us_drv.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Device driver for UltraSPARC CPU. The driver is not DDI-compliant.
*
* The driver supports following features:
* - Power management.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/modctl.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/debug.h>
#include <sys/systm.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/cpu_module.h>
#include <sys/machsystm.h>
#include <sys/x_call.h>
#include <sys/us_drv.h>
#include <sys/msacct.h>
/*
* UltraSPARC CPU power management
*
* The supported power saving model is to slow down the CPU by dividing the
* CPU clock. Periodically we determine the amount of time the CPU is running
* idle thread and threads in user mode during the last quantum. If the idle
* thread was running less than its low water mark for current speed for
* number of consecutive sampling periods, or number of running threads in
* user mode are above its high water mark, we arrange to go to the higher
* speed. If the idle thread was running more than its high water mark without
* dropping a number of consecutive times below the mark, and number of threads
* running in user mode are below its low water mark, we arrange to go to the
* next lower speed. While going down, we go through all the speeds. While
* going up we go to the maximum speed to minimize impact on the user, but have
* provisions in the driver to go to other speeds.
*
* The driver does not have knowledge of a particular implementation of this
* scheme and will work with all CPUs supporting this model. The driver
* determines supported speeds by looking at 'clock-divisors' property
* created by OBP.
*/
/*
* Configuration function prototypes and data structures
*/
static int us_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int us_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int us_power(dev_info_t *dip, int comp, int level);
struct dev_ops us_ops = {
DEVO_REV, /* rev */
0, /* refcnt */
nodev, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
us_attach, /* attach */
us_detach, /* detach */
nodev, /* reset */
(struct cb_ops *)NULL, /* cb_ops */
(struct bus_ops *)NULL, /* bus_ops */
us_power /* power */
};
static struct modldrv modldrv = {
&mod_driverops, /* modops */
"UltraSPARC CPU Driver %I%", /* linkinfo */
&us_ops, /* dev_ops */
};
static struct modlinkage modlinkage = {
MODREV_1, /* rev */
&modldrv, /* linkage */
NULL
};
/*
* Function prototypes
*/
static int us_pm_init(us_devstate_t *usdsp);
static void us_pm_free(us_devstate_t *usdsp);
static int us_pm_comp_create(us_devstate_t *usdsp);
static void us_pm_monitor_disp(void *arg);
static void us_pm_monitor(void *arg);
/*
* Driver global variables
*/
uint_t us_drv_debug = 0;
static void *us_state;
static uint_t us_pm_idle_hwm = US_PM_IDLE_HWM;
static uint_t us_pm_idle_lwm = US_PM_IDLE_LWM;
static uint_t us_pm_idle_buf_zone = US_PM_IDLE_BUF_ZONE;
static uint_t us_pm_idle_bhwm_cnt_max = US_PM_IDLE_BHWM_CNT_MAX;
static uint_t us_pm_idle_blwm_cnt_max = US_PM_IDLE_BLWM_CNT_MAX;
static uint_t us_pm_user_hwm = US_PM_USER_HWM;
/*
* us_direct_pm allows user applications to directly control the
* power state transitions (direct pm) without following the normal
* direct pm protocol. This is needed because the normal protocol
* requires that a device only be lowered when it is idle, and be
* brought up when it request to do so by calling pm_raise_power().
* Ignoring this protocol is harmless for CPU (other than speed).
* Moreover it might be the case that CPU is never idle or wants
* to be at higher speed because of the addition CPU cycles required
* to run the user application.
*
* The driver will still report idle/busy status to the framework. Although
* framework will ignore this information for direct pm devices and not
* try to bring them down when idle, user applications can still use this
* information if they wants.
*
* In future, provide an ioctl to control setting of this mode. In
* that case, this variable should move to the state structure and
* protected by the lock in state strcuture.
*/
static int us_direct_pm = 0;
/*
* Arranges for the handler function to be called at the interval suitable
* for current speed.
*/
#define US_PM_MONITOR_INIT(usdsp) { \
ASSERT(mutex_owned(&(usdsp)->lock)); \
(usdsp)->us_pm.timeout_id = timeout(us_pm_monitor_disp, (usdsp), \
(((usdsp)->us_pm.cur_spd == NULL) ? US_PM_QUANT_CNT_OTHR : \
(usdsp)->us_pm.cur_spd->quant_cnt)); \
}
/*
* Arranges for the handler function not to be called back.
