px_hlib.c revision 92e1ac0d7d0f8596dfc8b9e1302e1100e5b35efa
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/cmn_err.h>
#include <sys/vmsystm.h>
#include <sys/vmem.h>
#include <sys/machsystm.h> /* lddphys() */
#include <sys/iommutsb.h>
#include <sys/pci.h>
#include <sys/hotplug/pci/pciehpc.h>
#include <pcie_pwr.h>
#include <px_obj.h>
#include "px_regs.h"
#include "oberon_regs.h"
#include "px_csr.h"
#include "px_lib4u.h"
/*
* Registers that need to be saved and restored during suspend/resume.
*/
/*
* Registers in the PEC Module.
* LPU_RESET should be set to 0ull during resume
*
* This array is in reg,chip form. PX_CHIP_UNIDENTIFIED is for all chips
* or PX_CHIP_FIRE for Fire only, or PX_CHIP_OBERON for Oberon only.
*/
static struct px_pec_regs {
uint64_t reg;
uint64_t chip;
} pec_config_state_regs[] = {
{PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
{ILU_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
{ILU_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
{TLU_CONTROL, PX_CHIP_UNIDENTIFIED},
{TLU_OTHER_EVENT_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
{TLU_OTHER_EVENT_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
{TLU_DEVICE_CONTROL, PX_CHIP_UNIDENTIFIED},
{TLU_LINK_CONTROL, PX_CHIP_UNIDENTIFIED},
{TLU_UNCORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
{TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
{TLU_CORRECTABLE_ERROR_LOG_ENABLE, PX_CHIP_UNIDENTIFIED},
{TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
{DLU_LINK_LAYER_CONFIG, PX_CHIP_OBERON},
{DLU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_OBERON},
{DLU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_OBERON},
{LPU_LINK_LAYER_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_RECEIVE_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_TRANSMIT_PHY_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_GIGABLAZE_GLUE_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_LTSSM_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_RESET, PX_CHIP_FIRE},
{LPU_DEBUG_CONFIG, PX_CHIP_FIRE},
{LPU_INTERRUPT_MASK, PX_CHIP_FIRE},
{LPU_LINK_LAYER_CONFIG, PX_CHIP_FIRE},
{LPU_FLOW_CONTROL_UPDATE_CONTROL, PX_CHIP_FIRE},
{LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, PX_CHIP_FIRE},
{LPU_TXLINK_REPLAY_TIMER_THRESHOLD, PX_CHIP_FIRE},
{LPU_REPLAY_BUFFER_MAX_ADDRESS, PX_CHIP_FIRE},
{LPU_TXLINK_RETRY_FIFO_POINTER, PX_CHIP_FIRE},
{LPU_LTSSM_CONFIG2, PX_CHIP_FIRE},
{LPU_LTSSM_CONFIG3, PX_CHIP_FIRE},
{LPU_LTSSM_CONFIG4, PX_CHIP_FIRE},
{LPU_LTSSM_CONFIG5, PX_CHIP_FIRE},
{DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, PX_CHIP_UNIDENTIFIED},
{DMC_DEBUG_SELECT_FOR_PORT_A, PX_CHIP_UNIDENTIFIED},
{DMC_DEBUG_SELECT_FOR_PORT_B, PX_CHIP_UNIDENTIFIED}
};
#define PEC_KEYS \
((sizeof (pec_config_state_regs))/sizeof (struct px_pec_regs))
#define PEC_SIZE (PEC_KEYS * sizeof (uint64_t))
/*
* Registers for the MMU module.
* MMU_TTE_CACHE_INVALIDATE needs to be cleared. (-1ull)
*/
static uint64_t mmu_config_state_regs[] = {
MMU_TSB_CONTROL,
MMU_CONTROL_AND_STATUS,
MMU_ERROR_LOG_ENABLE,
MMU_INTERRUPT_ENABLE
};
#define MMU_SIZE (sizeof (mmu_config_state_regs))
#define MMU_KEYS (MMU_SIZE / sizeof (uint64_t))
/*
* Registers for the IB Module
*/
static uint64_t ib_config_state_regs[] = {
IMU_ERROR_LOG_ENABLE,
IMU_INTERRUPT_ENABLE
};
#define IB_SIZE (sizeof (ib_config_state_regs))
#define IB_KEYS (IB_SIZE / sizeof (uint64_t))
#define IB_MAP_SIZE (INTERRUPT_MAPPING_ENTRIES * sizeof (uint64_t))
/*
* Registers for the JBC module.
* JBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
*/
static uint64_t jbc_config_state_regs[] = {
JBUS_PARITY_CONTROL,
JBC_FATAL_RESET_ENABLE,
JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE,
JBC_ERROR_LOG_ENABLE,
JBC_INTERRUPT_ENABLE
};
#define JBC_SIZE (sizeof (jbc_config_state_regs))
#define JBC_KEYS (JBC_SIZE / sizeof (uint64_t))
/*
* Registers for the UBC module.
* UBC_ERROR_STATUS_CLEAR needs to be cleared. (-1ull)
*/
static uint64_t ubc_config_state_regs[] = {
UBC_ERROR_LOG_ENABLE,
UBC_INTERRUPT_ENABLE
};
#define UBC_SIZE (sizeof (ubc_config_state_regs))
#define UBC_KEYS (UBC_SIZE / sizeof (uint64_t))
static uint64_t msiq_config_other_regs[] = {
ERR_COR_MAPPING,
ERR_NONFATAL_MAPPING,
ERR_FATAL_MAPPING,
PM_PME_MAPPING,
PME_TO_ACK_MAPPING,
MSI_32_BIT_ADDRESS,
MSI_64_BIT_ADDRESS
};
#define MSIQ_OTHER_SIZE (sizeof (msiq_config_other_regs))
#define MSIQ_OTHER_KEYS (MSIQ_OTHER_SIZE / sizeof (uint64_t))
#define MSIQ_STATE_SIZE (EVENT_QUEUE_STATE_ENTRIES * sizeof (uint64_t))
#define MSIQ_MAPPING_SIZE (MSI_MAPPING_ENTRIES * sizeof (uint64_t))
static uint64_t msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p);
static void msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p);
static void jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
static void ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p);
/*
* Initialize the bus, but do not enable interrupts.
*/
/* ARGSUSED */
void
hvio_cb_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
{
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
ubc_init(xbc_csr_base, pxu_p);
break;
case PX_CHIP_FIRE:
jbc_init(xbc_csr_base, pxu_p);
break;
default:
DBG(DBG_CB, NULL, "hvio_cb_init - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
break;
}
}
/*
* Initialize the JBC module, but do not enable interrupts.
