todm5823.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* tod driver module for ALI M5823 part
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/open.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/todm5823.h>
#include <sys/modctl.h>
#include <sys/stat.h>
#include <sys/clock.h>
#include <sys/reboot.h>
#include <sys/machsystm.h>
#if 0
#include <sys/poll.h>
#include <sys/pbio.h>
#endif
static timestruc_t todm5823_get(void);
static void todm5823_set(timestruc_t);
static uint_t todm5823_set_watchdog_timer(uint_t);
static uint_t todm5823_clear_watchdog_timer(void);
static void todm5823_set_power_alarm(timestruc_t);
static void todm5823_clear_power_alarm(void);
static uint64_t todm5823_get_cpufrequency(void);
extern uint64_t find_cpufrequency(volatile uint8_t *);
/*
* External variables
*/
extern int watchdog_enable;
extern int watchdog_available;
extern int boothowto;
/*
* Global variables
*/
int m5823_debug_flags;
uint_t m5823_hrestime_count = 0;
uint_t m5823_uip_count = 0;
/*
* Module linkage information for the kernel.
*/
static struct modlmisc modlmisc = {
&mod_miscops, "tod module for ALI M5823"
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlmisc, NULL
};
static uint_t read_rtc(struct rtc_t *);
static void write_rtc_time(struct rtc_t *);
static void write_rtc_alarm(struct rtc_t *);
int
_init(void)
{
if (strcmp(tod_module_name, "todm5823") == 0) {
M5823_ADDR_BANK0_REG = RTC_B;
M5823_DATA_BANK0_REG = (RTC_DM | RTC_HM);
tod_ops.tod_get = todm5823_get;
tod_ops.tod_set = todm5823_set;
tod_ops.tod_set_watchdog_timer =
todm5823_set_watchdog_timer;
tod_ops.tod_clear_watchdog_timer =
todm5823_clear_watchdog_timer;
tod_ops.tod_set_power_alarm = todm5823_set_power_alarm;
tod_ops.tod_clear_power_alarm = todm5823_clear_power_alarm;
tod_ops.tod_get_cpufrequency = todm5823_get_cpufrequency;
/*
* check if hardware watchdog timer is available and user
* enabled it.
*/
if (watchdog_enable) {
if (!watchdog_available) {
cmn_err(CE_WARN, "m5823: Hardware watchdog "
"unavailable");
} else if (boothowto & RB_DEBUG) {
cmn_err(CE_WARN, "m5823: Hardware watchdog"
" disabled [debugger]");
}
}
}
return (mod_install(&modlinkage));
}
int
_fini(void)
{
if (strcmp(tod_module_name, "todm5823") == 0)
return (EBUSY);
return (mod_remove(&modlinkage));
}
/*
* The loadable-module _info(9E) entry point
*/
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* Read the current time from the clock chip and convert to UNIX form.
* Assumes that the year in the clock chip is valid.
* Must be called with tod_lock held.
*/
static timestruc_t
todm5823_get(void)
{
timestruc_t ts;
todinfo_t tod;
struct rtc_t rtc;
ASSERT(MUTEX_HELD(&tod_lock));
if (!read_rtc(&rtc)) {
/*
* We could not read from the tod
*/
m5823_hrestime_count++;
tod_fault_reset();
return (hrestime);
}
DPRINTF("todm5823_get: century=%d year=%d dom=%d hrs=%d\n",
rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
/*
* tod_year is base 1900 so this code needs to adjust the true
* year retrieved from the rtc's century and year fields.
*/
tod.tod_year = rtc.rtc_year + (rtc.rtc_century * 100) - 1900;
tod.tod_month = rtc.rtc_mon;
tod.tod_day = rtc.rtc_dom;
tod.tod_dow = rtc.rtc_dow;
tod.tod_hour = rtc.rtc_hrs;
tod.tod_min = rtc.rtc_min;
tod.tod_sec = rtc.rtc_sec;
ts.tv_sec = tod_to_utc(tod);
ts.tv_nsec = 0;
return (ts);
}
static uint_t
read_rtc(struct rtc_t *rtc)
{
int i;
unsigned int spl_old;
volatile uint8_t rega;
uint_t rtc_readable = 0;
for (i = 0; i < TODM5823_UIP_RETRY_THRESH; i++) {
spl_old = ddi_enter_critical();
/* Read register A */
M5823_ADDR_BANK0_REG = RTC_A;
rega = M5823_DATA_BANK0_REG;
if (!(rega & RTC_UIP)) {
M5823_ADDR_BANK0_REG = RTC_SEC;
rtc->rtc_sec = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_ASEC;
rtc->rtc_asec = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_MIN;
rtc->rtc_min = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_AMIN;
rtc->rtc_amin = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_HRS;
rtc->rtc_hrs = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_AHRS;
rtc->rtc_ahrs = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_DOW;
rtc->rtc_dow = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_DOM;
rtc->rtc_dom = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_MON;
rtc->rtc_mon = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_YEAR;
rtc->rtc_year = M5823_DATA_BANK0_REG;
M5823_ADDR_BANK0_REG = RTC_CENTURY;
rtc->rtc_century = M5823_DATA_BANK0_REG;
/* Read date alarm */
M5823_ADDR_BANK0_REG = RTC_ADOM_REG;
rtc->rtc_adom = (M5823_DATA_BANK0_REG) & RTC_ADOM;
/* Read month and week alarm */
M5823_ADDR_BANK1_REG = RTC_AMON;
rtc->rtc_amon = M5823_DATA_BANK1_REG;
M5823_ADDR_BANK1_REG = RTC_AWEK;
rtc->rtc_awek = M5823_DATA_BANK1_REG;
rtc_readable = 1;
ddi_exit_critical(spl_old);
break;
}
ddi_exit_critical(spl_old);
drv_usecwait(TODM5823_UIP_WAIT_USEC);
}
if (i > 0)
m5823_uip_count++;
return (rtc_readable);
}
/*
* Write the specified time into the clock chip.
* Must be called with tod_lock held.
*/
static void
todm5823_set(timestruc_t ts)
{
struct rtc_t rtc;
todinfo_t tod = utc_to_tod(ts.tv_sec);
int year;
ASSERT(MUTEX_HELD(&tod_lock));
/* tod_year is base 1900 so this code needs to adjust */
year = 1900 + tod.tod_year;
rtc.rtc_year = year % 100;
rtc.rtc_century = year / 100;
rtc.rtc_mon = (uint8_t)tod.tod_month;
rtc.rtc_dom = (uint8_t)tod.tod_day;
rtc.rtc_dow = (uint8_t)tod.tod_dow;
rtc.rtc_hrs = (uint8_t)tod.tod_hour;
rtc.rtc_min = (uint8_t)tod.tod_min;
rtc.rtc_sec = (uint8_t)tod.tod_sec;
DPRINTF("todm5823_set: year=%d dom=%d hrs=%d min=%d sec=%d\n",
rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs, rtc.rtc_min, rtc.rtc_sec);
write_rtc_time(&rtc);
}
void
write_rtc_time(struct rtc_t *rtc)
{
uint8_t regb;
/*
* Freeze
*/
M5823_ADDR_BANK0_REG = RTC_B;
regb = M5823_DATA_BANK0_REG;
M5823_DATA_BANK0_REG = (regb | RTC_SET);
M5823_ADDR_BANK0_REG = RTC_SEC;
M5823_DATA_BANK0_REG = rtc->rtc_sec;
M5823_ADDR_BANK0_REG = RTC_MIN;
M5823_DATA_BANK0_REG = rtc->rtc_min;
M5823_ADDR_BANK0_REG = RTC_HRS;
M5823_DATA_BANK0_REG = rtc->rtc_hrs;
M5823_ADDR_BANK0_REG = RTC_DOW;
M5823_DATA_BANK0_REG = rtc->rtc_dow;
M5823_ADDR_BANK0_REG = RTC_DOM;
M5823_DATA_BANK0_REG = rtc->rtc_dom;
M5823_ADDR_BANK0_REG = RTC_MON;
M5823_DATA_BANK0_REG = rtc->rtc_mon;
M5823_ADDR_BANK0_REG = RTC_YEAR;
M5823_DATA_BANK0_REG = rtc->rtc_year;
M5823_ADDR_BANK0_REG = RTC_CENTURY;
M5823_DATA_BANK0_REG = rtc->rtc_century;
/*
* Unfreeze
*/
M5823_ADDR_BANK0_REG = RTC_B;
M5823_DATA_BANK0_REG = regb;
}
void
write_rtc_alarm(struct rtc_t *rtc)
{
int i;
unsigned int spl_old;
volatile uint8_t rega;
volatile uint8_t hi_regd;
for (i = 0; i < TODM5823_UIP_RETRY_THRESH; i++) {
spl_old = ddi_enter_critical();
/* Read register A */
M5823_ADDR_BANK0_REG = RTC_A;
rega = M5823_DATA_BANK0_REG;
if (!(rega & RTC_UIP)) {
M5823_ADDR_BANK0_REG = RTC_ASEC;
M5823_DATA_BANK0_REG = rtc->rtc_asec;
M5823_ADDR_BANK0_REG = RTC_AMIN;
M5823_DATA_BANK0_REG = rtc->rtc_amin;
M5823_ADDR_BANK0_REG = RTC_AHRS;
M5823_DATA_BANK0_REG = rtc->rtc_ahrs;
M5823_ADDR_BANK1_REG = RTC_AMON;
M5823_DATA_BANK1_REG = rtc->rtc_amon;
M5823_ADDR_BANK1_REG = RTC_AWEK;
M5823_DATA_BANK1_REG = rtc->rtc_awek;
M5823_ADDR_BANK0_REG = RTC_ADOM_REG;
hi_regd = M5823_DATA_BANK0_REG & ~RTC_ADOM;
M5823_DATA_BANK0_REG = rtc->rtc_adom | hi_regd;
ddi_exit_critical(spl_old);
break;
}
ddi_exit_critical(spl_old);
drv_usecwait(TODM5823_UIP_WAIT_USEC);
}
if (i >= TODM5823_UIP_RETRY_THRESH)
cmn_err(CE_WARN, "m5823: Could not set the RTC alarm\n");
}
/*
* program the rtc registers for alarm to go off at the specified time
*/
static void
todm5823_set_power_alarm(timestruc_t ts)
{
todinfo_t tod;
uint8_t regb;
struct rtc_t rtc;
ASSERT(MUTEX_HELD(&tod_lock));
tod = utc_to_tod(ts.tv_sec);
/*
* disable alarms and clear AF flag by reading reg C
*/
M5823_ADDR_BANK0_REG = RTC_B;
regb = M5823_DATA_BANK0_REG;
M5823_DATA_BANK0_REG = regb & ~RTC_AIE;
M5823_ADDR_BANK0_REG = RTC_C;
(void) M5823_DATA_BANK0_REG;
rtc.rtc_asec = (uint8_t)tod.tod_sec;
rtc.rtc_amin = (uint8_t)tod.tod_min;
rtc.rtc_ahrs = (uint8_t)tod.tod_hour;
rtc.rtc_adom = (uint8_t)tod.tod_day;
rtc.rtc_amon = (uint8_t)tod.tod_month;
rtc.rtc_awek = (uint8_t)(1 << (tod.tod_dow - 1));
DPRINTF("todm5823_set_alarm: mon=%d dom=%d hrs=%d min=%d sec=%d\n",
rtc.rtc_amon, rtc.rtc_adom, rtc.rtc_ahrs, rtc.rtc_amin,
rtc.rtc_asec);
/*
* Write alarm values and enable alarm
*/
write_rtc_alarm(&rtc);
M5823_ADDR_BANK0_REG = RTC_B;
M5823_DATA_BANK0_REG = regb | RTC_AIE;
}
/*
* clear alarm interrupt
*/
static void
todm5823_clear_power_alarm(void)
{
uint8_t regb;
ASSERT(MUTEX_HELD(&tod_lock));
M5823_ADDR_BANK0_REG = RTC_B;
regb = M5823_DATA_BANK0_REG;
M5823_DATA_BANK0_REG = regb & ~RTC_AIE;
}
/*
* Determine the cpu frequency by watching the TOD chip rollover twice.
* Cpu clock rate is determined by computing the ticks added (in tick register)
* during one second interval on TOD.
*/
uint64_t
todm5823_get_cpufrequency(void)
{
ASSERT(MUTEX_HELD(&tod_lock));
M5823_ADDR_BANK0_REG = RTC_SEC;
return (find_cpufrequency(v_rtc_data_reg));
}
/*ARGSUSED*/
static uint_t
todm5823_set_watchdog_timer(uint_t timeoutval)
{
ASSERT(MUTEX_HELD(&tod_lock));
return (0);
}
static uint_t
todm5823_clear_watchdog_timer(void)
{
ASSERT(MUTEX_HELD(&tod_lock));
return (0);
}