px_lib4u.c revision 08a74c0d0f6c3b94aa21216885efa4387c3d375c
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/modctl.h>
#include <sys/disp.h>
#include <sys/stat.h>
#include <sys/ddi_impldefs.h>
#include <sys/vmem.h>
#include <sys/iommutsb.h>
#include <sys/cpuvar.h>
#include <sys/ivintr.h>
#include <sys/byteorder.h>
#include <sys/hotplug/pci/pciehpc.h>
#include <px_obj.h>
#include <pcie_pwr.h>
#include "px_tools_var.h"
#include <px_regs.h>
#include <px_csr.h>
#include <sys/machsystm.h>
#include "px_lib4u.h"
#include "px_err.h"
#include "oberon_regs.h"
#pragma weak jbus_stst_order
extern void jbus_stst_order();
ulong_t px_mmu_dvma_end = 0xfffffffful;
uint_t px_ranges_phi_mask = 0xfffffffful;
uint64_t *px_oberon_ubc_scratch_regs;
uint64_t px_paddr_mask;
static int px_goto_l23ready(px_t *px_p);
static int px_goto_l0(px_t *px_p);
static int px_pre_pwron_check(px_t *px_p);
static uint32_t px_identity_init(px_t *px_p);
static boolean_t px_cpr_callb(void *arg, int code);
static uint_t px_cb_intr(caddr_t arg);
/*
* px_lib_map_registers
*
* This function is called from the attach routine to map the registers
* accessed by this driver.
*
* used by: px_attach()
*
* return value: DDI_FAILURE on failure
*/
int
px_lib_map_regs(pxu_t *pxu_p, dev_info_t *dip)
{
ddi_device_acc_attr_t attr;
px_reg_bank_t reg_bank = PX_REG_CSR;
DBG(DBG_ATTACH, dip, "px_lib_map_regs: pxu_p:0x%p, dip 0x%p\n",
pxu_p, dip);
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
/*
* PCI CSR Base
*/
if (ddi_regs_map_setup(dip, reg_bank, &pxu_p->px_address[reg_bank],
0, 0, &attr, &pxu_p->px_ac[reg_bank]) != DDI_SUCCESS) {
goto fail;
}
reg_bank++;
/*
* XBUS CSR Base
*/
if (ddi_regs_map_setup(dip, reg_bank, &pxu_p->px_address[reg_bank],
0, 0, &attr, &pxu_p->px_ac[reg_bank]) != DDI_SUCCESS) {
goto fail;
}
pxu_p->px_address[reg_bank] -= FIRE_CONTROL_STATUS;
done:
for (; reg_bank >= PX_REG_CSR; reg_bank--) {
DBG(DBG_ATTACH, dip, "reg_bank 0x%x address 0x%p\n",
reg_bank, pxu_p->px_address[reg_bank]);
}
return (DDI_SUCCESS);
fail:
cmn_err(CE_WARN, "%s%d: unable to map reg entry %d\n",
ddi_driver_name(dip), ddi_get_instance(dip), reg_bank);
for (reg_bank--; reg_bank >= PX_REG_CSR; reg_bank--) {
pxu_p->px_address[reg_bank] = NULL;
ddi_regs_map_free(&pxu_p->px_ac[reg_bank]);
}
return (DDI_FAILURE);
}
/*
* px_lib_unmap_regs:
*
* This routine unmaps the registers mapped by map_px_registers.
*
* used by: px_detach(), and error conditions in px_attach()
*
* return value: none
*/
void
px_lib_unmap_regs(pxu_t *pxu_p)
{
int i;
for (i = 0; i < PX_REG_MAX; i++) {
if (pxu_p->px_ac[i])
ddi_regs_map_free(&pxu_p->px_ac[i]);
}
}
int
px_lib_dev_init(dev_info_t *dip, devhandle_t *dev_hdl)
{
caddr_t xbc_csr_base, csr_base;
px_dvma_range_prop_t px_dvma_range;
pxu_t *pxu_p;
uint8_t chip_mask;
px_t *px_p = DIP_TO_STATE(dip);
px_chip_type_t chip_type = px_identity_init(px_p);
DBG(DBG_ATTACH, dip, "px_lib_dev_init: dip 0x%p", dip);
if (chip_type == PX_CHIP_UNIDENTIFIED) {
cmn_err(CE_WARN, "%s%d: Unrecognized Hardware Version\n",
NAMEINST(dip));
return (DDI_FAILURE);
}
chip_mask = BITMASK(chip_type);
px_paddr_mask = (chip_type == PX_CHIP_FIRE) ? MMU_FIRE_PADDR_MASK :
MMU_OBERON_PADDR_MASK;
/*
* Allocate platform specific structure and link it to
* the px state structure.
*/
pxu_p = kmem_zalloc(sizeof (pxu_t), KM_SLEEP);
pxu_p->chip_type = chip_type;
pxu_p->portid = ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"portid", -1);
/* Map in the registers */
if (px_lib_map_regs(pxu_p, dip) == DDI_FAILURE) {
kmem_free(pxu_p, sizeof (pxu_t));
return (DDI_FAILURE);
}
xbc_csr_base = (caddr_t)pxu_p->px_address[PX_REG_XBC];
csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
pxu_p->tsb_cookie = iommu_tsb_alloc(pxu_p->portid);
pxu_p->tsb_size = iommu_tsb_cookie_to_size(pxu_p->tsb_cookie);
pxu_p->tsb_vaddr = iommu_tsb_cookie_to_va(pxu_p->tsb_cookie);
pxu_p->tsb_paddr = va_to_pa(pxu_p->tsb_vaddr);
/*
* Create "virtual-dma" property to support child devices
* needing to know DVMA range.
*/
px_dvma_range.dvma_base = (uint32_t)px_mmu_dvma_end + 1
- ((pxu_p->tsb_size >> 3) << MMU_PAGE_SHIFT);
px_dvma_range.dvma_len = (uint32_t)
px_mmu_dvma_end - px_dvma_range.dvma_base + 1;
(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
"virtual-dma", (caddr_t)&px_dvma_range,
sizeof (px_dvma_range_prop_t));
/*
* Initilize all fire hardware specific blocks.
*/
hvio_cb_init(xbc_csr_base, pxu_p);
hvio_ib_init(csr_base, pxu_p);
hvio_pec_init(csr_base, pxu_p);
hvio_mmu_init(csr_base, pxu_p);
px_p->px_plat_p = (void *)pxu_p;
/*
* Initialize all the interrupt handlers
*/
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
/*
* Oberon hotplug uses SPARE3 field in ILU Error Log Enable
* register to indicate the status of leaf reset,
* we need to preserve the value of this bit, and keep it in
* px_ilu_log_mask to reflect the state of the bit
*/
if (CSR_BR(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3))
px_ilu_log_mask |= (1ull <<
ILU_ERROR_LOG_ENABLE_SPARE3);
else
px_ilu_log_mask &= ~(1ull <<
ILU_ERROR_LOG_ENABLE_SPARE3);
px_err_reg_setup_pcie(chip_mask, csr_base, PX_ERR_ENABLE);
px_fabric_die_rc_ue |= PCIE_AER_UCE_UC;
break;
case PX_CHIP_FIRE:
px_err_reg_setup_pcie(chip_mask, csr_base, PX_ERR_ENABLE);
break;
default:
cmn_err(CE_WARN, "%s%d: PX primary bus Unknown\n",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
/* Initilize device handle */
*dev_hdl = (devhandle_t)csr_base;
DBG(DBG_ATTACH, dip, "px_lib_dev_init: dev_hdl 0x%llx\n", *dev_hdl);
return (DDI_SUCCESS);
}
int
px_lib_dev_fini(dev_info_t *dip)
{
caddr_t csr_base;
uint8_t chip_mask;
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
DBG(DBG_DETACH, dip, "px_lib_dev_fini: dip 0x%p\n", dip);
/*
* Deinitialize all the interrupt handlers
*/
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
case PX_CHIP_FIRE:
chip_mask = BITMASK(PX_CHIP_TYPE(pxu_p));
csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
px_err_reg_setup_pcie(chip_mask, csr_base, PX_ERR_DISABLE);
break;
default:
cmn_err(CE_WARN, "%s%d: PX primary bus Unknown\n",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
iommu_tsb_free(pxu_p->tsb_cookie);
px_lib_unmap_regs((pxu_t *)px_p->px_plat_p);
kmem_free(px_p->px_plat_p, sizeof (pxu_t));
px_p->px_plat_p = NULL;
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_devino_to_sysino(dev_info_t *dip, devino_t devino,
sysino_t *sysino)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_devino_to_sysino: dip 0x%p "
"devino 0x%x\n", dip, devino);
if ((ret = hvio_intr_devino_to_sysino(DIP_TO_HANDLE(dip),
pxu_p, devino, sysino)) != H_EOK) {
DBG(DBG_LIB_INT, dip,
"hvio_intr_devino_to_sysino failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_INT, dip, "px_lib_intr_devino_to_sysino: sysino 0x%llx\n",
*sysino);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_getvalid(dev_info_t *dip, sysino_t sysino,
intr_valid_state_t *intr_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_getvalid: dip 0x%p sysino 0x%llx\n",
dip, sysino);
if ((ret = hvio_intr_getvalid(DIP_TO_HANDLE(dip),
sysino, intr_valid_state)) != H_EOK) {
DBG(DBG_LIB_INT, dip, "hvio_intr_getvalid failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_INT, dip, "px_lib_intr_getvalid: intr_valid_state 0x%x\n",
*intr_valid_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_setvalid(dev_info_t *dip, sysino_t sysino,
intr_valid_state_t intr_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_setvalid: dip 0x%p sysino 0x%llx "
"intr_valid_state 0x%x\n", dip, sysino, intr_valid_state);
if ((ret = hvio_intr_setvalid(DIP_TO_HANDLE(dip),
sysino, intr_valid_state)) != H_EOK) {
DBG(DBG_LIB_INT, dip, "hvio_intr_setvalid failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_getstate(dev_info_t *dip, sysino_t sysino,
intr_state_t *intr_state)
{