*/
/* ARGSUSED */
static void
jbc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
{
uint64_t val;
/* Check if we need to enable inverted parity */
val = (1ULL << JBUS_PARITY_CONTROL_P_EN);
CSR_XS(xbc_csr_base, JBUS_PARITY_CONTROL, val);
DBG(DBG_CB, NULL, "jbc_init, JBUS_PARITY_CONTROL: 0x%llx\n",
CSR_XR(xbc_csr_base, JBUS_PARITY_CONTROL));
val = (1 << JBC_FATAL_RESET_ENABLE_SPARE_P_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_MB_PEA_P_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_CPE_P_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_APE_P_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_PIO_CPE_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_JTCEEW_P_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_JTCEEI_P_INT_EN) |
(1 << JBC_FATAL_RESET_ENABLE_JTCEER_P_INT_EN);
CSR_XS(xbc_csr_base, JBC_FATAL_RESET_ENABLE, val);
DBG(DBG_CB, NULL, "jbc_init, JBC_FATAL_RESET_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, JBC_FATAL_RESET_ENABLE));
/*
* Enable merge, jbc and dmc interrupts.
*/
CSR_XS(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE, -1ull);
DBG(DBG_CB, NULL,
"jbc_init, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, JBC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
/*
* CSR_V JBC's interrupt regs (log, enable, status, clear)
*/
DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, JBC_ERROR_LOG_ENABLE));
DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, JBC_INTERRUPT_ENABLE));
DBG(DBG_CB, NULL, "jbc_init, JBC_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(xbc_csr_base, JBC_INTERRUPT_STATUS));
DBG(DBG_CB, NULL, "jbc_init, JBC_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(xbc_csr_base, JBC_ERROR_STATUS_CLEAR));
}
/*
* Initialize the UBC module, but do not enable interrupts.
*/
/* ARGSUSED */
static void
ubc_init(caddr_t xbc_csr_base, pxu_t *pxu_p)
{
/*
* Enable Uranus bus error log bits.
*/
CSR_XS(xbc_csr_base, UBC_ERROR_LOG_ENABLE, -1ull);
DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
/*
* Clear Uranus bus errors.
*/
CSR_XS(xbc_csr_base, UBC_ERROR_STATUS_CLEAR, -1ull);
DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
/*
* CSR_V UBC's interrupt regs (log, enable, status, clear)
*/
DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, UBC_ERROR_LOG_ENABLE));
DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(xbc_csr_base, UBC_INTERRUPT_ENABLE));
DBG(DBG_CB, NULL, "ubc_init, UBC_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(xbc_csr_base, UBC_INTERRUPT_STATUS));
DBG(DBG_CB, NULL, "ubc_init, UBC_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(xbc_csr_base, UBC_ERROR_STATUS_CLEAR));
}
/*
* Initialize the module, but do not enable interrupts.
*/
/* ARGSUSED */
void
hvio_ib_init(caddr_t csr_base, pxu_t *pxu_p)
{
/*
* CSR_V IB's interrupt regs (log, enable, status, clear)
*/
DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(csr_base, IMU_ERROR_LOG_ENABLE));
DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, IMU_INTERRUPT_ENABLE));
DBG(DBG_IB, NULL, "hvio_ib_init - IMU_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, IMU_INTERRUPT_STATUS));
DBG(DBG_IB, NULL, "hvio_ib_init - IMU_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(csr_base, IMU_ERROR_STATUS_CLEAR));
}
/*
* Initialize the module, but do not enable interrupts.
*/
/* ARGSUSED */
static void
ilu_init(caddr_t csr_base, pxu_t *pxu_p)
{
/*
* CSR_V ILU's interrupt regs (log, enable, status, clear)
*/
DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE));
DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, ILU_INTERRUPT_ENABLE));
DBG(DBG_ILU, NULL, "ilu_init - ILU_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, ILU_INTERRUPT_STATUS));
DBG(DBG_ILU, NULL, "ilu_init - ILU_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(csr_base, ILU_ERROR_STATUS_CLEAR));
}
/*
* Initialize the module, but do not enable interrupts.
*/
/* ARGSUSED */
static void
tlu_init(caddr_t csr_base, pxu_t *pxu_p)
{
uint64_t val;
/*
* CSR_V TLU_CONTROL Expect OBP ???
*/
/*
* L0s entry default timer value - 7.0 us
* Completion timeout select default value - 67.1 ms and
* OBP will set this value.
*
* Configuration - Bit 0 should always be 0 for upstream port.
* Bit 1 is clock - how is this related to the clock bit in TLU
* Link Control register? Both are hardware dependent and likely
* set by OBP.
*
* Disable non-posted write bit - ordering by setting
* NPWR_EN bit to force serialization of writes.
*/
val = CSR_XR(csr_base, TLU_CONTROL);
val |= (TLU_CONTROL_L0S_TIM_DEFAULT << TLU_CONTROL_L0S_TIM) |
(1ull << TLU_CONTROL_NPWR_EN) | TLU_CONTROL_CONFIG_DEFAULT;
/*
* For Oberon, NPWR_EN is set to 0 to prevent PIO reads from blocking
* behind non-posted PIO writes. This blocking could cause a master or
* slave timeout on the host bus if multiple serialized PIOs were to
* suffer Completion Timeouts because the CTO delays for each PIO ahead
* of the read would accumulate. Since the Olympus processor can have
* only 1 PIO outstanding, there is no possibility of PIO accesses from
* a given CPU to a given device being re-ordered by the PCIe fabric;
* therefore turning off serialization should be safe from a PCIe
* ordering perspective.
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
val &= ~(1ull << TLU_CONTROL_NPWR_EN);
/*
* Set Detect.Quiet. This will disable automatic link
* re-training, if the link goes down e.g. power management
* turns off power to the downstream device. This will enable
* Fire to go to Drain state, after link down. The drain state
* forces a reset to the FC state machine, which is required for
* proper link re-training.
*/
val |= (1ull << TLU_REMAIN_DETECT_QUIET);
CSR_XS(csr_base, TLU_CONTROL, val);
DBG(DBG_TLU, NULL, "tlu_init - TLU_CONTROL: 0x%llx\n",
CSR_XR(csr_base, TLU_CONTROL));
/*
* CSR_V TLU_STATUS Expect HW 0x4
*/
/*
* Only bit [7:0] are currently defined. Bits [2:0]
* are the state, which should likely be in state active,
* 100b. Bit three is 'recovery', which is not understood.
* All other bits are reserved.