*/
#define US_PM_MONITOR_FINI(usdsp) { \
timeout_id_t tmp_tid; \
ASSERT(mutex_owned(&(usdsp)->lock)); \
ASSERT((usdsp)->us_pm.timeout_id); \
tmp_tid = (usdsp)->us_pm.timeout_id; \
(usdsp)->us_pm.timeout_id = 0; \
mutex_exit(&(usdsp)->lock); \
(void) untimeout(tmp_tid); \
mutex_enter(&(usdsp)->us_pm.timeout_lock); \
while ((usdsp)->us_pm.timeout_count != 0) \
cv_wait(&(usdsp)->us_pm.timeout_cv, \
&(usdsp)->us_pm.timeout_lock); \
mutex_exit(&(usdsp)->us_pm.timeout_lock); \
mutex_enter(&(usdsp)->lock); \
}
int
_init(void)
{
int error;
DPRINTF(D_INIT, ("us: _init: function called\n"));
if ((error = ddi_soft_state_init(&us_state,
sizeof (us_devstate_t), 0)) != 0) {
return (error);
}
if ((error = mod_install(&modlinkage)) != 0) {
ddi_soft_state_fini(&us_state);
}
return (error);
}
int
_fini(void)
{
int error;
DPRINTF(D_FINI, ("us: _fini: function called\n"));
if ((error = mod_remove(&modlinkage)) == 0) {
ddi_soft_state_fini(&us_state);
}
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* Driver attach(9e) entry point.
*/
static int
us_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance;
us_devstate_t *usdsp;
extern pri_t maxclsyspri;
instance = ddi_get_instance(dip);
switch (cmd) {
case DDI_ATTACH:
DPRINTF(D_ATTACH, ("us_attach: instance %d: "
"DDI_ATTACH called\n", instance));
if (ddi_soft_state_zalloc(us_state, instance) != DDI_SUCCESS) {
cmn_err(CE_WARN, "us_attach: instance %d: "
"can't allocate state", instance);
return (DDI_FAILURE);
}
if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
cmn_err(CE_WARN, "us_attach: instance %d: "
"can't get state", instance);
return (DDI_FAILURE);
}
usdsp->dip = dip;
if (us_pm_init(usdsp) != DDI_SUCCESS) {
ddi_soft_state_free(us_state, instance);
return (DDI_FAILURE);
}
/*
* Find CPU number for this dev_info node.
*/
if (dip_to_cpu_id(dip, &(usdsp->cpu_id)) != DDI_SUCCESS) {
us_pm_free(usdsp);
ddi_soft_state_free(us_state, instance);
cmn_err(CE_WARN, "us_attach: instance %d: "
"can't convert dip to cpu_id", instance);
return (DDI_FAILURE);
}
if (us_pm_comp_create(usdsp) != DDI_SUCCESS) {
us_pm_free(usdsp);
ddi_soft_state_free(us_state, instance);
return (DDI_FAILURE);
}
/*
* Taskq is used to dispatch routine to monitor CPU activities.
*/
usdsp->us_pm.tq = taskq_create_instance("us_pm_monitor",
ddi_get_instance(dip),
US_PM_TASKQ_THREADS, (maxclsyspri - 1), US_PM_TASKQ_MIN,
US_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
mutex_init(&usdsp->lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&usdsp->us_pm.timeout_lock, NULL, MUTEX_DRIVER,
NULL);
cv_init(&usdsp->us_pm.timeout_cv, NULL, CV_DEFAULT, NULL);
/*
* Driver needs to assume that CPU is running at unknown speed
* at DDI_ATTACH and switch it to the needed speed. We assume
* that initial needed speed is full speed for us.
*/
/*
* We need to take the lock because us_pm_monitor()
* will start running in parallel with attach().
*/
mutex_enter(&usdsp->lock);
usdsp->us_pm.cur_spd = NULL;
usdsp->us_pm.targ_spd = usdsp->us_pm.head_spd;
/*
* We don't call pm_raise_power() directly from attach beacuse
* driver attach for a slave CPU node can happen before the
* CPU is even initialized. We just start the monitoring
* system which understands unknown speed and moves CPU
* to targ_spd when it have been initialized.