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_getstate: dip 0x%p sysino 0x%llx\n",
dip, sysino);
if ((ret = hvio_intr_getstate(DIP_TO_HANDLE(dip),
sysino, intr_state)) != H_EOK) {
DBG(DBG_LIB_INT, dip, "hvio_intr_getstate failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_INT, dip, "px_lib_intr_getstate: intr_state 0x%x\n",
*intr_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_setstate(dev_info_t *dip, sysino_t sysino,
intr_state_t intr_state)
{
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_setstate: dip 0x%p sysino 0x%llx "
"intr_state 0x%x\n", dip, sysino, intr_state);
if ((ret = hvio_intr_setstate(DIP_TO_HANDLE(dip),
sysino, intr_state)) != H_EOK) {
DBG(DBG_LIB_INT, dip, "hvio_intr_setstate failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_gettarget(dev_info_t *dip, sysino_t sysino, cpuid_t *cpuid)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_gettarget: dip 0x%p sysino 0x%llx\n",
dip, sysino);
if ((ret = hvio_intr_gettarget(DIP_TO_HANDLE(dip), pxu_p,
sysino, cpuid)) != H_EOK) {
DBG(DBG_LIB_INT, dip, "hvio_intr_gettarget failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_INT, dip, "px_lib_intr_gettarget: cpuid 0x%x\n", cpuid);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_settarget(dev_info_t *dip, sysino_t sysino, cpuid_t cpuid)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ret;
DBG(DBG_LIB_INT, dip, "px_lib_intr_settarget: dip 0x%p sysino 0x%llx "
"cpuid 0x%x\n", dip, sysino, cpuid);
if ((ret = hvio_intr_settarget(DIP_TO_HANDLE(dip), pxu_p,
sysino, cpuid)) != H_EOK) {
DBG(DBG_LIB_INT, dip, "hvio_intr_settarget failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_intr_reset(dev_info_t *dip)
{
devino_t ino;
sysino_t sysino;
DBG(DBG_LIB_INT, dip, "px_lib_intr_reset: dip 0x%p\n", dip);
/* Reset all Interrupts */
for (ino = 0; ino < INTERRUPT_MAPPING_ENTRIES; ino++) {
if (px_lib_intr_devino_to_sysino(dip, ino,
&sysino) != DDI_SUCCESS)
return (BF_FATAL);
if (px_lib_intr_setstate(dip, sysino,
INTR_IDLE_STATE) != DDI_SUCCESS)
return (BF_FATAL);
}
return (BF_NONE);
}
/*ARGSUSED*/
int
px_lib_iommu_map(dev_info_t *dip, tsbid_t tsbid, pages_t pages,
io_attributes_t attr, void *addr, size_t pfn_index, int flags)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ret;
DBG(DBG_LIB_DMA, dip, "px_lib_iommu_map: dip 0x%p tsbid 0x%llx "
"pages 0x%x attr 0x%x addr 0x%p pfn_index 0x%llx flags 0x%x\n",
dip, tsbid, pages, attr, addr, pfn_index, flags);
if ((ret = hvio_iommu_map(px_p->px_dev_hdl, pxu_p, tsbid, pages,
attr, addr, pfn_index, flags)) != H_EOK) {
DBG(DBG_LIB_DMA, dip,
"px_lib_iommu_map failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_iommu_demap(dev_info_t *dip, tsbid_t tsbid, pages_t pages)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ret;
DBG(DBG_LIB_DMA, dip, "px_lib_iommu_demap: dip 0x%p tsbid 0x%llx "
"pages 0x%x\n", dip, tsbid, pages);
if ((ret = hvio_iommu_demap(px_p->px_dev_hdl, pxu_p, tsbid, pages))
!= H_EOK) {
DBG(DBG_LIB_DMA, dip,
"px_lib_iommu_demap failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_iommu_getmap(dev_info_t *dip, tsbid_t tsbid, io_attributes_t *attr_p,
r_addr_t *r_addr_p)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ret;
DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getmap: dip 0x%p tsbid 0x%llx\n",
dip, tsbid);
if ((ret = hvio_iommu_getmap(DIP_TO_HANDLE(dip), pxu_p, tsbid,
attr_p, r_addr_p)) != H_EOK) {
DBG(DBG_LIB_DMA, dip,
"hvio_iommu_getmap failed, ret 0x%lx\n", ret);
return ((ret == H_ENOMAP) ? DDI_DMA_NOMAPPING:DDI_FAILURE);
}
DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getmap: attr 0x%x r_addr 0x%llx\n",
*attr_p, *r_addr_p);
return (DDI_SUCCESS);
}
/*
* Checks dma attributes against system bypass ranges
* The bypass range is determined by the hardware. Return them so the
* common code can do generic checking against them.
*/
/*ARGSUSED*/
int
px_lib_dma_bypass_rngchk(dev_info_t *dip, ddi_dma_attr_t *attr_p,
uint64_t *lo_p, uint64_t *hi_p)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
*lo_p = hvio_get_bypass_base(pxu_p);
*hi_p = hvio_get_bypass_end(pxu_p);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_iommu_getbypass(dev_info_t *dip, r_addr_t ra, io_attributes_t attr,
io_addr_t *io_addr_p)
{
uint64_t ret;
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getbypass: dip 0x%p ra 0x%llx "
"attr 0x%x\n", dip, ra, attr);
if ((ret = hvio_iommu_getbypass(DIP_TO_HANDLE(dip), pxu_p, ra,
attr, io_addr_p)) != H_EOK) {
DBG(DBG_LIB_DMA, dip,
"hvio_iommu_getbypass failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_DMA, dip, "px_lib_iommu_getbypass: io_addr 0x%llx\n",
*io_addr_p);
return (DDI_SUCCESS);
}
/*
* bus dma sync entry point.
*/
/*ARGSUSED*/
int
px_lib_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
off_t off, size_t len, uint_t cache_flags)
{
ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
DBG(DBG_LIB_DMA, dip, "px_lib_dma_sync: dip 0x%p rdip 0x%p "
"handle 0x%llx off 0x%x len 0x%x flags 0x%x\n",
dip, rdip, handle, off, len, cache_flags);
/*
* No flush needed for Oberon
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
return (DDI_SUCCESS);
/*
* jbus_stst_order is found only in certain cpu modules.
* Just return success if not present.
*/
if (&jbus_stst_order == NULL)
return (DDI_SUCCESS);
if (!(mp->dmai_flags & PX_DMAI_FLAGS_INUSE)) {
cmn_err(CE_WARN, "%s%d: Unbound dma handle %p.",
ddi_driver_name(rdip), ddi_get_instance(rdip), (void *)mp);
return (DDI_FAILURE);
}
if (mp->dmai_flags & PX_DMAI_FLAGS_NOSYNC)
return (DDI_SUCCESS);
/*
* No flush needed when sending data from memory to device.
* Nothing to do to "sync" memory to what device would already see.
*/
if (!(mp->dmai_rflags & DDI_DMA_READ) ||
((cache_flags & PX_DMA_SYNC_DDI_FLAGS) == DDI_DMA_SYNC_FORDEV))
return (DDI_SUCCESS);
/*
* Perform necessary cpu workaround to ensure jbus ordering.
* CPU's internal "invalidate FIFOs" are flushed.
*/
#if !defined(lint)
kpreempt_disable();
#endif
jbus_stst_order();
#if !defined(lint)
kpreempt_enable();
#endif
return (DDI_SUCCESS);
}
/*
* MSIQ Functions:
*/
/*ARGSUSED*/
int
px_lib_msiq_init(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state;
caddr_t msiq_addr;
px_dvma_addr_t pg_index;
size_t size;
int ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_init: dip 0x%p\n", dip);
/*
* Map the EQ memory into the Fire MMU (has to be 512KB aligned)
* and then initialize the base address register.
*
* Allocate entries from Fire IOMMU so that the resulting address
* is properly aligned. Calculate the index of the first allocated
* entry. Note: The size of the mapping is assumed to be a multiple
* of the page size.
*/
msiq_addr = (caddr_t)(((uint64_t)msiq_state_p->msiq_buf_p +
(MMU_PAGE_SIZE - 1)) >> MMU_PAGE_SHIFT << MMU_PAGE_SHIFT);
size = msiq_state_p->msiq_cnt *
msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t);
pxu_p->msiq_mapped_p = vmem_xalloc(px_p->px_mmu_p->mmu_dvma_map,
size, (512 * 1024), 0, 0, NULL, NULL, VM_NOSLEEP | VM_BESTFIT);
if (pxu_p->msiq_mapped_p == NULL)
return (DDI_FAILURE);
pg_index = MMU_PAGE_INDEX(px_p->px_mmu_p,
MMU_BTOP((ulong_t)pxu_p->msiq_mapped_p));
if ((ret = px_lib_iommu_map(px_p->px_dip, PCI_TSBID(0, pg_index),
MMU_BTOP(size), PCI_MAP_ATTR_WRITE, (void *)msiq_addr, 0,
MMU_MAP_BUF)) != DDI_SUCCESS) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_init failed, ret 0x%lx\n", ret);
(void) px_lib_msiq_fini(dip);
return (DDI_FAILURE);
}
(void) hvio_msiq_init(DIP_TO_HANDLE(dip), pxu_p);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_fini(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state;
px_dvma_addr_t pg_index;
size_t size;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_fini: dip 0x%p\n", dip);
/*
* Unmap and free the EQ memory that had been mapped
* into the Fire IOMMU.