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_STATUS: 0x%llx\n",
CSR_XR(csr_base, TLU_STATUS));
/*
* CSR_V TLU_PME_TURN_OFF_GENERATE Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_PME_TURN_OFF_GENERATE: 0x%llx\n",
CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE));
/*
* CSR_V TLU_INGRESS_CREDITS_INITIAL Expect HW 0x10000200C0
*/
/*
* Ingress credits initial register. Bits [39:32] should be
* 0x10, bits [19:12] should be 0x20, and bits [11:0] should
* be 0xC0. These are the reset values, and should be set by
* HW.
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_INGRESS_CREDITS_INITIAL: 0x%llx\n",
CSR_XR(csr_base, TLU_INGRESS_CREDITS_INITIAL));
/*
* CSR_V TLU_DIAGNOSTIC Expect HW 0x0
*/
/*
* Diagnostic register - always zero unless we are debugging.
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_DIAGNOSTIC: 0x%llx\n",
CSR_XR(csr_base, TLU_DIAGNOSTIC));
/*
* CSR_V TLU_EGRESS_CREDITS_CONSUMED Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDITS_CONSUMED: 0x%llx\n",
CSR_XR(csr_base, TLU_EGRESS_CREDITS_CONSUMED));
/*
* CSR_V TLU_EGRESS_CREDIT_LIMIT Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_CREDIT_LIMIT: 0x%llx\n",
CSR_XR(csr_base, TLU_EGRESS_CREDIT_LIMIT));
/*
* CSR_V TLU_EGRESS_RETRY_BUFFER Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_EGRESS_RETRY_BUFFER: 0x%llx\n",
CSR_XR(csr_base, TLU_EGRESS_RETRY_BUFFER));
/*
* CSR_V TLU_INGRESS_CREDITS_ALLOCATED Expected HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_INGRESS_CREDITS_ALLOCATED: 0x%llx\n",
CSR_XR(csr_base, TLU_INGRESS_CREDITS_ALLOCATED));
/*
* CSR_V TLU_INGRESS_CREDITS_RECEIVED Expected HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_INGRESS_CREDITS_RECEIVED: 0x%llx\n",
CSR_XR(csr_base, TLU_INGRESS_CREDITS_RECEIVED));
/*
* CSR_V TLU's interrupt regs (log, enable, status, clear)
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_OTHER_EVENT_LOG_ENABLE: 0x%llx\n",
CSR_XR(csr_base, TLU_OTHER_EVENT_LOG_ENABLE));
DBG(DBG_TLU, NULL,
"tlu_init - TLU_OTHER_EVENT_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_ENABLE));
DBG(DBG_TLU, NULL,
"tlu_init - TLU_OTHER_EVENT_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, TLU_OTHER_EVENT_INTERRUPT_STATUS));
DBG(DBG_TLU, NULL,
"tlu_init - TLU_OTHER_EVENT_STATUS_CLEAR: 0x%llx\n",
CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR));
/*
* CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER1_LOG));
/*
* CSR_V TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_RECEIVE_OTHER_EVENT_HEADER2_LOG));
/*
* CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER1_LOG));
/*
* CSR_V TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_TRANSMIT_OTHER_EVENT_HEADER2_LOG));
/*
* CSR_V TLU_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_SELECT));
/*
* CSR_V TLU_PERFORMANCE_COUNTER_ZERO Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_PERFORMANCE_COUNTER_ZERO: 0x%llx\n",
CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ZERO));
/*
* CSR_V TLU_PERFORMANCE_COUNTER_ONE Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_ONE: 0x%llx\n",
CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_ONE));
/*
* CSR_V TLU_PERFORMANCE_COUNTER_TWO Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_PERFORMANCE_COUNTER_TWO: 0x%llx\n",
CSR_XR(csr_base, TLU_PERFORMANCE_COUNTER_TWO));
/*
* CSR_V TLU_DEBUG_SELECT_A Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_A: 0x%llx\n",
CSR_XR(csr_base, TLU_DEBUG_SELECT_A));
/*
* CSR_V TLU_DEBUG_SELECT_B Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_DEBUG_SELECT_B: 0x%llx\n",
CSR_XR(csr_base, TLU_DEBUG_SELECT_B));
/*
* CSR_V TLU_DEVICE_CAPABILITIES Expect HW 0xFC2
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CAPABILITIES: 0x%llx\n",
CSR_XR(csr_base, TLU_DEVICE_CAPABILITIES));
/*
* CSR_V TLU_DEVICE_CONTROL Expect HW 0x0
*/
/*
* Bits [14:12] are the Max Read Request Size, which is always 64
* bytes which is 000b. Bits [7:5] are Max Payload Size, which
* start at 128 bytes which is 000b. This may be revisited if
* init_child finds greater values.
*/
val = 0x0ull;
CSR_XS(csr_base, TLU_DEVICE_CONTROL, val);
DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_CONTROL: 0x%llx\n",
CSR_XR(csr_base, TLU_DEVICE_CONTROL));
/*
* CSR_V TLU_DEVICE_STATUS Expect HW 0x0
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_DEVICE_STATUS: 0x%llx\n",
CSR_XR(csr_base, TLU_DEVICE_STATUS));
/*
* CSR_V TLU_LINK_CAPABILITIES Expect HW 0x15C81
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CAPABILITIES: 0x%llx\n",
CSR_XR(csr_base, TLU_LINK_CAPABILITIES));
/*
* CSR_V TLU_LINK_CONTROL Expect OBP 0x40
*/
/*
* The CLOCK bit should be set by OBP if the hardware dictates,
* and if it is set then ASPM should be used since then L0s exit
* latency should be lower than L1 exit latency.
*
* Note that we will not enable power management during bringup
* since it has not been test and is creating some problems in
* simulation.
*/
val = (1ull << TLU_LINK_CONTROL_CLOCK);
CSR_XS(csr_base, TLU_LINK_CONTROL, val);
DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_CONTROL: 0x%llx\n",
CSR_XR(csr_base, TLU_LINK_CONTROL));
/*
* CSR_V TLU_LINK_STATUS Expect OBP 0x1011
*/
/*
* Not sure if HW or OBP will be setting this read only
* register. Bit 12 is Clock, and it should always be 1
* signifying that the component uses the same physical
* clock as the platform. Bits [9:4] are for the width,
* with the expected value above signifying a x1 width.
* Bits [3:0] are the speed, with 1b signifying 2.5 Gb/s,
* the only speed as yet supported by the PCI-E spec.
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_LINK_STATUS: 0x%llx\n",
CSR_XR(csr_base, TLU_LINK_STATUS));
/*
* CSR_V TLU_SLOT_CAPABILITIES Expect OBP ???
*/
/*
* Power Limits for the slots. Will be platform
* dependent, and OBP will need to set after consulting
* with the HW guys.