*/
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
ddi_report_dev(dip);
return (DDI_SUCCESS);
case DDI_RESUME:
DPRINTF(D_ATTACH, ("us_attach: instance %d: "
"DDI_RESUME called\n", instance));
if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
cmn_err(CE_WARN, "us_attach: instance %d: "
"can't get state", instance);
return (DDI_FAILURE);
}
mutex_enter(&usdsp->lock);
/*
* Driver needs to assume that CPU is running at unknown speed
* at DDI_RESUME and switch it to the needed speed. We assume
* that the needed speed is full speed for us.
*/
usdsp->us_pm.cur_spd = NULL;
usdsp->us_pm.targ_spd = usdsp->us_pm.head_spd;
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* Driver detach(9e) entry point.
*/
static int
us_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int instance;
us_devstate_t *usdsp;
us_pm_t *upm;
instance = ddi_get_instance(dip);
switch (cmd) {
case DDI_DETACH:
DPRINTF(D_DETACH, ("us_detach: instance %d: "
"DDI_DETACH called\n", instance));
/*
* If the only thing supported by the driver is power
* management, we can in future enhance the driver and
* framework that loads it to unload the driver when
* user has disabled CPU power management.
*/
return (DDI_FAILURE);
case DDI_SUSPEND:
DPRINTF(D_DETACH, ("us_detach: instance %d: "
"DDI_SUSPEND called\n", instance));
if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
cmn_err(CE_WARN, "us_detach: instance %d: "
"can't get state", instance);
return (DDI_FAILURE);
}
/*
* During a checkpoint-resume sequence, framework will
* stop interrupts to quiesce kernel activity. This will
* leave our monitoring system ineffective. Handle this
* by stopping our monitoring system and bringing CPU
* to full speed. In case we are in special direct pm
* mode, we leave the CPU at whatever speed it is. This
* is harmless other than speed.
*/
mutex_enter(&usdsp->lock);
upm = &(usdsp->us_pm);
DPRINTF(D_DETACH, ("us_detach: instance %d: DDI_SUSPEND - "
"cur_spd %d, head_spd %d\n", instance,
upm->cur_spd->pm_level, upm->head_spd->pm_level));
US_PM_MONITOR_FINI(usdsp);
if (!us_direct_pm && (upm->cur_spd != upm->head_spd)) {
if (upm->pm_busycnt < 1) {
if ((pm_busy_component(dip, US_PM_COMP_NUM) ==
DDI_SUCCESS)) {
upm->pm_busycnt++;
} else {
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
cmn_err(CE_WARN, "us_detach: instance "
"%d: can't busy CPU component",
instance);
return (DDI_FAILURE);
}
}
mutex_exit(&usdsp->lock);
if (pm_raise_power(dip, US_PM_COMP_NUM,
upm->head_spd->pm_level) != DDI_SUCCESS) {
mutex_enter(&usdsp->lock);
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
cmn_err(CE_WARN, "us_detach: instance %d: "
"can't raise CPU power level", instance);
return (DDI_FAILURE);
} else {
return (DDI_SUCCESS);
}
} else {
mutex_exit(&usdsp->lock);
return (DDI_SUCCESS);
}
default:
return (DDI_FAILURE);
}
}
/*
* Driver power(9e) entry point.
*
* Driver's notion of current power is set *only* in power(9e) entry point
* after actual power change operation has been successfully completed.
*/
/* ARGSUSED */
static int
us_power(dev_info_t *dip, int comp, int level)
{
int instance;
us_devstate_t *usdsp;
us_pm_t *upm;
us_pm_spd_t *new_spd;
instance = ddi_get_instance(dip);
DPRINTF(D_POWER, ("us_power: instance %d: level %d\n",
instance, level));
if ((usdsp = ddi_get_soft_state(us_state, instance)) == NULL) {
cmn_err(CE_WARN, "us_power: instance %d: can't get state",
instance);
return (DDI_FAILURE);
}
mutex_enter(&usdsp->lock);
upm = &(usdsp->us_pm);
/*
* In normal operation, we fail if we are busy and request is
* to lower the power level. We let this go through if the driver
* is in special direct pm mode.
*/
if (!us_direct_pm && (upm->pm_busycnt >= 1)) {
if ((upm->cur_spd != NULL) &&
(level < upm->cur_spd->pm_level)) {
mutex_exit(&usdsp->lock);
return (DDI_FAILURE);
}
}
for (new_spd = upm->head_spd; new_spd; new_spd = new_spd->down_spd) {
if (new_spd->pm_level == level)
break;
}
if (!new_spd) {
mutex_exit(&usdsp->lock);
cmn_err(CE_WARN, "us_power: instance %d: "
"can't locate new CPU speed", instance);
return (DDI_FAILURE);
}
/*
* We currently refuse to power manage if the CPU in not ready to
* take cross calls (cross calls fail silently if CPU is not ready
* for it).