*/
size = msiq_state_p->msiq_cnt *
msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t);
pg_index = MMU_PAGE_INDEX(px_p->px_mmu_p,
MMU_BTOP((ulong_t)pxu_p->msiq_mapped_p));
(void) px_lib_iommu_demap(px_p->px_dip,
PCI_TSBID(0, pg_index), MMU_BTOP(size));
/* Free the entries from the Fire MMU */
vmem_xfree(px_p->px_mmu_p->mmu_dvma_map,
(void *)pxu_p->msiq_mapped_p, size);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_info(dev_info_t *dip, msiqid_t msiq_id, r_addr_t *ra_p,
uint_t *msiq_rec_cnt_p)
{
px_t *px_p = DIP_TO_STATE(dip);
px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state;
uint64_t *msiq_addr;
size_t msiq_size;
DBG(DBG_LIB_MSIQ, dip, "px_msiq_info: dip 0x%p msiq_id 0x%x\n",
dip, msiq_id);
msiq_addr = (uint64_t *)(((uint64_t)msiq_state_p->msiq_buf_p +
(MMU_PAGE_SIZE - 1)) >> MMU_PAGE_SHIFT << MMU_PAGE_SHIFT);
msiq_size = msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t);
ra_p = (r_addr_t *)((caddr_t)msiq_addr + (msiq_id * msiq_size));
*msiq_rec_cnt_p = msiq_state_p->msiq_rec_cnt;
DBG(DBG_LIB_MSIQ, dip, "px_msiq_info: ra_p 0x%p msiq_rec_cnt 0x%x\n",
ra_p, *msiq_rec_cnt_p);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_getvalid(dev_info_t *dip, msiqid_t msiq_id,
pci_msiq_valid_state_t *msiq_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getvalid: dip 0x%p msiq_id 0x%x\n",
dip, msiq_id);
if ((ret = hvio_msiq_getvalid(DIP_TO_HANDLE(dip),
msiq_id, msiq_valid_state)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_getvalid failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getvalid: msiq_valid_state 0x%x\n",
*msiq_valid_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_setvalid(dev_info_t *dip, msiqid_t msiq_id,
pci_msiq_valid_state_t msiq_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_setvalid: dip 0x%p msiq_id 0x%x "
"msiq_valid_state 0x%x\n", dip, msiq_id, msiq_valid_state);
if ((ret = hvio_msiq_setvalid(DIP_TO_HANDLE(dip),
msiq_id, msiq_valid_state)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_setvalid failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_getstate(dev_info_t *dip, msiqid_t msiq_id,
pci_msiq_state_t *msiq_state)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getstate: dip 0x%p msiq_id 0x%x\n",
dip, msiq_id);
if ((ret = hvio_msiq_getstate(DIP_TO_HANDLE(dip),
msiq_id, msiq_state)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_getstate failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_getstate: msiq_state 0x%x\n",
*msiq_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_setstate(dev_info_t *dip, msiqid_t msiq_id,
pci_msiq_state_t msiq_state)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_setstate: dip 0x%p msiq_id 0x%x "
"msiq_state 0x%x\n", dip, msiq_id, msiq_state);
if ((ret = hvio_msiq_setstate(DIP_TO_HANDLE(dip),
msiq_id, msiq_state)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_setstate failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_gethead(dev_info_t *dip, msiqid_t msiq_id,
msiqhead_t *msiq_head)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gethead: dip 0x%p msiq_id 0x%x\n",
dip, msiq_id);
if ((ret = hvio_msiq_gethead(DIP_TO_HANDLE(dip),
msiq_id, msiq_head)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_gethead failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gethead: msiq_head 0x%x\n",
*msiq_head);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_sethead(dev_info_t *dip, msiqid_t msiq_id,
msiqhead_t msiq_head)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_sethead: dip 0x%p msiq_id 0x%x "
"msiq_head 0x%x\n", dip, msiq_id, msiq_head);
if ((ret = hvio_msiq_sethead(DIP_TO_HANDLE(dip),
msiq_id, msiq_head)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_sethead failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msiq_gettail(dev_info_t *dip, msiqid_t msiq_id,
msiqtail_t *msiq_tail)
{
uint64_t ret;
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gettail: dip 0x%p msiq_id 0x%x\n",
dip, msiq_id);
if ((ret = hvio_msiq_gettail(DIP_TO_HANDLE(dip),
msiq_id, msiq_tail)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip,
"hvio_msiq_gettail failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSIQ, dip, "px_lib_msiq_gettail: msiq_tail 0x%x\n",
*msiq_tail);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
void
px_lib_get_msiq_rec(dev_info_t *dip, px_msiq_t *msiq_p, msiq_rec_t *msiq_rec_p)
{
eq_rec_t *eq_rec_p = (eq_rec_t *)msiq_p->msiq_curr;
DBG(DBG_LIB_MSIQ, dip, "px_lib_get_msiq_rec: dip 0x%p eq_rec_p 0x%p\n",
dip, eq_rec_p);
if (!eq_rec_p->eq_rec_fmt_type) {
/* Set msiq_rec_type to zero */
msiq_rec_p->msiq_rec_type = 0;
return;
}
DBG(DBG_LIB_MSIQ, dip, "px_lib_get_msiq_rec: EQ RECORD, "
"eq_rec_rid 0x%llx eq_rec_fmt_type 0x%llx "
"eq_rec_len 0x%llx eq_rec_addr0 0x%llx "
"eq_rec_addr1 0x%llx eq_rec_data0 0x%llx "
"eq_rec_data1 0x%llx\n", eq_rec_p->eq_rec_rid,
eq_rec_p->eq_rec_fmt_type, eq_rec_p->eq_rec_len,
eq_rec_p->eq_rec_addr0, eq_rec_p->eq_rec_addr1,
eq_rec_p->eq_rec_data0, eq_rec_p->eq_rec_data1);
/*
* Only upper 4 bits of eq_rec_fmt_type is used
* to identify the EQ record type.