*
* Bits [16:15] are power limit scale, which most likely
* will be 0b signifying 1x. Bits [14:7] are the Set
* Power Limit Value, which is a number which is multiplied
* by the power limit scale to get the actual power limit.
*/
DBG(DBG_TLU, NULL, "tlu_init - TLU_SLOT_CAPABILITIES: 0x%llx\n",
CSR_XR(csr_base, TLU_SLOT_CAPABILITIES));
/*
* CSR_V TLU_UNCORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x17F011
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_UNCORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_LOG_ENABLE));
/*
* CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE Expect
* Kernel 0x17F0110017F011
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_ENABLE));
/*
* CSR_V TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_INTERRUPT_STATUS));
/*
* CSR_V TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(csr_base, TLU_UNCORRECTABLE_ERROR_STATUS_CLEAR));
/*
* CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER1_LOG));
/*
* CSR_V TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_RECEIVE_UNCORRECTABLE_ERROR_HEADER2_LOG));
/*
* CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER1_LOG));
/*
* CSR_V TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG: 0x%llx\n",
CSR_XR(csr_base, TLU_TRANSMIT_UNCORRECTABLE_ERROR_HEADER2_LOG));
/*
* CSR_V TLU's CE interrupt regs (log, enable, status, clear)
* Plus header logs
*/
/*
* CSR_V TLU_CORRECTABLE_ERROR_LOG_ENABLE Expect Kernel 0x11C1
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_CORRECTABLE_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_LOG_ENABLE));
/*
* CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE Kernel 0x11C1000011C1
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_ENABLE));
/*
* CSR_V TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_INTERRUPT_STATUS));
/*
* CSR_V TLU_CORRECTABLE_ERROR_STATUS_CLEAR Expect HW 0x0
*/
DBG(DBG_TLU, NULL,
"tlu_init - TLU_CORRECTABLE_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(csr_base, TLU_CORRECTABLE_ERROR_STATUS_CLEAR));
}
/* ARGSUSED */
static void
lpu_init(caddr_t csr_base, pxu_t *pxu_p)
{
/* Variables used to set the ACKNAK Latency Timer and Replay Timer */
int link_width, max_payload;
uint64_t val;
/*
* ACKNAK Latency Threshold Table.
* See Fire PRM 2.0 section 1.2.12.2, table 1-17.
*/
int acknak_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE] = {
{0xED, 0x49, 0x43, 0x30},
{0x1A0, 0x76, 0x6B, 0x48},
{0x22F, 0x9A, 0x56, 0x56},
{0x42F, 0x11A, 0x96, 0x96},
{0x82F, 0x21A, 0x116, 0x116},
{0x102F, 0x41A, 0x216, 0x216}
};
/*
* TxLink Replay Timer Latency Table
* See Fire PRM 2.0 sections 1.2.12.3, table 1-18.
*/
int replay_timer_table[LINK_MAX_PKT_ARR_SIZE][LINK_WIDTH_ARR_SIZE] = {
{0x379, 0x112, 0xFC, 0xB4},
{0x618, 0x1BA, 0x192, 0x10E},
{0x831, 0x242, 0x143, 0x143},
{0xFB1, 0x422, 0x233, 0x233},
{0x1EB0, 0x7E1, 0x412, 0x412},
{0x3CB0, 0xF61, 0x7D2, 0x7D2}
};
/*
* Get the Link Width. See table above LINK_WIDTH_ARR_SIZE #define
* Only Link Widths of x1, x4, and x8 are supported.
* If any width is reported other than x8, set default to x8.
*/
link_width = CSR_FR(csr_base, TLU_LINK_STATUS, WIDTH);
DBG(DBG_LPU, NULL, "lpu_init - Link Width: x%d\n", link_width);
/*
* Convert link_width to match timer array configuration.
*/
switch (link_width) {
case 1:
link_width = 0;
break;
case 4:
link_width = 1;
break;
case 8:
link_width = 2;
break;
case 16:
link_width = 3;
break;
default:
link_width = 0;
}
/*
* Get the Max Payload Size.
* See table above LINK_MAX_PKT_ARR_SIZE #define
*/
max_payload = ((CSR_FR(csr_base, TLU_CONTROL, CONFIG) &
TLU_CONTROL_MPS_MASK) >> TLU_CONTROL_MPS_SHIFT);
DBG(DBG_LPU, NULL, "lpu_init - May Payload: %d\n",
(0x80 << max_payload));
/* Make sure the packet size is not greater than 4096 */
max_payload = (max_payload >= LINK_MAX_PKT_ARR_SIZE) ?
(LINK_MAX_PKT_ARR_SIZE - 1) : max_payload;
/*
* CSR_V LPU_ID Expect HW 0x0
*/
/*
* This register has link id, phy id and gigablaze id.
* Should be set by HW.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_ID: 0x%llx\n",
CSR_XR(csr_base, LPU_ID));
/*
* CSR_V LPU_RESET Expect Kernel 0x0
*/
/*
* No reason to have any reset bits high until an error is
* detected on the link.
*/
val = 0ull;
CSR_XS(csr_base, LPU_RESET, val);
DBG(DBG_LPU, NULL, "lpu_init - LPU_RESET: 0x%llx\n",
CSR_XR(csr_base, LPU_RESET));
/*
* CSR_V LPU_DEBUG_STATUS Expect HW 0x0
*/
/*
* Bits [15:8] are Debug B, and bit [7:0] are Debug A.
* They are read-only. What do the 8 bits mean, and
* how do they get set if they are read only?
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_DEBUG_STATUS));
/*
* CSR_V LPU_DEBUG_CONFIG Expect Kernel 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_DEBUG_CONFIG: 0x%llx\n",
CSR_XR(csr_base, LPU_DEBUG_CONFIG));
/*
* CSR_V LPU_LTSSM_CONTROL Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONTROL: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_CONTROL));
/*
* CSR_V LPU_LINK_STATUS Expect HW 0x101
*/
/*
* This register has bits [9:4] for link width, and the
* default 0x10, means a width of x16. The problem is
* this width is not supported according to the TLU
* link status register.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_STATUS));
/*
* CSR_V LPU_INTERRUPT_STATUS Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_INTERRUPT_STATUS));
/*
* CSR_V LPU_INTERRUPT_MASK Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_INTERRUPT_MASK));
/*
* CSR_V LPU_LINK_PERFORMANCE_COUNTER_SELECT Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_PERFORMANCE_COUNTER_SELECT: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_SELECT));
/*
* CSR_V LPU_LINK_PERFORMANCE_COUNTER_CONTROL Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_PERFORMANCE_COUNTER_CONTROL: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER_CONTROL));
/*
* CSR_V LPU_LINK_PERFORMANCE_COUNTER1 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_PERFORMANCE_COUNTER1: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1));
/*
* CSR_V LPU_LINK_PERFORMANCE_COUNTER1_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_PERFORMANCE_COUNTER1_TEST: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER1_TEST));
/*
* CSR_V LPU_LINK_PERFORMANCE_COUNTER2 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_PERFORMANCE_COUNTER2: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2));
/*
* CSR_V LPU_LINK_PERFORMANCE_COUNTER2_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_PERFORMANCE_COUNTER2_TEST: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_PERFORMANCE_COUNTER2_TEST));
/*
* CSR_V LPU_LINK_LAYER_CONFIG Expect HW 0x100
*/
/*
* This is another place where Max Payload can be set,
* this time for the link layer. It will be set to
* 128B, which is the default, but this will need to
* be revisited.