*/
if (!(CPU_XCALL_READY(usdsp->cpu_id))) {
mutex_exit(&usdsp->lock);
DPRINTF(D_POWER, ("us_power: instance %d: "
"CPU not ready for x-calls\n", instance));
return (DDI_FAILURE);
}
/*
* Execute CPU specific routine on the requested CPU to change its
* speed to normal-speed/divisor.
*/
xc_one(usdsp->cpu_id, (xcfunc_t *)cpu_change_speed,
(uint64_t)new_spd->divisor, 0);
/*
* Reset idle threshold time for the new power level.
*/
if ((upm->cur_spd != NULL) && (level < upm->cur_spd->pm_level)) {
if (pm_idle_component(dip, US_PM_COMP_NUM) == DDI_SUCCESS) {
if (upm->pm_busycnt >= 1)
upm->pm_busycnt--;
} else
cmn_err(CE_WARN, "us_power: instance %d: can't "
"idle CPU component", ddi_get_instance(dip));
}
/*
* Reset various parameters because we are now running at new speed.
*/
upm->lastquan_idle = 0;
upm->lastquan_user = 0;
upm->lastquan_lbolt = 0;
upm->cur_spd = new_spd;
mutex_exit(&usdsp->lock);
return (DDI_SUCCESS);
}
/*
* Initialize power management data.
*/
static int
us_pm_init(us_devstate_t *usdsp)
{
us_pm_t *upm = &(usdsp->us_pm);
us_pm_spd_t *cur_spd;
us_pm_spd_t *prev_spd = NULL;
int *divisors;
uint_t ndivisors;
int idle_cnt_percent;
int user_cnt_percent;
int i;
/*
* clock-divisors property tells the supported speeds
* as divisors of the normal speed. Divisors are in increasing
* order starting with 1 (for normal speed). For example, a
* property value of "1, 2, 32" represents full, 1/2 and 1/32
* speeds.
*/
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, usdsp->dip,
DDI_PROP_DONTPASS, "clock-divisors", &divisors,
&ndivisors) != DDI_PROP_SUCCESS) {
DPRINTF(D_PM_INIT, ("us_pm_init: instance %d: "
"clock-divisors property not defined\n",
ddi_get_instance(usdsp->dip)));
return (DDI_FAILURE);
}
if (ndivisors < 2) {
/* Need at least two speeds to power manage */
ddi_prop_free(divisors);
return (DDI_FAILURE);
}
upm->num_spd = ndivisors;
/*
* Calculate the watermarks and other parameters based on the
* supplied divisors.
*
* One of the basic assumption is that for X amount of CPU work,
* if CPU is slowed down by a factor of N, the time it takes to
* do the same work will be N * X.
*
* The driver declares that a CPU is idle and ready for slowed down,
* if amount of idle thread is more than the current speed idle_hwm
* without dropping below idle_hwm a number of consecutive sampling
* intervals and number of running threads in user mode are below
* user_lwm. We want to set the current user_lwm such that if we
* just switched to the next slower speed with no change in real work
* load, the amount of user threads at the slower speed will be such
* that it falls below the slower speed's user_hwm. If we didn't do
* that then we will just come back to the higher speed as soon as we
* go down even with no change in work load.
* The user_hwm is a fixed precentage and not calculated dynamically.
*
* We bring the CPU up if idle thread at current speed is less than
* the current speed idle_lwm for a number of consecutive sampling
* intervals or user threads are above the user_hwm for the current
* speed.