*/
switch (eq_rec_p->eq_rec_fmt_type >> 3) {
case EQ_REC_MSI32:
msiq_rec_p->msiq_rec_type = MSI32_REC;
msiq_rec_p->msiq_rec_data.msi.msi_data =
eq_rec_p->eq_rec_data0;
break;
case EQ_REC_MSI64:
msiq_rec_p->msiq_rec_type = MSI64_REC;
msiq_rec_p->msiq_rec_data.msi.msi_data =
eq_rec_p->eq_rec_data0;
break;
case EQ_REC_MSG:
msiq_rec_p->msiq_rec_type = MSG_REC;
msiq_rec_p->msiq_rec_data.msg.msg_route =
eq_rec_p->eq_rec_fmt_type & 7;
msiq_rec_p->msiq_rec_data.msg.msg_targ = eq_rec_p->eq_rec_rid;
msiq_rec_p->msiq_rec_data.msg.msg_code = eq_rec_p->eq_rec_data0;
break;
default:
cmn_err(CE_WARN, "%s%d: px_lib_get_msiq_rec: "
"0x%x is an unknown EQ record type",
ddi_driver_name(dip), ddi_get_instance(dip),
(int)eq_rec_p->eq_rec_fmt_type);
break;
}
msiq_rec_p->msiq_rec_rid = eq_rec_p->eq_rec_rid;
msiq_rec_p->msiq_rec_msi_addr = ((eq_rec_p->eq_rec_addr1 << 16) |
(eq_rec_p->eq_rec_addr0 << 2));
/* Zero out eq_rec_fmt_type field */
eq_rec_p->eq_rec_fmt_type = 0;
}
/*
* MSI Functions:
*/
/*ARGSUSED*/
int
px_lib_msi_init(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
px_msi_state_t *msi_state_p = &px_p->px_ib_p->ib_msi_state;
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_init: dip 0x%p\n", dip);
if ((ret = hvio_msi_init(DIP_TO_HANDLE(dip),
msi_state_p->msi_addr32, msi_state_p->msi_addr64)) != H_EOK) {
DBG(DBG_LIB_MSIQ, dip, "px_lib_msi_init failed, ret 0x%lx\n",
ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msi_getmsiq(dev_info_t *dip, msinum_t msi_num,
msiqid_t *msiq_id)
{
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_getmsiq: dip 0x%p msi_num 0x%x\n",
dip, msi_num);
if ((ret = hvio_msi_getmsiq(DIP_TO_HANDLE(dip),
msi_num, msiq_id)) != H_EOK) {
DBG(DBG_LIB_MSI, dip,
"hvio_msi_getmsiq failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSI, dip, "px_lib_msi_getmsiq: msiq_id 0x%x\n",
*msiq_id);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msi_setmsiq(dev_info_t *dip, msinum_t msi_num,
msiqid_t msiq_id, msi_type_t msitype)
{
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_setmsiq: dip 0x%p msi_num 0x%x "
"msq_id 0x%x\n", dip, msi_num, msiq_id);
if ((ret = hvio_msi_setmsiq(DIP_TO_HANDLE(dip),
msi_num, msiq_id)) != H_EOK) {
DBG(DBG_LIB_MSI, dip,
"hvio_msi_setmsiq failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msi_getvalid(dev_info_t *dip, msinum_t msi_num,
pci_msi_valid_state_t *msi_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_getvalid: dip 0x%p msi_num 0x%x\n",
dip, msi_num);
if ((ret = hvio_msi_getvalid(DIP_TO_HANDLE(dip),
msi_num, msi_valid_state)) != H_EOK) {
DBG(DBG_LIB_MSI, dip,
"hvio_msi_getvalid failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSI, dip, "px_lib_msi_getvalid: msiq_id 0x%x\n",
*msi_valid_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msi_setvalid(dev_info_t *dip, msinum_t msi_num,
pci_msi_valid_state_t msi_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_setvalid: dip 0x%p msi_num 0x%x "
"msi_valid_state 0x%x\n", dip, msi_num, msi_valid_state);
if ((ret = hvio_msi_setvalid(DIP_TO_HANDLE(dip),
msi_num, msi_valid_state)) != H_EOK) {
DBG(DBG_LIB_MSI, dip,
"hvio_msi_setvalid failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msi_getstate(dev_info_t *dip, msinum_t msi_num,
pci_msi_state_t *msi_state)
{
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_getstate: dip 0x%p msi_num 0x%x\n",
dip, msi_num);
if ((ret = hvio_msi_getstate(DIP_TO_HANDLE(dip),
msi_num, msi_state)) != H_EOK) {
DBG(DBG_LIB_MSI, dip,
"hvio_msi_getstate failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSI, dip, "px_lib_msi_getstate: msi_state 0x%x\n",
*msi_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msi_setstate(dev_info_t *dip, msinum_t msi_num,
pci_msi_state_t msi_state)
{
uint64_t ret;
DBG(DBG_LIB_MSI, dip, "px_lib_msi_setstate: dip 0x%p msi_num 0x%x "
"msi_state 0x%x\n", dip, msi_num, msi_state);
if ((ret = hvio_msi_setstate(DIP_TO_HANDLE(dip),
msi_num, msi_state)) != H_EOK) {
DBG(DBG_LIB_MSI, dip,
"hvio_msi_setstate failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* MSG Functions:
*/
/*ARGSUSED*/
int
px_lib_msg_getmsiq(dev_info_t *dip, pcie_msg_type_t msg_type,
msiqid_t *msiq_id)
{
uint64_t ret;
DBG(DBG_LIB_MSG, dip, "px_lib_msg_getmsiq: dip 0x%p msg_type 0x%x\n",
dip, msg_type);
if ((ret = hvio_msg_getmsiq(DIP_TO_HANDLE(dip),
msg_type, msiq_id)) != H_EOK) {
DBG(DBG_LIB_MSG, dip,
"hvio_msg_getmsiq failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSI, dip, "px_lib_msg_getmsiq: msiq_id 0x%x\n",
*msiq_id);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msg_setmsiq(dev_info_t *dip, pcie_msg_type_t msg_type,
msiqid_t msiq_id)
{
uint64_t ret;
DBG(DBG_LIB_MSG, dip, "px_lib_msi_setstate: dip 0x%p msg_type 0x%x "
"msiq_id 0x%x\n", dip, msg_type, msiq_id);
if ((ret = hvio_msg_setmsiq(DIP_TO_HANDLE(dip),
msg_type, msiq_id)) != H_EOK) {
DBG(DBG_LIB_MSG, dip,
"hvio_msg_setmsiq failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msg_getvalid(dev_info_t *dip, pcie_msg_type_t msg_type,
pcie_msg_valid_state_t *msg_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_MSG, dip, "px_lib_msg_getvalid: dip 0x%p msg_type 0x%x\n",
dip, msg_type);
if ((ret = hvio_msg_getvalid(DIP_TO_HANDLE(dip), msg_type,
msg_valid_state)) != H_EOK) {
DBG(DBG_LIB_MSG, dip,
"hvio_msg_getvalid failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
DBG(DBG_LIB_MSI, dip, "px_lib_msg_getvalid: msg_valid_state 0x%x\n",
*msg_valid_state);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
int
px_lib_msg_setvalid(dev_info_t *dip, pcie_msg_type_t msg_type,
pcie_msg_valid_state_t msg_valid_state)
{
uint64_t ret;
DBG(DBG_LIB_MSG, dip, "px_lib_msg_setvalid: dip 0x%p msg_type 0x%x "
"msg_valid_state 0x%x\n", dip, msg_type, msg_valid_state);
if ((ret = hvio_msg_setvalid(DIP_TO_HANDLE(dip), msg_type,
msg_valid_state)) != H_EOK) {
DBG(DBG_LIB_MSG, dip,
"hvio_msg_setvalid failed, ret 0x%lx\n", ret);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Suspend/Resume Functions:
* Currently unsupported by hypervisor
*/
int
px_lib_suspend(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
px_cb_t *cb_p = PX2CB(px_p);
devhandle_t dev_hdl, xbus_dev_hdl;
uint64_t ret = H_EOK;
DBG(DBG_DETACH, dip, "px_lib_suspend: dip 0x%p\n", dip);
dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_CSR];
xbus_dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_XBC];
if ((ret = hvio_suspend(dev_hdl, pxu_p)) != H_EOK)
goto fail;
if (--cb_p->attachcnt == 0) {
ret = hvio_cb_suspend(xbus_dev_hdl, pxu_p);
if (ret != H_EOK)
cb_p->attachcnt++;
}
fail:
return ((ret != H_EOK) ? DDI_FAILURE: DDI_SUCCESS);
}
void
px_lib_resume(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
px_cb_t *cb_p = PX2CB(px_p);
devhandle_t dev_hdl, xbus_dev_hdl;
devino_t pec_ino = px_p->px_inos[PX_INTR_PEC];
devino_t xbc_ino = px_p->px_inos[PX_INTR_XBC];
DBG(DBG_ATTACH, dip, "px_lib_resume: dip 0x%p\n", dip);
dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_CSR];
xbus_dev_hdl = (devhandle_t)pxu_p->px_address[PX_REG_XBC];
if (++cb_p->attachcnt == 1)
hvio_cb_resume(dev_hdl, xbus_dev_hdl, xbc_ino, pxu_p);
hvio_resume(dev_hdl, pec_ino, pxu_p);
}
/*
* Generate a unique Oberon UBC ID based on the Logicial System Board and
* the IO Channel from the portid property field.
*/
static uint64_t
oberon_get_ubc_id(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t ubc_id;
/*
* Generate a unique 6 bit UBC ID using the 2 IO_Channel#[1:0] bits and
* the 4 LSB_ID[3:0] bits from the Oberon's portid property.
*/
ubc_id = (((pxu_p->portid >> OBERON_PORT_ID_IOC) &
OBERON_PORT_ID_IOC_MASK) | (((pxu_p->portid >>
OBERON_PORT_ID_LSB) & OBERON_PORT_ID_LSB_MASK)
<< OBERON_UBC_ID_LSB));
return (ubc_id);
}
/*
* Oberon does not have a UBC scratch register, so alloc an array of scratch
* registers when needed and use a unique UBC ID as an index. This code
* can be simplified if we use a pre-allocated array. They are currently
* being dynamically allocated because it's only needed by the Oberon.
*/
static void
oberon_set_cb(dev_info_t *dip, uint64_t val)
{
uint64_t ubc_id;
if (px_oberon_ubc_scratch_regs == NULL)
px_oberon_ubc_scratch_regs =
(uint64_t *)kmem_zalloc(sizeof (uint64_t)*
OBERON_UBC_ID_MAX, KM_SLEEP);
ubc_id = oberon_get_ubc_id(dip);
px_oberon_ubc_scratch_regs[ubc_id] = val;
/*
* Check if any scratch registers are still in use. If all scratch
* registers are currently set to zero, then deallocate the scratch
* register array.
*/
for (ubc_id = 0; ubc_id < OBERON_UBC_ID_MAX; ubc_id++) {
if (px_oberon_ubc_scratch_regs[ubc_id] != NULL)
return;
}
/*
* All scratch registers are set to zero so deallocate the scratch
* register array and set the pointer to NULL.
*/
kmem_free(px_oberon_ubc_scratch_regs,
(sizeof (uint64_t)*OBERON_UBC_ID_MAX));
px_oberon_ubc_scratch_regs = NULL;
}
/*
* Oberon does not have a UBC scratch register, so use an allocated array of
* scratch registers and use the unique UBC ID as an index into that array.
*/
static uint64_t
oberon_get_cb(dev_info_t *dip)
{
uint64_t ubc_id;
if (px_oberon_ubc_scratch_regs == NULL)
return (0);
ubc_id = oberon_get_ubc_id(dip);
return (px_oberon_ubc_scratch_regs[ubc_id]);
}
/*
* Misc Functions:
* Currently unsupported by hypervisor
*/
static uint64_t
px_get_cb(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
/*
* Oberon does not currently have Scratchpad registers.
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
return (oberon_get_cb(dip));
return (CSR_XR((caddr_t)pxu_p->px_address[PX_REG_XBC], JBUS_SCRATCH_1));
}
static void
px_set_cb(dev_info_t *dip, uint64_t val)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
/*
* Oberon does not currently have Scratchpad registers.
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
oberon_set_cb(dip, val);
return;
}
CSR_XS((caddr_t)pxu_p->px_address[PX_REG_XBC], JBUS_SCRATCH_1, val);
}
/*ARGSUSED*/
int
px_lib_map_vconfig(dev_info_t *dip,
ddi_map_req_t *mp, pci_config_offset_t off,
pci_regspec_t *rp, caddr_t *addrp)
{
/*
* No special config space access services in this layer.
*/
return (DDI_FAILURE);
}
void
px_lib_map_attr_check(ddi_map_req_t *mp)
{
ddi_acc_hdl_t *hp = mp->map_handlep;
/* fire does not accept byte masks from PIO store merge */
if (hp->ah_acc.devacc_attr_dataorder == DDI_STORECACHING_OK_ACC)
hp->ah_acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
}
void
px_lib_clr_errs(px_t *px_p)
{
px_pec_t *pec_p = px_p->px_pec_p;
dev_info_t *rpdip = px_p->px_dip;
int err = PX_OK, ret;
int acctype = pec_p->pec_safeacc_type;
ddi_fm_error_t derr;
/* Create the derr */
bzero(&derr, sizeof (ddi_fm_error_t));
derr.fme_version = DDI_FME_VERSION;
derr.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
derr.fme_flag = acctype;
if (acctype == DDI_FM_ERR_EXPECTED) {
derr.fme_status = DDI_FM_NONFATAL;
ndi_fm_acc_err_set(pec_p->pec_acc_hdl, &derr);
}
mutex_enter(&px_p->px_fm_mutex);
/* send ereport/handle/clear fire registers */
err = px_err_handle(px_p, &derr, PX_LIB_CALL, B_TRUE);
/* Check all child devices for errors */
ret = ndi_fm_handler_dispatch(rpdip, NULL, &derr);
mutex_exit(&px_p->px_fm_mutex);
/*
* PX_FATAL_HW indicates a condition recovered from Fatal-Reset,
* therefore it does not cause panic.
*/
if ((err & (PX_FATAL_GOS | PX_FATAL_SW)) || (ret == DDI_FM_FATAL))
PX_FM_PANIC("Fatal System Port Error has occurred\n");
}
#ifdef DEBUG
int px_peekfault_cnt = 0;
int px_pokefault_cnt = 0;
#endif /* DEBUG */
/*ARGSUSED*/
static int
px_lib_do_poke(dev_info_t *dip, dev_info_t *rdip,
peekpoke_ctlops_t *in_args)
{
px_t *px_p = DIP_TO_STATE(dip);
px_pec_t *pec_p = px_p->px_pec_p;
int err = DDI_SUCCESS;
on_trap_data_t otd;
mutex_enter(&pec_p->pec_pokefault_mutex);
pec_p->pec_ontrap_data = &otd;
pec_p->pec_safeacc_type = DDI_FM_ERR_POKE;
/* Set up protected environment. */
if (!on_trap(&otd, OT_DATA_ACCESS)) {
uintptr_t tramp = otd.ot_trampoline;
otd.ot_trampoline = (uintptr_t)&poke_fault;
err = do_poke(in_args->size, (void *)in_args->dev_addr,
(void *)in_args->host_addr);
otd.ot_trampoline = tramp;
} else
err = DDI_FAILURE;
px_lib_clr_errs(px_p);
if (otd.ot_trap & OT_DATA_ACCESS)
err = DDI_FAILURE;
/* Take down protected environment. */
no_trap();
pec_p->pec_ontrap_data = NULL;
pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED;
mutex_exit(&pec_p->pec_pokefault_mutex);
#ifdef DEBUG
if (err == DDI_FAILURE)
px_pokefault_cnt++;
#endif
return (err);
}
/*ARGSUSED*/
static int
px_lib_do_caut_put(dev_info_t *dip, dev_info_t *rdip,
peekpoke_ctlops_t *cautacc_ctlops_arg)
{
size_t size = cautacc_ctlops_arg->size;
uintptr_t dev_addr = cautacc_ctlops_arg->dev_addr;
uintptr_t host_addr = cautacc_ctlops_arg->host_addr;
ddi_acc_impl_t *hp = (ddi_acc_impl_t *)cautacc_ctlops_arg->handle;
size_t repcount = cautacc_ctlops_arg->repcount;
uint_t flags = cautacc_ctlops_arg->flags;
px_t *px_p = DIP_TO_STATE(dip);
px_pec_t *pec_p = px_p->px_pec_p;
int err = DDI_SUCCESS;
/*
* Note that i_ndi_busop_access_enter ends up grabbing the pokefault
* mutex.
*/
i_ndi_busop_access_enter(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp);
pec_p->pec_ontrap_data = (on_trap_data_t *)hp->ahi_err->err_ontrap;
pec_p->pec_safeacc_type = DDI_FM_ERR_EXPECTED;
hp->ahi_err->err_expected = DDI_FM_ERR_EXPECTED;
if (!i_ddi_ontrap((ddi_acc_handle_t)hp)) {
for (; repcount; repcount--) {
switch (size) {
case sizeof (uint8_t):
i_ddi_put8(hp, (uint8_t *)dev_addr,
*(uint8_t *)host_addr);
break;
case sizeof (uint16_t):
i_ddi_put16(hp, (uint16_t *)dev_addr,
*(uint16_t *)host_addr);
break;
case sizeof (uint32_t):
i_ddi_put32(hp, (uint32_t *)dev_addr,
*(uint32_t *)host_addr);
break;
case sizeof (uint64_t):
i_ddi_put64(hp, (uint64_t *)dev_addr,
*(uint64_t *)host_addr);
break;
}
host_addr += size;
if (flags == DDI_DEV_AUTOINCR)
dev_addr += size;
px_lib_clr_errs(px_p);
if (pec_p->pec_ontrap_data->ot_trap & OT_DATA_ACCESS) {
err = DDI_FAILURE;
#ifdef DEBUG
px_pokefault_cnt++;
#endif
break;
}
}
}
i_ddi_notrap((ddi_acc_handle_t)hp);
pec_p->pec_ontrap_data = NULL;
pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED;
i_ndi_busop_access_exit(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp);
hp->ahi_err->err_expected = DDI_FM_ERR_UNEXPECTED;
return (err);
}
int
px_lib_ctlops_poke(dev_info_t *dip, dev_info_t *rdip,
peekpoke_ctlops_t *in_args)
{
return (in_args->handle ? px_lib_do_caut_put(dip, rdip, in_args) :
px_lib_do_poke(dip, rdip, in_args));
}
/*ARGSUSED*/
static int
px_lib_do_peek(dev_info_t *dip, peekpoke_ctlops_t *in_args)
{
px_t *px_p = DIP_TO_STATE(dip);
px_pec_t *pec_p = px_p->px_pec_p;
int err = DDI_SUCCESS;
on_trap_data_t otd;
mutex_enter(&pec_p->pec_pokefault_mutex);
pec_p->pec_safeacc_type = DDI_FM_ERR_PEEK;
if (!on_trap(&otd, OT_DATA_ACCESS)) {
uintptr_t tramp = otd.ot_trampoline;
otd.ot_trampoline = (uintptr_t)&peek_fault;
err = do_peek(in_args->size, (void *)in_args->dev_addr,
(void *)in_args->host_addr);
otd.ot_trampoline = tramp;
} else
err = DDI_FAILURE;
no_trap();
pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED;
mutex_exit(&pec_p->pec_pokefault_mutex);
#ifdef DEBUG
if (err == DDI_FAILURE)
px_peekfault_cnt++;
#endif
return (err);
}
static int
px_lib_do_caut_get(dev_info_t *dip, peekpoke_ctlops_t *cautacc_ctlops_arg)
{
size_t size = cautacc_ctlops_arg->size;
uintptr_t dev_addr = cautacc_ctlops_arg->dev_addr;
uintptr_t host_addr = cautacc_ctlops_arg->host_addr;
ddi_acc_impl_t *hp = (ddi_acc_impl_t *)cautacc_ctlops_arg->handle;
size_t repcount = cautacc_ctlops_arg->repcount;
uint_t flags = cautacc_ctlops_arg->flags;
px_t *px_p = DIP_TO_STATE(dip);
px_pec_t *pec_p = px_p->px_pec_p;
int err = DDI_SUCCESS;
/*
* Note that i_ndi_busop_access_enter ends up grabbing the pokefault
* mutex.