*/
val = (1ull << LPU_LINK_LAYER_CONFIG_VC0_EN);
CSR_XS(csr_base, LPU_LINK_LAYER_CONFIG, val);
DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_CONFIG: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_LAYER_CONFIG));
/*
* CSR_V LPU_LINK_LAYER_STATUS Expect OBP 0x5
*/
/*
* Another R/W status register. Bit 3, DL up Status, will
* be set high. The link state machine status bits [2:0]
* are set to 0x1, but the status bits are not defined in the
* PRM. What does 0x1 mean, what others values are possible
* and what are thier meanings?
*
* This register has been giving us problems in simulation.
* It has been mentioned that software should not program
* any registers with WE bits except during debug. So
* this register will no longer be programmed.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LINK_LAYER_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_LAYER_STATUS));
/*
* CSR_V LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS_TEST));
/*
* CSR_V LPU Link Layer interrupt regs (mask, status)
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_LAYER_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_MASK));
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LINK_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_LINK_LAYER_INTERRUPT_AND_STATUS));
/*
* CSR_V LPU_FLOW_CONTROL_UPDATE_CONTROL Expect OBP 0x7
*/
/*
* The PRM says that only the first two bits will be set
* high by default, which will enable flow control for
* posted and non-posted updates, but NOT completetion
* updates.
*/
val = (1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
(1ull << LPU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
CSR_XS(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL, val);
DBG(DBG_LPU, NULL,
"lpu_init - LPU_FLOW_CONTROL_UPDATE_CONTROL: 0x%llx\n",
CSR_XR(csr_base, LPU_FLOW_CONTROL_UPDATE_CONTROL));
/*
* CSR_V LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE
* Expect OBP 0x1D4C
*/
/*
* This should be set by OBP. We'll check to make sure.
*/
DBG(DBG_LPU, NULL, "lpu_init - "
"LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE: 0x%llx\n",
CSR_XR(csr_base,
LPU_LINK_LAYER_FLOW_CONTROL_UPDATE_TIMEOUT_VALUE));
/*
* CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0 Expect OBP ???
*/
/*
* This register has Flow Control Update Timer values for
* non-posted and posted requests, bits [30:16] and bits
* [14:0], respectively. These are read-only to SW so
* either HW or OBP needs to set them.
*/
DBG(DBG_LPU, NULL, "lpu_init - "
"LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0: 0x%llx\n",
CSR_XR(csr_base,
LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER0));
/*
* CSR_V LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1 Expect OBP ???
*/
/*
* Same as timer0 register above, except for bits [14:0]
* have the timer values for completetions. Read-only to
* SW; OBP or HW need to set it.
*/
DBG(DBG_LPU, NULL, "lpu_init - "
"LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1: 0x%llx\n",
CSR_XR(csr_base,
LPU_LINK_LAYER_VC0_FLOW_CONTROL_UPDATE_TIMER1));
/*
* CSR_V LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD
*/
val = acknak_timer_table[max_payload][link_width];
CSR_XS(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD, val);
DBG(DBG_LPU, NULL, "lpu_init - "
"LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_FREQUENT_NAK_LATENCY_TIMER_THRESHOLD));
/*
* CSR_V LPU_TXLINK_ACKNAK_LATENCY_TIMER Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_ACKNAK_LATENCY_TIMER: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_ACKNAK_LATENCY_TIMER));
/*
* CSR_V LPU_TXLINK_REPLAY_TIMER_THRESHOLD
*/
val = replay_timer_table[max_payload][link_width];
CSR_XS(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_REPLAY_TIMER_THRESHOLD: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER_THRESHOLD));
/*
* CSR_V LPU_TXLINK_REPLAY_TIMER Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_REPLAY_TIMER: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_REPLAY_TIMER));
/*
* CSR_V LPU_TXLINK_REPLAY_NUMBER_STATUS Expect OBP 0x3
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_REPLAY_NUMBER_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_REPLAY_NUMBER_STATUS));
/*
* CSR_V LPU_REPLAY_BUFFER_MAX_ADDRESS Expect OBP 0xB3F
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_REPLAY_BUFFER_MAX_ADDRESS: 0x%llx\n",
CSR_XR(csr_base, LPU_REPLAY_BUFFER_MAX_ADDRESS));
/*
* CSR_V LPU_TXLINK_RETRY_FIFO_POINTER Expect OBP 0xFFFF0000
*/
val = ((LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR_DEFAULT <<
LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_TLPTR) |
(LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR_DEFAULT <<
LPU_TXLINK_RETRY_FIFO_POINTER_RTRY_FIFO_HDPTR));
CSR_XS(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER, val);
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_RETRY_FIFO_POINTER: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_POINTER));
/*
* CSR_V LPU_TXLINK_RETRY_FIFO_R_W_POINTER Expect OBP 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_RETRY_FIFO_R_W_POINTER: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_R_W_POINTER));
/*
* CSR_V LPU_TXLINK_RETRY_FIFO_CREDIT Expect HW 0x1580
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_RETRY_FIFO_CREDIT: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_RETRY_FIFO_CREDIT));
/*
* CSR_V LPU_TXLINK_SEQUENCE_COUNTER Expect OBP 0xFFF0000
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_SEQUENCE_COUNTER: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNTER));
/*
* CSR_V LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER Expect HW 0xFFF
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_ACK_SENT_SEQUENCE_NUMBER));
/*
* CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR Expect OBP 0x157
*/
/*
* Test only register. Will not be programmed.
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_MAX_ADDR));
/*
* CSR_V LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS Expect HW 0xFFF0000
*/
/*
* Test only register. Will not be programmed.
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_FIFO_POINTERS));
/*
* CSR_V LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_COUNT_R_W_POINTERS));
/*
* CSR_V LPU_TXLINK_TEST_CONTROL Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_TEST_CONTROL: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_TEST_CONTROL));
/*
* CSR_V LPU_TXLINK_MEMORY_ADDRESS_CONTROL Expect HW 0x0
*/
/*
* Test only register. Will not be programmed.