*/
for (i = 0; i < ndivisors; i++) {
cur_spd = kmem_zalloc(sizeof (us_pm_spd_t), KM_SLEEP);
cur_spd->divisor = divisors[i];
if (i == 0) { /* normal speed */
upm->head_spd = cur_spd;
cur_spd->quant_cnt = US_PM_QUANT_CNT_NORMAL;
cur_spd->idle_hwm =
(us_pm_idle_hwm * cur_spd->quant_cnt) / 100;
/* can't speed anymore */
cur_spd->idle_lwm = 0;
cur_spd->user_hwm = UINT_MAX;
} else {
cur_spd->quant_cnt = US_PM_QUANT_CNT_OTHR;
ASSERT(prev_spd != NULL);
prev_spd->down_spd = cur_spd;
cur_spd->up_spd = upm->head_spd;
/*
* Let's assume CPU is considered idle at full speed
* when it is spending I% of time in running the idle
* thread. At full speed, CPU will be busy (100 - I) %
* of times. This % of busyness increases by factor of
* N as CPU slows down. CPU that is idle I% of times
* in full speed, it is idle (100 - ((100 - I) * N)) %
* of times in N speed. The idle_lwm is a fixed
* percentage. A large value of N may result in
* idle_hwm to go below idle_lwm. We need to make sure
* that there is at least a buffer zone seperation
* between the idle_lwm and idle_hwm values.
*/
idle_cnt_percent = 100 -
((100 - us_pm_idle_hwm) * cur_spd->divisor);
idle_cnt_percent = max(idle_cnt_percent,
(us_pm_idle_lwm + us_pm_idle_buf_zone));
cur_spd->idle_hwm =
(idle_cnt_percent * cur_spd->quant_cnt) / 100;
cur_spd->idle_lwm =
(us_pm_idle_lwm * cur_spd->quant_cnt) / 100;
/*
* The lwm for user threads are determined such that
* if CPU slows down, the load of work in the
* new speed would still keep the CPU at or below the
* user_hwm in the new speed. This is to prevent
* the quick jump back up to higher speed.
*/
cur_spd->user_hwm =
(us_pm_user_hwm * cur_spd->quant_cnt) / 100;
user_cnt_percent =
(us_pm_user_hwm * prev_spd->divisor) /
cur_spd->divisor;
prev_spd->user_lwm =
(user_cnt_percent * prev_spd->quant_cnt) / 100;
}
prev_spd = cur_spd;
}
/* Slowest speed. Can't slow down anymore */
cur_spd->idle_hwm = UINT_MAX;
cur_spd->user_lwm = -1;
#ifdef DEBUG
DPRINTF(D_PM_INIT, ("us_pm_init: instance %d: head_spd div %d, "
"num_spd %d\n", ddi_get_instance(usdsp->dip),
upm->head_spd->divisor, upm->num_spd));
for (cur_spd = upm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
DPRINTF(D_PM_INIT, ("us_pm_init: instance %d: divisor %d, "
"down_spd div %d, idle_hwm %d, user_lwm %d, "
"up_spd div %d, idle_lwm %d, user_hwm %d, "
"quant_cnt %d\n", ddi_get_instance(usdsp->dip),
cur_spd->divisor,
(cur_spd->down_spd ? cur_spd->down_spd->divisor : 0),
cur_spd->idle_hwm, cur_spd->user_lwm,
(cur_spd->up_spd ? cur_spd->up_spd->divisor : 0),
cur_spd->idle_lwm, cur_spd->user_hwm,
cur_spd->quant_cnt));
}
#endif /* DEBUG */
ddi_prop_free(divisors);
return (DDI_SUCCESS);
}
/*
* Free CPU power management data.
*/
static void
us_pm_free(us_devstate_t *usdsp)
{
us_pm_t *upm = &(usdsp->us_pm);
us_pm_spd_t *cur_spd, *next_spd;
cur_spd = upm->head_spd;
while (cur_spd) {
next_spd = cur_spd->down_spd;
kmem_free(cur_spd, sizeof (us_pm_spd_t));
cur_spd = next_spd;
}
bzero(upm, sizeof (us_pm_t));
}
/*
* Create pm-components property.
*/
static int
us_pm_comp_create(us_devstate_t *usdsp)
{
us_pm_t *upm = &(usdsp->us_pm);
us_pm_spd_t *cur_spd;
char **pmc;
int size;
char name[] = "NAME=CPU Speed";
char norm[] = "Normal";
char othr[] = " of Normal";
int i, j;
int result = DDI_FAILURE;
pmc = kmem_zalloc((upm->num_spd + 1) * sizeof (char *), KM_SLEEP);
/*
* The amount of memory needed for each string is:
* digits for power level + '=' + '1/' + digits for divisor +
* description text + '\0'
*/
size = US_PM_COMP_MAX_DIG + 1 + 2 + US_PM_COMP_MAX_DIG +
sizeof (othr) + 1;
if (upm->num_spd > US_PM_COMP_MAX_VAL) {
cmn_err(CE_WARN, "us_pm_comp_create: instance %d: "
"number of speeds exceeded limits",
ddi_get_instance(usdsp->dip));
kmem_free(pmc, (upm->num_spd + 1) * sizeof (char *));
return (result);
}
for (i = upm->num_spd, cur_spd = upm->head_spd; i > 0;
i--, cur_spd = cur_spd->down_spd) {
cur_spd->pm_level = i;
pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
if (cur_spd == upm->head_spd) {
(void) sprintf(pmc[i], "%d=%s", cur_spd->pm_level,
norm);
} else {
if (cur_spd->divisor > US_PM_COMP_MAX_VAL) {
cmn_err(CE_WARN, "us_pm_comp_create: "
"instance %d: divisor exceeded limits",
ddi_get_instance(usdsp->dip));
for (j = upm->num_spd; j >= i; j--) {
kmem_free(pmc[j], size * sizeof (char));
}
kmem_free(pmc, (upm->num_spd + 1) *
sizeof (char *));
return (result);
}
(void) sprintf(pmc[i], "%d=1/%d%s", cur_spd->pm_level,
cur_spd->divisor, othr);
}
DPRINTF(D_PM_COMP_CREATE, ("us_pm_comp_create: instance %d: "
"pm-components power level %d string '%s'\n",
ddi_get_instance(usdsp->dip), i, pmc[i]));
}
pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
(void) strcat(pmc[0], name);
DPRINTF(D_PM_COMP_CREATE, ("us_pm_comp_create: instance %d: "
"pm-components component name '%s'\n",
ddi_get_instance(usdsp->dip), pmc[0]));
if (ddi_prop_update_string_array(DDI_DEV_T_NONE, usdsp->dip,
"pm-components", pmc, upm->num_spd + 1) == DDI_PROP_SUCCESS) {
result = DDI_SUCCESS;
} else {
cmn_err(CE_WARN, "us_pm_comp_create: instance %d: "
"can't create pm-components property",
ddi_get_instance(usdsp->dip));
}
for (i = upm->num_spd; i > 0; i--) {
kmem_free(pmc[i], size * sizeof (char));
}
kmem_free(pmc[0], sizeof (name));
kmem_free(pmc, (upm->num_spd + 1) * sizeof (char *));
return (result);
}
/*
* Mark a component idle.
*/
#define US_PM_MONITOR_PM_IDLE_COMP(dip, upm) { \
if ((upm)->pm_busycnt >= 1) { \
if (pm_idle_component((dip), US_PM_COMP_NUM) == DDI_SUCCESS) { \
DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: " \
"pm_idle_component called\n", \
ddi_get_instance((dip)))); \
(upm)->pm_busycnt--; \
} else { \
cmn_err(CE_WARN, "us_pm_monitor: instance %d: can't " \
"idle CPU component", ddi_get_instance((dip))); \
} \
} \
}
/*
* Marks a component busy in both PM framework and driver state structure.
*/
#define US_PM_MONITOR_PM_BUSY_COMP(dip, upm) { \
if ((upm)->pm_busycnt < 1) { \
if (pm_busy_component((dip), US_PM_COMP_NUM) == DDI_SUCCESS) { \
DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: " \
"pm_busy_component called\n", \
ddi_get_instance((dip)))); \
(upm)->pm_busycnt++; \
} else { \
cmn_err(CE_WARN, "us_pm_monitor: instance %d: " \
"can't busy CPU component", \
ddi_get_instance((dip))); \
} \
} \
}
/*
* Marks a component busy and calls pm_raise_power().
*/
#define US_PM_MONITOR_PM_BUSY_AND_RAISE(dip, usdsp, upm, new_level) { \
/* \
* Mark driver and PM framework busy first so framework doesn't try \
* to bring CPU to lower speed when we need to be at higher speed. \
*/ \
US_PM_MONITOR_PM_BUSY_COMP((dip), (upm)); \
mutex_exit(&(usdsp)->lock); \
DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: pm_raise_power " \
"called to %d\n", ddi_get_instance((dip)), (new_level))); \
if (pm_raise_power((dip), US_PM_COMP_NUM, (new_level)) != \
DDI_SUCCESS) { \
cmn_err(CE_WARN, "us_pm_monitor: instance %d: can't " \
"raise CPU power level", ddi_get_instance((dip))); \
} \
mutex_enter(&(usdsp)->lock); \
}
/*
* In order to monitor a CPU, we need to hold cpu_lock to access CPU statistics.
* Holding cpu_lock is not allowed from a callout routine. We dispatch a
* taskq to do that job.
*/
static void
us_pm_monitor_disp(void *arg)
{
us_devstate_t *usdsp = (us_devstate_t *)arg;
/*
* We are here because the last task has scheduled a timeout.
* The queue should be empty at this time.
*/
mutex_enter(&usdsp->us_pm.timeout_lock);
if (!taskq_dispatch(usdsp->us_pm.tq, us_pm_monitor, arg, TQ_NOSLEEP)) {
mutex_exit(&usdsp->us_pm.timeout_lock);
DPRINTF(D_PM_MONITOR, ("us_pm_monitor_disp: failed to dispatch "
"the us_pm_monitor taskq\n"));
mutex_enter(&usdsp->lock);
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
return;
}
usdsp->us_pm.timeout_count++;
mutex_exit(&usdsp->us_pm.timeout_lock);
}
/*
* Monitors each CPU for the amount of time idle thread was running in the
* last quantum and arranges for the CPU to go to the lower or higher speed.
* Called at the time interval appropriate for the current speed. The
* time interval for normal speed is US_PM_QUANT_CNT_NORMAL. The time interval
* for other speeds (including unknown speed) is US_PM_QUANT_CNT_OTHR.
*/
static void
us_pm_monitor(void *arg)
{
us_devstate_t *usdsp = (us_devstate_t *)arg;
us_pm_t *upm;
us_pm_spd_t *cur_spd, *new_spd;
cpu_t *cp;
dev_info_t *dip;
uint_t idle_cnt, user_cnt;
clock_t lbolt_cnt, user_ticks, idle_ticks;
hrtime_t cphrt;
#define GET_CPU_DATA(c, t, o) cphrt = c->cpu_acct[t]; \
scalehrtime((hrtime_t *)&cphrt); \
o = NSEC_TO_TICK(cphrt)
mutex_enter(&usdsp->lock);
upm = &(usdsp->us_pm);
if (upm->timeout_id == 0) {
mutex_exit(&usdsp->lock);
goto do_return;
}
cur_spd = upm->cur_spd;
dip = usdsp->dip;
/*
* It is possible that we are monitoring a CPU which hasn't
* been initialized yet. We just come back under the assumption
* that this situation is temporary and rare. If in future this
* is not true (e.g. we are running on really big machines which
* has many CPUs going in and out of service), we might need to
* revisit this and have this routine called only when corresponding
* CPU is initialized.
*/
/*
* We assume that a CPU is initialized and has a valid cpu_t
* structure, if it is ready for cross calls. If this changes,
* additional checks might be needed.
*/
if (!(CPU_XCALL_READY(usdsp->cpu_id))) {
DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: "
"CPU not ready for x-calls\n", ddi_get_instance(dip)));
/*
* Make sure that we are busy so that framework doesn't
* try to bring us down in this situation.
*/
US_PM_MONITOR_PM_BUSY_COMP(dip, upm);
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
goto do_return;
}
/*
* Make sure that we are still not at unknown power level.
*/
if (cur_spd == NULL) {
DPRINTF(D_PM_MONITOR, ("us_pm_monitor: instance %d: "
"cur_spd is unknown\n", ddi_get_instance(dip)));
US_PM_MONITOR_PM_BUSY_AND_RAISE(dip, usdsp, upm,
upm->targ_spd->pm_level);
/*
* We just changed the speed. Wait till at least next
* call to this routine before proceeding ahead.
*/
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
goto do_return;
}
mutex_enter(&cpu_lock);
if ((cp = cpu_get(usdsp->cpu_id)) == NULL) {
mutex_exit(&cpu_lock);
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
cmn_err(CE_WARN, "us_pm_monitor: instance %d: can't get cpu_t",
ddi_get_instance(dip));
goto do_return;
}
GET_CPU_DATA(cp, CMS_USER, user_ticks);
GET_CPU_DATA(cp, CMS_IDLE, idle_ticks);
/*
* We can't do anything when we have just switched to a state
* because there is no valid timestamp.
*/
if (upm->lastquan_idle == 0) {
upm->lastquan_idle = idle_ticks;
upm->lastquan_user = user_ticks;
upm->lastquan_lbolt = lbolt;
mutex_exit(&cpu_lock);
US_PM_MONITOR_INIT(usdsp);
mutex_exit(&usdsp->lock);
goto do_return;
}
idle_cnt = idle_ticks - upm->lastquan_idle;
upm->lastquan_idle = idle_ticks;
user_cnt = user_ticks - upm->lastquan_user;
upm->lastquan_user = user_ticks;
/*
* Various watermarks are based on this routine being called back
* exactly at the requested period. This is not guaranteed
* because this routine is called from a taskq that is dispatched
* from a timeout routine. Handle this by finding out how many
* ticks have elapsed since the last call (lbolt_cnt) and adjusting
* the idle_cnt based on the delay added to the requested period
* by timeout and taskq.
*/
lbolt_cnt = lbolt - upm->lastquan_lbolt;
upm->lastquan_lbolt = lbolt;
mutex_exit(&cpu_lock);
/*
* Time taken between recording the current counts and
* arranging the next call of this routine is an error in our
* calculation. We minimize the error by calling
* US_PM_MONITOR_INIT() here instead of end of this routine.
*/
US_PM_MONITOR_INIT(usdsp);
DPRINTF(D_PM_MONITOR_VERBOSE, ("us_pm_monitor: instance %d: "
"idle count %d, user count %d, pm_level %d, pm_busycnt %d\n",
ddi_get_instance(dip), idle_cnt, user_cnt, cur_spd->pm_level,
upm->pm_busycnt));
#ifdef DEBUG
/*
* Notify that timeout and taskq has caused delays and we need to
* scale our parameters accordingly.
*
* To get accurate result, don't turn on other DPRINTFs with
* the following DPRINTF. PROM calls generated by other
* DPRINTFs changes the timing.
*/
if (lbolt_cnt > cur_spd->quant_cnt) {
DPRINTF(D_PM_MONITOR_DELAY, ("us_pm_monitor: instance %d: "
"lbolt count %d > quantum_count %d\n",
ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt));
}
#endif /* DEBUG */
/*
* Adjust counts based on the delay added by timeout and taskq.
*/
idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt;
user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt;
if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
cur_spd->idle_blwm_cnt >= us_pm_idle_blwm_cnt_max)) {
cur_spd->idle_blwm_cnt = 0;
cur_spd->idle_bhwm_cnt = 0;
/*
* In normal situation, arrange to go to next higher speed.
* If we are running in special direct pm mode, we just stay
* at the current speed.
*/
if (us_direct_pm) {
US_PM_MONITOR_PM_BUSY_COMP(dip, upm);
} else {
new_spd = cur_spd->up_spd;
ASSERT(new_spd != cur_spd);
US_PM_MONITOR_PM_BUSY_AND_RAISE(dip, usdsp, upm,
new_spd->pm_level);
}
} else if ((user_cnt <= cur_spd->user_lwm) &&
(idle_cnt >= cur_spd->idle_hwm)) {
cur_spd->idle_blwm_cnt = 0;
cur_spd->idle_bhwm_cnt = 0;
/*
* Arrange to go to next lower speed by informing our idle
* status to the power management framework.
*/
US_PM_MONITOR_PM_IDLE_COMP(dip, upm);
} else {
/*
* If we are between the idle water marks and have not
* been here enough consecutive times to be considered
* busy, just increment the count and return.
*/
if ((idle_cnt < cur_spd->idle_hwm) &&
(idle_cnt >= cur_spd->idle_lwm) &&
(cur_spd->idle_bhwm_cnt < us_pm_idle_bhwm_cnt_max)) {
cur_spd->idle_blwm_cnt = 0;
cur_spd->idle_bhwm_cnt++;
mutex_exit(&usdsp->lock);
goto do_return;
}
if (idle_cnt < cur_spd->idle_lwm) {
cur_spd->idle_blwm_cnt++;
cur_spd->idle_bhwm_cnt = 0;
}
/*
* Arranges to stay at the current speed.
*/
US_PM_MONITOR_PM_BUSY_COMP(dip, upm);
}
mutex_exit(&usdsp->lock);
do_return:
mutex_enter(&upm->timeout_lock);
ASSERT(upm->timeout_count > 0);
upm->timeout_count--;
cv_signal(&upm->timeout_cv);
mutex_exit(&upm->timeout_lock);
}