client_hdl_t, uint_t);
static fru_info_t *find_fru_info(fru_id_t fru_id);
static int scsb_fake_intr(scsb_state_t *, uint32_t);
static int scsb_get_status(scsb_state_t *, scsb_status_t *);
static int scsb_leds_switch(scsb_state_t *, scsb_ustate_t);
static void scsb_freeze(scsb_state_t *scsb);
static void scsb_freeze_check(scsb_state_t *scsb);
static void scsb_restore(scsb_state_t *scsb);
static int scsb_polled_int(scsb_state_t *, int, uint32_t *);
static int scsb_check_config_status(scsb_state_t *scsb);
static int scsb_set_scfg_pres_leds(scsb_state_t *, fru_info_t *);
static void scsb_set_topology(scsb_state_t *);
static void scsb_free_topology(scsb_state_t *);
int scsb_read_bhealthy(scsb_state_t *scsb);
int scsb_read_slot_health(scsb_state_t *, int);
static void tonga_slotnum_check(scsb_state_t *scsb, scsb_uinfo_t *suip);
static int tonga_psl_to_ssl(scsb_state_t *scsb, int slotnum);
static uchar_t tonga_slotnum_led_shift(scsb_state_t *scsb, uchar_t data);
static int scsb_clear_intptrs(scsb_state_t *scsb);
static int scsb_clear_intmasks(scsb_state_t *scsb);
static int scsb_setall_intmasks(scsb_state_t *scsb);
static int scsb_write_mask(scsb_state_t *, uchar_t, uchar_t, uchar_t,
uchar_t);
static int scsb_rdwr_register(scsb_state_t *, int, uchar_t, int,
uchar_t *, int);
static int scsb_readall_regs(scsb_state_t *);
static int scsb_get_led_regnum(scsb_state_t *, scsb_uinfo_t *, uchar_t *,
int *, scsb_led_t);
static void scsb_free_i2ctx(i2c_client_hdl_t, i2c_transfer_t *);
static void check_fru_info(scsb_state_t *, int);
static void update_fru_info(scsb_state_t *, fru_info_t *);
static int event_to_index(uint32_t);
static void add_event_code(scsb_state_t *, uint32_t);
static uint32_t del_event_code();
static uint32_t get_event_code();
static int add_event_proc(scsb_state_t *, pid_t);
static int del_event_proc(scsb_state_t *, pid_t);
static void rew_event_proc(scsb_state_t *);
static int event_proc_count(scsb_state_t *);
static int find_evc_proc(pid_t pid);
static void signal_evc_procs(scsb_state_t *);
static int check_event_procs();
static int scsb_is_alarm_card_slot(scsb_state_t *, int);
int scsb_get_slot_state(scsb_state_t *, int, int *);
static int scsb_fru_op(scsb_state_t *, scsb_utype_t, int, int, int);
static int scsb_queue_put(queue_t *, int, uint32_t *, char *);
static int scsb_queue_ops(scsb_state_t *, int, int, void *, char *);
static int scsb_blind_read(scsb_state_t *, int, uchar_t, int, uchar_t *, int);
static int scsb_toggle_psmint(scsb_state_t *, int);
static int scsb_quiesce_psmint(scsb_state_t *);
static int scsb_invoke_intr_chain();
int scsb_intr_register(int (*)(void *), void *, fru_id_t);
void scsb_intr_unregister(fru_id_t);
#ifdef DEBUG
static void mct_topology_dump(scsb_state_t *, int);
static void scsb_failing_event(scsb_state_t *scsb);
#endif
int
_init(void)
{
int i, status;
if (scsb_debug & 0x0005)
cmn_err(CE_NOTE, "scsb: _init()");
ddi_soft_state_init(&scsb_state, sizeof (scsb_state_t),
SCSB_NO_OF_BOARDS);
hsc_init();
if ((status = mod_install(&modlinkage)) != 0) {
if (scsb_debug & 0x0006)
cmn_err(CE_NOTE, "scsb: _init(): mod_install failed");
ddi_soft_state_fini(&scsb_state);
hsc_fini();
return (status);
}
/*
* initialize the FRU ID Table, using real FRU IDs where available
* such as I2C Addresses for FRUs with I2C support
*/
for (i = 0; i < MCT_MAX_FRUS; ++i)
fru_id_table[i] = i + 1;
fru_id_table[event_to_index(SCTRL_EVENT_PS1)] = (fru_id_t)MCT_I2C_PS1;
fru_id_table[event_to_index(SCTRL_EVENT_PS2)] = (fru_id_t)MCT_I2C_PS2;
fru_id_table[event_to_index(SCTRL_EVENT_FAN1)] = (fru_id_t)MCT_I2C_FAN1;
fru_id_table[event_to_index(SCTRL_EVENT_FAN2)] = (fru_id_t)MCT_I2C_FAN2;
fru_id_table[event_to_index(SCTRL_EVENT_FAN3)] = (fru_id_t)MCT_I2C_FAN3;
fru_id_table[event_to_index(SCTRL_EVENT_SCB)] = (fru_id_t)MCT_I2C_SCB;
return (status);
}
int
_fini(void)
{
int status;
if (scsb_debug & 0x0005)
cmn_err(CE_NOTE, "scsb: _fini()");
if ((status = mod_remove(&modlinkage)) == 0) {
ddi_soft_state_fini(&scsb_state);
hsc_fini();
}
if (scsb_debug & 0x0006)
cmn_err(CE_NOTE, "scsb: _fini, error %x\n", status);
return (status);
}
int
_info(struct modinfo *modinfop)
{
if (scsb_debug & 0x0005)
cmn_err(CE_NOTE, "scsb: _info()");
return (mod_info(&modlinkage, modinfop));
}
static int
scsb_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance;
scsb_state_t *scsb;
register int i;
int *regs;
uint_t len;
uchar_t reg, wdata, rmask;
instance = ddi_get_instance(dip);
if (scsb_debug & 0x0005)
cmn_err(CE_NOTE, "scsb_attach[%d]", instance);
if (cmd != DDI_ATTACH) {
if (scsb_debug & 0x0006)
cmn_err(CE_NOTE,
"scsb_attach[%d]: cmd 0x%x != DDI_ATTACH",
instance, cmd);
return (DDI_FAILURE);
}
if (ddi_soft_state_zalloc(scsb_state, instance) != DDI_SUCCESS) {
cmn_err(CE_WARN, "scsb%d: cannot allocate soft state",
instance);
return (DDI_FAILURE);
}
scsb = (scsb_state_t *)ddi_get_soft_state(scsb_state, instance);
if (scsb == NULL) {
cmn_err(CE_WARN, "scsb%d: cannot get soft state", instance);
ddi_soft_state_free(scsb_state, instance);
return (DDI_FAILURE);
}
scsb->scsb_instance = instance;
scsb->scsb_state = 0; /* just checking strange mutex behavior */
/*
* make sure this is the SCB's known address
*/
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", &regs, &len) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN,
"scsb%d: Failed to get \"reg\" property", instance);
ddi_soft_state_free(scsb_state, instance);
return (DDI_FAILURE);
}
scsb->scsb_i2c_addr = regs[1] & SCSB_I2C_ADDR_MASK;
if (scsb->scsb_i2c_addr != SCSB_I2C_ADDR) {
cmn_err(CE_WARN, "scsb%d: I2C Addr reg %x %x must be %x",
instance, regs[0], regs[1], SCSB_I2C_ADDR);
ddi_soft_state_free(scsb_state, instance);
ddi_prop_free(regs);
return (DDI_FAILURE);
}
/* done with array lookup, free resource */
ddi_prop_free(regs);
/*
* initialize synchronization mutex and condition var.
* for this instance.
*/
mutex_init(&scsb->scsb_mutex, NULL, MUTEX_DRIVER, NULL);
scsb->scsb_state |= SCSB_UMUTEX;
cv_init(&scsb->scsb_cv, NULL, CV_DRIVER, NULL);
scsb->scsb_state |= SCSB_CONDVAR;
/*
* 1. Read interrupt property of the board and register its handler.
* 2. Get scsb private handle for communication via I2C Services.
* 3. Allocate and save an i2c_transfer_t for I2C transfers.
*/
/* 1 */
if (ddi_prop_exists(DDI_DEV_T_ANY, dip,
DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
"interrupt-priorities") != 1) {
int tmp[2];
tmp[0] = scsb_pil;
tmp[1] = hsc_pil;
(void) ddi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"interrupt-priorities", tmp, 2);
scsb->scsb_state |= SCSB_PROP_CREATE;
}
if ((i = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "interrupts", -1)) >= 0)
scsb->scsb_state |= SCSB_P06_INTR_ON;
else
scsb->scsb_state |= SCSB_P06_NOINT_KLUGE;
/*
* Look for the device-err-threshold property which specifies
* on how many errors will scsb send a warning event about it's
* health. The scsb_err_threshold is 10 by default.
*/
if ((i = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "device-err-threshold", -1)) >= 0) {
scsb_err_threshold = i;
#ifdef DEBUG
cmn_err(CE_NOTE, "?scsb_attach: Found device-err-threshold"
" property, value %d", scsb_err_threshold);
#endif
}
scsb->scsb_i2c_errcnt = 0;
scsb->scsb_err_flag = B_FALSE;
scsb->scsb_kstat_flag = B_FALSE;
/*
* If all went well, create the minor node for user level access.
*/
if (ddi_create_minor_node(dip, scsb_name, S_IFCHR, instance,
"ddi_ctl:pcihpc", NULL) == DDI_FAILURE) {
cmn_err(CE_WARN, "scsb_attach: Failed to create minor node");
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
scsb->scsb_state |= SCSB_MINOR_NODE;
scsb->scsb_dev = dip;
if (ddi_create_minor_node(dip, scsb_clone_name, S_IFCHR,
instance|SCSB_CLONE, "ddi_ctl:pcihpc", NULL)
== DDI_FAILURE) {
cmn_err(CE_WARN, "scsb_attach: Failed to create clone node");
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
/* CLONE */
bzero(scsb->clone_devs, sizeof (clone_dev_t) * SCSB_CLONES_MAX);
/* 2 */
if (i2c_client_register(dip, &scsb->scsb_phandle) != I2C_SUCCESS) {
cmn_err(CE_WARN,
"scsb_attach: Failed I2C Services registration");
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
scsb->scsb_state |= SCSB_I2C_PHANDLE;
/* 3 */
if ((scsb->scsb_i2ctp = scsb_alloc_i2ctx(scsb->scsb_phandle,
I2C_SLEEP)) == NULL) {
cmn_err(CE_WARN,
"scsb%d: i2c_transfer allocation failed", instance);
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
scsb->scsb_state |= SCSB_I2C_TRANSFER;
/*
* Now it's time to INITIALIZE the boards.
*
* 1. make sure we can do I2C bus transfers to/from the SCB.
* Read the SCB PROM version for a check.
* 2. set SCB_INITIALIZED bit in SysCommand registers (SYS_CMD_BASE)
* 3. clear all LED Data registers (8) by writing 0's to turn off
* all LEDs on the SSB.
* 4. read System Configuration Status registers (SCTRL_CFG)
* to find present FRUs and set corresponding FRU bits at
* LED_DATA_BASE.
* Also enable devices in Topology map for the current MP_ID
* and set the OK LEDs on the SSB.
* 5. read Brd_Hlthy registers (2 @ BRD_HLTHY_BASE)
* 6. Disable PSM Interrupts during initialization, mask all
* interrupts, and clear Interrupt Pointer registers
* by writing 0xFF to each register.
* 7. set SCB EEPROM address bits SPA2-SPA0 at SYS_CMD_BASE + 1
* 8. Install the interrupt handler if appropriate.
* 9. clear appropriate bits in Interrupt Mask register for those
* devices that can be present for this MP_ID Topology.
* 10. enable PSM Interrupt by writing '1' to PSM_INT_EN bit at
* SYS_CMD_BASE + 1
* Also update all shadow registers for test utility
* if scsb_debug is set.
* 11. Check if Alarm Card present at boot and set flags
* 12. Call hsc_attach() for slot registration.
* 13. Allocate, initialze, and install the kstat structures.
* 14. Set scsb_state_t flags to indicate SCB is ready
* and announce the driver is loaded.
*/
/* 1. through 7. */
if (initialize_scb(scsb) != DDI_SUCCESS) {
if (!(scsb_debug)) {
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
}
/* 8. */
/*
* P0.6 No Interrupt Support
* Instead of installing the handler, it will be called from a user
* program via smf_ioctl(). This flag provides knowledge of the
* necessary workarounds to several scsb routines.
*/
/*
* Now Install interrupt handler
*/
if (scsb->scsb_state & SCSB_P06_INTR_ON) {
if (ddi_get_iblock_cookie(dip, instance,
&scsb->scsb_iblock) == DDI_SUCCESS) {
mutex_init(&scsb->scsb_imutex, NULL, MUTEX_DRIVER,
(void *)scsb->scsb_iblock);
scsb->scsb_state |= SCSB_IMUTEX;
if (ddi_add_intr(dip, instance, &scsb->scsb_iblock,
NULL, scsb_intr_preprocess,
(caddr_t)scsb) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"scsb_attach: failed interrupt "
"handler registration");
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
scb_intr_mutex = &scsb->scsb_imutex;
nct_mutex_init |= MUTEX_INIT;
} else {
cmn_err(CE_WARN, "scsb_attach: failed interrupt "
"mutex initialization");
if (scsb_debug) {
scsb->scsb_state |= SCSB_P06_NOINT_KLUGE;
scsb->scsb_state &= ~SCSB_P06_INTR_ON;
} else {
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
}
}
/* 9. */
if (i = scsb_clear_intmasks(scsb)) {
cmn_err(CE_WARN,
"scsb%d: I2C TRANSFER Failed", instance);
if (!scsb_debug) {
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
}
/* 10. */
/*
* For P0.6 No Interrupt Support, don't enable PSM Interrupt
*/
if (!(scsb->scsb_state & SCSB_P06_NOINT_KLUGE)) {
rmask = 0x00;
wdata = 1 << SYS_OFFSET(SCTRL_SYS_PSM_INT_ENABLE);
i = SYS_REG_INDEX(SCTRL_SYS_PSM_INT_ENABLE,
SCTRL_SYS_CMD_BASE);
reg = SCSB_REG_ADDR(i);
if (i = scsb_write_mask(scsb, reg, rmask, wdata, (uchar_t)0)) {
cmn_err(CE_WARN,
"scsb%d: I2C TRANSFER Failed", instance);
if (!scsb_debug) {
free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
} else
scsb->scsb_state |= SCSB_PSM_INT_ENABLED;
}
if (scsb_debug) {
/*
* For smctrl test utility,
* so all data is available in shadow registers
*
* DEBUG_MODE enables private testing interfaces
* DIAGS_MODE permits limited testing interfaces
*/
scsb->scsb_state |= SCSB_DEBUG_MODE;
mutex_enter(&scsb->scsb_mutex);
if (scsb_readall_regs(scsb))
cmn_err(CE_WARN,
"scsb_attach: scsb_readall FAILED");
mutex_exit(&scsb->scsb_mutex);
}
/* 11. */
/* Check if Alarm Card present at boot and set flags */
if (scsb_fru_op(scsb, ALARM, 1, SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL))
scsb->scsb_hsc_state |= SCSB_ALARM_CARD_PRES;
/* 12. */
if (scsb_debug & 0x0004)
cmn_err(CE_NOTE,
"scsb_attach: registering cPCI slots");
if (scsb_hsc_attach(dip, scsb, instance) != DDI_SUCCESS) {
if (scsb_debug & 0x00008000) {
cmn_err(CE_WARN,
"scsb: Hotswap controller initialisation"
" failed\n");
}
} else
scsb->scsb_hsc_state |= SCSB_HSC_INIT;
/* 13. */
/*
* allocate and install the kstat data structures
*/
if (scsb_alloc_kstats(scsb) != DDI_SUCCESS) {
if (scsb_debug & 0x0006)
cmn_err(CE_WARN, "scsb_attach: ERROR adding kstats");
}
/* 14. */
scsb->scsb_state |= SCSB_UP;
scsb_global_state |= SCSB_UP;
ddi_report_dev(scsb->scsb_dev);
cmn_err(CE_CONT, "?%s%d: "
"Prom Version %s, Midplane Id %x\n",
ddi_driver_name(scsb->scsb_dev),
scsb->scsb_instance,
(scsb->scsb_state & SCSB_P06_PROM) ? "0.6" :
(scsb->scsb_state & SCSB_P10_PROM) ? "1.0" :
(scsb->scsb_state & SCSB_P15_PROM) ? "1.5" :
(scsb->scsb_state & SCSB_P20_PROM) ? "2.0" : "Unknown",
mct_system_info.mid_plane.fru_id);
return (DDI_SUCCESS);
}
/*
* This funciton is called from scsb_attach(), and from scsb_intr() as part
* of Hot Insertion support, to check the SCB PROM ID register and set
* scsb_state bits and register table pointers as necessary.
*/
static int
scb_check_version(scsb_state_t *scsb)
{
int hotswap = 0;
uchar_t data;
if (scsb->scsb_state & SCSB_UP) {
/*
* If driver is UP, then this call is from scsb_intr()
* as part of Hot Insertion support.
*/
hotswap = 1;
}
/* Read the SCB PROM ID */
if (scsb_rdwr_register(scsb, I2C_WR_RD, (uchar_t)SCTRL_PROM_VERSION, 1,
&data, 1)) {
if (!(hotswap && scsb->scsb_state & SCSB_FROZEN))
cmn_err(CE_WARN, "scsb%d: I2C TRANSFER Failed",
scsb->scsb_instance);
if (scsb_debug & 0x0006) {
cmn_err(CE_WARN,
"scsb_attach(%d): failed read of PROM ID",
scsb->scsb_instance);
}
return (DDI_FAILURE);
}
/*
* compare with stored version number, and if different,
* report a warning and keep the driver FROZEN
*/
if (hotswap) {
if (((mct_system_info.fru_info_list[SCB])[0].fru_version & 0xf)
== (data & 0xf)) {
return (DDI_SUCCESS);
}
if (scsb_debug & 0x00020000) {
cmn_err(CE_NOTE,
"scb_check_version: SCB version %d "
"replacing version %d", data,
(mct_system_info.fru_info_list[SCB])[0].
fru_version & 0xf);
}
}
if ((data & 0xf) == SCTRL_PROM_P06) {
scsb->scsb_state |= SCSB_P06_PROM;
} else if ((data & 0xf) == SCTRL_PROM_P10) {
scsb->scsb_state |= SCSB_P10_PROM;
} else if ((data & 0xf) == SCTRL_PROM_P15) {
scsb->scsb_state |= SCSB_P15_PROM;
} else if ((data & 0xf) == SCTRL_PROM_P20) {
scsb->scsb_state |= SCSB_P20_PROM;
}
if (!(scsb->scsb_state & SCSB_SCB_PRESENT))
scsb->scsb_state |= SCSB_SCB_PRESENT;
if (IS_SCB_P10) {
scb_reg_index = scb_10_reg_index;
scb_numregs = scb_10_numregs;
scb_fru_offset = scb_10_fru_offset;
scb_sys_offset = scb_10_sys_offset;
} else { /* if (IS_SCB_P15) */
scb_reg_index = scb_15_reg_index;
scb_numregs = scb_15_numregs;
scb_fru_offset = scb_15_fru_offset;
scb_sys_offset = scb_15_sys_offset;
}
if (!(IS_SCB_P15) && !(IS_SCB_P10)) {
cmn_err(CE_WARN, "scsb%d: SCB Version %d not recognized",
scsb->scsb_instance, data);
if (hotswap)
scsb->scsb_state |= SCSB_FROZEN;
if (!(scsb_debug)) {
return (DDI_FAILURE);
}
/*
* DEBUG: Assume SCB15
*/
scsb->scsb_state |= SCSB_P15_PROM;
}
return (DDI_SUCCESS);
}
/*
* SCB initialization steps to be called from scsb_attach()
* or from scsb_intr() calling scsb_restore() on Hot Insertion.
*/
static int
initialize_scb(scsb_state_t *scsb)
{
register int i;
uchar_t reg, wdata, rmask;
/*
* If called from scsb_intr(), we've already done this
*/
if (!(scsb->scsb_state & SCSB_IN_INTR))
if (scb_check_version(scsb) != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* 2. Set the SCB_INIT bit in the System Command register
*/
rmask = 0x00; /* P1.0: 0x60; */
wdata = 1 << SYS_OFFSET(SCTRL_SYS_SCB_INIT);
i = SYS_REG_INDEX(SCTRL_SYS_SCB_INIT, SCTRL_SYS_CMD_BASE);
reg = SCSB_REG_ADDR(i);
if (i = scsb_write_mask(scsb, reg, rmask, wdata, 0)) {
cmn_err(CE_WARN,
"scsb%d: I2C TRANSFER Failed", scsb->scsb_instance);
if (scsb_debug & 0x0006) {
cmn_err(CE_NOTE,
"scsb_attach: failed to set SCB_INIT");
}
return (DDI_FAILURE);
}
/* 3. For P1.0 and previous system, turn off all LEDs */
if (IS_SCB_P10) {
if (scsb_debug & 0x0004) {
cmn_err(CE_NOTE, "scsb_attach(%d): turning LEDs off",
scsb->scsb_instance);
}
if (i = scsb_leds_switch(scsb, OFF)) {
cmn_err(CE_WARN, "scsb%d: I2C TRANSFER Failed",
scsb->scsb_instance);
return (DDI_FAILURE);
}
}
/* 4. Read the SYSCFG registers, update FRU info and SSB LEDs */
if (scsb_debug & 0x0004)
cmn_err(CE_NOTE, "scsb_attach(%d): reading config registers",
scsb->scsb_instance);
if ((i = scsb_check_config_status(scsb)) == 0) {
if (!(scsb->scsb_state & SCSB_TOPOLOGY)) {
scsb_set_topology(scsb);
if (scsb_debug & 0x0004)
cmn_err(CE_NOTE, "scsb_attach(%d): mpid = 0x%x",
scsb->scsb_instance,
mct_system_info.mid_plane.fru_id);
} else {
fru_info_t *fru_ptr;
/*
* walk through FRUs and update FRU info
*/
for (i = 0; i < SCSB_UNIT_TYPES; ++i) {
fru_ptr = mct_system_info.fru_info_list[i];
while (fru_ptr != NULL) {
update_fru_info(scsb, fru_ptr);
fru_ptr = fru_ptr->next;
}
}
}
i = scsb_set_scfg_pres_leds(scsb, NULL);
}
if (i) {
cmn_err(CE_WARN, "scsb%d: I2C TRANSFER Failed",
scsb->scsb_instance);
return (DDI_FAILURE);
}
/* 5. read the Board Healthy registers */
if (scsb_debug & 0x0004)
cmn_err(CE_NOTE, "scsb_attach(%d): reading Brd_Hlthy registers",
scsb->scsb_instance);
i = scsb_read_bhealthy(scsb);
if (i) {
cmn_err(CE_WARN, "scsb%d: I2C TRANSFER Failed",
scsb->scsb_instance);
return (DDI_FAILURE);
}
/* 6. Clear Interrupt Source registers */
/*
* Due to some registration problems, we must first disable
* global interrupts which may be the default reset value
* itself. However, this is a safe step to do in case of
* implementation changes.
*
* Disable Global SCB Interrupts now
*/
rmask = 0x00; /* P1.0: 0x60; */
wdata = 1 << SYS_OFFSET(SCTRL_SYS_PSM_INT_ENABLE);
i = SYS_REG_INDEX(SCTRL_SYS_PSM_INT_ENABLE, SCTRL_SYS_CMD_BASE);
reg = SCSB_REG_ADDR(i);
if (i = scsb_write_mask(scsb, reg, rmask, (uchar_t)0, wdata)) {
cmn_err(CE_WARN, "scsb%d: Cannot turn off PSM_INT",
scsb->scsb_instance);
return (DDI_FAILURE);
}
/* Mask all interrupt sources */
if (i = scsb_setall_intmasks(scsb)) {
cmn_err(CE_WARN, "scsb%d: I2C TRANSFER Failed",
scsb->scsb_instance);
return (DDI_FAILURE);
}
/* Clear any latched interrupts */
if (i = scsb_clear_intptrs(scsb)) {
cmn_err(CE_WARN, "scsb%d: I2C TRANSFER Failed",
scsb->scsb_instance);
return (DDI_FAILURE);
}
/* 7. set SCB EEPROM address: NOT USED */
return (DDI_SUCCESS);
}
/*
* Based on MC conditions, scsb_detach should eventually be made to always
* return FAILURE, as the driver should not be allowed to detach after some
* hs slots have been used.
*/
static int
scsb_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int instance;
scsb_state_t *scsb;
uchar_t reg, wdata;
/*
* TBD: make sure there are no outstanding operations on the system
* monitor card before detaching.
*/
instance = ddi_get_instance(dip);
if (scsb_debug & 0x0005)
cmn_err(CE_NOTE, "scsb_detach[%d]", instance);
if (cmd != DDI_DETACH) {
if (scsb_debug & 0x0006)
cmn_err(CE_NOTE,
"scsb_detach(%d): command %x is not DDI_DETACH\n",
instance, cmd);
return (DDI_FAILURE);
}
scsb = (scsb_state_t *)ddi_get_soft_state(scsb_state, instance);
scsb->scsb_state &= ~SCSB_UP;
scsb_global_state &= ~SCSB_UP;
if (scsb->scsb_hsc_state & SCSB_HSC_INIT) {
scsb_hsc_detach(dip, scsb, instance);
scsb->scsb_hsc_state &= ~SCSB_HSC_INIT;
}
if (scsb->scsb_state & SCSB_PSM_INT_ENABLED) {
/*
* Disable Global SCB Interrupts now
*/
wdata = 1 << SYS_OFFSET(SCTRL_SYS_PSM_INT_ENABLE);
reg = SYS_REG_INDEX(SCTRL_SYS_PSM_INT_ENABLE,
SCTRL_SYS_CMD_BASE);
if (scsb_write_mask(scsb, reg, (uchar_t)0, (uchar_t)0, wdata)) {
cmn_err(CE_WARN,
"scsb%d: Cannot turn off PSM_INT", instance);
if (!scsb_debug) {
(void) free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
}
/* Mask all interrupts */
if (scsb_setall_intmasks(scsb)) {
cmn_err(CE_WARN,
"scsb%d: I2C TRANSFER Failed", instance);
if (!scsb_debug) {
(void) free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
}
/* Clear all latched interrupts */
if (scsb_clear_intptrs(scsb)) {
cmn_err(CE_WARN,
"scsb%d: I2C TRANSFER Failed", instance);
if (!scsb_debug) {
(void) free_resources(dip, scsb, instance);
return (DDI_FAILURE);
}
}
}
if (scsb->scsb_opens && scsb->scsb_rq != NULL)
qprocsoff(scsb->scsb_rq);
/* CLONE */
(void) scsb_queue_ops(scsb, QPROCSOFF, 0, NULL, NULL);
/*
* free the allocated resources
*/
free_resources(dip, scsb, instance);
return (DDI_SUCCESS);
}
static void
free_resources(dev_info_t *dip, scsb_state_t *scsb, int instance)
{
if (scsb_debug & 0x0005) {
cmn_err(CE_NOTE, "free_resources[%d], scsb_state=0x%x",
instance, scsb->scsb_state);
drv_usecwait(500000);
}
if (scsb->scsb_state & SCSB_P06_INTR_ON &&
scsb->scsb_state & SCSB_IMUTEX) {
scsb->scsb_state &= ~SCSB_P06_INTR_ON;
ddi_remove_intr(dip, 0, scsb->scsb_iblock);
}
if (scsb->scsb_state & SCSB_KSTATS) {
scsb_free_kstats(scsb);
scsb->scsb_state &= ~SCSB_KSTATS;
}
if (scsb->scsb_state & SCSB_TOPOLOGY) {
scsb_free_topology(scsb);
scsb->scsb_state &= ~SCSB_TOPOLOGY;
}
nct_mutex_init = MUTEX_UNINIT;
if (scsb->scsb_state & SCSB_IMUTEX) {
scsb->scsb_state &= ~SCSB_IMUTEX;
mutex_destroy(&scsb->scsb_imutex);
}
if (scsb->scsb_state & SCSB_I2C_TRANSFER) {
scsb->scsb_state &= ~SCSB_I2C_TRANSFER;
i2c_transfer_free(scsb->scsb_phandle, scsb->scsb_i2ctp);
}
if (scsb->scsb_state & SCSB_I2C_PHANDLE) {
scsb->scsb_state &= ~SCSB_I2C_PHANDLE;
i2c_client_unregister(scsb->scsb_phandle);
}
if (scsb->scsb_state & SCSB_MINOR_NODE) {
scsb->scsb_state &= ~SCSB_MINOR_NODE;
ddi_remove_minor_node(dip, NULL);
}
if (scsb->scsb_state & SCSB_PROP_CREATE) {
scsb->scsb_state &= ~SCSB_PROP_CREATE;
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
"interrupt-priorities");
}
/* ddi_prop_remove_all(dip); */
if (scsb->scsb_state & SCSB_CONDVAR) {
scsb->scsb_state &= ~SCSB_CONDVAR;
cv_destroy(&scsb->scsb_cv);
}
if (scsb->scsb_state & SCSB_UMUTEX) {
scsb->scsb_state &= ~SCSB_UMUTEX;
mutex_destroy(&scsb->scsb_mutex);
}
ddi_soft_state_free(scsb_state, instance);
}
/*
* Just for testing scsb's poll function
*/
static int
scsb_fake_intr(scsb_state_t *scsb, uint32_t evcode)
{
if (evcode == 0)
evcode = scsb_event_code;
else
scsb_event_code = evcode;
if (scsb_debug & 0x4001) {
cmn_err(CE_NOTE, "scsb_fake_intr: event = 0x%x, scsb_rq=0x%p",
scsb_event_code, scsb->scsb_rq);
}
/*
* Allow access to shadow registers even though SCB is removed
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (EAGAIN);
* }
*/
if (scsb_debug & 0x00040000) {
check_fru_info(scsb, evcode);
add_event_code(scsb, evcode);
}
/* just inform user-level via poll about this event */
if (scsb_queue_ops(scsb, QPUT_INT32, 1, &evcode, "scsb_fake_intr")
== QOP_FAILED)
return (ENOMEM);
return (0);
}
/* ARGSUSED */
static int
scsb_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
int retval = DDI_FAILURE;
if (scsb_debug & 0x0001)
cmn_err(CE_NOTE, "scsb_info()");
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
if (getminor((dev_t)arg) == 0 && scsb_dip != NULL) {
*result = (void *) scsb_dip;
retval = DDI_SUCCESS;
}
break;
case DDI_INFO_DEVT2INSTANCE:
if (getminor((dev_t)arg) == 0) {
*result = (void *)0;
retval = DDI_SUCCESS;
}
break;
default:
break;
}
return (retval);
}
/*
* SCSB STREAMS routines
*/
/*ARGSUSED*/
static int
sm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
{
int instance, clone;
minor_t minor_dev;
clone_dev_t *clptr;
scsb_state_t *scsb;
minor_dev = getminor(*devp);
instance = SCSB_GET_INSTANCE(minor_dev);
scsb = ddi_get_soft_state(scsb_state, instance);
if (scsb == NULL)
return (ENXIO);
if (scsb_debug & 0x0009) {
cmn_err(CE_NOTE, "sm_open(%d) q=0x%p", instance, q);
}
if (!(scsb->scsb_state & SCSB_UP)) {
return (ENODEV);
}
/*
* Don't fail the open if SCB removed since we still want to satisfy
* read requests from the shadow registers, the last know register
* contents. On new SCB insertion, all will be re-initialized,
* including envmond and it's policies.
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (EAGAIN);
* }
*/
ASSERT(credp != NULL);
/*
* XXX check for root access here, return EPERM if not root open
*/
if (sflag == MODOPEN) {
/* scsb module is being pushed */
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE, "sm_open(%d): MODOPEN", instance);
/*
* this is no longer supported
*/
return (ENXIO);
} else if (sflag == CLONEOPEN) {
/* scsb is being opened as a clonable driver */
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE, "sm_open(%d): CLONEOPEN", instance);
/*
* The cloned stream is not handled via the clone driver.
* See the minor device code below.
*/
return (ENXIO);
} else if (minor_dev & SCSB_CLONE) {
/*
* First check for the SCSB_CLONE device.
* Find an available clone_devs[] entry, or return ENXIO.
* Make new dev_t and store in *devp.
*/
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE,
"sm_open(%d): SCSB_CLONE OPEN", instance);
mutex_enter(&scsb->scsb_mutex);
if ((clone = scsb_queue_ops(scsb, QFIRST_AVAILABLE, 0, NULL,
"scsb_open")) == QOP_FAILED) {
mutex_exit(&scsb->scsb_mutex);
return (ENXIO);
}
clptr = &scsb->clone_devs[clone];
clptr->cl_flags = SCSB_OPEN;
clptr->cl_rq = RD(q);
clptr->cl_minor = SCSB_MAKE_MINOR(instance, clone);
*devp = makedevice(getmajor(*devp), clptr->cl_minor);
scsb->scsb_clopens++;
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE,
"sm_open(%d): new clone device minor: 0x%x"
" stream queue is 0x%p",
instance, clptr->cl_minor, q);
} else {
/* scsb is being opened as a regular driver */
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE, "sm_open(%d): DEVOPEN", instance);
mutex_enter(&scsb->scsb_mutex);
if (scsb->scsb_state & SCSB_EXCL) {
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE,
"sm_open(%d): can't open, state is EXCL",
instance);
mutex_exit(&scsb->scsb_mutex);
return (EBUSY);
}
if (flag & FEXCL) {
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE, "sm_open(%d): is EXCL",
instance);
if (scsb->scsb_state & SCSB_OPEN) {
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE,
"sm_open(%d): cannot open EXCL",
instance);
mutex_exit(&scsb->scsb_mutex);
return (EBUSY);
}
scsb->scsb_state |= SCSB_EXCL;
}
if (scsb->scsb_opens && scsb->scsb_rq != NULL &&
scsb->scsb_rq != RD(q)) {
if (scsb_debug & 0x000a)
cmn_err(CE_WARN, "sm_open[%d]: q (0x%p) != "
"scsb_rq (0x%p)",
instance, RD(q), scsb->scsb_rq);
}
scsb->scsb_rq = RD(q);
scsb->scsb_opens++;
}
scsb->scsb_state |= SCSB_OPEN;
mutex_exit(&scsb->scsb_mutex);
RD(q)->q_ptr = WR(q)->q_ptr = scsb;
qprocson(q);
return (0);
}
/*ARGSUSED*/
static int
sm_close(queue_t *q, int flag, int otyp, cred_t *credp)
{
scsb_state_t *scsb;
int clone;
clone_dev_t *clptr = NULL;
scsb = (scsb_state_t *)q->q_ptr;
if (scsb_debug & 0x0009)
cmn_err(CE_NOTE, "sm_close[%d](0x%p)", scsb->scsb_instance, q);
if (scsb->scsb_clopens) {
mutex_enter(&scsb->scsb_mutex);
if ((clone = scsb_queue_ops(scsb, QFIND_QUEUE, 0,
(void *) RD(q), "scsb_close")) != QOP_FAILED) {
clptr = &scsb->clone_devs[clone];
clptr->cl_flags = 0;
clptr->cl_rq = NULL;
scsb->scsb_clopens--;
}
mutex_exit(&scsb->scsb_mutex);
if (scsb_debug & 0x0008 && clone < SCSB_CLONES_MAX &&
clone >= SCSB_CLONES_FIRST)
cmn_err(CE_NOTE, "sm_close(%d): SCSB_CLONE 0x%x",
scsb->scsb_instance, clptr->cl_minor);
}
if (clptr == NULL && scsb->scsb_opens) {
if (scsb_debug & 0x0008)
cmn_err(CE_NOTE, "sm_close(%d): DEVOPEN, opens=%d",
scsb->scsb_instance, scsb->scsb_opens);
if (RD(q) != scsb->scsb_rq) {
if (scsb_debug & 0x0008)
cmn_err(CE_WARN,
"sm_close(%d): DEVOPEN, q != scsb_rq",
scsb->scsb_instance);
}
mutex_enter(&scsb->scsb_mutex);
scsb->scsb_opens = 0;
if (scsb->scsb_state & SCSB_EXCL) {
scsb->scsb_state &= ~SCSB_EXCL;
}
scsb->scsb_rq = (queue_t *)NULL;
mutex_exit(&scsb->scsb_mutex);
}
if (scsb->scsb_opens == 0 && scsb->scsb_clopens == 0) {
scsb->scsb_state &= ~SCSB_OPEN;
}
RD(q)->q_ptr = WR(q)->q_ptr = NULL;
qprocsoff(q);
return (0);
}
/*ARGSUSED*/
static int
sm_rput(queue_t *q, mblk_t *mp)
{
if (scsb_debug & 0x0010)
cmn_err(CE_NOTE, "sm_rput");
return (0);
}
static int
sm_wput(queue_t *q, mblk_t *mp)
{
scsb_state_t *scsb = (scsb_state_t *)WR(q)->q_ptr;
if (scsb_debug & 0x0010)
cmn_err(CE_NOTE, "sm_wput(%d): mp %p", scsb->scsb_instance, mp);
switch (mp->b_datap->db_type) {
default:
freemsg(mp);
break;
case M_FLUSH: /* canonical flush handling */
if (*mp->b_rptr & FLUSHW) {
flushq(q, FLUSHDATA);
/* free any messages tied to scsb */
}
if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);
} else
freemsg(mp);
break;
case M_IOCTL:
if (scsb_debug & 0x0010)
cmn_err(CE_NOTE, "sm_wput(%d): M_IOCTL",
scsb->scsb_instance);
/* do ioctl */
smf_ioctl(q, mp);
break;
case M_DATA:
if (scsb_debug & 0x0010)
cmn_err(CE_NOTE, "sm_wput(%d): M_DATA",
scsb->scsb_instance);
if (!(scsb->scsb_state & SCSB_UP)) {
freemsg(mp);
return (0);
}
freemsg(mp);
break;
case M_CTL:
if (scsb_debug & 0x0010)
cmn_err(CE_NOTE, "sm_wput(%d): M_CTL",
scsb->scsb_instance);
freemsg(mp);
break;
}
return (0);
}
/*
* These are the system monitor upper ioctl functions.
*/
static void
smf_ioctl(queue_t *q, mblk_t *mp)
{
scsb_state_t *scsb = (scsb_state_t *)q->q_ptr;
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
if (scsb_debug & 0x0020)
cmn_err(CE_NOTE, "smf_ioctl(%d): (%p)->cmd=%x",
scsb->scsb_instance, mp, iocp->ioc_cmd);
if (!(scsb->scsb_state & SCSB_UP)) {
miocnak(q, mp, 0, ENXIO);
return;
}
/*
* Don't fail ALL commands if the SCB removed, since we still want to
* satisfy some requests from the shadow registers, the last known
* register contents.
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* iocp->ioc_error = EAGAIN;
* mp->b_datap->db_type = M_IOCNAK;
* qreply(q, mp);
* return;
* }
*/
iocp->ioc_error = 0;
switch (iocp->ioc_cmd) {
default:
/* if we don't understand the ioctl */
if (scsb_debug & 0x0022)
cmn_err(CE_NOTE, "smf_ioctl(%d):unkown ioctl %x",
scsb->scsb_instance, iocp->ioc_cmd);
iocp->ioc_error = EINVAL;
break;
case ENVC_IOC_GETMODE:
{
uint8_t *curr_mode;
iocp->ioc_error = miocpullup(mp, sizeof (uint8_t));
if (iocp->ioc_error != 0)
break;
curr_mode = (uint8_t *)mp->b_cont->b_rptr;
if (scsb->scsb_state & SCSB_DEBUG_MODE)
*curr_mode = (uint8_t)ENVC_DEBUG_MODE;
else if (scsb->scsb_state & SCSB_DIAGS_MODE)
*curr_mode = (uint8_t)ENVCTRL_DIAG_MODE;
else
*curr_mode = (uint8_t)ENVCTRL_NORMAL_MODE;
if (scsb_debug & 0x20) {
cmn_err(CE_NOTE, "IOC_GETMODE: returning mode 0x%x",
*curr_mode);
}
break;
}
case ENVC_IOC_SETMODE:
{
uint8_t *curr_mode;
iocp->ioc_error = miocpullup(mp, sizeof (uint8_t));
if (iocp->ioc_error != 0)
break;
curr_mode = (uint8_t *)mp->b_cont->b_rptr;
switch (*curr_mode) {
case ENVCTRL_NORMAL_MODE:
scsb->scsb_state &=
~(SCSB_DEBUG_MODE | SCSB_DIAGS_MODE);
break;
case ENVCTRL_DIAG_MODE:
scsb->scsb_state |= SCSB_DIAGS_MODE;
scsb->scsb_state &= ~SCSB_DEBUG_MODE;
break;
case ENVC_DEBUG_MODE:
if (scsb->scsb_state &
(SCSB_DIAGS_MODE | SCSB_DEBUG_MODE)) {
scsb->scsb_state &= ~SCSB_DIAGS_MODE;
scsb->scsb_state |= SCSB_DEBUG_MODE;
} else {
iocp->ioc_error = EACCES;
}
break;
default:
if (scsb_debug & 0x22) {
cmn_err(CE_WARN,
"IOC_SETMODE: Invalid mode 0x%x",
*curr_mode);
}
iocp->ioc_error = EINVAL;
break;
}
break;
}
case ENVC_IOC_ACQUIRE_SLOT_LED_CTRL:
if (scsb->scsb_state & SCSB_APP_SLOTLED_CTRL)
iocp->ioc_error = EAGAIN;
else {
scsb->scsb_state |= SCSB_APP_SLOTLED_CTRL;
iocp->ioc_error = 0;
}
break;
case ENVC_IOC_RELEASE_SLOT_LED_CTRL:
scsb->scsb_state &= ~SCSB_APP_SLOTLED_CTRL;
iocp->ioc_error = 0;
break;
/*
* Not an exposed interface, only used by development utilities.
*/
case SCSBIOC_GET_VERSIONS:
{
uint8_t *ppromid, promid;
scsb_ids_t *sids;
if (iocp->ioc_count == sizeof (uint8_t)) {
iocp->ioc_error = miocpullup(mp, sizeof (uint8_t));
if (iocp->ioc_error != 0)
break;
ppromid = (uint8_t *)mp->b_cont->b_rptr;
*ppromid = (uint8_t)(mct_system_info.
fru_info_list[SCB])->fru_version;
promid = *ppromid;
} else {
iocp->ioc_error = miocpullup(mp, sizeof (scsb_ids_t));
if (iocp->ioc_error != 0)
break;
sids = (scsb_ids_t *)mp->b_cont->b_rptr;
bcopy(modldrv.drv_linkinfo, sids->modldrv_string,
SCSB_MODSTR_LEN);
bcopy(scsb_build_version, sids->scsb_version,
SCSB_VERSTR_LEN);
sids->promid = (uint8_t)(mct_system_info.
fru_info_list[SCB])->fru_version;
promid = sids->promid;
if (scsb_debug & 0x20) {
cmn_err(CE_NOTE,
"IOC_GET_VERSIONS: sizeof(scsb_ids_t) "
"= %lu", sizeof (scsb_ids_t));
}
}
if (scsb_debug & 0x20) {
cmn_err(CE_NOTE,
"IOC_GET_VERSIONS: SCB PROMID = 0x%x", promid);
}
break;
}
#ifdef DEBUG
case ENVC_IOC_REGISTER_PID:
iocp->ioc_error = miocpullup(mp, sizeof (pid_t));
if (iocp->ioc_error == 0) {
if (add_event_proc(scsb, *(pid_t *)mp->b_cont->b_rptr))
iocp->ioc_error = ENOMEM;
}
break;
case ENVC_IOC_UNREGISTER_PID:
iocp->ioc_error = miocpullup(mp, sizeof (pid_t));
if (iocp->ioc_error == 0) {
if (del_event_proc(scsb, *(pid_t *)mp->b_cont->b_rptr))
iocp->ioc_error = EINVAL;
}
break;
case SCSBIOC_VALUE_MODE:
{
uint32_t *mode_vals;
int three_vals = 0;
if (!(scsb->scsb_state & SCSB_DEBUG_MODE)) {
iocp->ioc_error = EINVAL;
break;
}
if (iocp->ioc_count == sizeof (uint32_t) * 3)
three_vals = 1;
else if (iocp->ioc_count != sizeof (uint32_t) * 2) {
iocp->ioc_error = EINVAL;
break;
}
iocp->ioc_error = miocpullup(mp, iocp->ioc_count);
if (iocp->ioc_error != 0)
break;
/*
* check mode_vals[0] for get/set option. setting
* scsb_state is not valid for now. 0 == GET, 1 == SET
*/
mode_vals = (uint32_t *)mp->b_cont->b_rptr;
if (mode_vals[0]) {
scsb_debug = mode_vals[1];
} else {
mode_vals[0] = scsb->scsb_state;
if (three_vals) {
mode_vals[1] = scsb->scsb_hsc_state;
mode_vals[2] = scsb_debug;
} else
mode_vals[1] = scsb_debug;
}
if ((scsb_debug & 0x20) && three_vals) {
cmn_err(CE_NOTE, "IOC_VALUE_MODE: mode_vals: "
"0x%x/0x%x/0x%x; ioc_count = 0x%lx",
mode_vals[0], mode_vals[1], mode_vals[2],
iocp->ioc_count);
}
break;
}
#ifdef DEBUG
case SCSBIOC_GET_SLOT_INFO:
{
hsc_slot_t *slot_info = NULL;
uint32_t *slot_vals;
int pslotnum;
if (!(scsb->scsb_state & SCSB_DEBUG_MODE)) {
iocp->ioc_error = EINVAL;
break;
}
iocp->ioc_error = miocpullup(mp, sizeof (uint32_t) * 2);
if (iocp->ioc_error != 0)
break;
slot_vals = (uint32_t *)mp->b_cont->b_rptr;
pslotnum = (int)*slot_vals;
hsc_ac_op(scsb->scsb_instance, pslotnum,
SCSB_HSC_AC_GET_SLOT_INFO, &slot_info);
if (slot_info == NULL) {
iocp->ioc_error = ENODEV;
break;
}
*slot_vals = (uint32_t)slot_info->hs_flags;
*(++slot_vals) = (uint32_t)slot_info->hs_slot_state;
if (scsb_debug & 0x20) {
cmn_err(CE_NOTE, "IOC_GET_SLOT_STATE: slot_vals: "
"0x%x/0x%x; ioc_count = 0x%lx",
slot_vals[0], slot_vals[1], iocp->ioc_count);
}
break;
}
#endif /* DEBUG */
case SCSBIOC_GET_FAN_STATUS:
case SCSBIOC_GET_INTR_ARRAY:
/* for now we don't understand these ioctls */
if (scsb_debug & 0x0022)
cmn_err(CE_NOTE, "smf_ioctl(%d):unknown ioctl %x",
scsb->scsb_instance, iocp->ioc_cmd);
iocp->ioc_error = EINVAL;
break;
#endif /* DEBUG */
case SCSBIOC_LED_OK_GET:
case SCSBIOC_LED_NOK_GET:
case SCSBIOC_LED_OK_SET:
case SCSBIOC_LED_NOK_SET:
case SCSBIOC_BHEALTHY_GET:
case SCSBIOC_SLOT_OCCUPANCY:
case SCSBIOC_RESET_UNIT:
if (!(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE))) {
iocp->ioc_error = EACCES;
break;
}
/*FALLTHROUGH*/
case ENVC_IOC_GETDSKLED:
case ENVC_IOC_SETDSKLED:
case ENVC_IOC_SETFSP:
{
scsb_uinfo_t *suip;
iocp->ioc_error = miocpullup(mp, sizeof (scsb_uinfo_t));
if (iocp->ioc_error != 0)
break;
suip = (scsb_uinfo_t *)mp->b_cont->b_rptr;
switch (iocp->ioc_cmd) {
case SCSBIOC_LED_OK_GET:
iocp->ioc_error = scsb_led_get(scsb, suip, OK);
break;
case SCSBIOC_LED_NOK_GET:
iocp->ioc_error = scsb_led_get(scsb, suip, NOK);
break;
case SCSBIOC_LED_OK_SET:
iocp->ioc_error = scsb_led_set(scsb, suip, OK);
break;
case SCSBIOC_LED_NOK_SET:
iocp->ioc_error = scsb_led_set(scsb, suip, NOK);
break;
case SCSBIOC_BHEALTHY_GET:
iocp->ioc_error = scsb_bhealthy_slot(scsb, suip);
break;
case SCSBIOC_SLOT_OCCUPANCY:
iocp->ioc_error = scsb_slot_occupancy(scsb, suip);
break;
case SCSBIOC_RESET_UNIT:
iocp->ioc_error = scsb_reset_unit(scsb, suip);
break;
case ENVC_IOC_GETDSKLED:
if (suip->unit_type != DISK) {
iocp->ioc_error = EINVAL;
break;
}
iocp->ioc_error = scsb_led_get(scsb, suip, NOUSE);
break;
case ENVC_IOC_SETDSKLED:
if (suip->unit_type != DISK) {
iocp->ioc_error = EINVAL;
break;
}
iocp->ioc_error = scsb_led_set(scsb, suip, NOUSE);
break;
case ENVC_IOC_SETFSP:
if (scsb->scsb_state & SCSB_FROZEN) {
iocp->ioc_error = EAGAIN;
break;
}
iocp->ioc_error = scsb_led_set(scsb, suip, NOUSE);
break;
}
break;
}
case SCSBIOC_FAKE_INTR: {
uint32_t ui;
if (!(scsb->scsb_state & SCSB_DEBUG_MODE)) {
iocp->ioc_error = EINVAL;
break;
}
if (mp->b_cont == NULL)
ui = 0;
else {
iocp->ioc_error = miocpullup(mp, sizeof (uint32_t));
if (iocp->ioc_error != 0)
break;
ui = *(uint32_t *)mp->b_cont->b_rptr;
}
iocp->ioc_error = scsb_fake_intr(scsb, ui);
break;
}
case SCSBIOC_GET_STATUS :
if (!(scsb->scsb_state & SCSB_DEBUG_MODE)) {
iocp->ioc_error = EINVAL;
break;
}
iocp->ioc_error = miocpullup(mp, sizeof (scsb_status_t));
if (iocp->ioc_error == 0)
iocp->ioc_error = scsb_get_status(scsb,
(scsb_status_t *)mp->b_cont->b_rptr);
break;
case SCSBIOC_ALL_LEDS_ON :
if (!(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE)))
iocp->ioc_error = EACCES;
else
iocp->ioc_error = scsb_leds_switch(scsb, ON);
break;
case SCSBIOC_ALL_LEDS_OFF :
if (!(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE)))
iocp->ioc_error = EACCES;
else
iocp->ioc_error = scsb_leds_switch(scsb, OFF);
break;
case SCSBIOC_REG_READ:
case SCSBIOC_REG_WRITE:
if (!(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE))) {
iocp->ioc_error = EACCES;
} else {
scsb_ioc_rdwr_t *iocrdwrp;
if (scsb->scsb_state & SCSB_FROZEN &&
!(scsb->scsb_state & SCSB_DEBUG_MODE)) {
iocp->ioc_error = EAGAIN;
break;
}
iocp->ioc_error = miocpullup(mp, sizeof (*iocrdwrp));
if (iocp->ioc_error == 0) {
iocrdwrp =
(scsb_ioc_rdwr_t *)mp->b_cont->b_rptr;
if (iocp->ioc_cmd == SCSBIOC_REG_READ) {
if (iocrdwrp->ioc_rlen > 0) {
sm_ioc_rdwr(q, mp, I2C_WR_RD);
return;
}
} else {
if (iocrdwrp->ioc_wlen > 0) {
sm_ioc_rdwr(q, mp, I2C_WR);
return;
}
}
iocp->ioc_error = EINVAL;
break;
}
}
break;
case SCSBIOC_SHUTDOWN_POLL:
case SCSBIOC_INTEVENT_POLL:
if (!(scsb->scsb_state & SCSB_DEBUG_MODE)) {
iocp->ioc_error = EINVAL;
break;
}
iocp->ioc_error = miocpullup(mp, sizeof (uint32_t));
if (iocp->ioc_error == 0)
iocp->ioc_error = scsb_polled_int(scsb, iocp->ioc_cmd,
(uint32_t *)mp->b_cont->b_rptr);
break;
case SCSBIOC_RESTORE :
if (!(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE)))
iocp->ioc_error = EACCES;
else {
scsb_restore(scsb);
scsb_toggle_psmint(scsb, 1);
iocp->ioc_error = 0;
}
break;
case SCSBIOC_FREEZE :
if (!(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE)))
iocp->ioc_error = EACCES;
else {
scsb_freeze_check(scsb);
scsb_freeze(scsb);
iocp->ioc_error = 0;
}
break;
/*
* envmond:alarmcard.so response to SCTRL_EVENT_ALARM_INSERTION
*/
case ENVC_IOC_ACCONF_RESTORED:
(void) scsb_hsc_ac_op(scsb, scsb->ac_slotnum,
SCSB_HSC_AC_SET_BUSY);
break;
/*
* envmond:alarmcard.so response to SCTRL_EVENT_ALARM_REMOVAL
*/
case ENVC_IOC_ACCONF_STORED:
if (scsb->scsb_state & SCSB_FROZEN) {
iocp->ioc_error = EAGAIN;
break;
}
(void) scsb_hsc_ac_op(scsb, scsb->ac_slotnum,
SCSB_HSC_AC_UNCONFIGURE);
break;
#ifdef DEBUG
case SCSBIOC_TOPOLOGY_DUMP:
if (!(scsb->scsb_state & SCSB_DEBUG_MODE))
iocp->ioc_error = EINVAL;
else {
mct_topology_dump(scsb, 1);
iocp->ioc_error = 0;
}
break;
#endif
}
if (iocp->ioc_error)
mp->b_datap->db_type = M_IOCNAK;
else
mp->b_datap->db_type = M_IOCACK;
qreply(q, mp);
}
static fru_info_t *
find_fru_info(fru_id_t fru_id)
{
int i;
fru_info_t *fru_ptr;
if (scsb_debug & 0x00100001)
cmn_err(CE_NOTE, "find_fru_info(0x%x)", fru_id);
if (fru_id == (fru_id_t)0)
return ((fru_info_t *)NULL);
for (i = 0; i < SCSB_UNIT_TYPES; ++i) {
fru_ptr = mct_system_info.fru_info_list[i];
while (fru_ptr != NULL) {
if (fru_ptr->fru_id == fru_id)
return (fru_ptr);
fru_ptr = fru_ptr->next;
}
}
return ((fru_info_t *)NULL);
}
struct scsb_cb_entry {
void *cb_softstate_ptr;
fru_id_t cb_fru_id;
scsb_fru_event_t cb_event;
void (*cb_func)
(void *, scsb_fru_event_t, scsb_fru_status_t);
fru_info_t *cb_fru_ptr;
struct scsb_cb_entry *cb_next;
};
#ifdef DEBUG
int scsb_cb_count = 0;
#else
static
#endif
struct scsb_cb_entry *scsb_cb_table;
/*
* global function for interested FRU drivers to register a callback function,
* to be called when FRU presence status changes.
*/
scsb_fru_status_t
scsb_fru_register(void (*cb_func)(void *, scsb_fru_event_t, scsb_fru_status_t),
void *soft_ptr, fru_id_t fru_id)
{
struct scsb_cb_entry *cbe_ptr;
if (scsb_debug & 0x00800001) {
cmn_err(CE_NOTE,
"scsb_fru_register: FRU_ID 0x%x", (int)fru_id);
}
if (!(scsb_global_state & SCSB_UP)) {
return (FRU_NOT_AVAILABLE);
}
if (cb_func == NULL || fru_id == (fru_id_t)0)
return (FRU_NOT_AVAILABLE);
if (scsb_cb_table == NULL)
scsb_cb_table = (struct scsb_cb_entry *)
kmem_zalloc(sizeof (struct scsb_cb_entry), KM_SLEEP);
cbe_ptr = scsb_cb_table;
while (cbe_ptr->cb_softstate_ptr != NULL) {
if (cbe_ptr->cb_next == (struct scsb_cb_entry *)NULL) {
cbe_ptr->cb_next = (struct scsb_cb_entry *)
kmem_zalloc(sizeof (struct scsb_cb_entry),
KM_SLEEP);
cbe_ptr = cbe_ptr->cb_next;
break;
}
cbe_ptr = cbe_ptr->cb_next;
}
cbe_ptr->cb_softstate_ptr = soft_ptr;
cbe_ptr->cb_fru_id = fru_id;
cbe_ptr->cb_func = cb_func;
cbe_ptr->cb_next = (struct scsb_cb_entry *)NULL;
cbe_ptr->cb_fru_ptr = find_fru_info(fru_id);
#ifdef DEBUG
scsb_cb_count++;
#endif
if (scsb_debug & 0x00800000) {
cmn_err(CE_NOTE,
"scsb_fru_register: FRU_ID 0x%x, status=%d",
(int)fru_id,
(cbe_ptr->cb_fru_ptr == (fru_info_t *)NULL) ?
0xff : cbe_ptr->cb_fru_ptr->fru_status);
}
if (cbe_ptr->cb_fru_ptr == (fru_info_t *)NULL)
return (FRU_NOT_AVAILABLE);
if (cbe_ptr->cb_fru_ptr->fru_status & FRU_PRESENT)
return (FRU_PRESENT);
return (FRU_NOT_PRESENT);
}
void
scsb_fru_unregister(void *soft_ptr, fru_id_t fru_id)
{
struct scsb_cb_entry *prev_ptr, *cbe_ptr;
if (scsb_debug & 0x00800001) {
cmn_err(CE_NOTE, "scsb_fru_unregister(0x%p, 0x%x)",
soft_ptr, (int)fru_id);
}
if ((cbe_ptr = scsb_cb_table) == NULL || fru_id == (fru_id_t)0)
return;
prev_ptr = cbe_ptr;
do {
if (cbe_ptr->cb_softstate_ptr == soft_ptr &&
cbe_ptr->cb_fru_id == fru_id) {
if (cbe_ptr == scsb_cb_table)
scsb_cb_table = cbe_ptr->cb_next;
else
prev_ptr->cb_next = cbe_ptr->cb_next;
kmem_free(cbe_ptr, sizeof (struct scsb_cb_entry));
#ifdef DEBUG
scsb_cb_count--;
#endif
return;
}
prev_ptr = cbe_ptr;
} while ((cbe_ptr = cbe_ptr->cb_next) != NULL);
}
/*
* global function for interested FRU drivers to call to check
* FRU presence status.
*/
scsb_fru_status_t
scsb_fru_status(uchar_t fru_id)
{
fru_info_t *fru_ptr;
fru_ptr = find_fru_info(fru_id);
if (scsb_debug & 0x00800001) {
cmn_err(CE_NOTE, "scsb_fru_status(0x%x): status=0x%x",
fru_id, (fru_ptr == (fru_info_t *)NULL) ? 0xff :
(int)fru_ptr->fru_status);
}
if (fru_ptr == (fru_info_t *)NULL)
return (FRU_NOT_AVAILABLE);
return (fru_ptr->fru_status);
}
/*
* Global function for the other interruptible FRU device sharing the
* same interrupt line to register the interrupt handler with scsb.
* This enables all the handlers to be called whenever the interrupt
* line is asserted by anyone shaing the interrupt line.
*/
/*
* The interrupt handler table is currently a linked list. probably a
* hash table will be more efficient. Usage of these facilities can
* happen even before scsb is attached, so do not depend on scsb
* structure being present.
*/
struct fru_intr_entry {
void *softstate_ptr;
int (*fru_intr_handler)(void *);
fru_id_t fru_id;
struct fru_intr_entry *fru_intr_next;
} *fru_intr_table = NULL;
int
scsb_intr_register(int (*intr_handler)(void *), void * soft_ptr,
fru_id_t fru_id)
{
struct fru_intr_entry *intr_table_entry;
intr_table_entry = (struct fru_intr_entry *)
kmem_zalloc(sizeof (struct fru_intr_entry), KM_SLEEP);
if (intr_table_entry == NULL) {
return (DDI_FAILURE);
}
if (intr_handler == NULL || soft_ptr == NULL || fru_id == 0) {
kmem_free(intr_table_entry, sizeof (struct fru_intr_entry));
return (DDI_FAILURE);
}
intr_table_entry->softstate_ptr = soft_ptr;
intr_table_entry->fru_intr_handler = intr_handler;
intr_table_entry->fru_id = fru_id;
intr_table_entry->fru_intr_next = fru_intr_table;
fru_intr_table = intr_table_entry;
return (DDI_SUCCESS);
}
/*
* Removed interrupt_handler of fru from interrupt call chain
*/
void
scsb_intr_unregister(fru_id_t fru_id)
{
struct fru_intr_entry *intr_entry = fru_intr_table,
*prev_entry = intr_entry;
if (fru_id == 0) {
return;
}
do {
if (intr_entry->fru_id == fru_id) {
/* found a match, remove entry */
if (intr_entry == fru_intr_table)
fru_intr_table = intr_entry->fru_intr_next;
else
prev_entry->fru_intr_next =
intr_entry->fru_intr_next;
kmem_free(intr_entry,
sizeof (struct fru_intr_entry));
return;
}
prev_entry = intr_entry;
} while ((intr_entry = intr_entry->fru_intr_next) != NULL);
}
/*
* Invoke all the registered interrupt handlers, whenever scsb_intr
* is called. This function will go through the list of entries
* in the fru interrupt table and invoke each function. Returns
* whether interrupt is claimed or unclaimed.
*/
static int
scsb_invoke_intr_chain()
{
int retval = DDI_INTR_UNCLAIMED;
struct fru_intr_entry *intr_entry = fru_intr_table;
while (intr_entry != NULL) {
retval = (*intr_entry->
fru_intr_handler)(intr_entry->softstate_ptr);
if (retval == DDI_INTR_CLAIMED) {
return (retval);
}
intr_entry = intr_entry->fru_intr_next;
}
return (retval);
}
/*
* The scsb_ioc_rdwr_t is similar enough to an i2c_transfer_t that we can
* translate the structures and use the i2c_transfer() service.
*/
static void
sm_ioc_rdwr(queue_t *q, mblk_t *mp, int op)
{
scsb_state_t *scsb = (scsb_state_t *)q->q_ptr;
struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
scsb_ioc_rdwr_t *iocrdwrp;
int len, error;
uchar_t *uc, reg;
if (scsb_debug & 0x0040)
cmn_err(CE_CONT, "sm_ioc_rdwr[%d]:", scsb->scsb_instance);
iocrdwrp = (scsb_ioc_rdwr_t *)mp->b_cont->b_rptr;
if (op == I2C_WR) {
len = iocrdwrp->ioc_wlen;
uc = iocrdwrp->ioc_wbuf;
} else {
len = iocrdwrp->ioc_rlen;
uc = iocrdwrp->ioc_rbuf;
}
/*
* Check SCB register index boundries and requested len of read/write
*/
reg = iocrdwrp->ioc_regindex;
if (reg < SCSB_REG_ADDR_START || (reg + len) >
(SCSB_REG_ADDR_START + SCTRL_TOTAL_NUMREGS))
error = EINVAL;
else
error = scsb_rdwr_register(scsb, op, reg, len, uc, 1);
if (error) {
if (scsb_debug & 0x0042)
cmn_err(CE_WARN,
"sm_ioc_rdwr: rdwr_register failure: %d", error);
mp->b_datap->db_type = M_IOCNAK;
} else
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_error = error;
qreply(q, mp);
}
/*
* names for (scsb_utype_t) FRU types
*/
static char *led_name[SCSB_LED_TYPES] = { "NOK", "OK" };
static char *unit_type_name[SCSB_UNIT_TYPES] = {
"SLOT", "PDU", "POWER SUPPLY", "DISK", "FAN", "ALARM",
"SCB", "SSB", "CFTM", "CRTM", "PRTM"
};
/*
* Discover the register and bit-offset for LEDs and Reset registers,
* according to unit_type, unit_number, and led_type.
*/
static int
scsb_get_led_regnum(scsb_state_t *scsb,
scsb_uinfo_t *suip,
uchar_t *regptr,
int *unitptr,
scsb_led_t led_type)
{
int code, base, error;
/* OK here means presence (OK) LEDs */
if (led_type == OK)
base = (SCTRL_LED_OK_BASE);
else
base = (SCTRL_LED_NOK_BASE);
error = 0;
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "get_led_regnum: suip <%x, %x, %x, %x>\n",
suip->unit_type, suip->unit_number,
led_type, suip->unit_state);
}
/*
* It was requested that the scsb driver allow accesses to SCB device
* registers for FRUs that cannot be present.
* So except for SLOTs, if the unit_number check fails, we now
* just log a message, but ONLY if scsb_debug error messages are
* enabled.
*/
switch (suip->unit_type) {
case SLOT:
if (suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_SLOTS : MC_MAX_SLOTS)) {
error = EINVAL;
break;
}
code = FRU_UNIT_TO_EVCODE(SLOT, suip->unit_number);
break;
case PDU:
if (suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_PDU : MC_MAX_PDU)) {
if (scsb_debug & 0x0002) {
cmn_err(CE_WARN,
"get_led_regnum: unit number %d "
"is out of range", suip->unit_number);
}
error = EINVAL;
break;
}
code = FRU_UNIT_TO_EVCODE(PDU, suip->unit_number);
break;
case PS:
if ((suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_PS : MC_MAX_PS))) {
if (scsb_debug & 0x0002) {
cmn_err(CE_WARN,
"get_led_regnum: unit number %d "
"is out of range", suip->unit_number);
}
error = EINVAL;
break;
}
code = FRU_UNIT_TO_EVCODE(PS, suip->unit_number);
break;
case DISK:
if ((suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_DISK : MC_MAX_DISK))) {
if (scsb_debug & 0x0002) {
cmn_err(CE_WARN,
"get_led_regnum: unit number %d "
"is out of range", suip->unit_number);
}
if (!(scsb_debug & 0x20000000)) {
error = EINVAL;
break;
}
}
code = FRU_UNIT_TO_EVCODE(DISK, suip->unit_number);
break;
case FAN:
if (suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_FAN : MC_MAX_FAN)) {
if (scsb_debug & 0x0002) {
cmn_err(CE_WARN,
"get_led_regnum: unit number %d "
"is out of range", suip->unit_number);
}
error = EINVAL;
break;
}
code = FRU_UNIT_TO_EVCODE(FAN, suip->unit_number);
break;
case CFTM:
if (suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_CFTM : MC_MAX_CFTM)) {
if (scsb_debug & 0x0002) {
cmn_err(CE_WARN,
"get_led_regnum: unit number %d "
"is out of range", suip->unit_number);
}
error = EINVAL;
break;
}
code = FRU_UNIT_TO_EVCODE(CFTM, suip->unit_number);
break;
case SCB:
if (suip->unit_number < 1 || suip->unit_number >
((scsb->scsb_state & SCSB_IS_TONGA) ?
TG_MAX_SCB : MC_MAX_SCB)) {
if (scsb_debug & 0x0002) {
cmn_err(CE_WARN,
"get_led_regnum: unit number %d "
"is out of range", suip->unit_number);
}
error = EINVAL;
break;
}
code = FRU_UNIT_TO_EVCODE(SCB, suip->unit_number);
break;
case ALARM:
error = EINVAL;
break;
default:
if (scsb_debug & 0x0102) {
cmn_err(CE_WARN,
"scsb_get_led_regnum(): unknown unit type %d",
suip->unit_type);
}
error = EINVAL;
break;
}
if (!error) {
*unitptr = FRU_OFFSET(code, base);
*regptr = FRU_REG_ADDR(code, base);
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "get_led_regnum: unitptr=%x, "
"regptr=%x, code = %x\n",
*unitptr, *regptr, code);
}
}
return (error);
}
/*
* P1.0 and P1.5
* Map 1.0 Tonga Slot Numbers: SCB to user interface and back.
* User interface means positional slot numbers, as on P1.0 SSB,
* which are used by hpcsvc/hsc and kstat/ioctl interfaces.
*/
/* HSC slotnum (Positional SLotnum) to SCB CFG bit-offset */
static int psl2sco[TG_MAX_SLOTS + 1] = { -1 };
/*
* MAP Positional (HSC) slot number to SCB CFG register bit-offset
*/
static int
tonga_pslotnum_to_cfgbit(scsb_state_t *scsb, int sln)
{
int base = SCTRL_SYSCFG_BASE;
if (!(scsb->scsb_state & SCSB_IS_TONGA)) {
return (sln);
}
if (sln < 1 || sln > TG_MAX_SLOTS) {
return (sln);
}
/*
* Should move this to _init(), but for now,
* check for initialized table
*/
if (psl2sco[0]) {
psl2sco[0] = 0;
psl2sco[1] = FRU_OFFSET(SCTRL_EVENT_SLOT5, base);
psl2sco[2] = FRU_OFFSET(SCTRL_EVENT_SLOT2, base);
psl2sco[3] = FRU_OFFSET(SCTRL_EVENT_SLOT1, base);
psl2sco[4] = FRU_OFFSET(SCTRL_EVENT_SLOT3, base);
psl2sco[5] = FRU_OFFSET(SCTRL_EVENT_SLOT4, base);
}
#ifdef DEBUG
if (scsb_debug & 0x10000000) {
cmn_err(CE_NOTE, "tonga_pslotnum_to_cfgbit: old/new: %d/%d",
sln, psl2sco[sln]);
}
#endif
return (psl2sco[sln]);
}
/* positional slotnum to SCB slotnum */
static int psl2ssl[6] = {
0, 5, 2, 1, 3, 4
};
/* SCB slotnum to positional slotnum */
static int ssl2psl[6] = {
0, 3, 2, 4, 5, 1
};
/*
* P1.0 and P1.5
* HSC Slot numbers (physical positions or positional slotnum)
* to
* SCB slot numbers (reset,present,healthy)
*
* These requests come mainly from application interface and
* HSC using the scsb_uinfo_t structure.
*/
static void
tonga_slotnum_check(scsb_state_t *scsb, scsb_uinfo_t *suip)
{
if (!(scsb->scsb_state & SCSB_IS_TONGA && scsb->scsb_state &
(SCSB_P10_PROM | SCSB_P15_PROM | SCSB_P20_PROM))) {
return;
}
if (suip->unit_number < 1 || suip->unit_number > TG_MAX_SLOTS) {
return;
}
#ifdef DEBUG
if (scsb_debug & 0x10000000) {
cmn_err(CE_NOTE, "tonga_slotnum_check: old/new: %d/%d",
suip->unit_number, psl2ssl[suip->unit_number]);
}
#endif
suip->unit_number = psl2ssl[suip->unit_number];
}
/*
* P1.0 and P1.5
*/
static int
tonga_psl_to_ssl(scsb_state_t *scsb, int slotnum)
{
if (!(scsb->scsb_state & SCSB_IS_TONGA && scsb->scsb_state &
(SCSB_P10_PROM | SCSB_P15_PROM | SCSB_P20_PROM))) {
return (slotnum);
}
if (slotnum < 1 || slotnum > TG_MAX_SLOTS) {
return (slotnum);
}
#ifdef DEBUG
if (scsb_debug & 0x10000000) {
cmn_err(CE_NOTE, "tonga_psl_to_ssl: old/new: %d/%d",
slotnum, psl2ssl[slotnum]);
}
#endif
return (psl2ssl[slotnum]);
}
/*
* P1.0 and P1.5
*/
static int
tonga_ssl_to_psl(scsb_state_t *scsb, int slotnum)
{
if (!(scsb->scsb_state & SCSB_IS_TONGA && scsb->scsb_state &
(SCSB_P10_PROM | SCSB_P15_PROM | SCSB_P20_PROM))) {
return (slotnum);
}
if (slotnum < 1 || slotnum > TG_MAX_SLOTS) {
return (slotnum);
}
#ifdef DEBUG
if (scsb_debug & 0x10000000) {
cmn_err(CE_NOTE, "tonga_ssl_to_psl: old/new: %d/%d",
slotnum, ssl2psl[slotnum]);
}
#endif
return (ssl2psl[slotnum]);
}
/*
* tonga_slotnum_led_shift: this function remaps slot bits ONLY for Slots 1-5
* and ONLY for the register sets in bit-offset groups 1,2:
* LEDs, Confg/Status, Reset, BrdHlthy
*
* IN bits: SCB slot numbers (led,reset,present,healthy)
* to
* OUT bits: HSC Slot numbers (positional slot numbers as marked on the SSB)
*/
static uchar_t
tonga_slotnum_led_shift(scsb_state_t *scsb, uchar_t data)
{
int i;
uchar_t mask, new_data = 0;
#ifdef DEBUG
uchar_t old_data = data;
#endif
if (!(scsb->scsb_state & SCSB_IS_TONGA)) {
return (data);
}
/*
* P1.0 and P1.5 slot 1-5 offsets are the same
*/
for (i = 1; i <= TG_MAX_SLOTS; ++i) {
mask = 1 << (i - 1);
switch (i) {
case 1: /* map to slot 3 */
new_data |= (data & mask) << 2;
data &= ~(mask);
break;
case 2: /* map to slot 2 */
new_data |= (data & mask);
data &= ~(mask);
break;
case 3: /* map to slot 4 */
case 4: /* map to slot 5 */
new_data |= (data & mask) << 1;
data &= ~(mask);
break;
case 5: /* map to slot 1 */
new_data |= (data & mask) >> 4;
data &= ~(mask);
break;
}
}
new_data |= data; /* set any remaining bits */
#ifdef DEBUG
if (scsb_debug & 0x10000000) {
cmn_err(CE_NOTE, "tonga_slotnum_led_shift: old/new: 0x%x/0x%x",
old_data, new_data);
}
#endif
return (new_data);
}
/*
* P1.0 and P1.5
*/
int
scsb_led_get(scsb_state_t *scsb, scsb_uinfo_t *suip, scsb_led_t led_type)
{
int error;
int unit_number;
uchar_t reg;
int index;
/*
* Allow access to shadow registers even though SCB is removed
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (EAGAIN);
* }
*/
if (suip == NULL) {
return (EFAULT);
}
if (led_type == NOUSE) {
led_type = suip->led_type;
}
if (led_type != OK && led_type != NOK) {
cmn_err(CE_NOTE, "scsb_led_get(%d): unknown led type %x",
scsb->scsb_instance, led_type);
return (EINVAL);
}
error = 0;
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "scsb_led_get: %s %s %d",
led_name[led_type], unit_type_name[suip->unit_type],
suip->unit_number);
}
/*
* Map to Tonga Slot Number, if NOT P1.0 SCB
* P1.0 SSB workaround
*/
if (suip->unit_type == SLOT && !(scsb->scsb_state & SCSB_P10_PROM)) {
tonga_slotnum_check(scsb, suip);
}
/* discover the register and index we need to operate on */
if ((error = scsb_get_led_regnum(scsb, suip, &reg, &unit_number,
led_type)) == 0) {
index = SCSB_REG_INDEX(reg);
mutex_enter(&scsb->scsb_mutex);
if (scsb->scsb_data_reg[index] & (1 << unit_number)) {
suip->unit_state = ON;
if (led_type == OK) {
int code = FRU_UNIT_TO_EVCODE(suip->unit_type,
suip->unit_number);
reg = FRU_REG_ADDR(code, SCTRL_BLINK_OK_BASE);
index = SCSB_REG_INDEX(reg);
if (scsb->scsb_data_reg[index] &
(1 << unit_number))
suip->unit_state = BLINK;
}
} else {
suip->unit_state = OFF;
}
mutex_exit(&scsb->scsb_mutex);
}
return (error);
}
int
scsb_led_set(scsb_state_t *scsb, scsb_uinfo_t *suip, scsb_led_t led_type)
{
int error;
int unit_number;
uchar_t reg;
int code, index;
/* we should really allow led state changes while frozen... */
if (scsb->scsb_state & SCSB_FROZEN)
return (EAGAIN);
if (suip == NULL) {
return (EFAULT);
}
/*
* Sanity check, make sure we got plausible values for set command.
* Also check for application only control of slot leds using NOUSE
* interface
*/
if (led_type == NOUSE) {
led_type = suip->led_type;
} else if (suip->unit_type == SLOT &&
scsb->scsb_state & SCSB_APP_SLOTLED_CTRL &&
!(scsb->scsb_state &
(SCSB_DIAGS_MODE | SCSB_DEBUG_MODE))) {
/*
* kernel modules using this interface need to think they are
* succeeding, so we won't return an error for this
* application configuration
*/
return (0);
}
if (led_type != OK && led_type != NOK) {
return (EINVAL);
}
if (suip->unit_state != OFF && suip->unit_state != ON &&
suip->unit_state != BLINK) {
return (EINVAL);
}
if (suip->unit_state == BLINK) {
if (led_type != OK)
return (EINVAL);
if (suip->unit_type != SLOT && scsb->scsb_state &
(SCSB_P06_PROM | SCSB_P10_PROM))
return (EINVAL);
}
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE,
"scsb_led_set: led %s, type %s, unit %d, state %s",
led_name[led_type],
unit_type_name[suip->unit_type], suip->unit_number,
suip->unit_state == ON ? "ON":
suip->unit_state == OFF ? "OFF": "BLINK");
}
/*
* Map to Tonga Slot Number, if NOT P1.0 SCB
* P1.0 SSB workaround
*/
if (suip->unit_type == SLOT && !(scsb->scsb_state & SCSB_P10_PROM)) {
tonga_slotnum_check(scsb, suip);
}
/*
* discover the register and index we need to access
*/
if ((error = scsb_get_led_regnum(scsb, suip, &reg, &unit_number,
led_type)) == 0) {
index = SCSB_REG_INDEX(reg);
mutex_enter(&scsb->scsb_mutex);
if (suip->unit_state == ON || suip->unit_state == BLINK)
scsb->scsb_data_reg[index] |= (1 << unit_number);
else
scsb->scsb_data_reg[index] &= ~(1 << unit_number);
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "Writing %x to Reg %x",
scsb->scsb_data_reg[index], reg);
}
error = scsb_rdwr_register(scsb, I2C_WR, reg, 1,
&scsb->scsb_data_reg[index], 1);
if (error) {
cmn_err(CE_WARN, "%s#%d: Could not Update %s LEDs.",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev),
led_name[led_type]);
goto ledset_done;
}
if (led_type != OK ||
(IS_SCB_P10 && suip->unit_type != SLOT) ||
suip->unit_type == ALARM ||
suip->unit_type == SSB ||
suip->unit_type == CRTM ||
suip->unit_type == PRTM) {
goto ledset_done;
}
code = FRU_UNIT_TO_EVCODE(suip->unit_type, suip->unit_number);
reg = FRU_REG_ADDR(code, SCTRL_BLINK_OK_BASE);
index = SCSB_REG_INDEX(reg);
if (suip->unit_state == BLINK)
scsb->scsb_data_reg[index] |= (1 << unit_number);
else
scsb->scsb_data_reg[index] &= ~(1 << unit_number);
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "Writing %x to Reg %x",
scsb->scsb_data_reg[index], reg);
}
error = scsb_rdwr_register(scsb, I2C_WR, reg, 1,
&scsb->scsb_data_reg[index], 1);
if (error) {
cmn_err(CE_WARN, "%s#%d: Could not Blink %s LEDs.",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev),
led_name[led_type]);
}
ledset_done:
mutex_exit(&scsb->scsb_mutex);
}
return (error);
}
struct ps_auto_on {
scsb_state_t *scsb;
scsb_utype_t utype;
scsb_unum_t unit;
};
static struct ps_auto_on pao;
static void
scsb_ps_auto_on(void *arg)
{
struct ps_auto_on *ppao = (struct ps_auto_on *)arg;
uchar_t rmask = 0;
uchar_t ondata, sysreg;
int tmp, bit_index;
/*
* Turn on the PSU.
* Notice: not checking Power Supply unit number
*/
bit_index = SCTRL_SYS_PS_ON_BASE + (ppao->unit - 1);
ondata = 1 << SYS_OFFSET(bit_index);
tmp = SYS_REG_INDEX(bit_index, SCTRL_SYS_CMD_BASE);
sysreg = SCSB_REG_ADDR(tmp);
if (scsb_write_mask(ppao->scsb, sysreg, rmask, ondata, (uchar_t)0)) {
cmn_err(CE_WARN, "scsb%d: " "I2C TRANSFER Failed",
ppao->scsb->scsb_instance);
}
ppao->scsb->scsb_btid = 0;
}
/*
* called with mutex held from
* scsb_attach() with int_fru_ptr == NULL
* scsb_intr() with int_fru_ptr == info for FRU that caused interrupt
*/
static int
scsb_set_scfg_pres_leds(scsb_state_t *scsb, fru_info_t *int_fru_ptr)
{
int i, error = 0;
int cfg_idx, led_idx, blink_idx, lid, bid;
int cfg_bit, led_bit;
uchar_t *puc, reg, led_reg, led_data[SCSB_LEDDATA_REGISTERS];
uchar_t blink_bit, blink_reg, blink[SCSB_LEDDATA_REGISTERS];
uchar_t update_reg = 0;
scsb_utype_t fru_type;
fru_info_t *fru_ptr;
if (scsb->scsb_state & SCSB_FROZEN &&
!(scsb->scsb_state & SCSB_IN_INTR)) {
return (EAGAIN);
}
for (i = 0; i < SCTRL_LED_OK_NUMREGS; ++i) {
led_data[i] = 0;
blink[i] = 0;
}
led_reg = SCSB_REG_ADDR(SCTRL_LED_OK_BASE);
reg = SCSB_REG_ADDR(SCTRL_BLINK_OK_BASE);
lid = SCSB_REG_INDEX(led_reg); /* the LED Index Delta */
bid = SCSB_REG_INDEX(reg); /* the Blink Index Delta */
blink_reg = 0;
if (int_fru_ptr != NULL) {
update_reg = int_fru_ptr->i2c_info->ledata_reg;
}
for (fru_type = 0; fru_type < SCSB_UNIT_TYPES; ++fru_type) {
int is_present;
fru_ptr = mct_system_info.fru_info_list[fru_type];
for (; fru_ptr != NULL; fru_ptr = fru_ptr->next) {
is_present = 0;
if (fru_type == SLOT && (scsb->scsb_state &
SCSB_APP_SLOTLED_CTRL))
break;
if (fru_ptr->i2c_info == NULL)
continue;
if ((led_reg = fru_ptr->i2c_info->ledata_reg) == 0) {
/*
* No LED exceptions: SSB,CRTM,PRTM
*/
continue;
}
if (update_reg && update_reg != led_reg)
continue;
led_idx = SCSB_REG_INDEX(led_reg) - lid;
led_bit = fru_ptr->i2c_info->ledata_bit;
if ((reg = fru_ptr->i2c_info->syscfg_reg) == 0) {
if (fru_type != SCB)
continue;
/*
* exception: SCB
*/
if (scsb->scsb_state & SCSB_SCB_PRESENT) {
led_data[led_idx] |= 1 << led_bit;
is_present = 1;
} else {
led_data[led_idx] &= ~(1 << led_bit);
}
if (IS_SCB_P10)
continue;
} else {
cfg_idx = SCSB_REG_INDEX(reg);
cfg_bit = fru_ptr->i2c_info->syscfg_bit;
if (scsb->scsb_data_reg[cfg_idx] &
(1 << cfg_bit)) {
is_present = 1;
}
}
if (is_present) {
/*
* If the FRU is a Power Supply, AND
* the call is from scsb_attach() OR
* from scsb_intr() and FRUs match,
* turn it on.
*/
if (fru_type == PS && (int_fru_ptr == NULL ||
(int_fru_ptr == fru_ptr))) {
pao.scsb = scsb;
pao.utype = fru_type;
pao.unit = fru_ptr->fru_unit;
#ifdef PS_ON_DELAY
/*
* HW recommended not implementing
* this delay for now.
* The code is tested on PSUs:
* -06
* -07 rev 2
* -08 plus
*/
if (int_fru_ptr) {
/*
* Hot insertion, so give it
* the 3 seconds it needs to
* become stable
*/
if (!scsb->scsb_btid)
scsb->scsb_btid =
timeout(
scsb_ps_auto_on,
&pao, (4 *
drv_usectohz(
1000000)));
} else
#endif /* PS_ON_DELAY */
scsb_ps_auto_on((void *)&pao);
}
/*
* Special SLOT handling.
* Make sure the OK LED is on for the CPU Slot
* and for the FTC (CFTM) Slot for MonteCarlo.
* Both will report as FRU_PRESENT.
*/
if (fru_type != SLOT || (fru_type == SLOT &&
(fru_ptr->fru_type ==
(scsb_utype_t)OC_CPU ||
fru_ptr->fru_type ==
(scsb_utype_t)OC_CTC))) {
/*
* Set OK (green) LED register bit
*/
led_data[led_idx] |= 1 << led_bit;
}
if (IS_SCB_P10)
continue;
/*
* Turn off BLINK register bit.
* If single register update, then save the
* corresponding blink register in blink_reg.
*/
reg = fru_ptr->i2c_info->blink_reg;
if (!reg)
continue;
blink_bit = fru_ptr->i2c_info->blink_bit;
blink_idx = SCSB_REG_INDEX(reg) - bid;
blink[blink_idx] |= 1 << blink_bit;
if (update_reg && update_reg == led_reg)
blink_reg = reg;
}
}
}
if (update_reg) {
reg = update_reg;
i = SCSB_REG_INDEX(reg);
puc = &led_data[i - lid];
i = 1;
} else {
reg = SCSB_REG_ADDR(SCTRL_LED_OK_BASE);
puc = led_data;
i = SCTRL_LED_OK_NUMREGS;
}
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "scsb_set_scfg_pres(): writing %d bytes "
"to 0x%x", i, reg);
}
if ((error = scsb_rdwr_register(scsb, I2C_WR, reg, i, puc, 1)) != 0) {
if (scsb_debug & 0x0102)
cmn_err(CE_NOTE, "scsb_set_scfg_pres(): "
"I2C write to 0x%x failed", reg);
error = EIO;
} else {
/*
* Now see which BLINK bits need to be turned off for the
* corresponding OK LED bits.
*/
reg = SCSB_REG_ADDR(SCTRL_BLINK_OK_BASE);
for (i = 0; i < SCTRL_BLINK_NUMREGS; ++i, ++reg) {
if (blink_reg && blink_reg != reg)
continue;
if (!blink[i]) {
continue;
}
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "scsb_set_scfg_pres(): turn "
"OFF Blink bits 0x%x in 0x%x",
blink[i], reg);
}
if (scsb_write_mask(scsb, reg, 0, 0, blink[i])) {
if (scsb_debug & 0x0102)
cmn_err(CE_NOTE,
"scsb_set_scfg_pres(): "
"Write to 0x%x failed", reg);
error = EIO;
break;
}
}
}
return (error);
}
static int
scsb_check_config_status(scsb_state_t *scsb)
{
int error;
uchar_t reg;
int index, p06;
if (scsb_debug & 0x0201) {
cmn_err(CE_NOTE, "scsb_check_config_status:");
}
/*
* Base of register set
*/
reg = SCSB_REG_ADDR(SCTRL_SYSCFG_BASE);
index = SCSB_REG_INDEX(reg);
/*
* SCB P0.6 workaround: read registers twice, use 2nd value set
*/
mutex_enter(&scsb->scsb_mutex);
p06 = 2;
do {
if (error = scsb_rdwr_register(scsb, I2C_WR_RD, reg,
SCTRL_CFG_NUMREGS, &scsb->scsb_data_reg[index], 1)) {
break;
}
if (p06 == 1) {
if (scsb_debug & 0x0200)
cmn_err(CE_NOTE,
"scsb_check_config_status: P0.6 workaround");
}
/*
* If not P0.6 PROM, just break here
*/
if (!(scsb->scsb_state & SCSB_P06_PROM))
break;
} while (--p06);
mutex_exit(&scsb->scsb_mutex);
if (error == 0) {
if (!(scsb->scsb_state & SCSB_SCB_PRESENT))
scsb->scsb_state |= SCSB_SCB_PRESENT;
if (scsb_fru_op(scsb, SSB, 1, SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL))
scsb->scsb_state |= SCSB_SSB_PRESENT;
else
scsb->scsb_state &= ~SCSB_SSB_PRESENT;
}
return (error);
}
static void
scsb_set_topology(scsb_state_t *scsb)
{
int i, t, index, unit, is_tonga = 0;
int alarm_slot_num, cpu_slot_num, ctc_slot_num;
fru_info_t *fru_ptr, *last_ptr, *acslot_ptr, *ctcslot_ptr;
uchar_t syscfg, led_reg, blink_reg, t_uchar;
uchar_t bit_num, led_bit, blink_bit;
int pad = 0;
/*
* Get the presence status from the SysConfigStatus shadow registers
* in scsb->scsb_data_reg[]
*/
/* Mid Plane */
i = SYS_REG_INDEX(SCTRL_CFG_MPID0, SCTRL_SYSCFG_BASE);
t_uchar = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(t_uchar);
mct_system_info.mid_plane.fru_type = MIDPLANE;
mct_system_info.mid_plane.fru_version = (fru_version_t)0;
t = SYS_OFFSET(SCTRL_CFG_MPID0);
mct_system_info.mid_plane.fru_id = (int)((scsb->scsb_data_reg[index] &
(SCTRL_MPID_MASK << t)) >> t);
switch (mct_system_info.mid_plane.fru_id) {
case SCTRL_MPID_HALF: /* Monte Carlo */
if (scsb_debug & 0x00100005)
cmn_err(CE_NOTE, "scsb_set_topology: Monte Carlo");
cpu_slot_num = SC_MC_CPU_SLOT;
ctc_slot_num = SC_MC_CTC_SLOT;
alarm_slot_num = scsb->ac_slotnum = SC_MC_AC_SLOT;
mct_system_info.max_units[SLOT] = MC_MAX_SLOTS;
mct_system_info.max_units[ALARM] = MC_MAX_AC;
mct_system_info.max_units[DISK] = MC_MAX_DISK;
mct_system_info.max_units[FAN] = MC_MAX_FAN;
mct_system_info.max_units[PS] = MC_MAX_PS;
mct_system_info.max_units[PDU] = MC_MAX_PDU;
mct_system_info.max_units[SCB] = MC_MAX_SCB;
mct_system_info.max_units[SSB] = MC_MAX_SCB;
mct_system_info.max_units[CFTM] = MC_MAX_CFTM;
mct_system_info.max_units[CRTM] = MC_MAX_CRTM;
mct_system_info.max_units[PRTM] = MC_MAX_PRTM;
break;
case SCTRL_MPID_QUARTER_NODSK: /* Tonga w/o disk */
case SCTRL_MPID_QUARTER: /* Tonga w/ disk */
scsb->scsb_state |= SCSB_IS_TONGA;
is_tonga = 1;
ctc_slot_num = -1;
ctcslot_ptr = NULL;
if (scsb_debug & 0x00100005)
cmn_err(CE_NOTE, "scsb_set_topology: Tonga%s",
mct_system_info.mid_plane.fru_id ==
SCTRL_MPID_QUARTER_NODSK ?
", no disk" : " with disk");
cpu_slot_num = SC_TG_CPU_SLOT;
alarm_slot_num = scsb->ac_slotnum = SC_TG_AC_SLOT;
mct_system_info.max_units[SLOT] = TG_MAX_SLOTS;
mct_system_info.max_units[ALARM] = TG_MAX_AC;
mct_system_info.max_units[DISK] = TG_MAX_DISK;
mct_system_info.max_units[FAN] = TG_MAX_FAN;
mct_system_info.max_units[PS] = TG_MAX_PS;
mct_system_info.max_units[PDU] = TG_MAX_PDU;
mct_system_info.max_units[SCB] = TG_MAX_SCB;
mct_system_info.max_units[SSB] = TG_MAX_SCB;
mct_system_info.max_units[CFTM] = TG_MAX_CFTM;
mct_system_info.max_units[CRTM] = TG_MAX_CRTM;
mct_system_info.max_units[PRTM] = TG_MAX_PRTM;
break;
default:
cmn_err(CE_WARN, "%s#%d: Unknown MidPlane Id %x",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev),
mct_system_info.mid_plane.fru_id);
if (scsb_debug & 0x00100005)
cmn_err(CE_NOTE, "scsb_set_topology: 0x%x: unknown!",
mct_system_info.mid_plane.fru_id);
return;
}
/*
* cPCI Slots
*
* NOTE: The Tonga slot fru_unit needs to get mapped to the logical
* slot number in slot_table[]. The field is not in the slot_table
* at least until we know the format of the OBP slot table for the FCS
* release.
*/
mct_system_info.fru_info_list[SLOT] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[SLOT] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[SLOT];
for (unit = 1; unit <= mct_system_info.max_units[SLOT]; ++unit) {
int iunit;
if (unit == cpu_slot_num) {
fru_ptr->fru_type = (scsb_utype_t)OC_CPU;
} else if (unit == ctc_slot_num) {
/* fru_ptr saved for Transition Card Presence check */
ctcslot_ptr = fru_ptr;
fru_ptr->fru_type = (scsb_utype_t)OC_UNKN;
} else if (unit == alarm_slot_num) {
/* fru_ptr saved for Alarm Card Presence check below */
acslot_ptr = fru_ptr;
fru_ptr->fru_type = (scsb_utype_t)OC_UNKN;
} else {
fru_ptr->fru_type = (scsb_utype_t)OC_UNKN;
}
/*
* Get the slot event code (t), then use it to get the
* slot bit-offsets for LED, BLINK, and SYSCFG registers.
* On a P1.5 Tonga, the internal slot number must be used to
* find the event code.
* The P1.0 Tonga does not get mapped due to a SSB difference.
*/
if (IS_SCB_P15) {
iunit = tonga_psl_to_ssl(scsb, unit);
t = FRU_UNIT_TO_EVCODE(SLOT, iunit);
} else {
t = FRU_UNIT_TO_EVCODE(SLOT, unit);
}
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
blink_reg = FRU_REG_ADDR(t, SCTRL_BLINK_OK_BASE);
if (is_tonga && unit <= TG_MAX_SLOTS) {
bit_num = tonga_pslotnum_to_cfgbit(scsb, unit);
} else {
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
}
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
syscfg = FRU_REG_ADDR(t, SCTRL_SYSCFG_BASE);
index = SCSB_REG_INDEX(syscfg);
led_reg = FRU_REG_ADDR(t, SCTRL_LED_OK_BASE);
/*
* check and set presence status
*/
if (scsb->scsb_state & SCSB_P06_PROM) {
fru_ptr->fru_status = FRU_NOT_PRESENT;
} else if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(
FRU_UNIT_TO_EVCODE(SLOT, unit))];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
last_ptr = fru_ptr;
fru_ptr++;
last_ptr->next = fru_ptr;
}
last_ptr->next = (fru_info_t *)NULL;
/*
* PDU
*/
mct_system_info.fru_info_list[PDU] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[PDU] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[PDU];
for (unit = 1; unit <= mct_system_info.max_units[PDU]; ++unit) {
fru_ptr->fru_type = PDU;
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(PDU, unit);
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
if (IS_SCB_P15) {
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_BLINK_OK_BASE);
blink_reg = SCSB_REG_ADDR(i);
} else {
blink_bit = 0;
blink_reg = 0;
}
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
i = FRU_REG_INDEX(t, SCTRL_LED_OK_BASE);
led_reg = SCSB_REG_ADDR(i);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
fru_ptr->fru_version = (fru_version_t)0;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
fru_ptr->fru_version = (fru_version_t)0;
}
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
last_ptr = fru_ptr;
fru_ptr++;
last_ptr->next = fru_ptr;
}
last_ptr->next = (fru_info_t *)NULL;
/*
* Power Supplies
*/
mct_system_info.fru_info_list[PS] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[PS] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[PS];
for (unit = 1; unit <= mct_system_info.max_units[PS]; ++unit) {
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(PS, unit);
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
if (IS_SCB_P15) {
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_BLINK_OK_BASE);
blink_reg = SCSB_REG_ADDR(i);
} else {
blink_bit = 0;
blink_reg = 0;
}
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
i = FRU_REG_INDEX(t, SCTRL_LED_OK_BASE);
led_reg = SCSB_REG_ADDR(i);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = PS;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
last_ptr = fru_ptr;
fru_ptr++;
last_ptr->next = fru_ptr;
}
last_ptr->next = (fru_info_t *)NULL;
/*
* SCSI Disks and removable media
*/
mct_system_info.fru_info_list[DISK] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[DISK] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[DISK];
for (unit = 1; unit <= mct_system_info.max_units[DISK]; ++unit) {
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(DISK, unit);
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
if (IS_SCB_P15) {
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_BLINK_OK_BASE);
blink_reg = SCSB_REG_ADDR(i);
} else {
blink_bit = 0;
blink_reg = 0;
}
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
i = FRU_REG_INDEX(t, SCTRL_LED_OK_BASE);
led_reg = SCSB_REG_ADDR(i);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
fru_ptr->fru_version = (fru_version_t)0;
} else
fru_ptr->fru_status = FRU_NOT_PRESENT;
fru_ptr->fru_type = DISK;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
last_ptr = fru_ptr;
fru_ptr++;
last_ptr->next = fru_ptr;
}
last_ptr->next = (fru_info_t *)NULL;
/*
* Fan Trays
*/
mct_system_info.fru_info_list[FAN] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[FAN] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[FAN];
for (unit = 1; unit <= mct_system_info.max_units[FAN]; ++unit) {
int bit_num;
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(FAN, unit);
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
if (IS_SCB_P15) {
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_BLINK_OK_BASE);
blink_reg = SCSB_REG_ADDR(i);
} else {
blink_bit = 0;
blink_reg = 0;
}
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
i = FRU_REG_INDEX(t, SCTRL_LED_OK_BASE);
led_reg = SCSB_REG_ADDR(i);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = FAN;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
last_ptr = fru_ptr;
fru_ptr++;
last_ptr->next = fru_ptr;
}
last_ptr->next = (fru_info_t *)NULL;
/*
* Alarm Cards
*/
mct_system_info.fru_info_list[ALARM] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[ALARM] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[ALARM];
for (unit = 1; unit <= mct_system_info.max_units[ALARM]; ++unit) {
int bit_num;
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for SYSCFG register
*/
t = FRU_UNIT_TO_EVCODE(ALARM, unit);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
if (acslot_ptr != NULL && acslot_ptr->fru_status ==
FRU_PRESENT) {
acslot_ptr->fru_type = (scsb_utype_t)OC_AC;
/*
* acslot_ptr->fru_id =
* fru_id_table[event_to_index(t)];
*/
}
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = ALARM;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = 0;
fru_ptr->i2c_info->ledata_bit = 0;
fru_ptr->i2c_info->blink_reg = 0;
fru_ptr->i2c_info->blink_bit = 0;
last_ptr = fru_ptr;
fru_ptr++;
last_ptr->next = fru_ptr;
}
last_ptr->next = (fru_info_t *)NULL;
/*
* SCB
*/
mct_system_info.fru_info_list[SCB] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[SCB] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[SCB];
unit = 1;
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offset for LED register
*/
t = FRU_UNIT_TO_EVCODE(SCB, unit);
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_LED_OK_BASE);
led_reg = SCSB_REG_ADDR(i);
if (IS_SCB_P15) {
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_BLINK_OK_BASE);
blink_reg = SCSB_REG_ADDR(i);
} else {
blink_bit = 0;
blink_reg = 0;
}
i = SYS_REG_INDEX(SCTRL_SCBID0, SCTRL_SCBID_BASE);
index = SCSB_REG_ADDR(i);
/*
* check and set presence status
*/
if (scsb->scsb_state & SCSB_SCB_PRESENT) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = SCB;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
/* get PROM_VERSION from shadow registers */
if (scsb_rdwr_register(scsb, I2C_WR_RD, index, 1, &t_uchar, 1))
fru_ptr->fru_version = (fru_version_t)0;
else
fru_ptr->fru_version = (fru_version_t)t_uchar;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = 0;
fru_ptr->i2c_info->syscfg_bit = 0;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
fru_ptr->next = (fru_info_t *)NULL;
/*
* SSB
*/
mct_system_info.fru_info_list[SSB] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[SSB] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[SSB];
unit = 1;
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offset for SYSCFG register
*/
t = FRU_UNIT_TO_EVCODE(SSB, unit);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = SSB;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = 0;
fru_ptr->i2c_info->ledata_bit = 0;
fru_ptr->i2c_info->blink_reg = 0;
fru_ptr->i2c_info->blink_bit = 0;
fru_ptr->next = (fru_info_t *)NULL;
/*
* CFTM
*/
mct_system_info.fru_info_list[CFTM] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[CFTM] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[CFTM];
unit = 1;
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(CFTM, unit);
led_bit = FRU_OFFSET(t, SCTRL_LED_OK_BASE);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
if (IS_SCB_P15) {
blink_bit = FRU_OFFSET(t, SCTRL_BLINK_OK_BASE);
i = FRU_REG_INDEX(t, SCTRL_BLINK_OK_BASE);
blink_reg = SCSB_REG_ADDR(i);
} else {
blink_bit = 0;
blink_reg = 0;
}
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
i = FRU_REG_INDEX(t, SCTRL_LED_OK_BASE);
led_reg = SCSB_REG_ADDR(i);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
if (ctcslot_ptr != NULL && ctcslot_ptr->fru_status ==
FRU_PRESENT) {
ctcslot_ptr->fru_type = (scsb_utype_t)OC_CTC;
scsb->scsb_hsc_state |= SCSB_HSC_CTC_PRES;
}
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = CFTM;
fru_ptr->fru_unit = (scsb_unum_t)1;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = led_reg;
fru_ptr->i2c_info->ledata_bit = led_bit;
fru_ptr->i2c_info->blink_reg = blink_reg;
fru_ptr->i2c_info->blink_bit = blink_bit;
fru_ptr->next = (fru_info_t *)NULL;
/*
* CRTM
*/
mct_system_info.fru_info_list[CRTM] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[CRTM] + pad),
KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[CRTM];
unit = 1;
/* SCB15 */
/*
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(CRTM, unit);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = CRTM;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = 0;
fru_ptr->i2c_info->ledata_bit = 0;
fru_ptr->i2c_info->blink_reg = 0;
fru_ptr->i2c_info->blink_bit = 0;
fru_ptr->next = (fru_info_t *)NULL;
/*
* PRTM
*/
mct_system_info.fru_info_list[PRTM] = (fru_info_t *)
kmem_zalloc(sizeof (fru_info_t) *
(mct_system_info.max_units[PRTM] + pad), KM_SLEEP);
fru_ptr = mct_system_info.fru_info_list[PRTM];
unit = 1;
/*
* SCB15
* get the FRU event code (t), then use it to get the
* FRU bit-offsets for LED and SYSCFG registers
*/
t = FRU_UNIT_TO_EVCODE(PRTM, unit);
bit_num = FRU_OFFSET(t, SCTRL_SYSCFG_BASE);
/*
* get the registers addresses and shadow register index for
* the SYSCFG register
*/
i = FRU_REG_INDEX(t, SCTRL_SYSCFG_BASE);
syscfg = SCSB_REG_ADDR(i);
index = SCSB_REG_INDEX(syscfg);
/*
* check and set presence status
*/
if (scsb->scsb_data_reg[index] & (1 << bit_num)) {
fru_ptr->fru_status = FRU_PRESENT;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
}
fru_ptr->fru_type = PRTM;
fru_ptr->fru_unit = (scsb_unum_t)unit;
fru_ptr->fru_id = fru_id_table[event_to_index(t)];
fru_ptr->fru_version = (fru_version_t)0;
fru_ptr->type_list = (fru_options_t *)NULL;
fru_ptr->i2c_info = (fru_i2c_info_t *)
kmem_zalloc(sizeof (fru_i2c_info_t), KM_SLEEP);
fru_ptr->i2c_info->syscfg_reg = syscfg;
fru_ptr->i2c_info->syscfg_bit = bit_num;
fru_ptr->i2c_info->ledata_reg = 0;
fru_ptr->i2c_info->ledata_bit = 0;
fru_ptr->i2c_info->blink_reg = 0;
fru_ptr->i2c_info->blink_bit = 0;
fru_ptr->next = (fru_info_t *)NULL;
scsb->scsb_state |= SCSB_TOPOLOGY;
#ifdef DEBUG
mct_topology_dump(scsb, 0);
#endif
}
/*ARGSUSED*/
static void
scsb_free_topology(scsb_state_t *scsb)
{
int i;
fru_info_t *fru_ptr;
if (scsb_debug & 0x00100005)
cmn_err(CE_NOTE, "scsb_free_topology:");
for (i = 0; i < SCSB_UNIT_TYPES; ++i) {
fru_ptr = mct_system_info.fru_info_list[i];
while (fru_ptr != NULL) {
if (fru_ptr->i2c_info != (fru_i2c_info_t *)NULL)
kmem_free(fru_ptr->i2c_info,
sizeof (fru_i2c_info_t));
fru_ptr = fru_ptr->next;
}
if ((fru_ptr = mct_system_info.fru_info_list[i]) !=
(fru_info_t *)NULL) {
kmem_free(fru_ptr, sizeof (fru_info_t) *
mct_system_info.max_units[i]);
mct_system_info.fru_info_list[i] = (fru_info_t *)NULL;
}
}
}
#ifdef DEBUG
static void
mct_topology_dump(scsb_state_t *scsb, int force)
{
int i;
fru_info_t *fru_ptr;
if (!force && !(scsb_debug & 0x00200000))
return;
if (force && !(scsb->scsb_state & (SCSB_DIAGS_MODE | SCSB_DEBUG_MODE)))
return;
if (!(scsb->scsb_state & SCSB_TOPOLOGY)) {
cmn_err(CE_NOTE, "mct_topology_dump: Topology not set!");
return;
}
for (i = 0; i < SCSB_UNIT_TYPES; ++i) {
fru_ptr = mct_system_info.fru_info_list[i];
switch ((scsb_utype_t)i) {
case SLOT:
cmn_err(CE_NOTE, "MCT: Number of Slots: %d",
mct_system_info.max_units[SLOT]);
break;
case ALARM:
cmn_err(CE_NOTE, "MCT: MAX Number of Alarm Cards: %d",
mct_system_info.max_units[ALARM]);
break;
case DISK:
cmn_err(CE_NOTE, "MCT: MAX Number of SCSI Devices: %d",
mct_system_info.max_units[DISK]);
break;
case FAN:
cmn_err(CE_NOTE, "MCT: MAX Number of Fan Trays: %d",
mct_system_info.max_units[FAN]);
break;
case PDU:
cmn_err(CE_NOTE, "MCT: MAX Number of PDUs: %d",
mct_system_info.max_units[PDU]);
break;
case PS:
cmn_err(CE_NOTE,
"MCT: MAX Number of Power Supplies: %d",
mct_system_info.max_units[PS]);
break;
case SCB:
cmn_err(CE_NOTE, "MCT: MAX Number of SCBs: %d",
mct_system_info.max_units[SCB]);
break;
case SSB:
cmn_err(CE_NOTE, "MCT: MAX Number of SSBs: %d",
mct_system_info.max_units[SSB]);
break;
}
while (fru_ptr != NULL) {
if (fru_ptr->fru_status & FRU_PRESENT) {
cmn_err(CE_NOTE,
"MCT: type=%d, unit=%d, id=0x%x, "
"version=0x%x",
fru_ptr->fru_type,
fru_ptr->fru_unit,
fru_ptr->fru_id,
fru_ptr->fru_version);
}
fru_ptr = fru_ptr->next;
}
}
}
/*
* Sends an event when the system controller board I2C errors
* exceed the threshold.
*/
static void
scsb_failing_event(scsb_state_t *scsb)
{
uint32_t scsb_event_code = SCTRL_EVENT_SCB;
add_event_code(scsb, scsb_event_code);
(void) scsb_queue_ops(scsb, QPUT_INT32, 1, &scsb_event_code,
"scsb_intr");
}
#endif
int
scsb_read_bhealthy(scsb_state_t *scsb)
{
int error;
uchar_t reg;
int index;
if (scsb_debug & 0x8001) {
cmn_err(CE_NOTE, "scsb_read_bhealthy()");
}
reg = SCSB_REG_ADDR(SCTRL_BHLTHY_BASE);
index = SCSB_REG_INDEX(reg);
error = scsb_rdwr_register(scsb, I2C_WR_RD, reg,
SCTRL_BHLTHY_NUMREGS, &scsb->scsb_data_reg[index], 1);
return (error);
}
/*
* Returns the health status of a slot
*/
int
scsb_read_slot_health(scsb_state_t *scsb, int pslotnum)
{
int slotnum = tonga_psl_to_ssl(scsb, pslotnum);
return (scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_BHLTHY_BASE, SCSB_FRU_OP_GET_BITVAL));
}
/*
* DIAGNOSTIC and DEBUG only.
* Called from ioctl command (SCSBIOC_BHEALTHY_GET)
*/
int
scsb_bhealthy_slot(scsb_state_t *scsb, scsb_uinfo_t *suip)
{
int error = 0;
int base, code, unit_number;
uchar_t reg;
int index;
if (scsb->scsb_state & SCSB_FROZEN)
return (EAGAIN);
/* operation valid for slots only */
if (suip == NULL || suip->unit_type != SLOT) {
return (EINVAL);
}
if (scsb_debug & 0x8001)
cmn_err(CE_NOTE, "scsb_bhealthy_slot: slot %d",
suip->unit_number);
if (suip->unit_number > mct_system_info.max_units[SLOT]) {
return (EINVAL);
}
/*
* Map 1.0 Tonga Slot Number, if necessary
*/
tonga_slotnum_check(scsb, suip);
base = SCTRL_BHLTHY_BASE;
code = FRU_UNIT_TO_EVCODE(suip->unit_type, suip->unit_number);
unit_number = FRU_OFFSET(code, base);
index = FRU_REG_INDEX(code, base);
reg = SCSB_REG_ADDR(index);
index = SCSB_REG_INDEX(reg); /* shadow index */
if (scsb->scsb_state & SCSB_P10_PROM) {
error = scsb_read_bhealthy(scsb);
}
/* else shadow regs are updated by interrupt handler */
if (error == 0) {
if (scsb->scsb_data_reg[index] & (1 << unit_number))
suip->unit_state = ON;
else
suip->unit_state = OFF;
}
return (error);
}
/*
* Called from HSC and ioctl command (SCSBIOC_RESET_UNIT)
* to reset one specified slot
*/
int
scsb_reset_unit(scsb_state_t *scsb, scsb_uinfo_t *suip)
{
int error;
int unit_number;
uchar_t reg;
int index, slotnum, reset_state;
if (scsb->scsb_state & SCSB_FROZEN)
return (EAGAIN);
if (scsb_debug & 0x8001) {
cmn_err(CE_NOTE, "scsb_reset_slot(%d): slot %d, state %d\n",
scsb->scsb_instance, suip->unit_number,
suip->unit_state);
}
if (suip->unit_type != ALARM && !(scsb->scsb_state &
(SCSB_DIAGS_MODE | SCSB_DEBUG_MODE))) {
return (EINVAL);
}
if (suip->unit_state != ON && suip->unit_state != OFF) {
return (EINVAL);
}
error = 0;
switch (suip->unit_type) {
case ALARM:
{
int i, code;
if (suip->unit_number != 1)
return (EINVAL);
code = FRU_UNIT_TO_EVCODE(suip->unit_type, suip->unit_number);
unit_number = FRU_OFFSET(code, SCTRL_RESET_BASE);
i = ALARM_RESET_REG_INDEX(code, SCTRL_RESET_BASE);
reg = SCSB_REG_ADDR(i);
break;
}
case SLOT:
slotnum = suip->unit_number;
reset_state = (suip->unit_state == ON) ? SCSB_RESET_SLOT :
SCSB_UNRESET_SLOT;
if (scsb->scsb_state & SCSB_IS_TONGA) {
if (slotnum > TG_MAX_SLOTS ||
slotnum == SC_TG_CPU_SLOT) {
return (EINVAL);
}
} else {
if (slotnum > MC_MAX_SLOTS ||
slotnum == SC_MC_CPU_SLOT ||
(scsb->scsb_hsc_state & SCSB_HSC_CTC_PRES &&
slotnum == SC_MC_CTC_SLOT)) {
return (EINVAL);
}
}
return (scsb_reset_slot(scsb, slotnum, reset_state));
default:
return (EINVAL);
}
index = SCSB_REG_INDEX(reg);
mutex_enter(&scsb->scsb_mutex);
if (suip->unit_state == ON)
scsb->scsb_data_reg[index] |= (1 << unit_number);
else /* OFF */
scsb->scsb_data_reg[index] &= ~(1 << unit_number);
if ((error = scsb_rdwr_register(scsb, I2C_WR, reg, 1,
&scsb->scsb_data_reg[index], 0)) != 0) {
if (scsb_debug & 0x8002)
cmn_err(CE_WARN,
"scsb_leds: write failure to 0x%x", reg);
return (error);
}
mutex_exit(&scsb->scsb_mutex);
return (error);
}
/*
* Diagnostic and DEBUG
* This is a helper function for the helper ioctl to pretend that
* scsb h/w is doing its job!!!
*/
int
scsb_slot_occupancy(scsb_state_t *scsb, scsb_uinfo_t *suip)
{
int error;
int saved_unit_number;
if (!(scsb->scsb_state & (SCSB_DEBUG_MODE | SCSB_DIAGS_MODE)))
return (EACCES);
if (scsb->scsb_state & SCSB_FROZEN) {
return (EAGAIN);
}
error = 0;
switch (suip->unit_type) {
case ALARM:
if (suip->unit_number !=
(mct_system_info.fru_info_list[ALARM])->fru_unit) {
return (EINVAL);
}
break;
case SLOT:
/*
* All slots are acceptable, except slots 11 & 12.
*/
if (suip->unit_number < 1 || suip->unit_number >
mct_system_info.max_units[ALARM]) {
error = EINVAL;
break;
}
/* Map 1.0 Tonga Slot Numbers if necessary */
saved_unit_number = suip->unit_number;
tonga_slotnum_check(scsb, suip);
break;
default:
error = EINVAL;
break;
}
if (error)
return (error);
if (suip->unit_state == ON) {
if (hsc_slot_occupancy(saved_unit_number, B_TRUE, 0, B_TRUE)
!= 0)
error = EFAULT;
} else {
if (hsc_slot_occupancy(saved_unit_number, B_FALSE, 0, B_FALSE)
!= 0)
error = EFAULT;
}
return (error);
}
static int
scsb_clear_intptrs(scsb_state_t *scsb)
{
int i, error;
uchar_t wbuf[SCTRL_MAX_GROUP_NUMREGS];
error = 0;
for (i = 1; i <= SCTRL_INTR_NUMREGS; ++i) {
wbuf[i] = 0xff;
}
if (error = scsb_rdwr_register(scsb, I2C_WR,
SCSB_REG_ADDR(SCTRL_INTSRC_BASE),
SCTRL_INTR_NUMREGS, wbuf, 1)) {
if (scsb_debug & 0x0402)
cmn_err(CE_NOTE, "scsb_clear_intptrs(): "
"write to 0x%x failed",
SCSB_REG_ADDR(SCTRL_INTSRC_BASE));
}
return (error);
}
static int
scsb_setall_intmasks(scsb_state_t *scsb)
{
int error;
uchar_t reg, wdata, rmask;
int i;
/*
* write loop for Interrupt Mask registers
*/
if (scsb_debug & 0x0401)
cmn_err(CE_NOTE, "setall_intmasks()");
error = 0;
rmask = 0;
wdata = 0xff;
reg = SCSB_REG_ADDR(SCTRL_INTMASK_BASE);
for (i = 0; i < SCTRL_MASK_NUMREGS; ++i, ++reg) {
if (error = scsb_write_mask(scsb, reg, rmask, wdata, 0)) {
if (scsb_debug & 0x0402)
cmn_err(CE_NOTE, "scsb_setall_intmasks: "
"write to 0x%x failed: %d", reg, error);
error = EIO;
break;
}
}
return (error);
}
/*
* Clear Interrupt masks based on the FRUs that could be installed
* for this particular topology, determined by the MidPlane ID
* from SCTRL_SYSCFG registers
* case SCTRL_MPID_HALF:
* 1 CPU, 1 AlarmCard, 1 SCB/SSB, 2 PS, 3 FAN, 3 SCSI, 8 Slots
* case SCTRL_MPID_QUARTER:
* 1 CPU, 1 AlarmCard, 1 SCB/SSB, 1 PS, 2 FAN, 1 SCSI, 4 Slots
* case SCTRL_MPID_QUARTER_NODSK:
* 1 CPU, 1 AlarmCard, 1 SCB/SSB, 1 PS, 2 FAN, 0 SCSI, 4 Slots
*/
static int
scsb_clear_intmasks(scsb_state_t *scsb)
{
int error;
uchar_t msk_reg, reg, wdata, rmask;
uchar_t mask_data[SCTRL_MAX_GROUP_NUMREGS];
int tmp, idx, code, unit, offset, mbid;
scsb_utype_t fru_type;
fru_info_t *fru_ptr;
if (scsb->scsb_state & SCSB_FROZEN &&
!(scsb->scsb_state & SCSB_IN_INTR)) {
return (EAGAIN);
}
error = 0;
for (tmp = 0; tmp < SCTRL_MASK_NUMREGS; ++tmp)
mask_data[tmp] = 0;
msk_reg = SCSB_REG_ADDR(SCTRL_INTMASK_BASE);
mbid = SCSB_REG_INDEX(msk_reg); /* the Mask Base Index Delta */
if (scsb_debug & 0x0400) {
cmn_err(CE_NOTE, "clear_intmasks: msk_reg=0x%x; mbid=%d",
msk_reg, mbid);
}
for (fru_type = 0; fru_type < SCSB_UNIT_TYPES; ++fru_type) {
if (fru_type == SCB)
continue; /* handle below, 2 reg offsets */
fru_ptr = mct_system_info.fru_info_list[fru_type];
for (; fru_ptr != NULL; fru_ptr = fru_ptr->next) {
unit = fru_ptr->fru_unit;
code = FRU_UNIT_TO_EVCODE(fru_type, unit);
offset = FRU_OFFSET(code, SCTRL_INTMSK_BASE);
reg = FRU_REG_ADDR(code, SCTRL_INTMSK_BASE);
idx = SCSB_REG_INDEX(reg);
tmp = idx - mbid;
mask_data[tmp] |= (1 << offset);
if (scsb_debug & 0x0400)
cmn_err(CE_NOTE,
"clear_intmasks:%d:%d: PRES mask[%d]:0x%x",
fru_type, unit, tmp, mask_data[tmp]);
if ((fru_type == SLOT) && (IS_SCB_P15)) {
/*
* Unmask the corresponding Slot HLTHY mask
* Use Slot bit and register offsets,
* but with SCTRL_INTMASK_HLTHY_BASE
*/
reg = FRU_REG_ADDR(code,
SCTRL_INTMASK_HLTHY_BASE);
idx = SCSB_REG_INDEX(reg);
tmp = idx - mbid;
mask_data[tmp] |= (1 << offset);
if (scsb_debug & 0x0400) {
cmn_err(CE_NOTE,
"clear_intmasks:Slot:%d: HLTHY mask[%d]:0x%x"
"; reg=0x%x, idx=%d, mbid=%d",
unit, tmp, mask_data[tmp],
reg, idx, mbid);
}
}
}
}
/*
* Now unmask these non-fru interrupt events
* SCTRL_EVENT_PWRDWN (almost normal)
* SCTRL_EVENT_REPLACE (not used)
* SCTRL_EVENT_ALARM_INT (not working in P0.6/P1.0)
* SCTRL_EVENT_SCB (SCB 1.5 ONLY; plus SCB_INT_OFFSET)
*/
code = SCTRL_EVENT_PWRDWN;
offset = FRU_OFFSET(code, SCTRL_INTMSK_BASE);
reg = FRU_REG_ADDR(code, SCTRL_INTMSK_BASE);
idx = SCSB_REG_INDEX(reg);
tmp = idx - mbid;
mask_data[tmp] |= (1 << offset);
if (IS_SCB_P15) {
code = SCTRL_EVENT_SCB;
offset = FRU_OFFSET(code, SCTRL_INTMSK_BASE);
reg = FRU_REG_ADDR(code, SCTRL_INTMSK_BASE) + SCB_INT_OFFSET;
idx = SCSB_REG_INDEX(reg);
tmp = idx - mbid;
mask_data[tmp] |= (1 << offset);
code = SCTRL_EVENT_ALARM_INT;
offset = FRU_OFFSET(code, SCTRL_INTMSK_BASE);
reg = FRU_REG_ADDR(code, SCTRL_INTMSK_BASE);
idx = SCSB_REG_INDEX(reg);
tmp = idx - mbid;
mask_data[tmp] |= (1 << offset);
}
for (tmp = 0; tmp < SCTRL_MASK_NUMREGS; ++tmp) {
rmask = 0;
wdata = mask_data[tmp];
if (scsb_debug & 0x0400)
cmn_err(CE_NOTE, "clear_intmasks:0x%x: ~(0x%x),0x%x",
msk_reg, (~wdata) & 0xff, wdata);
mutex_enter(&scsb->scsb_mutex);
if (error = scsb_write_mask(scsb, msk_reg, rmask,
(~wdata) & 0xff, wdata)) {
mutex_exit(&scsb->scsb_mutex);
if (scsb_debug & 0x0402)
cmn_err(CE_NOTE, "scsb_clear_intmasks: "
"write to 0x%x failed: %d",
msk_reg, error);
error = EIO;
break;
}
mutex_exit(&scsb->scsb_mutex);
++msk_reg;
}
return (error);
}
static int
scsb_get_status(scsb_state_t *scsb, scsb_status_t *smp)
{
register int i;
if (smp == NULL) {
return (EFAULT);
}
if (scsb_debug & 0x40000000 &&
(scsb->scsb_state & SCSB_DEBUG_MODE ||
scsb->scsb_state & SCSB_DIAGS_MODE)) {
if (scsb->scsb_state & SCSB_FROZEN) {
return (EAGAIN);
}
mutex_enter(&scsb->scsb_mutex);
if (scsb_debug & 0x80000000) {
if ((i = scsb_readall_regs(scsb)) != 0 &&
scsb->scsb_state & SCSB_DEBUG_MODE)
cmn_err(CE_WARN, "scsb_get_status: "
"scsb_readall_regs() FAILED");
} else {
if ((i = scsb_check_config_status(scsb)) == 0) {
i = scsb_set_scfg_pres_leds(scsb, NULL);
}
}
mutex_exit(&scsb->scsb_mutex);
if (i) {
cmn_err(CE_WARN,
"scsb_get_status: FAILED Presence LEDs update");
return (EIO);
}
}
for (i = 0; i < SCSB_DATA_REGISTERS; ++i)
smp->scsb_reg[i] = scsb->scsb_data_reg[i];
return (0);
}
/*
* scsb_freeze_check:
* Turn all the leds off on the system monitor card, without changing
* the state of what we have for scsb. This routine is called only when
* replacing system monitor card, so the state of the card leds could be
* restored, using scsb_restore().
* Also, set state to SCSB_FROZEN which denies access to scsb while in
* freeze mode.
*/
static char *BAD_BOARD_MSG =
"SCSB: Should NOT remove SCB(%d) while cPCI Slot %d is "
"in RESET with a possible bad board.";
static int slots_in_reset[SCTRL_MAX_GROUP_NUMREGS];
static void
scsb_freeze_check(scsb_state_t *scsb)
{
register int i;
int offset;
int unit, slotnum;
int index;
fru_info_t *fru_ptr;
uint32_t code;
uchar_t reg;
if (scsb_debug & 0x20001)
cmn_err(CE_NOTE, "scsb_freeze_check(%d):", scsb->scsb_instance);
if (scsb->scsb_state & SCSB_FROZEN) {
return;
}
mutex_enter(&scsb->scsb_mutex);
for (i = 0; i < SCTRL_MAX_GROUP_NUMREGS; ++i)
slots_in_reset[i] = 0;
/*
* We allow the SCB to be removed only if none of
* the cPCI resets are asserted for occupied slots.
* There shouldn't be a bad board plugged in the system
* while swapping the SCB.
*/
fru_ptr = mct_system_info.fru_info_list[SLOT];
for (unit = 1; unit <= mct_system_info.max_units[SLOT]; ++unit) {
if (IS_SCB_P15) {
slotnum = tonga_psl_to_ssl(scsb, unit);
} else {
slotnum = unit;
}
code = FRU_UNIT_TO_EVCODE(SLOT, slotnum);
offset = FRU_OFFSET(code, SCTRL_RESET_BASE);
reg = FRU_REG_ADDR(code, SCTRL_RESET_BASE);
index = SCSB_REG_INDEX(reg);
if (scsb->scsb_data_reg[index] & (1 << offset)) {
if (fru_ptr[unit - 1].fru_status == FRU_PRESENT) {
slots_in_reset[unit - 1] = unit;
cmn_err(CE_NOTE, BAD_BOARD_MSG,
scsb->scsb_instance, unit);
}
}
}
mutex_exit(&scsb->scsb_mutex);
}
static void
scsb_freeze(scsb_state_t *scsb)
{
uint32_t code;
if (scsb_debug & 0x00020002) {
cmn_err(CE_WARN, "scsb_freeze: SCB%d possibly removed",
scsb->scsb_instance);
}
if (scsb->scsb_state & SCSB_FROZEN)
return;
scsb->scsb_state |= SCSB_FROZEN;
scsb->scsb_state &= ~SCSB_SCB_PRESENT;
scsb_hsc_freeze(scsb->scsb_dev);
/*
* Send the EVENT_SCB since there is evidence that the
* System Controller Board has been removed.
*/
code = SCTRL_EVENT_SCB;
if (!(scsb->scsb_state & SCSB_IN_INTR))
scsb_event_code = code;
check_fru_info(scsb, code);
add_event_code(scsb, code);
(void) scsb_queue_ops(scsb, QPUT_INT32, 1, &code, "scsb_freeze");
}
/*
* scsb_restore will only be called from the interrupt handler context on
* INIT_SCB interrupt for newly inserted SCB.
* Called with mutex held.
*/
static void
scsb_restore(scsb_state_t *scsb)
{
if (scsb_debug & 0x20001)
cmn_err(CE_NOTE, "scsb_restore(%d):", scsb->scsb_instance);
if (initialize_scb(scsb) != DDI_SUCCESS) {
if (scsb_debug & 0x00020002) {
cmn_err(CE_WARN, "scsb_restore: INIT Failed");
return;
}
}
/* 9. Clear all Interrupts */
if (scsb_clear_intmasks(scsb)) {
cmn_err(CE_WARN,
"scsb%d: I2C TRANSFER Failed", scsb->scsb_instance);
if (scsb_debug & 0x00020002) {
cmn_err(CE_WARN, "scsb_restore: clear_intmasks Failed");
}
return;
}
/* 10. */
/* Check if Alarm Card present at boot and set flags */
if (scsb_fru_op(scsb, ALARM, 1, SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL))
scsb->scsb_hsc_state |= SCSB_ALARM_CARD_PRES;
else
scsb->scsb_hsc_state &= ~SCSB_ALARM_CARD_PRES;
scsb->scsb_state &= ~SCSB_FROZEN;
(void) scsb_hsc_restore(scsb->scsb_dev);
}
/*
* Given an Event Code,
* Return:
* FRU type in LSByte
* unit number in MSByte
*/
uint16_t
event_to_type(uint32_t evcode)
{
int i, li, unit;
uint32_t ec;
uint16_t ret;
for (i = li = 0; i < SCSB_UNIT_TYPES; ++i) {
if (evcode == type_to_code1[i]) {
ret = (uint16_t)(0x0100 | i);
return (ret);
}
if (evcode < type_to_code1[i]) {
unit = 1;
ec = type_to_code1[li];
while (ec < evcode)
ec = ec << 1, ++unit;
ret = (unit << 8) | li;
return (ret);
}
li = i;
}
return ((uint16_t)0xffff);
}
/*
* scsb interrupt handler for (MC) PSM_INT vector
* P0.6: HW shipped to beta customers
* 1. did not have Slot Occupant Presense support
* 2. I2C interrupt-map properties not yet tested, using polling daemon
* 3. Polling detects each event reliably twice.
* clr_bits# are used to keep track of events to be ignored 2nd time
*
* retval flags allow all events to be checked, and still returning the
* correct DDI value.
*
*/
#define SCSB_INTR_CLAIMED 1
#define SCSB_INTR_UNCLAIMED 2
#define SCSB_INTR_EVENT 4
/*
* Does preprocessing of the interrupt. The only thing this
* needs to do is to ask scsb to release the interrupt line.
* and then schedule delayed actual processing using timeout()
*/
uint_t
scsb_intr_preprocess(caddr_t arg)
{
scsb_state_t *scsb = (scsb_state_t *)arg;
scb_pre_s = gethrtime();
/*
* If SCSB_IN_INTR is already set in scsb_state,
* it means we are being interrupted by someone else. This can
* happen only if the interrupt does not belong to scsb, and some
* other device, e.g. a FAN or PS is interrupting. So, we
* cancel the previous timeout().
*/
if (scsb->scsb_state & SCSB_IN_INTR) {
untimeout(scsb_intr_tid);
scsb_invoke_intr_chain();
scsb_toggle_psmint(scsb, 1);
scsb->scsb_state &= ~SCSB_IN_INTR;
goto intr_end;
}
scsb->scsb_state |= SCSB_IN_INTR;
/*
* Stop scsb from interrupting first.
*/
if (scsb_quiesce_psmint(scsb) != DDI_SUCCESS) {
goto intr_end;
}
/*
* Schedule a timeout to actually process the
* interrupt.
*/
scsb_intr_tid = timeout((void (*)(void *))scsb_intr, arg,
drv_usectohz(1000));
intr_end:
scb_pre_e = gethrtime();
return (DDI_INTR_CLAIMED);
}
static void scsb_healthy_intr(scsb_state_t *scsb, int pslotnum);
void
scsb_intr(caddr_t arg)
{
scsb_state_t *scsb = (scsb_state_t *)arg;
int i, idx, offset, unit, numregs, error;
int intr_idx, index, offset_base, retval, slotnum, val;
uint32_t code;
uchar_t intr_reg, tmp_reg, intr_addr, clr_bits = 0;
uchar_t ac_slot = B_FALSE;
uchar_t *int_masks;
uchar_t cstatus_regs[SCTRL_MAX_GROUP_NUMREGS];
scsb_utype_t fru_type;
fru_info_t *fru_ptr;
int ac_present;
/*
* Avoid mayhem, make sure we have only one timeout thread running.
*/
mutex_enter(&scsb->scsb_mutex);
while (scsb_in_postintr)
cv_wait(&scsb->scsb_cv, &scsb->scsb_mutex);
scsb_in_postintr = 1;
mutex_exit(&scsb->scsb_mutex);
scb_post_s = gethrtime();
if (scsb_debug & 0x00002000)
cmn_err(CE_NOTE, "scsb_intr(%d)", scsb->scsb_instance);
retval = 0;
tmp_reg = 0;
/*
* XXX: Problem, when we want to support swapping between SCB
* versions, then we need to check the SCB PROM ID (CF) register here
* before assuming the same SCB version was re-inserted.
* We will have to duplicate some of the scb_initialization()
* code to set the scsb_state PROM ID bits and to set up the
* register table pointers.
*
* Only if NOT SSB_PRESENT, check the SCB PROM ID
*/
if (!(scsb->scsb_state & SCSB_SSB_PRESENT)) {
if (scb_check_version(scsb) != DDI_SUCCESS) {
#ifdef DEBUG
if (scsb->scsb_state & SCSB_SSB_PRESENT &&
scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb_failing_event(scsb);
#endif
goto intr_error;
}
}
if (IS_SCB_P15) {
int_masks = scb_15_int_masks;
} else {
int_masks = scb_10_int_masks;
}
/*
* Now check the INTSRC registers for set bits.
* Do a quick check by OR'ing INTSRC registers together as we copy
* them from the transfer buffer. For P1.0 or earlier we had already
* read the interrupt source registers and wrote them back to stop
* interrupt. So we need to do this step only for P1.5 or later.
* We already read INTSRC6 to take care of SCB insertion case, so
* do not read INTSRC6 again.
*/
if (IS_SCB_P15) {
intr_addr = SCSB_REG_ADDR(SCTRL_INTSRC_BASE);
/* read the interrupt register from scsb */
if (scsb_rdwr_register(scsb, I2C_WR_RD, intr_addr,
SCTRL_INTR_NUMREGS - 1, scb_intr_regs, 1)) {
cmn_err(CE_WARN, "scsb_intr: "
" Failed read of interrupt registers.");
#ifdef DEBUG
if (scsb->scsb_state & SCSB_SSB_PRESENT &&
scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb_failing_event(scsb);
#endif
goto intr_error;
}
}
/*
* We have seen that an interrupt source bit can be set
* even though the corresponding interrupt mask bit
* has been set to mask the interrupt. So we must
* clear all bits set in the interrupt source register.
*/
for (i = 0; i < SCTRL_INTR_NUMREGS; ++i) {
retval |= scb_intr_regs[i]; /* Quick INTSRC check */
#ifdef DEBUG
if (scsb_debug & 0x08000000) {
if (tmp_reg || scb_intr_regs[i]) {
cmn_err(CE_NOTE, "scsb_intr: INTSRC%d=0x%x",
i + 1, scb_intr_regs[i]);
++tmp_reg;
}
}
#endif
}
/*
* Any bits from quick check? If this is not our interrupt,
* something is wrong. FAN/PS interrupts are supposed to be
* blocked, but we can not be sure. So, go ahead and call the
* emergency interrupt handlers for FAN/PS devices and mask
* their interrupts, if they aren't already masked.
*/
if (retval == 0) {
goto intr_error;
}
retval = 0;
/*
* If SCB 1.5 or 2.0, check for the INIT_SCB Interrupt
* to support Hot SCB Insertion.
* The check was moved here during debugging of the SCB hot insertion.
* Theoretically, this code could be moved back to the check for
* SCTRL_EVENT_SCB in the processing loop below.
*/
if (IS_SCB_P15) {
int iid;
iid = SCSB_REG_INDEX(intr_addr);
offset = FRU_OFFSET(SCTRL_EVENT_SCB, SCTRL_INTPTR_BASE);
tmp_reg = SCSB_REG_ADDR(SCTRL_INTSRC_SCB_P15);
intr_idx = SCSB_REG_INDEX(tmp_reg) - iid;
clr_bits = 1 << offset;
if (scb_intr_regs[intr_idx] & clr_bits) {
/*
* Must be newly inserted SCB
* Time to re-initialize.
*/
if (scsb_debug & 0x00023000) {
cmn_err(CE_NOTE,
"scsb_intr(%d): INIT_SCB INT",
scsb->scsb_instance);
}
scsb_restore(scsb);
retval |= (SCSB_INTR_CLAIMED | SCSB_INTR_EVENT);
/*
* The INTSRC bit will be cleared by the
* scsb_restore() function.
* Also, leave the bit set in scb_intr_regs[] so we can
* report the event code as we check for other
* interrupt source bits.
*
* scsb_write_mask(scsb, tmp_reg, 0, clr_bits, 0);
* scb_intr_regs[intr_idx] &= ~clr_bits;
*/
}
/*
* In case this is a power down interrupt, check the validity
* of the request to make sure it's not an I2C noise
*/
offset = FRU_OFFSET(SCTRL_EVENT_PWRDWN,
SCTRL_INTPTR_BASE);
clr_bits = 1 << offset;
intr_reg = scb_intr_regs[intr_idx];
if (intr_reg & clr_bits) {
/*
* A shutdown request has been detected. Poll
* the corresponding register ? more times to
* make sure it's a genuine shutdown request.
*/
for (i = 0; i < scsb_shutdown_count; i++) {
drv_usecwait(1000);
if (scsb_rdwr_register(scsb, I2C_WR_RD, tmp_reg,
1, &intr_reg, 1)) {
cmn_err(CE_WARN, "Failed to read "
" interrupt register");
goto intr_error;
}
if (scsb_debug & 0x08000000) {
cmn_err(CE_NOTE, "scsb_intr: "
" INTSRC6[%d]=0x%x", i,
intr_reg);
}
if (!(intr_reg & clr_bits)) {
scb_intr_regs[intr_idx] &= ~clr_bits;
break;
}
}
}
}
/*
* if retval == 0, then we didn't call scsb_restore,
* so we update the shadow copy of SYSCFG registers
* We *MUST* read the syscfg registers before any attempt
* to clear the interrupt source registers is made.
*/
if (retval == 0 && scsb_check_config_status(scsb)) {
cmn_err(CE_WARN,
"scsb_intr: Failed read of config/status registers");
if (scsb->scsb_state & SCSB_P06_NOINT_KLUGE) {
if (!scsb_debug) {
goto intr_error;
}
}
#ifdef DEBUG
if (scsb->scsb_state & SCSB_SSB_PRESENT &&
scsb->scsb_i2c_errcnt > scsb_err_threshold) {
scsb_failing_event(scsb);
}
#endif
/*
* Allow to go on so we clear the INTSRC bits
*/
}
/*
* Read the board healthy registers here, if any of the healthy
* interrupts are set.
*/
if (IS_SCB_P15) {
intr_idx = intr_reg = 0;
intr_addr = SCSB_REG_ADDR(SCTRL_INTSRC_BASE);
index = SCSB_REG_INDEX(intr_addr);
for (i = 0; i < SCTRL_BHLTHY_NUMREGS; ++i, ++intr_idx) {
scsb->scsb_data_reg[index++] =
scb_intr_regs[intr_idx] & int_masks[intr_idx];
intr_reg |= scb_intr_regs[i];
}
if (intr_reg && scsb_read_bhealthy(scsb) != 0) {
cmn_err(CE_WARN, "%s#%d: Error Reading Healthy# "
" Registers", ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev));
#ifdef DEBUG
if (scsb->scsb_state & SCSB_SSB_PRESENT &&
scsb->scsb_i2c_errcnt > scsb_err_threshold) {
scsb_failing_event(scsb);
}
#endif
goto intr_error;
}
}
/*
* We clear the interrupt source registers now itself so that
* future interrupts can be latched quickly, instead of after
* finishing processing of all interrupt conditions. The global
* interrupt mask however remain disabled.
*/
if (IS_SCB_P15) {
if (scsb_rdwr_register(scsb, I2C_WR, intr_addr,
SCTRL_INTR_NUMREGS, scb_intr_regs, 1)) {
cmn_err(CE_WARN, "scsb_intr: Failed write to interrupt"
" registers.");
#ifdef DEBUG
if (scsb->scsb_state & SCSB_SSB_PRESENT &&
scsb->scsb_i2c_errcnt > scsb_err_threshold) {
scsb_failing_event(scsb);
}
#endif
goto intr_error;
}
}
/*
* At this point, all interrupt source registers are read.
* We only handle interrups which are not masked
*/
for (i = 0; i < SCTRL_INTR_NUMREGS; ++i) {
scb_intr_regs[i] &= int_masks[i];
}
/*
* We are here means that there was some bit set in the interrupt
* source register. So we must claim the interrupt no matter
* whatever error we may encounter in the course of processing.
*/
retval |= SCSB_INTR_CLAIMED;
/* store config status data */
tmp_reg = SCSB_REG_ADDR(SCTRL_SYSCFG_BASE);
index = SCSB_REG_INDEX(tmp_reg);
for (i = 0; i < SCTRL_CFG_NUMREGS; ++i)
cstatus_regs[i] = scsb->scsb_data_reg[index + i];
/*
* Clear the event code,
* then check to see what kind(s) of events we were interrupted for.
* Check all SCTRL_INTSRC registers
*/
scsb_event_code = 0;
clr_bits = 0;
intr_idx = 0;
numregs = SCTRL_INTR_NUMREGS;
index = SCSB_REG_INDEX(intr_addr);
/*
* If SCB 1.5, adjust some variables to skip the SCTRL_BHLTHY_REGS
* which will be handled last in this function.
*/
if (IS_SCB_P15) {
i = SCTRL_BHLTHY_NUMREGS;
intr_idx += i;
intr_addr += i;
index += i;
}
/*
* For the rest of the INTSRC registers, we walk through the
* scb_fru_offset[] table, matching register offsets with our offset
* counter. Then we check for the scb_fru_offset[] bit in intr_reg.
* The scb_fru_offset[] index is now the SCTRL_EVENT code.
* The code is then compared to type_to_code1[] entries to find the
* fru_type. The fru_type will help us recognize when to do
* SLOT Hot Swap processing.
*
* offset_base: the appropriate scb_fru_offset[] base index
* for the INTPTR_BASE register group
* offset: bit offset found in INTSRC register
* intr_idx: index to temporary INTSRC register copies
* intr: modified copy of current INTR register
* intr_addr: SCB register address of current INTR register
* index: index to current INTR shadow register
* idx: bit-number of current INTR event bit
* uc: uchar_t from scb_fru_offset[] table,
* containing register and FRU offsets.
* j: used to walk fru_offset[] table, which is also
* the bit-number of the current event code
* code: manufactured event code for current INT event
*/
offset_base = FRU_OFFSET_BASE(SCTRL_INTPTR_BASE);
for (offset = 0; intr_idx < numregs;
++offset, ++intr_idx, ++intr_addr, ++index) {
scsb->scsb_data_reg[index] = scb_intr_regs[intr_idx];
intr_reg = scb_intr_regs[intr_idx];
while (intr_reg) { /* for each INTSRC bit that's set */
int j;
uint16_t ui;
uchar_t uc;
idx = event_to_index((uint32_t)intr_reg); /* offset */
code = (1 << idx); /* back to bit mask */
clr_bits |= code;
intr_reg = intr_reg & ~code; /* clear this one */
for (j = 0; j < MCT_MAX_FRUS; ++j) {
/*
* Get register offset from table and check
* for a match with our loop offset counter.
* Then check for intr_reg bit-offset match
* with bit-offset from table entry.
*/
uc = scb_fru_offset[offset_base + j];
if (offset != ((uc >> 4) & 0xf)) {
if (IS_SCB_P10)
continue;
if (j != FRU_INDEX(SCTRL_EVENT_SCB))
continue;
if (offset != ((uc >> 4) & 0xf)
+ SCB_INT_OFFSET)
continue;
}
if (idx == (uc & 0xf))
break;
}
if (uc == 0xff) {
/*
* bit idx not recognized, check another.
*/
continue;
}
/*
* We found the fru_offset[] entry, now use the index
* to get the event code.
*/
code = (uint32_t)(1 << j);
if (scsb_debug & 0x00002000) {
cmn_err(CE_NOTE, "scsb_intr: code=0x%x", code);
}
/*
* Now check for the NON-FRU type events.
*/
if (code == SCTRL_EVENT_PWRDWN) {
if (scsb_debug & 0x1002) {
cmn_err(CE_NOTE,
"scsb_intr(%d): power down req."
" INT.", scsb->scsb_instance);
}
scsb_event_code |= code;
if (scsb->scsb_state & SCSB_OPEN &&
scsb->scsb_rq != (queue_t *)NULL) {
/*
* inform applications using poll(2)
* about this event, and provide the
* event code to EnvMon scsb policy
*/
if (!(scsb_debug & 0x00040000))
(void) scsb_queue_put(scsb->scsb_rq, 1,
&scsb_event_code, "scsb_intr");
goto intr_error;
}
continue;
} else if (code == SCTRL_EVENT_REPLACE) {
if (scsb_debug & 0x1002) {
cmn_err(CE_NOTE,
"scsb_intr(%d): replacement "
"req. INT.",
scsb->scsb_instance);
}
scsb_freeze_check(scsb);
scsb_freeze(scsb);
scsb_event_code |= code;
retval |= (SCSB_INTR_CLAIMED | SCSB_INTR_EVENT);
continue;
} else if (code == SCTRL_EVENT_SCB) {
int tmp;
/*
* Must be newly inserted SCB
* Time to re-initialize.
*/
if (scsb_debug & 0x1002) {
cmn_err(CE_NOTE,
"scsb_intr(%d): INIT SCB INTR",
scsb->scsb_instance);
}
/*
* SCB initialization already handled, but we
* set the event code bit here in order to
* report the event to interested utilities.
*
* scsb_restore(scsb);
* The INTSRC bit is already cleared,
* so we won't do it again.
*/
tmp = FRU_OFFSET(SCTRL_EVENT_SCB,
SCTRL_INTPTR_BASE);
clr_bits &= ~(1 << tmp);
scsb_event_code |= code;
retval |= (SCSB_INTR_CLAIMED | SCSB_INTR_EVENT);
continue;
} else if (code == SCTRL_EVENT_ALARM_INT) {
/*
* P0.6/P1.0: SCTRL_INTR_ALARM_INT is always
* set and cannot be cleared, so ignore it.
*/
if (!IS_SCB_P15) {
continue;
}
if (scsb_debug & 0x1002) {
cmn_err(CE_NOTE,
"scsb_intr(%d): Alarm INT.",
scsb->scsb_instance);
}
scsb_event_code |= code;
retval |= (SCSB_INTR_CLAIMED | SCSB_INTR_EVENT);
/*
* XXX:
* Must service the Alarm INT by clearing INT
* condition on Alarm Card,
* then clear the SCTRL_INTR_ALARM_INT bit here.
* Waiting for specs and test environment.
*/
continue;
} else if ((ui = event_to_type(code)) == 0xffff) {
/*
* FRU type not found
*/
break;
}
/*
* Check for special processing
* now that we found the FRU type.
*/
fru_type = (scsb_utype_t)(ui & 0xff);
unit = (ui >> 8) & 0xff;
if (scsb_debug & 0x00002000) {
cmn_err(CE_NOTE, "scsb_intr: "
"FRU type/unit/code %d/%d/0x%x",
fru_type, unit, code);
}
switch (fru_type) {
case PDU:
break;
case PS:
break;
case DISK:
break;
case FAN:
break;
case SSB:
/*
* in check_fru_info() below, we see if the
* SSB has been removed, then check for
* occupied slots in reset to see if we should
* WARN agains SCB removal
*/
break;
case CFTM:
break;
case CRTM:
break;
case PRTM:
break;
case SLOT:
slotnum = tonga_ssl_to_psl(scsb, unit);
if (scsb_debug & 0x00002000) {
cmn_err(CE_NOTE, "scsb_intr: "
"unit/slot %d/%d",
unit, slotnum);
}
/*
* If the slot number is not valid, continue.
*/
if (scsb->scsb_state & SCSB_IS_TONGA) {
if (slotnum > TG_MAX_SLOTS ||
slotnum == SC_TG_CPU_SLOT) {
continue;
}
/*
* For a tonga, we need to return
* the code corresponding to the
* actual physical slot
*/
code = FRU_UNIT_TO_EVCODE(SLOT,
slotnum);
} else {
if (slotnum > MC_MAX_SLOTS ||
slotnum == SC_MC_CPU_SLOT ||
(scsb->scsb_hsc_state &
SCSB_HSC_CTC_PRES &&
slotnum == SC_MC_CTC_SLOT)) {
continue;
}
}
/* FALLTHROUGH */
case ALARM:
/*
* INDENT CHEATING, 2 indentations
*/
ac_present = 0;
/*
* If it is an Alarm Card Interrupt, we just do some sanity
* checks and then wait for the slot interrupt to take
* connect or disconnect action.
* XXX - Is there a gaurantee that ALARM int will occur first ?
*/
if (fru_type == ALARM) {
DEBUG2("AC Intr %d(%d)\n", scsb->ac_slotnum, idx+1);
val = scsb_fru_op(scsb, SLOT,
tonga_ssl_to_psl(scsb, scsb->ac_slotnum),
SCTRL_SYSCFG_BASE, SCSB_FRU_OP_GET_BITVAL);
ac_present = scsb_fru_op(scsb, ALARM, 1,
SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL);
/*
* It is observed that slot presence and Alarm
* presence bits do not go ON at the same time.
* Hence we wait till both events happen.
*/
#ifdef DEBUG
if ((((val) && (!ac_present)) ||
((!val) && (ac_present))) &&
(scsb->scsb_hsc_state &
SCSB_AC_SLOT_INTR_DONE))
cmn_err(CE_WARN, "?Alarm and Slot presence "
"state bits do not match! (%x,%x)",
val, ac_present);
#endif
if (scsb->scsb_hsc_state & SCSB_AC_SLOT_INTR_DONE)
scsb->scsb_hsc_state &= ~SCSB_AC_SLOT_INTR_DONE;
else
scsb->scsb_hsc_state |= SCSB_AC_SLOT_INTR_DONE;
break; /* we break and wait for slot interrupt. */
}
/*
* cPCI slot interrupt event
*/
if (scsb->scsb_state & SCSB_IS_TONGA) {
if (slotnum > TG_MAX_SLOTS ||
slotnum == SC_TG_CPU_SLOT) {
continue;
}
} else {
if (slotnum > MC_MAX_SLOTS ||
slotnum == SC_MC_CPU_SLOT ||
(scsb->scsb_hsc_state & SCSB_HSC_CTC_PRES &&
slotnum == SC_MC_CTC_SLOT)) {
continue;
}
}
if (scsb_is_alarm_card_slot(scsb, slotnum) == B_TRUE) {
DEBUG2("AC slot Intr %d(%d)\n", slotnum, idx+1);
ac_slot = B_TRUE;
}
val = scsb_fru_op(scsb, SLOT, unit, SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL);
if (ac_slot == B_TRUE) {
ac_present = scsb_fru_op(scsb, ALARM, 1,
SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL);
#ifdef DEBUG
if ((((val) && (!ac_present)) ||
((!val) && (ac_present))) &&
(scsb->scsb_hsc_state &
SCSB_AC_SLOT_INTR_DONE)) {
cmn_err(CE_WARN, "?Alarm and Slot presence "
"state bits do not match! (%x,%x)",
val, ac_present);
}
#endif
if (scsb->scsb_hsc_state & SCSB_AC_SLOT_INTR_DONE)
scsb->scsb_hsc_state &= ~SCSB_AC_SLOT_INTR_DONE;
else
scsb->scsb_hsc_state |= SCSB_AC_SLOT_INTR_DONE;
}
if (val) {
if (ac_present) {
DEBUG1("AC insertion on slot %d!\n", slotnum);
if (scsb_debug & 0x00010000) {
cmn_err(CE_NOTE, "scsb_intr: "
"AC_PRES slot %d", slotnum);
}
scsb->scsb_hsc_state |= SCSB_ALARM_CARD_PRES;
}
#ifndef lint
else
DEBUG1("IO Insertion on slot %d!\n", slotnum);
#endif
/*
* Special case : check MPID type.
* If MC midplane type,
* check to make sure the Alarm Card present
* bit is ON. If not, this is a regular IO card.
*/
(void) scsb_connect_slot(scsb, slotnum, B_FALSE);
} else {
if ((ac_slot == B_TRUE) &&
(scsb->scsb_hsc_state & SCSB_ALARM_CARD_PRES)) {
DEBUG1("AC Removal on slot %d!\n", slotnum);
#ifdef DEBUG
if (scsb_debug & 0x00010000) {
cmn_err(CE_NOTE, "scsb_intr: "
"!AC_PRES slot %d",
slotnum);
}
#endif /* DEBUG */
scsb->scsb_hsc_state &= ~SCSB_ALARM_CARD_PRES;
}
#ifndef lint
else
DEBUG1("IO Removal on slot %d!\n", slotnum);
#endif
(void) scsb_disconnect_slot(scsb, B_FALSE, slotnum);
}
/*
* END INDENT CHEATING, 2 indentations
*/
break;
default:
/*
* ERROR: Did not find cause of INTSRC bit
*/
if (scsb_debug & 0x00000002) {
cmn_err(CE_WARN,
"scsb_intr: FRU type %d"
" not recognized", fru_type);
}
continue;
}
scsb_event_code |= code;
retval |= (SCSB_INTR_CLAIMED | SCSB_INTR_EVENT);
if (fru_type == SLOT)
continue;
error = 0;
fru_ptr = mct_system_info.fru_info_list[fru_type];
for (; fru_ptr != NULL; fru_ptr = fru_ptr->next) {
if (unit != fru_ptr->fru_unit)
continue;
if (fru_ptr->i2c_info == NULL ||
(tmp_reg = fru_ptr->i2c_info->
ledata_reg) == 0)
continue;
error = scsb_set_scfg_pres_leds(scsb, fru_ptr);
if (error) {
cmn_err(CE_WARN, "scsb_intr(): "
"I2C write error to 0x%x",
tmp_reg);
if (!(scsb->scsb_state &
SCSB_DEBUG_MODE)) {
goto intr_error;
}
}
break;
}
}
if (clr_bits) {
clr_bits = 0;
}
}
/*
* Check for SCB 1.5 interrupt for SLOT HEALTHY changes
*/
clr_bits = 0;
intr_idx = 0;
numregs = SCTRL_INTR_NUMREGS;
intr_addr = SCSB_REG_ADDR(SCTRL_INTSRC_BASE);
index = SCSB_REG_INDEX(intr_addr);
if (IS_SCB_P15) {
for (i = 0; i < SCTRL_BHLTHY_NUMREGS;
++i, ++intr_idx, ++intr_addr) {
scsb->scsb_data_reg[index++] = scb_intr_regs[intr_idx];
intr_reg = scb_intr_regs[i];
while (intr_reg) {
idx = event_to_index((uint32_t)intr_reg);
code = (1 << idx);
clr_bits |= code;
intr_reg = intr_reg & ~code;
/* idx + 1 because bit 0 is for Slot 1 */
slotnum = tonga_ssl_to_psl(scsb, idx + 1);
if (scsb->scsb_state & SCSB_IS_TONGA) {
if (slotnum > TG_MAX_SLOTS ||
slotnum == SC_TG_CPU_SLOT) {
continue;
}
} else {
if (slotnum > MC_MAX_SLOTS ||
slotnum == SC_MC_CPU_SLOT ||
(scsb->scsb_hsc_state &
SCSB_HSC_CTC_PRES &&
slotnum == SC_MC_CTC_SLOT)) {
continue;
}
}
scsb_healthy_intr(scsb, slotnum);
}
if (clr_bits) {
clr_bits = 0;
}
}
}
code = scsb_event_code;
if (retval & SCSB_INTR_EVENT &&
!(scsb->scsb_state & SCSB_P06_NOINT_KLUGE)) {
check_fru_info(scsb, code);
add_event_code(scsb, code);
(void) scsb_queue_ops(scsb, QPUT_INT32, 1, &scsb_event_code,
"scsb_intr");
}
intr_error:
scb_post_e = gethrtime();
if (scsb_debug & 0x8000000)
cmn_err(CE_NOTE, "Summary of times in nsec: pre_time %llu, \
post_time %llu", scb_pre_e - scb_pre_s,
scb_post_e - scb_post_s);
mutex_enter(&scsb->scsb_mutex);
scsb_in_postintr = 0;
cv_broadcast(&scsb->scsb_cv);
mutex_exit(&scsb->scsb_mutex);
/*
* Re-enable interrupt now.
*/
scsb_toggle_psmint(scsb, 1);
scsb->scsb_state &= ~SCSB_IN_INTR;
}
static int
scsb_polled_int(scsb_state_t *scsb, int cmd, uint32_t *set)
{
if (scsb_debug & 0x4000)
cmn_err(CE_NOTE, "scsb_polled_int(scsb,0x%x)", cmd);
*set = 0;
if (cmd == SCSBIOC_SHUTDOWN_POLL) {
return (EINVAL);
}
if (cmd != SCSBIOC_INTEVENT_POLL) {
return (EINVAL);
}
if (scsb->scsb_state & SCSB_P06_NOINT_KLUGE) {
/*
* scsb_intr() may modify scsb_event_code
*/
scsb_event_code = SCTRL_EVENT_NONE;
(void) scsb_intr((caddr_t)scsb);
*set = scsb_event_code;
scsb_event_code = 0;
} else {
/*
* SCSB_P06_INTR_ON, we know there was an event
* and we're retrieving the event code from the event FIFO.
*/
*set = get_event_code();
}
if (scsb_debug & 0x01004000) {
cmn_err(CE_NOTE, "scsb_polled_int: event_code = 0x%x", *set);
}
return (0);
}
static int
scsb_leds_switch(scsb_state_t *scsb, scsb_ustate_t op)
{
register int i;
int index;
uchar_t reg, idata, rwbuf[SCTRL_MAX_GROUP_NUMREGS];
if (scsb->scsb_state & SCSB_FROZEN &&
!(scsb->scsb_state & SCSB_IN_INTR)) {
return (EAGAIN);
}
if (scsb_debug & 0x0101) {
cmn_err(CE_NOTE, "scsb_leds_switch(%s):",
op == ON ? "ON" : "OFF");
}
/* Step 1: turn ON/OFF all NOK LEDs. */
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "scsb%d: turning all NOK LEDs %s",
scsb->scsb_instance,
op == ON ? "ON" : "OFF");
}
if (op == ON)
idata = 0xff;
else /* off */
idata = 0x00;
reg = SCSB_REG_ADDR(SCTRL_LED_NOK_BASE);
index = SCSB_REG_INDEX(reg);
for (i = 0; i < SCTRL_LED_NOK_NUMREGS; ++i) {
rwbuf[i] = idata;
scsb->scsb_data_reg[index + i] = idata;
}
mutex_enter(&scsb->scsb_mutex);
i = scsb_rdwr_register(scsb, I2C_WR, reg, SCTRL_LED_NOK_NUMREGS,
rwbuf, 1);
mutex_exit(&scsb->scsb_mutex);
if (i) {
if (scsb_debug & 0x0102)
cmn_err(CE_WARN, "scsb_leds_switch(): "
"Failed to turn %s NOK LEDs",
op == ON ? "ON" : "OFF");
}
/* Step 2: turn ON/OFF all OK LEDs. */
if (scsb_debug & 0x0100) {
cmn_err(CE_NOTE, "scsb%d: turning all OK LEDs %s",
scsb->scsb_instance,
op == ON ? "ON" : "OFF");
}
reg = SCSB_REG_ADDR(SCTRL_LED_OK_BASE);
index = SCSB_REG_INDEX(reg);
for (i = 0; i < SCTRL_LED_OK_NUMREGS; ++i) {
rwbuf[i] = idata;
scsb->scsb_data_reg[index + i] = idata;
}
mutex_enter(&scsb->scsb_mutex);
i = scsb_rdwr_register(scsb, I2C_WR, reg, SCTRL_LED_OK_NUMREGS,
rwbuf, 1);
mutex_exit(&scsb->scsb_mutex);
if (i) {
if (scsb_debug & 0x0102)
cmn_err(CE_WARN, "scsb_leds_switch(): "
"Failed to turn %s NOK LEDs",
op == ON ? "ON" : "OFF");
}
/* Step 3: turn OFF all BLINK LEDs. */
if (op == OFF) {
reg = SCSB_REG_ADDR(SCTRL_BLINK_OK_BASE);
index = SCSB_REG_INDEX(reg);
for (i = 0; i < SCTRL_BLINK_NUMREGS; ++i) {
rwbuf[i] = idata;
scsb->scsb_data_reg[index + i] = idata;
}
mutex_enter(&scsb->scsb_mutex);
i = scsb_rdwr_register(scsb, I2C_WR, reg, SCTRL_BLINK_NUMREGS,
rwbuf, 1);
mutex_exit(&scsb->scsb_mutex);
if (i) {
if (scsb_debug & 0x0102)
cmn_err(CE_WARN, "scsb_leds_switch(): "
"Failed to turn %s BLINK BITs",
op == ON ? "ON" : "OFF");
}
}
return (0);
}
static int
scsb_readall_regs(scsb_state_t *scsb)
{
int error;
int index;
uchar_t reg;
if (!(scsb_debug & 0x40000000))
return (0);
if (scsb_debug & 0x0005) {
cmn_err(CE_NOTE, "scsb_readall_regs:");
}
if (scsb->scsb_state & SCSB_FROZEN) {
return (EAGAIN);
}
reg = SCSB_REG_ADDR_START; /* 1st register in set */
index = SCSB_REG_INDEX(reg);
error = scsb_rdwr_register(scsb, I2C_WR_RD, reg, SCSB_DATA_REGISTERS,
&scsb->scsb_data_reg[index], 1);
return (error);
}
/*
* read 1-byte register, mask with read bits (rmask),
* turn ON bits in on_mask, turn OFF bits in off_mask
* write the byte back to register
* NOTE: MUST be called with mutex held
*/
static int
scsb_write_mask(scsb_state_t *scsb,
uchar_t reg,
uchar_t rmask,
uchar_t on_mask,
uchar_t off_mask)
{
i2c_transfer_t *i2cxferp;
int index, error = 0;
uchar_t reg_data;
if (scsb_debug & 0x0800) {
cmn_err(CE_NOTE, "scsb_write_mask(,%x,,%x,%x):",
reg, on_mask, off_mask);
}
if (scsb->scsb_state & SCSB_FROZEN &&
!(scsb->scsb_state & SCSB_IN_INTR)) {
return (EAGAIN);
}
/* select the register address and read the register */
i2cxferp = (i2c_transfer_t *)scsb->scsb_i2ctp;
i2cxferp->i2c_flags = I2C_WR_RD;
i2cxferp->i2c_wlen = 1;
i2cxferp->i2c_rlen = 1;
i2cxferp->i2c_wbuf[0] = reg;
i2cxferp->i2c_rbuf[0] = 0;
scsb->scsb_kstat_flag = B_TRUE; /* we did a i2c transaction */
if (error = nct_i2c_transfer(scsb->scsb_phandle, i2cxferp)) {
error = EIO;
goto wm_error;
}
scsb->scsb_i2c_errcnt = 0;
if (scsb_debug & 0x0800)
cmn_err(CE_NOTE, "scsb_write_mask() read 0x%x",
i2cxferp->i2c_rbuf[0]);
reg_data = i2cxferp->i2c_rbuf[0];
if (rmask)
reg_data &= rmask;
if (off_mask)
reg_data &= ~off_mask;
if (on_mask)
reg_data |= on_mask;
i2cxferp->i2c_flags = I2C_WR;
i2cxferp->i2c_wlen = 2;
i2cxferp->i2c_wbuf[0] = reg;
i2cxferp->i2c_wbuf[1] = reg_data;
if (error = nct_i2c_transfer(scsb->scsb_phandle, i2cxferp)) {
error = EIO;
goto wm_error;
}
/* keep shadow registers updated */
index = SCSB_REG_INDEX(reg);
scsb->scsb_data_reg[index] = reg_data;
if (scsb_debug & 0x0800)
cmn_err(CE_NOTE, "scsb_write_mask() wrote 0x%x", reg_data);
scsb->scsb_i2c_errcnt = 0;
return (error);
wm_error:
scsb->scsb_i2c_errcnt++;
if (scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb->scsb_err_flag = B_TRUE; /* latch error */
if (scsb->scsb_state & SCSB_SSB_PRESENT) {
if (scsb_debug & 0x0802)
cmn_err(CE_WARN,
"scsb_write_mask(): reg %x %s error, data=%x",
reg,
i2cxferp->i2c_flags & I2C_WR ? "write" : "read",
i2cxferp->i2c_flags & I2C_WR ?
i2cxferp->i2c_wbuf[1] : i2cxferp->i2c_rbuf[0]);
} else {
if (scsb->scsb_i2c_errcnt >= scsb_freeze_count)
scsb_freeze(scsb);
return (EAGAIN);
}
return (error);
}
/*
* read/write len consecutive single byte registers to/from rbuf
* NOTE: should be called with mutex held
*/
static int
scsb_rdwr_register(scsb_state_t *scsb, int op, uchar_t reg, int len,
uchar_t *rwbuf, int i2c_alloc)
{
i2c_transfer_t *i2cxferp;
int i, rlen, wlen, index, error = 0;
if (scsb_debug & 0x0800) {
cmn_err(CE_NOTE, "scsb_rdwr_register(scsb,%s,%x,%x,buf):",
(op == I2C_WR) ? "write" : "read", reg, len);
}
if (scsb->scsb_state & SCSB_FROZEN &&
!(scsb->scsb_state & SCSB_IN_INTR)) {
return (EAGAIN);
}
if (i2c_alloc) {
i2cxferp = scsb_alloc_i2ctx(scsb->scsb_phandle, I2C_NOSLEEP);
if (i2cxferp == NULL) {
if (scsb_debug & 0x0042)
cmn_err(CE_WARN, "scsb_rdwr_register: "
"i2ctx allocation failure");
return (ENOMEM);
}
} else {
i2cxferp = scsb->scsb_i2ctp;
}
index = SCSB_REG_INDEX(reg);
switch (op) {
case I2C_WR:
wlen = len + 1; /* add the address */
rlen = 0;
i2cxferp->i2c_wbuf[0] = reg;
for (i = 0; i < len; ++i) {
scsb->scsb_data_reg[index + i] =
i2cxferp->i2c_wbuf[1 + i] = rwbuf[i];
if (scsb_debug & 0x0080)
cmn_err(CE_NOTE,
"scsb_rdwr_register: writing rwbuf[%d]=0x%x",
i, rwbuf[i]);
}
break;
case I2C_WR_RD:
wlen = 1; /* for the address */
rlen = len;
i2cxferp->i2c_wbuf[0] = reg;
break;
default:
if (i2c_alloc)
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
return (EINVAL);
}
/* select the register address */
i2cxferp->i2c_flags = op;
i2cxferp->i2c_rlen = rlen;
i2cxferp->i2c_wlen = wlen;
i2cxferp->i2c_wbuf[0] = reg;
scsb->scsb_kstat_flag = B_TRUE; /* we did a i2c transaction */
if (error = nct_i2c_transfer(scsb->scsb_phandle, i2cxferp)) {
error = EIO;
} else if (rlen) {
/* copy to rwbuf[] and keep shadow registers updated */
for (i = 0; i < len; ++i) {
scsb->scsb_data_reg[index + i] = rwbuf[i] =
i2cxferp->i2c_rbuf[i];
if (scsb_debug & 0x0080)
cmn_err(CE_NOTE,
"scsb_rdwr_register: read rwbuf[%d]=0x%x",
i, rwbuf[i]);
}
}
if (i2c_alloc)
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
if (error) {
scsb->scsb_i2c_errcnt++;
if (scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb->scsb_err_flag = B_TRUE; /* latch error */
if (!(scsb->scsb_state & SCSB_SSB_PRESENT)) {
if (scsb->scsb_i2c_errcnt >= scsb_freeze_count)
scsb_freeze(scsb);
return (EAGAIN);
} else {
cmn_err(CE_WARN,
"scsb_rdwr_register(): I2C read error from %x",
reg);
}
} else {
scsb->scsb_i2c_errcnt = 0;
}
return (error);
}
/*
* Called from scsb_intr()
* First find the fru_info for this fru_id, and set fru_status for callback.
* Then check for a registered call_back entry for this fru_id,
* and if found, call it.
* Recursize call until no EVENTS left in evcode.
*/
static void
check_fru_info(scsb_state_t *scsb, int evcode)
{
struct scsb_cb_entry *cbe_ptr;
fru_info_t *fru_ptr;
fru_id_t fru_id;
scsb_fru_status_t fru_status;
int i, new_evcode;
if (scsb_debug & 0x00100001)
cmn_err(CE_NOTE, "check_fru_info(scsb,0x%x)", evcode);
if (evcode == 0)
return;
i = event_to_index((uint32_t)evcode);
new_evcode = evcode & ~(1 << i);
if (i > MCT_MAX_FRUS) {
if (scsb_debug & 0x00100000)
cmn_err(CE_NOTE,
"check_fru_info: index %d out of range", i);
check_fru_info(scsb, new_evcode);
return;
}
fru_id = fru_id_table[i];
fru_ptr = find_fru_info(fru_id);
if (fru_ptr == (fru_info_t *)NULL) {
check_fru_info(scsb, new_evcode);
return;
}
update_fru_info(scsb, fru_ptr);
if (fru_ptr->fru_status & FRU_PRESENT) {
fru_status = FRU_PRESENT;
} else {
fru_status = FRU_NOT_PRESENT;
if (fru_ptr->fru_type == SSB) {
/*
* WARN against SCB removal if any
* occupied slots are in reset
*/
scsb_freeze_check(scsb);
}
}
/*
* check for an entry in the CallBack table
*/
for (cbe_ptr = scsb_cb_table; cbe_ptr != NULL;
cbe_ptr = cbe_ptr->cb_next) {
if (cbe_ptr->cb_fru_id == fru_id &&
cbe_ptr->cb_fru_ptr == fru_ptr) {
if (scsb_debug & 0x00800000)
cmn_err(CE_NOTE,
"check_fru_info: callback for FRU_ID "
"0x%x; device is %spresent",
(int)fru_id,
fru_status == FRU_PRESENT ?
"" : "not ");
(*cbe_ptr->cb_func)(
cbe_ptr->cb_softstate_ptr,
cbe_ptr->cb_event,
fru_status);
break;
}
}
check_fru_info(scsb, new_evcode);
}
/*
* -----------------------------
* scsb kstat support functions.
* -----------------------------
*/
/*
* Create and initialize the kstat data structures
*/
static int
scsb_alloc_kstats(scsb_state_t *scsb)
{
kstat_named_t *kn;
/*
* scsb_ks_leddata_t for "scsb_leddata"
*/
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE,
"scsb_alloc_kstats: create scsb_leddata: %lu bytes",
sizeof (scsb_ks_leddata_t));
if ((scsb->ks_leddata = kstat_create(scsb_name, scsb->scsb_instance,
SCSB_KS_LEDDATA, "misc", KSTAT_TYPE_RAW,
sizeof (scsb_ks_leddata_t), KSTAT_FLAG_PERSISTENT))
== NULL) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
scsb->ks_leddata->ks_update = update_ks_leddata;
scsb->ks_leddata->ks_private = (void *)scsb;
if (update_ks_leddata(scsb->ks_leddata, KSTAT_READ) != DDI_SUCCESS) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
kstat_install(scsb->ks_leddata);
/*
* scsb_ks_state_t for "scsb_state"
*/
if (scsb_debug & 0x00080000)
cmn_err(CE_NOTE,
"scsb_alloc_kstats: create scsb_state: %lu bytes",
sizeof (scsb_ks_state_t));
if ((scsb->ks_state = kstat_create(scsb_name, scsb->scsb_instance,
SCSB_KS_STATE, "misc", KSTAT_TYPE_RAW,
sizeof (scsb_ks_state_t), KSTAT_FLAG_PERSISTENT))
== NULL) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
scsb->ks_state->ks_update = update_ks_state;
scsb->ks_state->ks_private = (void *)scsb;
if (update_ks_state(scsb->ks_state, KSTAT_READ) != DDI_SUCCESS) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
kstat_install(scsb->ks_state);
/*
* mct_topology_t for "env_topology"
*/
if (scsb_debug & 0x00080000)
cmn_err(CE_NOTE,
"scsb_alloc_kstats: create env_toploogy: %lu bytes",
sizeof (mct_topology_t));
if ((scsb->ks_topology = kstat_create(scsb_name, scsb->scsb_instance,
SCSB_KS_TOPOLOGY, "misc", KSTAT_TYPE_RAW,
sizeof (mct_topology_t), KSTAT_FLAG_PERSISTENT))
== NULL) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
scsb->ks_topology->ks_update = update_ks_topology;
scsb->ks_topology->ks_private = (void *)scsb;
if (update_ks_topology(scsb->ks_topology, KSTAT_READ) != DDI_SUCCESS) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
kstat_install(scsb->ks_topology);
/*
* kstat_named_t * 2 for "scsb_evc_register"
*/
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE,
"scsb_alloc_kstats: create scsb_evc_register: %lu bytes",
sizeof (kstat_named_t) * 2);
if ((scsb->ks_evcreg = kstat_create(scsb_name, scsb->scsb_instance,
SCSB_KS_EVC_REGISTER, "misc", KSTAT_TYPE_NAMED, 2,
KSTAT_FLAG_PERSISTENT|KSTAT_FLAG_WRITABLE)) == NULL) {
scsb->scsb_state |= SCSB_KSTATS;
scsb_free_kstats(scsb);
return (DDI_FAILURE);
}
scsb->ks_evcreg->ks_update = update_ks_evcreg;
scsb->ks_evcreg->ks_private = (void *)scsb;
kn = KSTAT_NAMED_PTR(scsb->ks_evcreg);
kstat_named_init(&kn[0], "pid_register", KSTAT_DATA_INT64);
kstat_named_init(&kn[1], "pid_unregister", KSTAT_DATA_INT64);
kstat_install(scsb->ks_evcreg);
/*
* Done, set the flag for scsb_detach() and other checks
*/
scsb->scsb_state |= SCSB_KSTATS;
return (DDI_SUCCESS);
}
static int
update_ks_leddata(kstat_t *ksp, int rw)
{
scsb_state_t *scsb;
scsb_ks_leddata_t *pks_leddata;
int i, numregs, index, error = DDI_SUCCESS;
uchar_t reg;
scsb = (scsb_state_t *)ksp->ks_private;
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE, "update_ks_leddata: KS_UPDATE%sset",
scsb->scsb_state & SCSB_KS_UPDATE ? " " : " not ");
/*
* Since this is satisfied from the shadow registers, let it succeed
* even if the SCB is not present. It would be nice to return the
* shadow values with a warning.
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (DDI_FAILURE);
* }
*/
if (rw == KSTAT_WRITE) {
return (EACCES);
}
mutex_enter(&scsb->scsb_mutex);
while (scsb->scsb_state & SCSB_KS_UPDATE) {
if (cv_wait_sig(&scsb->scsb_cv, &scsb->scsb_mutex) <= 0) {
mutex_exit(&scsb->scsb_mutex);
return (EINTR);
}
}
scsb->scsb_state |= SCSB_KS_UPDATE;
mutex_exit(&scsb->scsb_mutex);
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE, "update_ks_leddata: updating data");
pks_leddata = (scsb_ks_leddata_t *)ksp->ks_data;
/*
* Call tonga_slotnum_led_shift() for each register that
* contains Slot 1-5 information, the first register at each base:
* NOK_BASE, OK_BASE, BLINK_OK_BASE
* XXX: breaking register table access rules by not using macros.
*/
/* NOK */
reg = SCSB_REG_ADDR(SCTRL_LED_NOK_BASE);
index = SCSB_REG_INDEX(reg);
numregs = SCTRL_LED_NOK_NUMREGS;
i = 0;
if (IS_SCB_P15)
reg = tonga_slotnum_led_shift(scsb, scsb->scsb_data_reg[index]);
else
reg = scsb->scsb_data_reg[index];
pks_leddata->scb_led_regs[i] = reg;
for (++i, ++index; i < numregs; ++i, ++index)
pks_leddata->scb_led_regs[i] = scsb->scsb_data_reg[index];
/* OK */
reg = SCSB_REG_ADDR(SCTRL_LED_OK_BASE);
index = SCSB_REG_INDEX(reg);
numregs += SCTRL_LED_OK_NUMREGS;
if (IS_SCB_P15)
reg = tonga_slotnum_led_shift(scsb, scsb->scsb_data_reg[index]);
else
reg = scsb->scsb_data_reg[index];
pks_leddata->scb_led_regs[i] = reg;
for (++i, ++index; i < numregs; ++i, ++index)
pks_leddata->scb_led_regs[i] = scsb->scsb_data_reg[index];
/* BLINK */
reg = SCSB_REG_ADDR(SCTRL_BLINK_OK_BASE);
index = SCSB_REG_INDEX(reg);
numregs += SCTRL_BLINK_NUMREGS;
if (IS_SCB_P15)
reg = tonga_slotnum_led_shift(scsb, scsb->scsb_data_reg[index]);
else
reg = scsb->scsb_data_reg[index];
pks_leddata->scb_led_regs[i] = reg;
for (++i, ++index; i < numregs; ++i, ++index)
pks_leddata->scb_led_regs[i] = scsb->scsb_data_reg[index];
mutex_enter(&scsb->scsb_mutex);
scsb->scsb_state &= ~SCSB_KS_UPDATE;
cv_signal(&scsb->scsb_cv);
mutex_exit(&scsb->scsb_mutex);
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE, "update_ks_leddata: returning");
return (error);
}
static int
update_ks_evcreg(kstat_t *ksp, int rw)
{
scsb_state_t *scsb;
int error = 0;
kstat_named_t *kn = KSTAT_NAMED_PTR(ksp);
pid_t pid;
scsb = (scsb_state_t *)ksp->ks_private;
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE, "update_ks_evcreg: %s(%d), KS_UPDATE%sset",
rw == KSTAT_READ ? "read" : "write", rw,
scsb->scsb_state & SCSB_KS_UPDATE ? " " : " not ");
/*
* Let this registration succeed
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (DDI_FAILURE);
* }
*/
mutex_enter(&scsb->scsb_mutex);
while (scsb->scsb_state & SCSB_KS_UPDATE) {
if (cv_wait_sig(&scsb->scsb_cv, &scsb->scsb_mutex) <= 0) {
mutex_exit(&scsb->scsb_mutex);
return (EINTR);
}
}
scsb->scsb_state |= SCSB_KS_UPDATE;
mutex_exit(&scsb->scsb_mutex);
if (rw == KSTAT_READ) {
kn[0].value.i64 = (int64_t)0;
kn[1].value.i64 = (int64_t)0;
} else if (rw == KSTAT_WRITE) {
/*
* kn[0] is "pid_register", kn[1] is "pid_unregister"
*/
if (kn[0].value.i64 != 0 && kn[1].value.i64 == 0) {
pid = (pid_t)kn[0].value.i64;
if (add_event_proc(scsb, pid)) {
if (scsb_debug & 0x02000002) {
cmn_err(CE_WARN,
"update_ks_evcreg: "
"process add failed for %d",
pid);
}
error = EOVERFLOW;
}
} else if (kn[0].value.i64 == 0 && kn[1].value.i64 != 0) {
pid = (pid_t)kn[1].value.i64;
if (del_event_proc(scsb, pid)) {
if (scsb_debug & 0x02000000) {
cmn_err(CE_NOTE,
"update_ks_evcreg: "
"process delete failed for %d",
pid);
}
error = EOVERFLOW;
}
} else if (kn[0].value.i64 == 0 && kn[1].value.i64 == 0) {
/*
* rewind the pointers and counts, zero the table.
*/
rew_event_proc(scsb);
} else {
error = EINVAL;
}
} else {
error = EINVAL;
}
mutex_enter(&scsb->scsb_mutex);
scsb->scsb_state &= ~SCSB_KS_UPDATE;
cv_signal(&scsb->scsb_cv);
mutex_exit(&scsb->scsb_mutex);
return (error);
}
static int
update_ks_state(kstat_t *ksp, int rw)
{
scsb_state_t *scsb;
scsb_ks_state_t *pks_state;
int error = DDI_SUCCESS;
uint32_t current_evc;
scsb = (scsb_state_t *)ksp->ks_private;
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE, "update_ks_state: KS_UPDATE%sset",
scsb->scsb_state & SCSB_KS_UPDATE ? " " : " not ");
/*
* Let this succeed based on last known data
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (DDI_FAILURE);
* }
*/
if (rw == KSTAT_WRITE) {
return (EACCES);
}
mutex_enter(&scsb->scsb_mutex);
while (scsb->scsb_state & SCSB_KS_UPDATE) {
if (cv_wait_sig(&scsb->scsb_cv, &scsb->scsb_mutex) <= 0) {
mutex_exit(&scsb->scsb_mutex);
return (EINTR);
}
}
scsb->scsb_state |= SCSB_KS_UPDATE;
/*
* If SSB not present and scsb not SCSB_FROZEN, check for SCB presence
* by initiating an I2C read from the SCB. If an error occurs,
* scsb_freeze() will be called to update SCB info and scsb state.
*/
if (!(scsb->scsb_state & SCSB_SSB_PRESENT) &&
!(scsb->scsb_state & SCSB_FROZEN)) {
uchar_t data;
/* Read the SCB PROM ID */
if (data = scsb_rdwr_register(scsb, I2C_WR_RD,
(uchar_t)SCTRL_PROM_VERSION, 1, &data, 1))
if (scsb_debug & 0x00080002)
cmn_err(CE_NOTE, "update_ks_state: SCB/I2C "
"failure %d", data);
}
mutex_exit(&scsb->scsb_mutex);
pks_state = (scsb_ks_state_t *)ksp->ks_data;
pks_state->scb_present = (scsb->scsb_state & SCSB_SCB_PRESENT) ? 1 : 0;
pks_state->ssb_present = (scsb->scsb_state & SCSB_SSB_PRESENT) ? 1 : 0;
pks_state->scsb_frozen = (scsb->scsb_state & SCSB_FROZEN) ? 1 : 0;
if (scsb->scsb_state & SCSB_DEBUG_MODE)
pks_state->scsb_mode = (uint8_t)ENVC_DEBUG_MODE;
else if (scsb->scsb_state & SCSB_DIAGS_MODE)
pks_state->scsb_mode = (uint8_t)ENVCTRL_DIAG_MODE;
else
pks_state->scsb_mode = (uint8_t)ENVCTRL_NORMAL_MODE;
/*
* If scsb_attach() has not completed the kstat installs,
* then there are no event processes to check for.
*/
if (scsb->scsb_state & SCSB_KSTATS) {
switch (check_event_procs(&current_evc)) {
case EVC_NO_EVENT_CODE:
pks_state->event_code = 0;
break;
case EVC_NEW_EVENT_CODE:
/* FALLTHROUGH */
case EVC_NO_CURR_PROC:
pks_state->event_code = current_evc;
break;
case EVC_OR_EVENT_CODE:
pks_state->event_code |= current_evc;
break;
case EVC_FAILURE:
pks_state->event_code = 0;
error = DDI_FAILURE;
break;
}
} else {
pks_state->event_code = 0;
}
mutex_enter(&scsb->scsb_mutex);
scsb->scsb_state &= ~SCSB_KS_UPDATE;
cv_signal(&scsb->scsb_cv);
mutex_exit(&scsb->scsb_mutex);
return (error);
}
static int
update_ks_topology(kstat_t *ksp, int rw)
{
scsb_state_t *scsb;
mct_topology_t *pks_topo;
fru_info_t *fru_ptr;
int i, val, error = DDI_SUCCESS, slotnum;
scsb = (scsb_state_t *)ksp->ks_private;
if (scsb_debug & 0x00080001)
cmn_err(CE_NOTE, "update_ks_topology: KS_UPDATE%sset",
scsb->scsb_state & SCSB_KS_UPDATE ? " " : " not ");
/*
* Let this succeed based on last known data
*
* if (scsb->scsb_state & SCSB_FROZEN) {
* return (DDI_FAILURE);
* }
*/
if (rw == KSTAT_WRITE) {
return (EACCES);
}
mutex_enter(&scsb->scsb_mutex);
while (scsb->scsb_state & SCSB_KS_UPDATE) {
if (cv_wait_sig(&scsb->scsb_cv, &scsb->scsb_mutex) <= 0) {
mutex_exit(&scsb->scsb_mutex);
return (EINTR);
}
}
scsb->scsb_state |= SCSB_KS_UPDATE;
/*
* If SSB not present and scsb not SCSB_FROZEN, check for SCB presence
* by initiating an I2C read from the SCB. If an error occurs,
* scsb_freeze() will be called to update SCB info and scsb state.
*/
if (!(scsb->scsb_state & SCSB_SSB_PRESENT) &&
!(scsb->scsb_state & SCSB_FROZEN)) {
uchar_t data;
/* Read the SCB PROM ID */
if (data = scsb_rdwr_register(scsb, I2C_WR_RD,
(uchar_t)SCTRL_PROM_VERSION, 1, &data, 1))
if (scsb_debug & 0x00080002)
cmn_err(CE_NOTE, "update_ks_topology: SCB/I2C "
"failure %d", data);
}
mutex_exit(&scsb->scsb_mutex);
pks_topo = (mct_topology_t *)ksp->ks_data;
for (i = SLOT; i < SCSB_UNIT_TYPES; ++i) {
pks_topo->max_units[i] = mct_system_info.max_units[i];
}
pks_topo->mid_plane.fru_status = FRU_PRESENT;
pks_topo->mid_plane.fru_unit = (scsb_unum_t)1;
pks_topo->mid_plane.fru_type = mct_system_info.mid_plane.fru_type;
pks_topo->mid_plane.fru_id = mct_system_info.mid_plane.fru_id;
pks_topo->mid_plane.fru_version = mct_system_info.mid_plane.fru_version;
pks_topo->mid_plane.fru_health = MCT_HEALTH_OK;
fru_ptr = mct_system_info.fru_info_list[SLOT];
for (i = 0; i < pks_topo->max_units[SLOT]; ++i, ++fru_ptr) {
pks_topo->mct_slots[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_slots[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_slots[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_slots[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_slots[i].fru_version = fru_ptr->fru_version;
/*
* XXX: need to check healthy regs to set fru_health
*/
slotnum = tonga_psl_to_ssl(scsb, i+1);
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_BHLTHY_BASE,
SCSB_FRU_OP_GET_BITVAL);
pks_topo->mct_slots[i].fru_health = (val) ?
MCT_HEALTH_OK : MCT_HEALTH_NOK;
}
fru_ptr = mct_system_info.fru_info_list[PDU];
for (i = 0; i < pks_topo->max_units[PDU]; ++i, ++fru_ptr) {
pks_topo->mct_pdu[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_pdu[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_pdu[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_pdu[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_pdu[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_pdu[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[PS];
for (i = 0; i < pks_topo->max_units[PS]; ++i, ++fru_ptr) {
pks_topo->mct_ps[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_ps[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_ps[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_ps[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_ps[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_ps[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[DISK];
for (i = 0; i < pks_topo->max_units[DISK]; ++i, ++fru_ptr) {
pks_topo->mct_disk[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_disk[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_disk[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_disk[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_disk[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_disk[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[FAN];
for (i = 0; i < pks_topo->max_units[FAN]; ++i, ++fru_ptr) {
pks_topo->mct_fan[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_fan[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_fan[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_fan[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_fan[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_fan[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[SCB];
for (i = 0; i < pks_topo->max_units[SCB]; ++i, ++fru_ptr) {
pks_topo->mct_scb[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_scb[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_scb[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_scb[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_scb[i].fru_version = fru_ptr->fru_version;
/*
* To get the scsb health, if there was no i2c transaction
* until this read, generate an i2c transaction.
*/
if (scsb->scsb_kstat_flag == B_FALSE) {
uchar_t data;
scsb_blind_read(scsb, I2C_WR_RD,
(uchar_t)SCTRL_PROM_VERSION, 1, &data, 1);
}
pks_topo->mct_scb[i].fru_health = ((scsb->scsb_err_flag ==
B_TRUE || scsb->scsb_i2c_errcnt > scsb_err_threshold)
? MCT_HEALTH_NOK : MCT_HEALTH_OK);
#ifdef DEBUG
if (pks_topo->mct_scb[i].fru_health == MCT_HEALTH_NOK)
cmn_err(CE_WARN, "SCSB kstat health:%d", pks_topo->
mct_scb[i].fru_health);
#endif
scsb->scsb_err_flag = B_FALSE; /* clear error flag once read */
scsb->scsb_kstat_flag = B_FALSE; /* false? read from i2c */
}
fru_ptr = mct_system_info.fru_info_list[SSB];
for (i = 0; i < pks_topo->max_units[SSB]; ++i, ++fru_ptr) {
pks_topo->mct_ssb[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_ssb[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_ssb[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_ssb[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_ssb[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_ssb[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[ALARM];
for (i = 0; i < pks_topo->max_units[ALARM]; ++i, ++fru_ptr) {
pks_topo->mct_alarm[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_alarm[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_alarm[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_alarm[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_alarm[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_alarm[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[CFTM];
for (i = 0; i < pks_topo->max_units[CFTM]; ++i, ++fru_ptr) {
pks_topo->mct_cftm[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_cftm[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_cftm[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_cftm[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_cftm[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_cftm[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[CRTM];
for (i = 0; i < pks_topo->max_units[CRTM]; ++i, ++fru_ptr) {
pks_topo->mct_crtm[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_crtm[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_crtm[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_crtm[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_crtm[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_crtm[i].fru_health = MCT_HEALTH_NA;
}
fru_ptr = mct_system_info.fru_info_list[PRTM];
for (i = 0; i < pks_topo->max_units[PRTM]; ++i, ++fru_ptr) {
pks_topo->mct_prtm[i].fru_status = fru_ptr->fru_status;
pks_topo->mct_prtm[i].fru_type = fru_ptr->fru_type;
pks_topo->mct_prtm[i].fru_unit = fru_ptr->fru_unit;
pks_topo->mct_prtm[i].fru_id = fru_ptr->fru_id;
pks_topo->mct_prtm[i].fru_version = fru_ptr->fru_version;
pks_topo->mct_prtm[i].fru_health = MCT_HEALTH_NA;
}
mutex_enter(&scsb->scsb_mutex);
scsb->scsb_state &= ~SCSB_KS_UPDATE;
cv_signal(&scsb->scsb_cv);
mutex_exit(&scsb->scsb_mutex);
return (error);
}
static void
scsb_free_kstats(scsb_state_t *scsb)
{
if (!(scsb->scsb_state & SCSB_KSTATS))
return;
/*
* free the allocated kstat data
*/
if (scsb->ks_evcreg != NULL) {
kstat_delete(scsb->ks_evcreg);
}
if (scsb->ks_topology != NULL) {
kstat_delete(scsb->ks_topology);
}
if (scsb->ks_state != NULL) {
kstat_delete(scsb->ks_state);
}
if (scsb->ks_leddata != NULL) {
kstat_delete(scsb->ks_leddata);
}
scsb->ks_leddata = NULL;
scsb->ks_state = NULL;
scsb->ks_topology = NULL;
scsb->ks_evcreg = NULL;
scsb->scsb_state &= ~SCSB_KSTATS;
}
/*
* --------------------------------------
* Miscellaneous scsb internal functions.
* --------------------------------------
*
* allocate I2C transfer structure
*/
static i2c_transfer_t *
scsb_alloc_i2ctx(i2c_client_hdl_t phandle, uint_t sleep)
{
i2c_transfer_t *tp;
if (i2c_transfer_alloc(phandle, &tp, SCSB_DATA_REGISTERS + 2,
SCSB_DATA_REGISTERS + 2, sleep) == I2C_FAILURE) {
return (NULL);
}
return (tp);
}
/*
* free I2C transfer structure
*/
static void
scsb_free_i2ctx(i2c_client_hdl_t phandle, i2c_transfer_t *tp)
{
i2c_transfer_free(phandle, tp);
}
static void
update_fru_info(scsb_state_t *scsb, fru_info_t *fru_ptr)
{
int index;
uchar_t reg, bit;
fru_info_t *acslot_ptr = NULL;
fru_id_t acslot_id = 0;
if (scsb_debug & 0x00100001)
cmn_err(CE_NOTE, "update_fru_info(scsb,0x%p)", fru_ptr);
if (fru_ptr == (fru_info_t *)NULL ||
fru_ptr->i2c_info == (fru_i2c_info_t *)NULL)
return;
/*
* If this is an Alarm Card update, then we also need to get
* Alarm Card Slot fru_ptr to update it's fru_type, and maybe fru_id
*/
if (fru_ptr->fru_id == fru_id_table[FRU_INDEX(SCTRL_EVENT_ALARM)]) {
/*
* SCTRL_EVENT_SLOT1 == 0x01 so
* fru_id_table[] index for Slot 1 == 0
*/
acslot_id = fru_id_table[(scsb->ac_slotnum - 1)];
acslot_ptr = find_fru_info(acslot_id);
}
reg = fru_ptr->i2c_info->syscfg_reg;
bit = fru_ptr->i2c_info->syscfg_bit;
if (reg == 0 && fru_ptr->fru_type == SCB) {
if (scsb->scsb_state & SCSB_SCB_PRESENT)
fru_ptr->fru_status = FRU_PRESENT;
else
fru_ptr->fru_status = FRU_NOT_PRESENT;
} else if (reg) {
index = SCSB_REG_INDEX(reg);
if (scsb->scsb_data_reg[index] & (1 << bit)) {
fru_ptr->fru_status = FRU_PRESENT;
/*
* XXX: need to add version register, and maybe a
* method, to the fru_ptr->i2c_info structure.
*
* fru_ptr->fru_version = (fru_version_t)0;
*/
/*
* Because scsb_intr() sometimes gets the AC present
* INT before the ACSLOT present INT,
* do not check the ACSLOT fru_status
*
* if (acslot_ptr != NULL && acslot_ptr->fru_status ==
* FRU_PRESENT)
*/
if (acslot_ptr != NULL)
acslot_ptr->fru_type = (scsb_utype_t)OC_AC;
} else {
fru_ptr->fru_status = FRU_NOT_PRESENT;
/*
* fru_ptr->fru_version = (fru_version_t)0;
*/
if (acslot_ptr != NULL) {
/* AC just removed, but AC Slot is occupied? */
if (acslot_ptr->fru_status == FRU_PRESENT)
/* for now it's unknown */
acslot_ptr->fru_type =
(scsb_utype_t)OC_UNKN;
else
acslot_ptr->fru_type =
(scsb_utype_t)OC_UNKN;
}
}
}
if (scsb_debug & 0x00100000)
cmn_err(CE_NOTE,
"update_fru_info: type %d unit %d is %spresent",
fru_ptr->fru_type, fru_ptr->fru_unit,
fru_ptr->fru_status == FRU_PRESENT
? "" : "not ");
}
/*
* Convert EVENT code to FRU index
* by finding the highest bit number in 32 bit word
*/
static int
event_to_index(uint32_t evcode)
{
int i = 0;
if (evcode == 0)
return (MCT_MAX_FRUS - 1);
for (; (evcode >>= 1); i++)
;
return (i);
}
#ifdef DEBUG
void
scsb_debug_prnt(char *fmt, uintptr_t a1, uintptr_t a2, uintptr_t a3,
uintptr_t a4, uintptr_t a5)
{
if (scsb_debug & 0x8000 ||
(*fmt == 'X' && scsb_debug & 0x00010000)) {
if (*fmt == 'X')
++fmt;
prom_printf("scsb: ");
prom_printf(fmt, a1, a2, a3, a4, a5);
prom_printf("\n");
}
}
#endif
/*
* event code functions to deliver event codes
* and to manage:
* the event code fifo
* the process handle table for registered processes interested in
* event codes
*/
/*
* Send signal to processes registered for event code delivery
*/
static void
signal_evc_procs(scsb_state_t *scsb)
{
int i = 0, c = 0;
if (evc_proc_count == 0)
return;
for (; i < EVC_PROCS_MAX; ++i) {
if (evc_procs[i] != NULL) {
if (proc_signal(evc_procs[i], SIGPOLL)) {
if (scsb_debug & 0x02000002)
cmn_err(CE_WARN,
"scsb:signal_evc_procs: "
"signal to %d failed",
((struct pid *)
evc_procs[i])->pid_id);
(void) del_event_proc(scsb,
((struct pid *)evc_procs[i])->pid_id);
}
if (++c >= evc_proc_count) {
if (scsb_debug & 0x02000000) {
cmn_err(CE_NOTE,
"signal_evc_procs: signaled "
"%d/%d processes", c,
evc_proc_count);
}
break;
}
}
}
}
/*
* bump FIFO ptr, taking care of wrap around
*/
static uint32_t *
inc_fifo_ptr(uint32_t *ptr)
{
if (++ptr >= evc_fifo + EVC_FIFO_SIZE)
ptr = evc_fifo;
return (ptr);
}
/* ARGSUSED */
static void
reset_evc_fifo(scsb_state_t *scsb)
{
evc_wptr = evc_fifo;
evc_rptr = evc_fifo;
evc_fifo_count = 0;
}
/*
* Called from scsb_intr() when a new event occurs, to put new code in FIFO,
* and signal any interested processes in evc_procs[].
* Always succeeds.
*/
static void
add_event_code(scsb_state_t *scsb, uint32_t event_code)
{
if (event_proc_count(scsb) == 0) {
return;
}
*evc_wptr = event_code;
evc_wptr = inc_fifo_ptr(evc_wptr);
if (++evc_fifo_count > EVC_FIFO_SIZE) {
--evc_fifo_count; /* lose the oldest event */
evc_rptr = inc_fifo_ptr(evc_rptr);
}
if (scsb_debug & 0x01000000) {
cmn_err(CE_NOTE, "add_event_code: 0x%x, FIFO size = %d",
event_code, evc_fifo_count);
}
signal_evc_procs(scsb);
}
/*
* called from check_event_procs() when the last registered process
* retrieved the oldest event
*/
static uint32_t
del_event_code()
{
uint32_t evc = 0;
if (!evc_fifo_count)
return (scsb_event_code);
evc = *evc_rptr;
evc_rptr = inc_fifo_ptr(evc_rptr);
--evc_fifo_count;
if (scsb_debug & 0x01000000) {
cmn_err(CE_NOTE, "del_event_code: 0x%x, FIFO size = %d",
evc, evc_fifo_count);
}
return (evc);
}
/*
* called from check_event_procs() to retrieve the current event code
*/
static uint32_t
get_event_code()
{
if (!evc_fifo_count)
return (0);
return (*evc_rptr);
}
/*
* called from an application interface (ie: an ioctl command)
* to register a process id interested in SCB events.
* NOTE: proc_ref() must be called from USER context, so since this is a
* streams driver, a kstat interface is used for process registration.
* return:
* 0 = event_proc was added
* 1 = out of space
*/
/* ARGSUSED */
static int
add_event_proc(scsb_state_t *scsb, pid_t pid)
{
int i = 0;
void *curr_proc;
pid_t curr_pid;
if (evc_proc_count >= EVC_PROCS_MAX)
return (1);
curr_proc = proc_ref();
curr_pid = (pid_t)(((struct pid *)curr_proc)->pid_id);
if (curr_pid != pid) {
if (scsb_debug & 0x02000000) {
cmn_err(CE_WARN,
"add_event_proc: current %d != requestor %d",
curr_pid, pid);
} else {
proc_unref(curr_proc);
return (1);
}
}
for (; i < EVC_PROCS_MAX; ++i) {
if (evc_procs[i] == NULL) {
evc_procs[i] = curr_proc;
evc_proc_count++;
if (scsb_debug & 0x02000000) {
cmn_err(CE_NOTE,
"add_event_proc: %d; evc_proc_count=%d",
pid, evc_proc_count);
}
return (0);
}
}
proc_unref(curr_proc);
return (1);
}
/*
* called from an application interface (ie: an ioctl command)
* to unregister a process id interested in SCB events.
* return:
* 0 = event_proc was deleted
* 1 = event_proc was not found, or table was empty
*/
/* ARGSUSED */
static int
del_event_proc(scsb_state_t *scsb, pid_t pid)
{
int i = 0;
int cnt = 0;
void *this_proc;
if (evc_proc_count == 0)
return (1);
for (; i < EVC_PROCS_MAX; ++i) {
if (evc_procs[i] == NULL)
continue;
this_proc = evc_procs[i];
if (pid == ((struct pid *)this_proc)->pid_id) {
evc_procs[i] = NULL;
if (--evc_proc_count == 0) {
/*
* reset evc fifo cound and pointers
*/
reset_evc_fifo(scsb);
}
if (scsb_debug & 0x02000000) {
cmn_err(CE_NOTE,
"del_event_proc: %d; evc_proc_count=%d",
pid, evc_proc_count);
}
proc_unref(this_proc);
return (0);
}
if (++cnt >= evc_proc_count)
break;
}
return (1);
}
/*
* Can be called from an application interface
* to rewind the pointers and counters, and zero the table
* return:
*/
/* ARGSUSED */
static void
rew_event_proc(scsb_state_t *scsb)
{
int i = 0;
if (scsb_debug & 0x02000001) {
cmn_err(CE_NOTE, "rew_event_proc: evc_proc_count=%d",
evc_proc_count);
}
for (; i < EVC_PROCS_MAX; ++i) {
if (evc_procs[i] != NULL) {
proc_unref(evc_procs[i]);
evc_procs[i] = NULL;
}
}
evc_proc_count = 0;
}
/* ARGSUSED */
static int
event_proc_count(scsb_state_t *scsb)
{
return (evc_proc_count);
}
/*
* return:
* 1 = pid was found
* 0 = pid was not found, or table was empty
*/
static int
find_evc_proc(pid_t pid)
{
int i = 0;
int cnt = 0;
if (evc_proc_count == 0)
return (0);
for (; i < EVC_PROCS_MAX; ++i) {
if (evc_procs[i] == NULL)
continue;
if (pid == ((struct pid *)evc_procs[i])->pid_id)
return (1);
if (++cnt >= evc_proc_count)
break;
}
return (0);
}
/*
* called from update_ks_state() to compare evc_proc_count with
* evc_requests, also mainted by this same function
* This function could check the current process id, since this will be a user
* context call, and only bump evc_requests if the calling process is
* registered for event code delivery.
* return:
* EVC_NO_EVENT_CODE : no event_code on fifo
* EVC_NO_CURR_PROC : current process not in table,
* but have an event_code
* EVC_NEW_EVENT_CODE : return_evc is new ks_state->event_code
* EVC_OR_EVENT_CODE : OR return_evc with ks_state->event_code
* EVC_FAILURE : unrecoverable error condition.
*/
static int
check_event_procs(uint32_t *return_evc)
{
void *curr_proc;
pid_t curr_pid = 0;
int return_val = 0;
static int evc_requests = 0;
/*
* get current process handle, and check the event_procs table
*/
if (evc_proc_count == 0) {
*return_evc = del_event_code();
return_val = EVC_NO_CURR_PROC;
} else {
curr_proc = proc_ref();
curr_pid = ((struct pid *)curr_proc)->pid_id;
proc_unref(curr_proc);
if (!find_evc_proc(curr_pid)) {
*return_evc = get_event_code();
return_val = EVC_NO_CURR_PROC;
} else if (++evc_requests >= evc_proc_count) {
evc_requests = 0;
*return_evc = del_event_code();
return_val = EVC_NEW_EVENT_CODE;
} else {
*return_evc = get_event_code();
}
if (!return_val)
return_val = EVC_OR_EVENT_CODE;
}
if (scsb_debug & 0x02000000) {
cmn_err(CE_NOTE, "check_event_procs: pid=%d, evc=0x%x, "
"requests=%d, returning 0x%x", curr_pid,
*return_evc, evc_requests, return_val);
}
return (return_val);
}
static int
scsb_queue_put(queue_t *rq, int count, uint32_t *data, char *caller)
{
mblk_t *mp;
if (scsb_debug & 0x4001) {
cmn_err(CE_NOTE, "scsb_queue_put(0x%p, %d, 0x%x, %s)",
rq, count, *data, caller);
}
mp = allocb(sizeof (uint32_t) * count, BPRI_HI);
if (mp == NULL) {
cmn_err(CE_WARN, "%s: allocb failed",
caller);
return (B_FALSE);
}
while (count--) {
*((uint32_t *)mp->b_wptr) = *data;
mp->b_wptr += sizeof (*data);
++data;
}
putnext(rq, mp);
return (B_TRUE);
}
/* CLONE */
static int
scsb_queue_ops(scsb_state_t *scsb,
int op,
int oparg,
void *opdata,
char *caller)
{
clone_dev_t *clptr;
int clone, find_open, find_available, retval = QOP_FAILED;
switch (op) {
case QPUT_INT32:
if (scsb->scsb_opens && scsb->scsb_rq != NULL &&
scsb_queue_put(scsb->scsb_rq, oparg,
(uint32_t *)opdata, caller) == B_FALSE) {
return (QOP_FAILED);
}
/*FALLTHROUGH*/ /* to look for opened clones */
case QPROCSOFF:
retval = QOP_OK;
/*FALLTHROUGH*/
case QFIRST_OPEN:
case QFIND_QUEUE:
find_open = 1;
find_available = 0;
break;
case QFIRST_AVAILABLE:
find_available = 1;
find_open = 0;
break;
}
for (clone = SCSB_CLONES_FIRST; clone < SCSB_CLONES_MAX; clone++) {
clptr = &scsb->clone_devs[clone];
if (find_open && clptr->cl_flags & SCSB_OPEN) {
if (clptr->cl_rq == NULL) {
cmn_err(CE_WARN, "%s: Clone %d has no queue",
caller, clptr->cl_minor);
return (QOP_FAILED);
}
switch (op) {
case QPROCSOFF:
qprocsoff(clptr->cl_rq);
break;
case QPUT_INT32:
if (scsb_queue_put(clptr->cl_rq, oparg,
(uint32_t *)opdata, caller)
== B_FALSE) {
retval = QOP_FAILED;
}
break;
case QFIRST_OPEN:
return (clone);
case QFIND_QUEUE:
if (clptr->cl_rq == (queue_t *)opdata) {
return (clone);
}
break;
}
} else if (find_available && clptr->cl_flags == 0) {
switch (op) {
case QFIRST_AVAILABLE:
return (clone);
}
}
}
return (retval);
}
/*
* Find out if a bit is set for the FRU type and unit number in the register
* set defined by the register base table index, base.
* Returns TRUE if bit is set, or FALSE.
*/
static int
scsb_fru_op(scsb_state_t *scsb, scsb_utype_t fru_type, int unit, int base,
int op)
{
int rc;
uchar_t reg;
int tmp, idx, code, offset;
#if 0
reg = SCSB_REG_ADDR(i);
ac_mask = 1 << FRU_OFFSET(SCTRL_EVENT_ALARM, SCTRL_RESET_BASE);
ac_val = scsb->scsb_data_reg[index+1] & ac_mask;
#endif
/* get the event code based on which we get the reg and bit offsets */
code = FRU_UNIT_TO_EVCODE(fru_type, unit);
/* get the bit offset in the 8bit register corresponding to the event */
offset = FRU_OFFSET(code, base);
/* register offset from the base register, based on the event code */
if ((fru_type == ALARM) && (base == SCTRL_RESET_BASE))
tmp = ALARM_RESET_REG_INDEX(code, base);
else
tmp = FRU_REG_INDEX(code, base);
/* get the global offset of the register in the parent address space */
reg = SCSB_REG_ADDR(tmp);
/* get the global index of the register in this SCSB's address space */
idx = SCSB_REG_INDEX(reg);
DEBUG4("scsb_fru_op(start): code=%x, offset=%x, tmp=%x, reg=%x\n",
code, offset, tmp, reg);
switch (op) {
case SCSB_FRU_OP_GET_REG:
rc = reg;
break;
case SCSB_FRU_OP_GET_BITVAL:
rc = (scsb->scsb_data_reg[idx] & (1 << offset))
>> offset;
break;
case SCSB_FRU_OP_GET_REGDATA:
rc = scsb->scsb_data_reg[idx];
break;
case SCSB_FRU_OP_SET_REGBIT:
rc = (1 << offset) & 0xff;
break;
default:
break;
}
DEBUG4("scsb_fru_op: unit=%x, base=%x, op=%d, rc=%x\n", unit, base,
op, rc);
return (rc);
}
/*
* All HSC related functions can fail, but an attempt is made to atleast
* return the right shadow state on get-state function when SCB is removed.
*/
int
scsb_get_slot_state(scsb_state_t *scsb, int pslotnum, int *rstate)
{
int slotnum, val = 0, rc;
/*
* When SCB is removed, we could be called with the lock held.
* We call check_config_status anyway since it is a read-only operation
* and HSC could be invoking this function at interrupt context.
* If scsb is already in the doing interrupt postprocess, wait..
*/
rc = scsb_check_config_status(scsb);
/* check if error is because SCB is removed */
if ((rc != EAGAIN) && (rc != DDI_SUCCESS))
return (DDI_FAILURE);
slotnum = tonga_psl_to_ssl(scsb, pslotnum);
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_SYSCFG_BASE,
SCSB_FRU_OP_GET_BITVAL);
if (! val) {
*rstate = HPC_SLOT_EMPTY;
return (0);
}
/*
* now, lets determine if it is connected or disconnected.
* If reset is asserted, then the slot is disconnected.
*/
rc = scsb_reset_slot(scsb, pslotnum, SCSB_GET_SLOT_RESET_STATUS);
/* check if error is because SCB is removed */
if ((rc != EAGAIN) && (rc != DDI_SUCCESS))
return (DDI_FAILURE);
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_BITVAL);
if (val)
*rstate = HPC_SLOT_DISCONNECTED;
else {
if (scsb_fru_op(scsb, SLOT, slotnum, SCTRL_BHLTHY_BASE,
SCSB_FRU_OP_GET_BITVAL)) {
*rstate = HPC_SLOT_CONNECTED;
} else {
cmn_err(CE_WARN, "%s#%d: Reset Not Asserted on "
"Healthy# Failed slot %d!",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev), slotnum);
*rstate = HPC_SLOT_DISCONNECTED;
}
}
return (0);
}
int
scsb_reset_slot(scsb_state_t *scsb, int pslotnum, int reset_flag)
{
int slotnum, error, val, alarm_card = 0;
i2c_transfer_t *i2cxferp;
uchar_t reg;
int index, condition_exists = 0, ac_val;
if (scsb_debug & 0x8001)
cmn_err(CE_NOTE, "scsb_reset_slot(%d), flag %x", pslotnum,
reset_flag);
if (scsb->scsb_state & SCSB_FROZEN)
return (EAGAIN);
if ((i2cxferp = scsb_alloc_i2ctx(scsb->scsb_phandle,
I2C_NOSLEEP)) == NULL) {
return (ENOMEM);
}
slotnum = tonga_psl_to_ssl(scsb, pslotnum);
if (scsb_is_alarm_card_slot(scsb, pslotnum) == B_TRUE) {
DEBUG0("alarm card reset/unreset op:\n");
alarm_card = 1;
}
reg = SCSB_REG_ADDR(SCTRL_RESET_BASE);
index = SCSB_REG_INDEX(reg);
mutex_enter(&scsb->scsb_mutex);
i2cxferp->i2c_flags = I2C_WR_RD;
i2cxferp->i2c_rlen = SCTRL_RESET_NUMREGS;
i2cxferp->i2c_wbuf[0] = reg;
i2cxferp->i2c_wlen = 1;
scsb->scsb_kstat_flag = B_TRUE; /* we did an i2c transaction */
if ((error = nct_i2c_transfer(scsb->scsb_phandle, i2cxferp)) == 0) {
scsb->scsb_i2c_errcnt = 0;
/*
* XXX: following statements assume 2 reset registers,
* which is the case for our current SCB revisions.
*/
scsb->scsb_data_reg[index] = i2cxferp->i2c_rbuf[0];
scsb->scsb_data_reg[index+1] = i2cxferp->i2c_rbuf[1];
} else {
scsb->scsb_i2c_errcnt++;
if (scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb->scsb_err_flag = B_TRUE; /* latch until kstat */
if (!(scsb->scsb_state & SCSB_SSB_PRESENT)) {
if (scsb->scsb_i2c_errcnt >= scsb_freeze_count)
mutex_exit(&scsb->scsb_mutex);
scsb_freeze(scsb);
mutex_enter(&scsb->scsb_mutex);
}
cmn_err(CE_WARN, "%s#%d: scsb_reset_slot: error"
" reading Reset regs\n",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev));
error = DDI_FAILURE;
}
DEBUG2("pre-reset regs = %x,%x\n", scsb->scsb_data_reg[index],
scsb->scsb_data_reg[index+1]);
if ((reset_flag == SCSB_GET_SLOT_RESET_STATUS) || (error)) {
mutex_exit(&scsb->scsb_mutex);
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
return (error);
}
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_BITVAL);
if (alarm_card) {
ac_val = scsb_fru_op(scsb, ALARM, 1, SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_BITVAL);
}
if (val && (reset_flag == SCSB_RESET_SLOT)) {
if (alarm_card) {
if (ac_val) {
condition_exists = 1;
DEBUG0("Alarm_RST# already active.\n");
}
#ifndef lint
else
DEBUG1("Alarm_RST# not active! "
"Slot%d_RST# active!\n", pslotnum);
#endif
} else {
condition_exists = 1;
DEBUG1("Slot%d_RST# already active!\n", pslotnum);
}
}
else
if ((val == 0) && (reset_flag == SCSB_UNRESET_SLOT)) {
if (alarm_card) {
if (!ac_val) {
DEBUG0("Alarm_RST# not active.\n");
condition_exists = 1;
}
#ifndef lint
else
DEBUG1("Alarm_RST# active"
" Slot%d_RST# not active!\n",
pslotnum);
#endif
} else {
condition_exists = 1;
DEBUG1("Slot%d_RST# already not active!\n",
pslotnum);
}
}
if (! condition_exists) {
i2cxferp->i2c_flags = I2C_WR;
i2cxferp->i2c_wlen = 2;
i2cxferp->i2c_wbuf[0] = scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE, SCSB_FRU_OP_GET_REG);
if (reset_flag == SCSB_RESET_SLOT) {
i2cxferp->i2c_wbuf[1] =
scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_REGDATA) |
scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE,
SCSB_FRU_OP_SET_REGBIT);
#ifdef DEBUG /* dont reset Alarm Card line unless in debug mode */
if (alarm_card)
i2cxferp->i2c_wbuf[1] |=
scsb_fru_op(scsb, ALARM, 1,
SCTRL_RESET_BASE,
SCSB_FRU_OP_SET_REGBIT);
#endif
} else {
i2cxferp->i2c_wbuf[1] =
scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_REGDATA) &
~(scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE,
SCSB_FRU_OP_SET_REGBIT));
#ifdef DEBUG /* dont Unreset Alarm Card line unless in debug mode */
if (alarm_card)
i2cxferp->i2c_wbuf[1] &=
scsb_fru_op(scsb, ALARM, 1,
SCTRL_RESET_BASE,
SCSB_FRU_OP_SET_REGBIT);
#endif
}
if (error = nct_i2c_transfer(scsb->scsb_phandle, i2cxferp)) {
scsb->scsb_i2c_errcnt++;
if (scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb->scsb_err_flag = B_TRUE; /* latch error */
mutex_exit(&scsb->scsb_mutex);
if (!(scsb->scsb_state & SCSB_SSB_PRESENT)) {
if (scsb->scsb_i2c_errcnt >= scsb_freeze_count)
scsb_freeze(scsb);
}
cmn_err(CE_WARN, "%s#%d: reset_slot: error writing to"
" Reset regs (op=%d, data=%x)\n",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev),
reset_flag, i2cxferp->i2c_wbuf[1]);
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
return (DDI_FAILURE);
}
scsb->scsb_i2c_errcnt = 0;
/* now read back and update our scsb structure */
i2cxferp->i2c_flags = I2C_WR_RD;
i2cxferp->i2c_rlen = SCTRL_RESET_NUMREGS;
i2cxferp->i2c_wbuf[0] = reg;
i2cxferp->i2c_wlen = 1;
if ((error = nct_i2c_transfer(scsb->scsb_phandle,
i2cxferp)) == 0) {
scsb->scsb_i2c_errcnt = 0;
scsb->scsb_data_reg[index] = i2cxferp->i2c_rbuf[0];
scsb->scsb_data_reg[index+1] = i2cxferp->i2c_rbuf[1];
} else {
scsb->scsb_i2c_errcnt++;
if (scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb->scsb_err_flag = B_TRUE; /* latch error */
mutex_exit(&scsb->scsb_mutex);
if (!(scsb->scsb_state & SCSB_SSB_PRESENT)) {
if (scsb->scsb_i2c_errcnt >= scsb_freeze_count)
scsb_freeze(scsb);
}
cmn_err(CE_WARN, "%s#%d: scsb_reset_slot: error"
" reading Reset regs (post reset)\n",
ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev));
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
return (DDI_FAILURE);
}
/* XXX: P1.5 */
DEBUG2("post-reset regs = %x,%x\n", scsb->scsb_data_reg[index],
scsb->scsb_data_reg[index+1]);
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_BITVAL);
#ifdef DEBUG
if (alarm_card)
ac_val = scsb_fru_op(scsb, ALARM, 1, SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_BITVAL);
#endif
if (val && (reset_flag == SCSB_UNRESET_SLOT)) {
cmn_err(CE_WARN, "Cannot UnReset Slot %d (reg=%x)\n",
pslotnum,
scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_REGDATA));
#ifdef DEBUG
if (alarm_card) {
if (ac_val)
cmn_err(CE_WARN, "Cannot Unreset "
"Alarm_RST#.\n");
}
#endif
}
else
if ((val == 0) && (reset_flag == SCSB_RESET_SLOT)) {
cmn_err(CE_WARN, "Cannot Reset Slot %d, "
"reg=%x\n", pslotnum,
scsb_fru_op(scsb, SLOT, slotnum,
SCTRL_RESET_BASE,
SCSB_FRU_OP_GET_REGDATA));
#ifdef DEBUG
if (alarm_card) {
if (!ac_val)
cmn_err(CE_WARN, "Cannot reset "
"Alarm_RST#.\n");
}
#endif
}
}
mutex_exit(&scsb->scsb_mutex);
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
return (error);
}
int
scsb_connect_slot(scsb_state_t *scsb, int pslotnum, int healthy)
{
int slotnum, count = 0, val;
int slot_flag = 0;
/*
* If Power needs to be handled, it should be done here.
* Since there is no power handling for now, lets disable
* reset, wait for healthy to come on and then call it
* connected.
* If HLTHY# does not come on (in how long is the question)
* then we stay disconnected.
*/
slotnum = tonga_psl_to_ssl(scsb, pslotnum);
/*
* P1.5 doesnt require polling healthy as we get an
* interrupt. So we could just update our state as disconnected
* and return waiting for the healthy# interrupt. To make it
* more efficient, lets poll for healthy# a short while since we are
* in the interrupt context anyway. If we dont get a healthy# we
* return, and then wait for the interrupt. Probably the warning
* message needs to be removed then. Need a PROM check flag here.
*/
while ((healthy == B_FALSE) && (count < scsb_healthy_poll_count)) {
if (scsb_read_bhealthy(scsb) != 0)
return (DDI_FAILURE);
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_BHLTHY_BASE,
SCSB_FRU_OP_GET_BITVAL);
if (val) {
healthy = B_TRUE;
break;
}
count++;
drv_usecwait(100); /* cant delay(9f) in intr context */
}
if (healthy == B_FALSE && count == scsb_healthy_poll_count) {
if (scsb_debug & 0x00004000)
cmn_err(CE_WARN, "%s#%d: no HEALTHY# signal on"
" slot %d", ddi_driver_name(scsb->scsb_dev),
ddi_get_instance(scsb->scsb_dev), pslotnum);
}
if ((scsb_is_alarm_card_slot(scsb, pslotnum) == B_TRUE) &&
(scsb->scsb_hsc_state & SCSB_ALARM_CARD_PRES))
slot_flag = ALARM_CARD_ON_SLOT;
return (hsc_slot_occupancy(pslotnum, 1, slot_flag, healthy));
}
int
scsb_disconnect_slot(scsb_state_t *scsb, int occupied, int slotnum)
{
int slot_flag = 0;
/* Reset is must at extraction. Move on even if failure. */
if (scsb_reset_slot(scsb, slotnum, SCSB_RESET_SLOT) != 0) {
/*
* If board is still in slot, which means there is a manual
* disconnection in progress, return failure.
* Otherwise, a board was removed anyway; so we need to
* update the status and move on.
*/
if (occupied == B_TRUE)
return (DDI_FAILURE);
}
/*
* the following bug needs to be fixed.
* When this function is called from scsb_intr, scsb_state already
* clears the 'AC card present' bit.
* However, hsc module doesn't depend on slot_flag during removal.
*/
if ((scsb_is_alarm_card_slot(scsb, slotnum) == B_TRUE) &&
(scsb->scsb_hsc_state & SCSB_ALARM_CARD_PRES))
slot_flag = ALARM_CARD_ON_SLOT;
return (hsc_slot_occupancy(slotnum, occupied, slot_flag, B_FALSE));
}
static int
scsb_is_alarm_card_slot(scsb_state_t *scsb, int slotnum)
{
return ((scsb->ac_slotnum == slotnum)? B_TRUE:B_FALSE);
}
/*
* Invoked both by the hsc and the scsb module to exchanges necessary
* information regarding the alarm card.
* scsb calls this function to unconfigure the alarm card while the
* hsc calls this function at different times to check busy status,
* and during post hotswap insert operation so that the user process
* if one waiting can configure the alarm card.
*/
int
scsb_hsc_ac_op(scsb_state_t *scsb, int pslotnum, int op)
{
int rc = B_FALSE;
uint32_t event_code;
if (!(scsb->scsb_hsc_state & SCSB_HSC_INIT &&
scsb->scsb_hsc_state & SCSB_ALARM_CARD_PRES)) {
cmn_err(CE_WARN,
"scsb: HSC not initialized or AC not present!");
return (rc);
}
switch (op) {
/* hsc -> scsb */
case SCSB_HSC_AC_BUSY:
if (scsb->scsb_hsc_state & SCSB_ALARM_CARD_IN_USE)
rc = B_TRUE;
break;
/* API -> scsb */
/*
* NOTE: this could be called multiple times from envmond if
* the daemon is reinitialized with SIGHUP, or stopped and
* restarted.
*/
case SCSB_HSC_AC_SET_BUSY:
DEBUG0("AC SET BUSY\n");
if (scsb_debug & 0x00010000) {
cmn_err(CE_NOTE,
"scsb_hsc_ac_op(SCSB_HSC_AC_SET_BUSY)");
}
scsb->scsb_hsc_state |= SCSB_ALARM_CARD_IN_USE;
rc = B_TRUE;
break;
/* hsc -> scsb */
case SCSB_HSC_AC_CONFIGURED:
DEBUG0("AC configured\n");
if (scsb_debug & 0x00010000) {
cmn_err(CE_NOTE,
"scsb_hsc_ac_op(SCSB_HSC_AC_CONFIGURED)");
}
/*
* wakeup anyone waiting on AC to be configured
* Send the ALARM_CARD_CONFIGURE Event to all scsb
* open streams.
*/
event_code = SCTRL_EVENT_ALARM_INSERTION;
(void) scsb_queue_ops(scsb, QPUT_INT32, 1,
&event_code, "scsb_hsc_ac_op");
rc = B_TRUE;
break;
/* hsc -> scsb */
case SCSB_HSC_AC_REMOVAL_ALERT:
DEBUG0("AC removal alert\n");
if (scsb_debug & 0x00010000) {
cmn_err(CE_NOTE,
"scsb_hsc_ac_op(SCSB_HSC_AC_REMOVAL_ALERT)");
}
/*
* Inform (envmond)alarmcard.so that it should save
* the AC configuration, stop the
* heartbeat, and shutdown the RSC link.
*/
event_code = SCTRL_EVENT_ALARM_REMOVAL;
(void) scsb_queue_ops(scsb, QPUT_INT32, 1,
&event_code, "scsb_hsc_ac_op");
rc = B_TRUE;
break;
/* API -> scsb -> hsc */
case SCSB_HSC_AC_UNCONFIGURE:
DEBUG0("AC unconfigure\n");
if (scsb_debug & 0x00010000) {
cmn_err(CE_NOTE,
"scsb_hsc_ac_op(SCSB_HSC_AC_UNCONFIG"
"URE), AC NOT BUSY");
}
/*
* send notification back to HSC to
* unconfigure the AC, now that the env monitor
* has given permission to do so.
*/
scsb->scsb_hsc_state &= ~SCSB_ALARM_CARD_IN_USE;
hsc_ac_op(scsb->scsb_instance, pslotnum,
SCSB_HSC_AC_UNCONFIGURE, NULL);
rc = B_TRUE;
break;
default:
break;
}
return (rc);
}
static void
scsb_healthy_intr(scsb_state_t *scsb, int pslotnum)
{
int val, slotnum;
int healthy = B_FALSE;
DEBUG1("Healthy Intr on slot %d\n", pslotnum);
/*
* The interrupt source register can have the healthy
* bit set for non-existing slot, e.g slot 7 on Tonga.
* It can also be seen on the Tonga CPU slot. So we make
* sure we have a valid slot before proceeding.
*/
if (scsb->scsb_state & SCSB_IS_TONGA) {
if (pslotnum > TG_MAX_SLOTS || pslotnum == SC_TG_CPU_SLOT) {
if (scsb_debug & 0x08000000)
cmn_err(CE_NOTE, "Healthy interrupt bit set for"
" slot %d", pslotnum);
return;
}
} else {
if (pslotnum > MC_MAX_SLOTS || pslotnum == SC_MC_CPU_SLOT ||
(scsb->scsb_hsc_state & SCSB_HSC_CTC_PRES &&
pslotnum == SC_MC_CTC_SLOT)) {
if (scsb_debug & 0x08000000)
cmn_err(CE_NOTE, "Healthy interrupt bit set for"
" slot %d", pslotnum);
return;
}
}
/*
* The board healthy registers are already read before entering
* this routine
*/
slotnum = tonga_psl_to_ssl(scsb, pslotnum);
/*
* P1.5. Following works since slots 1 through 8 are in the same reg
*/
val = scsb_fru_op(scsb, SLOT, slotnum, SCTRL_BHLTHY_BASE,
SCSB_FRU_OP_GET_BITVAL);
if (val)
healthy = B_TRUE;
scsb_hsc_board_healthy(pslotnum, healthy);
}
/*
* This function will try to read from scsb irrespective of whether
* SSB is present or SCB is frozen, to get the health kstat information.
*/
static int
scsb_blind_read(scsb_state_t *scsb, int op, uchar_t reg, int len,
uchar_t *rwbuf, int i2c_alloc)
{
i2c_transfer_t *i2cxferp;
int i, rlen, wlen, error = 0;
if (scsb_debug & 0x0800) {
cmn_err(CE_NOTE, "scsb_rdwr_register(scsb,%s,%x,%x,buf):",
(op == I2C_WR) ? "write" : "read", reg, len);
}
if (i2c_alloc) {
i2cxferp = scsb_alloc_i2ctx(scsb->scsb_phandle, I2C_NOSLEEP);
if (i2cxferp == NULL) {
if (scsb_debug & 0x0042)
cmn_err(CE_WARN, "scsb_rdwr_register: "
"i2ctx allocation failure");
return (ENOMEM);
}
} else {
i2cxferp = scsb->scsb_i2ctp;
}
switch (op) {
case I2C_WR:
wlen = len + 1; /* add the address */
rlen = 0;
i2cxferp->i2c_wbuf[0] = reg;
for (i = 0; i < len; ++i) {
i2cxferp->i2c_wbuf[1 + i] = rwbuf[i];
if (scsb_debug & 0x0080)
cmn_err(CE_NOTE,
"scsb_rdwr_register: writing rwbuf[%d]=0x%x",
i, rwbuf[i]);
}
break;
case I2C_WR_RD:
wlen = 1; /* for the address */
rlen = len;
i2cxferp->i2c_wbuf[0] = reg;
break;
default:
if (i2c_alloc)
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
return (EINVAL);
}
/* select the register address */
i2cxferp->i2c_flags = op;
i2cxferp->i2c_rlen = rlen;
i2cxferp->i2c_wlen = wlen;
i2cxferp->i2c_wbuf[0] = reg;
scsb->scsb_kstat_flag = B_TRUE; /* we did a i2c transaction */
if (error = nct_i2c_transfer(scsb->scsb_phandle, i2cxferp)) {
error = EIO;
} else if (rlen) {
/* copy to rwbuf[] */
for (i = 0; i < len; ++i) {
rwbuf[i] = i2cxferp->i2c_rbuf[i];
if (scsb_debug & 0x0080)
cmn_err(CE_NOTE,
"scsb_rdwr_register: read rwbuf[%d]=0x%x",
i, rwbuf[i]);
}
}
if (i2c_alloc)
scsb_free_i2ctx(scsb->scsb_phandle, i2cxferp);
if (error) {
scsb->scsb_i2c_errcnt++;
if (scsb->scsb_i2c_errcnt > scsb_err_threshold)
scsb->scsb_err_flag = B_TRUE; /* latch error */
} else {
scsb->scsb_i2c_errcnt = 0;
}
return (error);
}
/*
* This function will quiesce the PSM_INT line by masking the
* global PSM_INT and writing 1 to SCB_INIT ( for P1.5 and later )
* This effectively translates to writing 0x20 to 0xE1 register.
*/
static int
scsb_quiesce_psmint(scsb_state_t *scsb)
{
register int i;
uchar_t reg, wdata = 0;
uchar_t tmp_reg, intr_addr, clr_bits = 0;
int error, iid, intr_idx, offset;
/*
* For P1.5, set the SCB_INIT bit in the System Command register,
* and disable global PSM_INT. Before this we need to read the
* interrupt source register corresponding to INIT_SCB and
* clear if set.
*/
if (IS_SCB_P15) {
/*
* Read INTSRC6 and write back 0x20 in case INIT_SCB is set
*/
intr_addr = SCSB_REG_ADDR(SCTRL_INTSRC_BASE);
tmp_reg = SCSB_REG_ADDR(SCTRL_INTSRC_SCB_P15);
iid = SCSB_REG_INDEX(intr_addr);
intr_idx = SCSB_REG_INDEX(tmp_reg) - iid;
offset = FRU_OFFSET(SCTRL_EVENT_SCB, SCTRL_INTPTR_BASE);
clr_bits = 1 << offset;
error = scsb_rdwr_register(scsb, I2C_WR_RD, tmp_reg,
1, &scb_intr_regs[intr_idx], 0);
/*
* Now mask the global PSM_INT and write INIT_SCB in case
* this is an INIT_SCB interrupt
*/
wdata = 1 << SYS_OFFSET(SCTRL_SYS_SCB_INIT);
i = SYS_REG_INDEX(SCTRL_SYS_SCB_INIT, SCTRL_SYS_CMD_BASE);
reg = SCSB_REG_ADDR(i);
error = scsb_rdwr_register(scsb, I2C_WR, reg, 1,
&wdata, 0);
if (scb_intr_regs[intr_idx] & clr_bits) {
/*
* There is an SCB_INIT interrupt, which we must clear
* first to keep SCB_INIT from keeping PSM_INT asserted.
*/
error = scsb_rdwr_register(scsb, I2C_WR, tmp_reg,
1, &clr_bits, 0);
}
if (error) {
cmn_err(CE_WARN, "scsb%d:scsb_quiesce_psmint: "
" I2C TRANSFER Failed", scsb->scsb_instance);
if (scsb_debug & 0x0006) {
cmn_err(CE_NOTE, "scsb_attach: "
" failed to set SCB_INIT");
}
}
scsb->scsb_state &= ~SCSB_PSM_INT_ENABLED;
} else { /* P1.0 or earlier */
/*
* read the interrupt source registers, and then
* write them back.
*/
/* read the interrupt register from scsb */
if (error = scsb_rdwr_register(scsb, I2C_WR_RD, intr_addr,
SCTRL_INTR_NUMREGS, scb_intr_regs, 0)) {
cmn_err(CE_WARN, "scsb_intr: "
" Failed read of interrupt registers.");
scsb->scsb_state &= ~SCSB_IN_INTR;
}
/*
* Write to the interrupt source registers to stop scsb
* from interrupting.
*/
if (error = scsb_rdwr_register(scsb, I2C_WR, intr_addr,
SCTRL_INTR_NUMREGS, scb_intr_regs, 0)) {
cmn_err(CE_WARN, "scsb_intr: Failed write to interrupt"
" registers.");
scsb->scsb_state &= ~SCSB_IN_INTR;
}
}
if (error)
return (DDI_FAILURE);
else
return (DDI_SUCCESS);
}
/*
* Enables or disables the global PSM_INT interrupt for P1.5, depending
* on the flag, flag = 0 => disable, else enable.
*/
static int
scsb_toggle_psmint(scsb_state_t *scsb, int enable)
{
int i;
uchar_t reg, on = 0, rmask = 0x0, off = 0;
if (enable == B_TRUE) {
on = 1 << SYS_OFFSET(SCTRL_SYS_PSM_INT_ENABLE);
} else {
off = 1 << SYS_OFFSET(SCTRL_SYS_PSM_INT_ENABLE);
}
i = SYS_REG_INDEX(SCTRL_SYS_PSM_INT_ENABLE, SCTRL_SYS_CMD_BASE);
reg = SCSB_REG_ADDR(i);
if (scsb_write_mask(scsb, reg, rmask, on, off)) {
cmn_err(CE_WARN, "scsb_toggle_psmint: Cannot turn %s PSM_INT",
enable == 1 ? "on" : "off");
return (DDI_FAILURE);
}
if (enable == 0) {
scsb->scsb_state &= ~SCSB_PSM_INT_ENABLED;
} else {
scsb->scsb_state |= SCSB_PSM_INT_ENABLED;
}
return (DDI_SUCCESS);
}
/*
* This routine is to be used by all the drivers using this i2c bus
* to synchronize their transfer operations.
*/
int
nct_i2c_transfer(i2c_client_hdl_t i2c_hdl, i2c_transfer_t *i2c_tran)
{
int retval, initmux = nct_mutex_init;
/*
* If scsb interrupt mutex is initialized, also hold the
* interrupt mutex to let the i2c_transfer() to complete
*/
if (initmux & MUTEX_INIT) {
mutex_enter(scb_intr_mutex);
}
retval = i2c_transfer(i2c_hdl, i2c_tran);
if (initmux & MUTEX_INIT) {
mutex_exit(scb_intr_mutex);
}
return (retval);
}