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_MEMORY_ADDRESS_CONTROL: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_MEMORY_ADDRESS_CONTROL));
/*
* CSR_V LPU_TXLINK_MEMORY_DATA_LOAD0 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD0: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD0));
/*
* CSR_V LPU_TXLINK_MEMORY_DATA_LOAD1 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD1: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD1));
/*
* CSR_V LPU_TXLINK_MEMORY_DATA_LOAD2 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD2: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD2));
/*
* CSR_V LPU_TXLINK_MEMORY_DATA_LOAD3 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD3: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD3));
/*
* CSR_V LPU_TXLINK_MEMORY_DATA_LOAD4 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_MEMORY_DATA_LOAD4: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_MEMORY_DATA_LOAD4));
/*
* CSR_V LPU_TXLINK_RETRY_DATA_COUNT Expect HW 0x0
*/
/*
* Test only register. Will not be programmed.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TXLINK_RETRY_DATA_COUNT: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_RETRY_DATA_COUNT));
/*
* CSR_V LPU_TXLINK_SEQUENCE_BUFFER_COUNT Expect HW 0x0
*/
/*
* Test only register. Will not be programmed.
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_COUNT: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_COUNT));
/*
* CSR_V LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA Expect HW 0x0
*/
/*
* Test only register.
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA: 0x%llx\n",
CSR_XR(csr_base, LPU_TXLINK_SEQUENCE_BUFFER_BOTTOM_DATA));
/*
* CSR_V LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - "
"LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER: 0x%llx\n",
CSR_XR(csr_base, LPU_RXLINK_NEXT_RECEIVE_SEQUENCE_1_COUNTER));
/*
* CSR_V LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED Expect HW 0x0
*/
/*
* test only register.
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED: 0x%llx\n",
CSR_XR(csr_base, LPU_RXLINK_UNSUPPORTED_DLLP_RECEIVED));
/*
* CSR_V LPU_RXLINK_TEST_CONTROL Expect HW 0x0
*/
/*
* test only register.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_RXLINK_TEST_CONTROL: 0x%llx\n",
CSR_XR(csr_base, LPU_RXLINK_TEST_CONTROL));
/*
* CSR_V LPU_PHYSICAL_LAYER_CONFIGURATION Expect HW 0x10
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_PHYSICAL_LAYER_CONFIGURATION: 0x%llx\n",
CSR_XR(csr_base, LPU_PHYSICAL_LAYER_CONFIGURATION));
/*
* CSR_V LPU_PHY_LAYER_STATUS Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_LAYER_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_PHY_LAYER_STATUS));
/*
* CSR_V LPU_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
CSR_XR(csr_base, LPU_PHY_INTERRUPT_AND_STATUS_TEST));
/*
* CSR_V LPU PHY LAYER interrupt regs (mask, status)
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_PHY_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_PHY_INTERRUPT_MASK));
DBG(DBG_LPU, NULL,
"lpu_init - LPU_PHY_LAYER_INTERRUPT_AND_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_PHY_LAYER_INTERRUPT_AND_STATUS));
/*
* CSR_V LPU_RECEIVE_PHY_CONFIG Expect HW 0x0
*/
/*
* This also needs some explanation. What is the best value
* for the water mark? Test mode enables which test mode?
* Programming model needed for the Receiver Reset Lane N
* bits.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_CONFIG: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_CONFIG));
/*
* CSR_V LPU_RECEIVE_PHY_STATUS1 Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS1: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS1));
/*
* CSR_V LPU_RECEIVE_PHY_STATUS2 Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS2: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS2));
/*
* CSR_V LPU_RECEIVE_PHY_STATUS3 Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_RECEIVE_PHY_STATUS3: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_STATUS3));
/*
* CSR_V LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS_TEST));
/*
* CSR_V LPU RX LAYER interrupt regs (mask, status)
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_RECEIVE_PHY_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_MASK));
DBG(DBG_LPU, NULL,
"lpu_init - LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_RECEIVE_PHY_INTERRUPT_AND_STATUS));
/*
* CSR_V LPU_TRANSMIT_PHY_CONFIG Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_CONFIG: 0x%llx\n",
CSR_XR(csr_base, LPU_TRANSMIT_PHY_CONFIG));
/*
* CSR_V LPU_TRANSMIT_PHY_STATUS Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS));
/*
* CSR_V LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
CSR_XR(csr_base,
LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS_TEST));
/*
* CSR_V LPU TX LAYER interrupt regs (mask, status)
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_MASK));
DBG(DBG_LPU, NULL,
"lpu_init - LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_TRANSMIT_PHY_INTERRUPT_AND_STATUS));
/*
* CSR_V LPU_TRANSMIT_PHY_STATUS_2 Expect HW 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_TRANSMIT_PHY_STATUS_2: 0x%llx\n",
CSR_XR(csr_base, LPU_TRANSMIT_PHY_STATUS_2));
/*
* CSR_V LPU_LTSSM_CONFIG1 Expect OBP 0x205
*/
/*
* The new PRM has values for LTSSM 8 ns timeout value and
* LTSSM 20 ns timeout value. But what do these values mean?
* Most of the other bits are questions as well.
*
* As such we will use the reset value.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG1: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_CONFIG1));
/*
* CSR_V LPU_LTSSM_CONFIG2 Expect OBP 0x2DC6C0
*/
/*
* Again, what does '12 ms timeout value mean'?
*/
val = (LPU_LTSSM_CONFIG2_LTSSM_12_TO_DEFAULT <<
LPU_LTSSM_CONFIG2_LTSSM_12_TO);
CSR_XS(csr_base, LPU_LTSSM_CONFIG2, val);
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG2: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_CONFIG2));
/*
* CSR_V LPU_LTSSM_CONFIG3 Expect OBP 0x7A120
*/
val = (LPU_LTSSM_CONFIG3_LTSSM_2_TO_DEFAULT <<
LPU_LTSSM_CONFIG3_LTSSM_2_TO);
CSR_XS(csr_base, LPU_LTSSM_CONFIG3, val);
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG3: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_CONFIG3));
/*
* CSR_V LPU_LTSSM_CONFIG4 Expect OBP 0x21300
*/
val = ((LPU_LTSSM_CONFIG4_DATA_RATE_DEFAULT <<
LPU_LTSSM_CONFIG4_DATA_RATE) |
(LPU_LTSSM_CONFIG4_N_FTS_DEFAULT <<
LPU_LTSSM_CONFIG4_N_FTS));
CSR_XS(csr_base, LPU_LTSSM_CONFIG4, val);
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG4: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_CONFIG4));
/*
* CSR_V LPU_LTSSM_CONFIG5 Expect OBP 0x0
*/
val = 0ull;
CSR_XS(csr_base, LPU_LTSSM_CONFIG5, val);
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_CONFIG5: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_CONFIG5));
/*
* CSR_V LPU_LTSSM_STATUS1 Expect OBP 0x0
*/
/*
* LTSSM Status registers are test only.
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS1: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_STATUS1));
/*
* CSR_V LPU_LTSSM_STATUS2 Expect OBP 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_STATUS2: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_STATUS2));
/*
* CSR_V LPU_LTSSM_INTERRUPT_AND_STATUS_TEST Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS_TEST));
/*
* CSR_V LPU LTSSM LAYER interrupt regs (mask, status)
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_LTSSM_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_MASK));
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LTSSM_INTERRUPT_AND_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_INTERRUPT_AND_STATUS));
/*
* CSR_V LPU_LTSSM_STATUS_WRITE_ENABLE Expect OBP 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_LTSSM_STATUS_WRITE_ENABLE: 0x%llx\n",
CSR_XR(csr_base, LPU_LTSSM_STATUS_WRITE_ENABLE));
/*
* CSR_V LPU_GIGABLAZE_GLUE_CONFIG1 Expect OBP 0x88407
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG1: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG1));
/*
* CSR_V LPU_GIGABLAZE_GLUE_CONFIG2 Expect OBP 0x35
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG2: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG2));
/*
* CSR_V LPU_GIGABLAZE_GLUE_CONFIG3 Expect OBP 0x4400FA
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG3: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG3));
/*
* CSR_V LPU_GIGABLAZE_GLUE_CONFIG4 Expect OBP 0x1E848
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG4: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG4));
/*
* CSR_V LPU_GIGABLAZE_GLUE_STATUS Expect OBP 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_STATUS));
/*
* CSR_V LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST Expect OBP 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - "
"LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST: 0x%llx\n",
CSR_XR(csr_base,
LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS_TEST));
/*
* CSR_V LPU GIGABLASE LAYER interrupt regs (mask, status)
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_MASK));
DBG(DBG_LPU, NULL,
"lpu_init - LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_INTERRUPT_AND_STATUS));
/*
* CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN1 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN1: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN1));
/*
* CSR_V LPU_GIGABLAZE_GLUE_POWER_DOWN2 Expect HW 0x0
*/
DBG(DBG_LPU, NULL,
"lpu_init - LPU_GIGABLAZE_GLUE_POWER_DOWN2: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_POWER_DOWN2));
/*
* CSR_V LPU_GIGABLAZE_GLUE_CONFIG5 Expect OBP 0x0
*/
DBG(DBG_LPU, NULL, "lpu_init - LPU_GIGABLAZE_GLUE_CONFIG5: 0x%llx\n",
CSR_XR(csr_base, LPU_GIGABLAZE_GLUE_CONFIG5));
}
/* ARGSUSED */
static void
dlu_init(caddr_t csr_base, pxu_t *pxu_p)
{
uint64_t val;
CSR_XS(csr_base, DLU_INTERRUPT_MASK, 0ull);
DBG(DBG_TLU, NULL, "dlu_init - DLU_INTERRUPT_MASK: 0x%llx\n",
CSR_XR(csr_base, DLU_INTERRUPT_MASK));
val = (1ull << DLU_LINK_LAYER_CONFIG_VC0_EN);
CSR_XS(csr_base, DLU_LINK_LAYER_CONFIG, val);
DBG(DBG_TLU, NULL, "dlu_init - DLU_LINK_LAYER_CONFIG: 0x%llx\n",
CSR_XR(csr_base, DLU_LINK_LAYER_CONFIG));
val = (1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_NP_EN) |
(1ull << DLU_FLOW_CONTROL_UPDATE_CONTROL_FC0_U_P_EN);
CSR_XS(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL, val);
DBG(DBG_TLU, NULL, "dlu_init - DLU_FLOW_CONTROL_UPDATE_CONTROL: "
"0x%llx\n", CSR_XR(csr_base, DLU_FLOW_CONTROL_UPDATE_CONTROL));
val = (DLU_TXLINK_REPLAY_TIMER_THRESHOLD_DEFAULT <<
DLU_TXLINK_REPLAY_TIMER_THRESHOLD_RPLAY_TMR_THR);
CSR_XS(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD, val);
DBG(DBG_TLU, NULL, "dlu_init - DLU_TXLINK_REPLAY_TIMER_THRESHOLD: "
"0x%llx\n", CSR_XR(csr_base, DLU_TXLINK_REPLAY_TIMER_THRESHOLD));
}
/* ARGSUSED */
static void
dmc_init(caddr_t csr_base, pxu_t *pxu_p)
{
uint64_t val;
/*
* CSR_V DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect OBP 0x8000000000000003
*/
val = -1ull;
CSR_XS(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
DBG(DBG_DMC, NULL,
"dmc_init - DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, DMC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
/*
* CSR_V DMC_CORE_AND_BLOCK_ERROR_STATUS Expect HW 0x0
*/
DBG(DBG_DMC, NULL,
"dmc_init - DMC_CORE_AND_BLOCK_ERROR_STATUS: 0x%llx\n",
CSR_XR(csr_base, DMC_CORE_AND_BLOCK_ERROR_STATUS));
/*
* CSR_V DMC_DEBUG_SELECT_FOR_PORT_A Expect HW 0x0
*/
val = 0x0ull;
CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A, val);
DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_A: 0x%llx\n",
CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_A));
/*
* CSR_V DMC_DEBUG_SELECT_FOR_PORT_B Expect HW 0x0
*/
val = 0x0ull;
CSR_XS(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B, val);
DBG(DBG_DMC, NULL, "dmc_init - DMC_DEBUG_SELECT_FOR_PORT_B: 0x%llx\n",
CSR_XR(csr_base, DMC_DEBUG_SELECT_FOR_PORT_B));
}
void
hvio_pec_init(caddr_t csr_base, pxu_t *pxu_p)
{
uint64_t val;
ilu_init(csr_base, pxu_p);
tlu_init(csr_base, pxu_p);
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
dlu_init(csr_base, pxu_p);
break;
case PX_CHIP_FIRE:
lpu_init(csr_base, pxu_p);
break;
default:
DBG(DBG_PEC, NULL, "hvio_pec_init - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
break;
}
dmc_init(csr_base, pxu_p);
/*
* CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE Expect Kernel 0x800000000000000F
*/
val = -1ull;
CSR_XS(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE, val);
DBG(DBG_PEC, NULL,
"hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_ENABLE));
/*
* CSR_V PEC_CORE_AND_BLOCK_INTERRUPT_STATUS Expect HW 0x0
*/
DBG(DBG_PEC, NULL,
"hvio_pec_init - PEC_CORE_AND_BLOCK_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, PEC_CORE_AND_BLOCK_INTERRUPT_STATUS));
}
/*
* Convert a TTE to physical address
*/
static r_addr_t
mmu_tte_to_pa(uint64_t tte, pxu_t *pxu_p)
{
uint64_t pa_mask;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
pa_mask = MMU_OBERON_PADDR_MASK;
break;
case PX_CHIP_FIRE:
pa_mask = MMU_FIRE_PADDR_MASK;
break;
default:
DBG(DBG_MMU, NULL, "mmu_tte_to_pa - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
pa_mask = 0;
break;
}
return ((tte & pa_mask) >> MMU_PAGE_SHIFT);
}
/*
* Return MMU bypass noncache bit for chip
*/
static r_addr_t
mmu_bypass_noncache(pxu_t *pxu_p)
{
r_addr_t bypass_noncache_bit;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
bypass_noncache_bit = MMU_OBERON_BYPASS_NONCACHE;
break;
case PX_CHIP_FIRE:
bypass_noncache_bit = MMU_FIRE_BYPASS_NONCACHE;
break;
default:
DBG(DBG_MMU, NULL,
"mmu_bypass_nocache - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
bypass_noncache_bit = 0;
break;
}
return (bypass_noncache_bit);
}
/*
* Calculate number of TSB entries for the chip.
*/
/* ARGSUSED */
static uint_t
mmu_tsb_entries(caddr_t csr_base, pxu_t *pxu_p)
{
uint64_t tsb_ctrl;
uint_t obp_tsb_entries, obp_tsb_size;
tsb_ctrl = CSR_XR(csr_base, MMU_TSB_CONTROL);
obp_tsb_size = tsb_ctrl & 0xF;
obp_tsb_entries = MMU_TSBSIZE_TO_TSBENTRIES(obp_tsb_size);
return (obp_tsb_entries);
}
/*
* Initialize the module, but do not enable interrupts.
*/
void
hvio_mmu_init(caddr_t csr_base, pxu_t *pxu_p)
{
uint64_t val, i, obp_tsb_pa, *base_tte_addr;
uint_t obp_tsb_entries;
bzero(pxu_p->tsb_vaddr, pxu_p->tsb_size);
/*
* Preserve OBP's TSB
*/
obp_tsb_pa = CSR_XR(csr_base, MMU_TSB_CONTROL) & MMU_TSB_PA_MASK;
obp_tsb_entries = mmu_tsb_entries(csr_base, pxu_p);
base_tte_addr = pxu_p->tsb_vaddr +
((pxu_p->tsb_size >> 3) - obp_tsb_entries);
for (i = 0; i < obp_tsb_entries; i++) {
uint64_t tte = lddphys(obp_tsb_pa + i * 8);
if (!MMU_TTE_VALID(tte))
continue;
base_tte_addr[i] = tte;
}
/*
* Invalidate the TLB through the diagnostic register.
*/
CSR_XS(csr_base, MMU_TTE_CACHE_INVALIDATE, -1ull);
/*
* Configure the Fire MMU TSB Control Register. Determine
* the encoding for either 8KB pages (0) or 64KB pages (1).
*
* Write the most significant 30 bits of the TSB physical address
* and the encoded TSB table size.
*/
for (i = 8; i && (pxu_p->tsb_size < (0x2000 << i)); i--);
val = (((((va_to_pa(pxu_p->tsb_vaddr)) >> 13) << 13) |
((MMU_PAGE_SHIFT == 13) ? 0 : 1) << 8) | i);
CSR_XS(csr_base, MMU_TSB_CONTROL, val);
/*
* Enable the MMU, set the "TSB Cache Snoop Enable",
* the "Cache Mode", the "Bypass Enable" and
* the "Translation Enable" bits.
*/
val = CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
val |= ((1ull << MMU_CONTROL_AND_STATUS_SE)
| (MMU_CONTROL_AND_STATUS_CM_MASK << MMU_CONTROL_AND_STATUS_CM)
| (1ull << MMU_CONTROL_AND_STATUS_BE)
| (1ull << MMU_CONTROL_AND_STATUS_TE));
CSR_XS(csr_base, MMU_CONTROL_AND_STATUS, val);
/*
* Read the register here to ensure that the previous writes to
* the Fire MMU registers have been flushed. (Technically, this
* is not entirely necessary here as we will likely do later reads
* during Fire initialization, but it is a small price to pay for
* more modular code.)
*/
(void) CSR_XR(csr_base, MMU_CONTROL_AND_STATUS);
/*
* CSR_V TLU's UE interrupt regs (log, enable, status, clear)
* Plus header logs
*/
DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_LOG_ENABLE: 0x%llx\n",
CSR_XR(csr_base, MMU_ERROR_LOG_ENABLE));
DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_ENABLE: 0x%llx\n",
CSR_XR(csr_base, MMU_INTERRUPT_ENABLE));
DBG(DBG_MMU, NULL, "mmu_init - MMU_INTERRUPT_STATUS: 0x%llx\n",
CSR_XR(csr_base, MMU_INTERRUPT_STATUS));
DBG(DBG_MMU, NULL, "mmu_init - MMU_ERROR_STATUS_CLEAR: 0x%llx\n",
CSR_XR(csr_base, MMU_ERROR_STATUS_CLEAR));
}
/*
* Generic IOMMU Servies
*/
/* ARGSUSED */
uint64_t
hvio_iommu_map(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid, pages_t pages,
io_attributes_t io_attr, void *addr, size_t pfn_index, int flags)
{
tsbindex_t tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
uint64_t attr = MMU_TTE_V;
int i;
if (io_attr & PCI_MAP_ATTR_WRITE)
attr |= MMU_TTE_W;
if ((PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) &&
(io_attr & PCI_MAP_ATTR_RO))
attr |= MMU_TTE_RO;
if (attr & MMU_TTE_RO) {
DBG(DBG_MMU, NULL, "hvio_iommu_map: pfn_index=0x%x "
"pages=0x%x attr = 0x%lx\n", pfn_index, pages, attr);
}
if (flags & MMU_MAP_PFN) {
ddi_dma_impl_t *mp = (ddi_dma_impl_t *)addr;
for (i = 0; i < pages; i++, pfn_index++, tsb_index++) {
px_iopfn_t pfn = PX_GET_MP_PFN(mp, pfn_index);
pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
/*
* