todm5819.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/open.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/todm5819.h>
#include <sys/modctl.h>
#include <sys/stat.h>
#include <sys/clock.h>
#include <sys/reboot.h>
#include <sys/machsystm.h>
#include <sys/poll.h>
#include <sys/pbio.h>
static timestruc_t todm5819_get(void);
static void todm5819_set(timestruc_t);
static uint_t todm5819_set_watchdog_timer(uint_t);
static uint_t todm5819_clear_watchdog_timer(void);
static void todm5819_set_power_alarm(timestruc_t);
static void todm5819_clear_power_alarm(void);
static uint64_t todm5819_get_cpufrequency(void);
extern uint64_t find_cpufrequency(volatile uint8_t *);
/*
* External variables
*/
extern int watchdog_enable;
extern int watchdog_available;
extern int boothowto;
/*
* Global variables
*/
int m5819_debug_flags;
static todinfo_t rtc_to_tod(struct rtc_t *);
static uint_t read_rtc(struct rtc_t *);
static void write_rtc_time(struct rtc_t *);
static void write_rtc_alarm(struct rtc_t *);
static struct modlmisc modlmisc = {
&mod_miscops, "tod module for ALI M5819",
};
static struct modlinkage modlinkage = {
MODREV_1, &modlmisc, NULL
};
int
_init(void)
{
if (strcmp(tod_module_name, "todm5819") == 0 ||
strcmp(tod_module_name, "m5819") == 0) {
RTC_PUT8(RTC_B, (RTC_DM | RTC_HM));
tod_ops.tod_get = todm5819_get;
tod_ops.tod_set = todm5819_set;
tod_ops.tod_set_watchdog_timer =
todm5819_set_watchdog_timer;
tod_ops.tod_clear_watchdog_timer =
todm5819_clear_watchdog_timer;
tod_ops.tod_set_power_alarm = todm5819_set_power_alarm;
tod_ops.tod_clear_power_alarm = todm5819_clear_power_alarm;
tod_ops.tod_get_cpufrequency = todm5819_get_cpufrequency;
/*
* check if hardware watchdog timer is available and user
* enabled it.
*/
if (watchdog_enable) {
if (!watchdog_available) {
cmn_err(CE_WARN, "m5819: Hardware watchdog "
"unavailable");
} else if (boothowto & RB_DEBUG) {
cmn_err(CE_WARN, "m5819: Hardware watchdog "
"disabled [debugger]");
}
}
}
return (mod_install(&modlinkage));
}
int
_fini(void)
{
if (strcmp(tod_module_name, "m5819") == 0 ||
strcmp(tod_module_name, "todm5819") == 0) {
return (EBUSY);
} else {
return (mod_remove(&modlinkage));
}
}
/*
* The loadable-module _info(9E) entry point
*/
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* Read the current time from the clock chip and convert to UNIX form.
* Assumes that the year in the clock chip is valid.
* Must be called with tod_lock held.
*/
static timestruc_t
todm5819_get(void)
{
int i;
timestruc_t ts;
struct rtc_t rtc;
ASSERT(MUTEX_HELD(&tod_lock));
/*
* Read from the tod, and if it isnt accessible wait
* before retrying.
*/
for (i = 0; i < TODM5819_UIP_RETRY_THRESH; i++) {
if (read_rtc(&rtc))
break;
drv_usecwait(TODM5819_UIP_WAIT_USEC);
}
if (i == TODM5819_UIP_RETRY_THRESH) {
/*
* We couldnt read from the tod
*/
tod_fault_reset();
return (hrestime);
}
DPRINTF("todm5819_get: century=%d year=%d dom=%d hrs=%d\n",
rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
ts.tv_sec = tod_to_utc(rtc_to_tod(&rtc));
ts.tv_nsec = 0;
return (ts);
}
static todinfo_t
rtc_to_tod(struct rtc_t *rtc)
{
todinfo_t tod;
/*
* tod_year is base 1900 so this code needs to adjust the true
* year retrieved from the rtc's century and year fields.
*/
tod.tod_year = rtc->rtc_year + (rtc->rtc_century * 100) - 1900;
tod.tod_month = rtc->rtc_mon;
tod.tod_day = rtc->rtc_dom;
tod.tod_dow = rtc->rtc_dow;
tod.tod_hour = rtc->rtc_hrs;
tod.tod_min = rtc->rtc_min;
tod.tod_sec = rtc->rtc_sec;
return (tod);
}
uint_t
read_rtc(struct rtc_t *rtc)
{
int s;
uint_t rtc_readable = 0;
s = splhi();
/*
* If UIP bit is not set we have at least 274us
* to read the values. Otherwise we have up to
* 336us to wait before we can read it
*/
if (!(RTC_GET8(RTC_A) & RTC_UIP)) {
rtc_readable = 1;
rtc->rtc_sec = RTC_GET8(RTC_SEC);
rtc->rtc_asec = RTC_GET8(RTC_ASEC);
rtc->rtc_min = RTC_GET8(RTC_MIN);
rtc->rtc_amin = RTC_GET8(RTC_AMIN);
rtc->rtc_hrs = RTC_GET8(RTC_HRS);
rtc->rtc_ahrs = RTC_GET8(RTC_AHRS);
rtc->rtc_dow = RTC_GET8(RTC_DOW);
rtc->rtc_dom = RTC_GET8(RTC_DOM);
rtc->rtc_adom = RTC_GET8(RTC_D) & 0x3f;
rtc->rtc_mon = RTC_GET8(RTC_MON);
rtc->rtc_year = RTC_GET8(RTC_YEAR);
rtc->rtc_century = RTC_GET8(RTC_CENTURY);
rtc->rtc_amon = 0;
/* Clear wakeup data */
rtc->apc_wdwr = 0;
rtc->apc_wdmr = 0;
rtc->apc_wmr = 0;
rtc->apc_wyr = 0;
rtc->apc_wcr = 0;
}
splx(s);
return (rtc_readable);
}
/*
* Write the specified time into the clock chip.
* Must be called with tod_lock held.
*/
static void
todm5819_set(timestruc_t ts)
{
struct rtc_t rtc;
todinfo_t tod = utc_to_tod(ts.tv_sec);
int year;
ASSERT(MUTEX_HELD(&tod_lock));
/* tod_year is base 1900 so this code needs to adjust */
year = 1900 + tod.tod_year;
rtc.rtc_year = year % 100;
rtc.rtc_century = year / 100;
rtc.rtc_mon = (uint8_t)tod.tod_month;
rtc.rtc_dom = (uint8_t)tod.tod_day;
rtc.rtc_dow = (uint8_t)tod.tod_dow;
rtc.rtc_hrs = (uint8_t)tod.tod_hour;
rtc.rtc_min = (uint8_t)tod.tod_min;
rtc.rtc_sec = (uint8_t)tod.tod_sec;
DPRINTF("todm5819_set: century=%d year=%d dom=%d hrs=%d\n",
rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
write_rtc_time(&rtc);
}
void
write_rtc_time(struct rtc_t *rtc)
{
uint8_t regb;
/*
* Freeze
*/
regb = RTC_GET8(RTC_B);
RTC_PUT8(RTC_B, (regb | RTC_SET));
RTC_PUT8(RTC_SEC, (rtc->rtc_sec));
RTC_PUT8(RTC_ASEC, (rtc->rtc_asec));
RTC_PUT8(RTC_MIN, (rtc->rtc_min));
RTC_PUT8(RTC_AMIN, (rtc->rtc_amin));
RTC_PUT8(RTC_HRS, (rtc->rtc_hrs));
RTC_PUT8(RTC_AHRS, (rtc->rtc_ahrs));
RTC_PUT8(RTC_DOW, (rtc->rtc_dow));
RTC_PUT8(RTC_DOM, (rtc->rtc_dom));
RTC_PUT8(RTC_MON, (rtc->rtc_mon));
RTC_PUT8(RTC_YEAR, (rtc->rtc_year));
RTC_PUT8(RTC_CENTURY, (rtc->rtc_century));
/*
* Unfreeze
*/
RTC_PUT8(RTC_B, regb);
}
void
write_rtc_alarm(struct rtc_t *rtc)
{
RTC_PUT8(RTC_ASEC, (rtc->rtc_asec));
RTC_PUT8(RTC_AMIN, (rtc->rtc_amin));
RTC_PUT8(RTC_AHRS, (rtc->rtc_ahrs));
RTC_PUT8(RTC_D, (rtc->rtc_adom));
}
/*
* program the rtc registers for alarm to go off at the specified time
*/
static void
todm5819_set_power_alarm(timestruc_t ts)
{
todinfo_t tod;
uint8_t regb;
struct rtc_t rtc;
ASSERT(MUTEX_HELD(&tod_lock));
tod = utc_to_tod(ts.tv_sec);
/*
* disable alarms
*/
regb = RTC_GET8(RTC_B);
RTC_PUT8(RTC_B, (regb & ~RTC_AIE));
rtc.rtc_asec = (uint8_t)tod.tod_sec;
rtc.rtc_amin = (uint8_t)tod.tod_min;
rtc.rtc_ahrs = (uint8_t)tod.tod_hour;
rtc.rtc_adom = (uint8_t)tod.tod_day;
write_rtc_alarm(&rtc);
/*
* Enable alarm.
*/
RTC_PUT8(RTC_B, (regb | RTC_AIE));
}
/*
* clear alarm interrupt
*/
static void
todm5819_clear_power_alarm(void)
{
uint8_t regb;
ASSERT(MUTEX_HELD(&tod_lock));
regb = RTC_GET8(RTC_B);
RTC_PUT8(RTC_B, (regb & ~RTC_AIE));
}
/*
* Determine the cpu frequency by watching the TOD chip rollover twice.
* Cpu clock rate is determined by computing the ticks added (in tick register)
* during one second interval on TOD.
*/
uint64_t
todm5819_get_cpufrequency(void)
{
ASSERT(MUTEX_HELD(&tod_lock));
M5819_ADDR_REG = RTC_SEC;
return (find_cpufrequency(v_rtc_data_reg));
}
/*ARGSUSED*/
static uint_t
todm5819_set_watchdog_timer(uint_t timeoutval)
{
ASSERT(MUTEX_HELD(&tod_lock));
return (0);
}
static uint_t
todm5819_clear_watchdog_timer(void)
{
ASSERT(MUTEX_HELD(&tod_lock));
return (0);
}