*/
i_ndi_busop_access_enter(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp);
pec_p->pec_ontrap_data = (on_trap_data_t *)hp->ahi_err->err_ontrap;
pec_p->pec_safeacc_type = DDI_FM_ERR_EXPECTED;
hp->ahi_err->err_expected = DDI_FM_ERR_EXPECTED;
if (repcount == 1) {
if (!i_ddi_ontrap((ddi_acc_handle_t)hp)) {
i_ddi_caut_get(size, (void *)dev_addr,
(void *)host_addr);
} else {
int i;
uint8_t *ff_addr = (uint8_t *)host_addr;
for (i = 0; i < size; i++)
*ff_addr++ = 0xff;
err = DDI_FAILURE;
#ifdef DEBUG
px_peekfault_cnt++;
#endif
}
} else {
if (!i_ddi_ontrap((ddi_acc_handle_t)hp)) {
for (; repcount; repcount--) {
i_ddi_caut_get(size, (void *)dev_addr,
(void *)host_addr);
host_addr += size;
if (flags == DDI_DEV_AUTOINCR)
dev_addr += size;
}
} else {
err = DDI_FAILURE;
#ifdef DEBUG
px_peekfault_cnt++;
#endif
}
}
i_ddi_notrap((ddi_acc_handle_t)hp);
pec_p->pec_ontrap_data = NULL;
pec_p->pec_safeacc_type = DDI_FM_ERR_UNEXPECTED;
i_ndi_busop_access_exit(hp->ahi_common.ah_dip, (ddi_acc_handle_t)hp);
hp->ahi_err->err_expected = DDI_FM_ERR_UNEXPECTED;
return (err);
}
/*ARGSUSED*/
int
px_lib_ctlops_peek(dev_info_t *dip, dev_info_t *rdip,
peekpoke_ctlops_t *in_args, void *result)
{
result = (void *)in_args->host_addr;
return (in_args->handle ? px_lib_do_caut_get(dip, in_args) :
px_lib_do_peek(dip, in_args));
}
/*
* implements PPM interface
*/
int
px_lib_pmctl(int cmd, px_t *px_p)
{
ASSERT((cmd & ~PPMREQ_MASK) == PPMREQ);
switch (cmd) {
case PPMREQ_PRE_PWR_OFF:
/*
* Currently there is no device power management for
* the root complex (fire). When there is we need to make
* sure that it is at full power before trying to send the
* PME_Turn_Off message.
*/
DBG(DBG_PWR, px_p->px_dip,
"ioctl: request to send PME_Turn_Off\n");
return (px_goto_l23ready(px_p));
case PPMREQ_PRE_PWR_ON:
DBG(DBG_PWR, px_p->px_dip, "ioctl: PRE_PWR_ON request\n");
return (px_pre_pwron_check(px_p));
case PPMREQ_POST_PWR_ON:
DBG(DBG_PWR, px_p->px_dip, "ioctl: POST_PWR_ON request\n");
return (px_goto_l0(px_p));
default:
return (DDI_FAILURE);
}
}
/*
* sends PME_Turn_Off message to put the link in L2/L3 ready state.
* called by px_ioctl.
* returns DDI_SUCCESS or DDI_FAILURE
* 1. Wait for link to be in L1 state (link status reg)
* 2. write to PME_Turn_off reg to boradcast
* 3. set timeout
* 4. If timeout, return failure.
* 5. If PM_TO_Ack, wait till link is in L2/L3 ready
*/
static int
px_goto_l23ready(px_t *px_p)
{
pcie_pwr_t *pwr_p;
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
int ret = DDI_SUCCESS;
clock_t end, timeleft;
int mutex_held = 1;
/* If no PM info, return failure */
if (!PCIE_PMINFO(px_p->px_dip) ||
!(pwr_p = PCIE_NEXUS_PMINFO(px_p->px_dip)))
return (DDI_FAILURE);
mutex_enter(&pwr_p->pwr_lock);
mutex_enter(&px_p->px_l23ready_lock);
/* Clear the PME_To_ACK receieved flag */
px_p->px_pm_flags &= ~PX_PMETOACK_RECVD;
/*
* When P25 is the downstream device, after receiving
* PME_To_ACK, fire will go to Detect state, which causes
* the link down event. Inform FMA that this is expected.
* In case of all other cards complaint with the pci express
* spec, this will happen when the power is re-applied. FMA
* code will clear this flag after one instance of LDN. Since
* there will not be a LDN event for the spec compliant cards,
* we need to clear the flag after receiving PME_To_ACK.
*/
px_p->px_pm_flags |= PX_LDN_EXPECTED;
if (px_send_pme_turnoff(csr_base) != DDI_SUCCESS) {
ret = DDI_FAILURE;
goto l23ready_done;
}
px_p->px_pm_flags |= PX_PME_TURNOFF_PENDING;
end = ddi_get_lbolt() + drv_usectohz(px_pme_to_ack_timeout);
while (!(px_p->px_pm_flags & PX_PMETOACK_RECVD)) {
timeleft = cv_timedwait(&px_p->px_l23ready_cv,
&px_p->px_l23ready_lock, end);
/*
* if cv_timedwait returns -1, it is either
* 1) timed out or
* 2) there was a pre-mature wakeup but by the time
* cv_timedwait is called again end < lbolt i.e.
* end is in the past.
* 3) By the time we make first cv_timedwait call,
* end < lbolt is true.
*/
if (timeleft == -1)
break;
}
if (!(px_p->px_pm_flags & PX_PMETOACK_RECVD)) {
/*
* Either timedout or interrupt didn't get a
* chance to grab the mutex and set the flag.
* release the mutex and delay for sometime.
* This will 1) give a chance for interrupt to
* set the flag 2) creates a delay between two
* consequetive requests.
*/
mutex_exit(&px_p->px_l23ready_lock);
delay(drv_usectohz(50 * PX_MSEC_TO_USEC));
mutex_held = 0;
if (!(px_p->px_pm_flags & PX_PMETOACK_RECVD)) {
ret = DDI_FAILURE;
DBG(DBG_PWR, px_p->px_dip, " Timed out while waiting"
" for PME_TO_ACK\n");
}
}
px_p->px_pm_flags &=
~(PX_PME_TURNOFF_PENDING | PX_PMETOACK_RECVD | PX_LDN_EXPECTED);
l23ready_done:
if (mutex_held)
mutex_exit(&px_p->px_l23ready_lock);
/*
* Wait till link is in L1 idle, if sending PME_Turn_Off
* was succesful.
*/
if (ret == DDI_SUCCESS) {
if (px_link_wait4l1idle(csr_base) != DDI_SUCCESS) {
DBG(DBG_PWR, px_p->px_dip, " Link is not at L1"
" even though we received PME_To_ACK.\n");
/*
* Workaround for hardware bug with P25.
* Due to a hardware bug with P25, link state
* will be Detect state rather than L1 after
* link is transitioned to L23Ready state. Since
* we don't know whether link is L23ready state
* without Fire's state being L1_idle, we delay
* here just to make sure that we wait till link
* is transitioned to L23Ready state.
*/
delay(drv_usectohz(100 * PX_MSEC_TO_USEC));
}
pwr_p->pwr_link_lvl = PM_LEVEL_L3;
}
mutex_exit(&pwr_p->pwr_lock);
return (ret);
}
/*
* Message interrupt handler intended to be shared for both
* PME and PME_TO_ACK msg handling, currently only handles
* PME_To_ACK message.
*/
uint_t
px_pmeq_intr(caddr_t arg)
{
px_t *px_p = (px_t *)arg;
DBG(DBG_PWR, px_p->px_dip, " PME_To_ACK received \n");
mutex_enter(&px_p->px_l23ready_lock);
cv_broadcast(&px_p->px_l23ready_cv);
if (px_p->px_pm_flags & PX_PME_TURNOFF_PENDING) {
px_p->px_pm_flags |= PX_PMETOACK_RECVD;
} else {
/*
* This maybe the second ack received. If so then,
* we should be receiving it during wait4L1 stage.
*/
px_p->px_pmetoack_ignored++;
}
mutex_exit(&px_p->px_l23ready_lock);
return (DDI_INTR_CLAIMED);
}
static int
px_pre_pwron_check(px_t *px_p)
{
pcie_pwr_t *pwr_p;
/* If no PM info, return failure */
if (!PCIE_PMINFO(px_p->px_dip) ||
!(pwr_p = PCIE_NEXUS_PMINFO(px_p->px_dip)))
return (DDI_FAILURE);
/*
* For the spec compliant downstream cards link down
* is expected when the device is powered on.
*/
px_p->px_pm_flags |= PX_LDN_EXPECTED;
return (pwr_p->pwr_link_lvl == PM_LEVEL_L3 ? DDI_SUCCESS : DDI_FAILURE);
}
static int
px_goto_l0(px_t *px_p)
{
pcie_pwr_t *pwr_p;
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
int ret = DDI_SUCCESS;
uint64_t time_spent = 0;
/* If no PM info, return failure */
if (!PCIE_PMINFO(px_p->px_dip) ||
!(pwr_p = PCIE_NEXUS_PMINFO(px_p->px_dip)))
return (DDI_FAILURE);
mutex_enter(&pwr_p->pwr_lock);
/*
* The following link retrain activity will cause LDN and LUP event.
* Receiving LDN prior to receiving LUP is expected, not an error in
* this case. Receiving LUP indicates link is fully up to support
* powering up down stream device, and of course any further LDN and
* LUP outside this context will be error.
*/
px_p->px_lup_pending = 1;
if (px_link_retrain(csr_base) != DDI_SUCCESS) {
ret = DDI_FAILURE;
goto l0_done;
}
/* LUP event takes the order of 15ms amount of time to occur */
for (; px_p->px_lup_pending && (time_spent < px_lup_poll_to);
time_spent += px_lup_poll_interval)
drv_usecwait(px_lup_poll_interval);
if (px_p->px_lup_pending)
ret = DDI_FAILURE;
l0_done:
px_enable_detect_quiet(csr_base);
if (ret == DDI_SUCCESS)
pwr_p->pwr_link_lvl = PM_LEVEL_L0;
mutex_exit(&pwr_p->pwr_lock);
return (ret);
}
/*
* Extract the drivers binding name to identify which chip we're binding to.
* Whenever a new bus bridge is created, the driver alias entry should be
* added here to identify the device if needed. If a device isn't added,
* the identity defaults to PX_CHIP_UNIDENTIFIED.
*/
static uint32_t
px_identity_init(px_t *px_p)
{
dev_info_t *dip = px_p->px_dip;
char *name = ddi_binding_name(dip);
uint32_t revision = 0;
revision = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"module-revision#", 0);
/* Check for Fire driver binding name */
if (strcmp(name, "pciex108e,80f0") == 0) {
DBG(DBG_ATTACH, dip, "px_identity_init: %s%d: "
"(FIRE), module-revision %d\n", NAMEINST(dip),
revision);
return ((revision >= FIRE_MOD_REV_20) ?
PX_CHIP_FIRE : PX_CHIP_UNIDENTIFIED);
}
/* Check for Oberon driver binding name */
if (strcmp(name, "pciex108e,80f8") == 0) {
DBG(DBG_ATTACH, dip, "px_identity_init: %s%d: "
"(OBERON), module-revision %d\n", NAMEINST(dip),
revision);
return (PX_CHIP_OBERON);
}
DBG(DBG_ATTACH, dip, "%s%d: Unknown PCI Express Host bridge %s %x\n",
ddi_driver_name(dip), ddi_get_instance(dip), name, revision);
return (PX_CHIP_UNIDENTIFIED);
}
int
px_err_add_intr(px_fault_t *px_fault_p)
{
dev_info_t *dip = px_fault_p->px_fh_dip;
px_t *px_p = DIP_TO_STATE(dip);
VERIFY(add_ivintr(px_fault_p->px_fh_sysino, PX_ERR_PIL,
px_fault_p->px_err_func, (caddr_t)px_fault_p, NULL) == 0);
px_ib_intr_enable(px_p, intr_dist_cpuid(), px_fault_p->px_intr_ino);
return (DDI_SUCCESS);
}
void
px_err_rem_intr(px_fault_t *px_fault_p)
{
dev_info_t *dip = px_fault_p->px_fh_dip;
px_t *px_p = DIP_TO_STATE(dip);
px_ib_intr_disable(px_p->px_ib_p, px_fault_p->px_intr_ino,
IB_INTR_WAIT);
rem_ivintr(px_fault_p->px_fh_sysino, NULL);
}
/*
* px_cb_add_intr() - Called from attach(9E) to create CB if not yet
* created, to add CB interrupt vector always, but enable only once.
*/
int
px_cb_add_intr(px_fault_t *fault_p)
{
px_t *px_p = DIP_TO_STATE(fault_p->px_fh_dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
px_cb_t *cb_p = (px_cb_t *)px_get_cb(fault_p->px_fh_dip);
px_cb_list_t *pxl, *pxl_new;
cpuid_t cpuid;
if (cb_p == NULL) {
cb_p = kmem_zalloc(sizeof (px_cb_t), KM_SLEEP);
mutex_init(&cb_p->cb_mutex, NULL, MUTEX_DRIVER, NULL);
cb_p->px_cb_func = px_cb_intr;
pxu_p->px_cb_p = cb_p;
px_set_cb(fault_p->px_fh_dip, (uint64_t)cb_p);
/* px_lib_dev_init allows only FIRE and OBERON */
px_err_reg_enable(
(pxu_p->chip_type == PX_CHIP_FIRE) ?
PX_ERR_JBC : PX_ERR_UBC,
pxu_p->px_address[PX_REG_XBC]);
} else
pxu_p->px_cb_p = cb_p;
mutex_enter(&cb_p->cb_mutex);
VERIFY(add_ivintr(fault_p->px_fh_sysino, PX_ERR_PIL,
cb_p->px_cb_func, (caddr_t)cb_p, NULL) == 0);
if (cb_p->pxl == NULL) {
cpuid = intr_dist_cpuid(),
px_ib_intr_enable(px_p, cpuid, fault_p->px_intr_ino);
pxl = kmem_zalloc(sizeof (px_cb_list_t), KM_SLEEP);
pxl->pxp = px_p;
cb_p->pxl = pxl;
cb_p->sysino = fault_p->px_fh_sysino;
cb_p->cpuid = cpuid;
} else {
/*
* Find the last pxl or
* stop short at encoutering a redundent, or
* both.
*/
pxl = cb_p->pxl;
for (; !(pxl->pxp == px_p) && pxl->next; pxl = pxl->next);
if (pxl->pxp == px_p) {
cmn_err(CE_WARN, "px_cb_add_intr: reregister sysino "
"%lx by px_p 0x%p\n", cb_p->sysino, (void *)px_p);
return (DDI_FAILURE);
}
/* add to linked list */
pxl_new = kmem_zalloc(sizeof (px_cb_list_t), KM_SLEEP);
pxl_new->pxp = px_p;
pxl->next = pxl_new;
}
cb_p->attachcnt++;
mutex_exit(&cb_p->cb_mutex);
return (DDI_SUCCESS);
}
/*
* px_cb_rem_intr() - Called from detach(9E) to remove its CB
* interrupt vector, to shift proxy to the next available px,
* or disable CB interrupt when itself is the last.
*/
void
px_cb_rem_intr(px_fault_t *fault_p)
{
px_t *px_p = DIP_TO_STATE(fault_p->px_fh_dip), *pxp;
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
px_cb_t *cb_p = PX2CB(px_p);
px_cb_list_t *pxl, *prev;
px_fault_t *f_p;
ASSERT(cb_p->pxl);
/* De-list the target px, move the next px up */
mutex_enter(&cb_p->cb_mutex);
pxl = cb_p->pxl;
if (pxl->pxp == px_p) {
cb_p->pxl = pxl->next;
} else {
prev = pxl;
pxl = pxl->next;
for (; pxl && (pxl->pxp != px_p); prev = pxl, pxl = pxl->next);
if (!pxl) {
cmn_err(CE_WARN, "px_cb_rem_intr: can't find px_p 0x%p "
"in registered CB list.", (void *)px_p);
return;
}
prev->next = pxl->next;
}
kmem_free(pxl, sizeof (px_cb_list_t));
if (fault_p->px_fh_sysino == cb_p->sysino) {
px_ib_intr_disable(px_p->px_ib_p, fault_p->px_intr_ino,
IB_INTR_WAIT);
if (cb_p->pxl) {
pxp = cb_p->pxl->pxp;
f_p = &pxp->px_cb_fault;
cb_p->sysino = f_p->px_fh_sysino;
PX_INTR_ENABLE(pxp->px_dip, cb_p->sysino, cb_p->cpuid);
(void) px_lib_intr_setstate(pxp->px_dip, cb_p->sysino,
INTR_IDLE_STATE);
}
}
rem_ivintr(fault_p->px_fh_sysino, NULL);
pxu_p->px_cb_p = NULL;
cb_p->attachcnt--;
if (cb_p->pxl) {
mutex_exit(&cb_p->cb_mutex);
return;
}
mutex_exit(&cb_p->cb_mutex);
/* px_lib_dev_init allows only FIRE and OBERON */
px_err_reg_disable(
(pxu_p->chip_type == PX_CHIP_FIRE) ? PX_ERR_JBC : PX_ERR_UBC,
pxu_p->px_address[PX_REG_XBC]);
mutex_destroy(&cb_p->cb_mutex);
px_set_cb(fault_p->px_fh_dip, 0ull);
kmem_free(cb_p, sizeof (px_cb_t));
}
/*
* px_cb_intr() - sun4u only, CB interrupt dispatcher
*/
uint_t
px_cb_intr(caddr_t arg)
{
px_cb_t *cb_p = (px_cb_t *)arg;
px_cb_list_t *pxl = cb_p->pxl;
px_t *pxp = pxl ? pxl->pxp : NULL;
px_fault_t *fault_p;
while (pxl && pxp && (pxp->px_state != PX_ATTACHED)) {
pxl = pxl->next;
pxp = (pxl) ? pxl->pxp : NULL;
}
if (pxp) {
fault_p = &pxp->px_cb_fault;
return (fault_p->px_err_func((caddr_t)fault_p));
} else
return (DDI_INTR_UNCLAIMED);
}
/*
* px_cb_intr_redist() - sun4u only, CB interrupt redistribution
*/
void
px_cb_intr_redist(px_t *px_p)
{
px_fault_t *f_p = &px_p->px_cb_fault;
px_cb_t *cb_p = PX2CB(px_p);
devino_t ino = px_p->px_inos[PX_INTR_XBC];
cpuid_t cpuid;
mutex_enter(&cb_p->cb_mutex);
if (cb_p->sysino != f_p->px_fh_sysino) {
mutex_exit(&cb_p->cb_mutex);
return;
}
cb_p->cpuid = cpuid = intr_dist_cpuid();
px_ib_intr_dist_en(px_p->px_dip, cpuid, ino, B_FALSE);
mutex_exit(&cb_p->cb_mutex);
}
#ifdef FMA
void
px_fill_rc_status(px_fault_t *px_fault_p, pciex_rc_error_regs_t *rc_status)
{
/* populate the rc_status by reading the registers - TBD */
}
#endif /* FMA */
/*
* Unprotected raw reads/writes of fabric device's config space.
* Only used for temporary PCI-E Fabric Error Handling.
*/
uint32_t
px_fab_get(px_t *px_p, pcie_req_id_t bdf, uint16_t offset)
{
px_ranges_t *rp = px_p->px_ranges_p;
uint64_t range_prop, base_addr;
int bank = PCI_REG_ADDR_G(PCI_ADDR_CONFIG);
uint32_t val;
/* Get Fire's Physical Base Address */
range_prop = px_get_range_prop(px_p, rp, bank);
/* Get config space first. */
base_addr = range_prop + PX_BDF_TO_CFGADDR(bdf, offset);
val = ldphysio(base_addr);
return (LE_32(val));
}
void
px_fab_set(px_t *px_p, pcie_req_id_t bdf, uint16_t offset,
uint32_t val) {
px_ranges_t *rp = px_p->px_ranges_p;
uint64_t range_prop, base_addr;
int bank = PCI_REG_ADDR_G(PCI_ADDR_CONFIG);
/* Get Fire's Physical Base Address */
range_prop = px_get_range_prop(px_p, rp, bank);
/* Get config space first. */
base_addr = range_prop + PX_BDF_TO_CFGADDR(bdf, offset);
stphysio(base_addr, LE_32(val));
}
/*
* cpr callback
*
* disable fabric error msg interrupt prior to suspending
* all device drivers; re-enable fabric error msg interrupt
* after all devices are resumed.
*/
static boolean_t
px_cpr_callb(void *arg, int code)
{
px_t *px_p = (px_t *)arg;
px_ib_t *ib_p = px_p->px_ib_p;
px_pec_t *pec_p = px_p->px_pec_p;
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
caddr_t csr_base;
devino_t ce_ino, nf_ino, f_ino;
px_ib_ino_info_t *ce_ino_p, *nf_ino_p, *f_ino_p;
uint64_t imu_log_enable, imu_intr_enable;
uint64_t imu_log_mask, imu_intr_mask;
ce_ino = px_msiqid_to_devino(px_p, pec_p->pec_corr_msg_msiq_id);
nf_ino = px_msiqid_to_devino(px_p, pec_p->pec_non_fatal_msg_msiq_id);
f_ino = px_msiqid_to_devino(px_p, pec_p->pec_fatal_msg_msiq_id);
csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
imu_log_enable = CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE);
imu_intr_enable = CSR_XR(csr_base, IMU_INTERRUPT_ENABLE);
imu_log_mask = BITMASK(IMU_ERROR_LOG_ENABLE_FATAL_MES_NOT_EN_LOG_EN) |
BITMASK(IMU_ERROR_LOG_ENABLE_NONFATAL_MES_NOT_EN_LOG_EN) |
BITMASK(IMU_ERROR_LOG_ENABLE_COR_MES_NOT_EN_LOG_EN);
imu_intr_mask =
BITMASK(IMU_INTERRUPT_ENABLE_FATAL_MES_NOT_EN_S_INT_EN) |
BITMASK(IMU_INTERRUPT_ENABLE_NONFATAL_MES_NOT_EN_S_INT_EN) |
BITMASK(IMU_INTERRUPT_ENABLE_COR_MES_NOT_EN_S_INT_EN) |
BITMASK(IMU_INTERRUPT_ENABLE_FATAL_MES_NOT_EN_P_INT_EN) |
BITMASK(IMU_INTERRUPT_ENABLE_NONFATAL_MES_NOT_EN_P_INT_EN) |
BITMASK(IMU_INTERRUPT_ENABLE_COR_MES_NOT_EN_P_INT_EN);
switch (code) {
case CB_CODE_CPR_CHKPT:
/* disable imu rbne on corr/nonfatal/fatal errors */
CSR_XS(csr_base, IMU_ERROR_LOG_ENABLE,
imu_log_enable & (~imu_log_mask));
CSR_XS(csr_base, IMU_INTERRUPT_ENABLE,
imu_intr_enable & (~imu_intr_mask));
/* disable CORR intr mapping */
px_ib_intr_disable(ib_p, ce_ino, IB_INTR_NOWAIT);
/* disable NON FATAL intr mapping */
px_ib_intr_disable(ib_p, nf_ino, IB_INTR_NOWAIT);
/* disable FATAL intr mapping */
px_ib_intr_disable(ib_p, f_ino, IB_INTR_NOWAIT);
break;
case CB_CODE_CPR_RESUME:
mutex_enter(&ib_p->ib_ino_lst_mutex);
ce_ino_p = px_ib_locate_ino(ib_p, ce_ino);
nf_ino_p = px_ib_locate_ino(ib_p, nf_ino);
f_ino_p = px_ib_locate_ino(ib_p, f_ino);
/* enable CORR intr mapping */
if (ce_ino_p)
px_ib_intr_enable(px_p, ce_ino_p->ino_cpuid, ce_ino);
else
cmn_err(CE_WARN, "px_cpr_callb: RESUME unable to "
"reenable PCIe Correctable msg intr.\n");
/* enable NON FATAL intr mapping */
if (nf_ino_p)
px_ib_intr_enable(px_p, nf_ino_p->ino_cpuid, nf_ino);
else
cmn_err(CE_WARN, "px_cpr_callb: RESUME unable to "
"reenable PCIe Non Fatal msg intr.\n");
/* enable FATAL intr mapping */
if (f_ino_p)
px_ib_intr_enable(px_p, f_ino_p->ino_cpuid, f_ino);
else
cmn_err(CE_WARN, "px_cpr_callb: RESUME unable to "
"reenable PCIe Fatal msg intr.\n");
mutex_exit(&ib_p->ib_ino_lst_mutex);
/* enable corr/nonfatal/fatal not enable error */
CSR_XS(csr_base, IMU_ERROR_LOG_ENABLE, (imu_log_enable |
(imu_log_mask & px_imu_log_mask)));
CSR_XS(csr_base, IMU_INTERRUPT_ENABLE, (imu_intr_enable |
(imu_intr_mask & px_imu_intr_mask)));
break;
}
return (B_TRUE);
}
uint64_t
px_get_rng_parent_hi_mask(px_t *px_p)
{
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
uint64_t mask;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
mask = OBERON_RANGE_PROP_MASK;
break;
case PX_CHIP_FIRE:
mask = PX_RANGE_PROP_MASK;
break;
default:
mask = PX_RANGE_PROP_MASK;
}
return (mask);
}
/*
* fetch chip's range propery's value
*/
uint64_t
px_get_range_prop(px_t *px_p, px_ranges_t *rp, int bank)
{
uint64_t mask, range_prop;
mask = px_get_rng_parent_hi_mask(px_p);
range_prop = (((uint64_t)(rp[bank].parent_high & mask)) << 32) |
rp[bank].parent_low;
return (range_prop);
}
/*
* add cpr callback
*/
void
px_cpr_add_callb(px_t *px_p)
{
px_p->px_cprcb_id = callb_add(px_cpr_callb, (void *)px_p,
CB_CL_CPR_POST_USER, "px_cpr");
}
/*
* remove cpr callback
*/
void
px_cpr_rem_callb(px_t *px_p)
{
(void) callb_delete(px_p->px_cprcb_id);
}
/*ARGSUSED*/
static uint_t
px_hp_intr(caddr_t arg1, caddr_t arg2)
{
px_t *px_p = (px_t *)arg1;
int rval;
rval = pciehpc_intr(px_p->px_dip);
#ifdef DEBUG
if (rval == DDI_INTR_UNCLAIMED)
cmn_err(CE_WARN, "%s%d: UNCLAIMED intr\n",
ddi_driver_name(px_p->px_dip),
ddi_get_instance(px_p->px_dip));
#endif
return (rval);
}
int
px_lib_hotplug_init(dev_info_t *dip, void *arg)
{
px_t *px_p = DIP_TO_STATE(dip);
uint64_t ret;
if ((ret = hvio_hotplug_init(dip, arg)) == DDI_SUCCESS) {
sysino_t sysino;
if (px_lib_intr_devino_to_sysino(px_p->px_dip,
px_p->px_inos[PX_INTR_HOTPLUG], &sysino) !=
DDI_SUCCESS) {
#ifdef DEBUG
cmn_err(CE_WARN, "%s%d: devino_to_sysino fails\n",
ddi_driver_name(px_p->px_dip),
ddi_get_instance(px_p->px_dip));
#endif
return (DDI_FAILURE);
}
VERIFY(add_ivintr(sysino, PX_PCIEHP_PIL,
(intrfunc)px_hp_intr, (caddr_t)px_p, NULL) == 0);
}
return (ret);
}
void
px_lib_hotplug_uninit(dev_info_t *dip)
{
if (hvio_hotplug_uninit(dip) == DDI_SUCCESS) {
px_t *px_p = DIP_TO_STATE(dip);
sysino_t sysino;
if (px_lib_intr_devino_to_sysino(px_p->px_dip,
px_p->px_inos[PX_INTR_HOTPLUG], &sysino) !=
DDI_SUCCESS) {
#ifdef DEBUG
cmn_err(CE_WARN, "%s%d: devino_to_sysino fails\n",
ddi_driver_name(px_p->px_dip),
ddi_get_instance(px_p->px_dip));
#endif
return;
}
rem_ivintr(sysino, NULL);
}
}
boolean_t
px_lib_is_in_drain_state(px_t *px_p)
{
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
caddr_t csr_base = (caddr_t)pxu_p->px_address[PX_REG_CSR];
uint64_t drain_status;
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
drain_status = CSR_BR(csr_base, DRAIN_CONTROL_STATUS, DRAIN);
} else {
drain_status = CSR_BR(csr_base, TLU_STATUS, DRAIN);
}
return (drain_status);
}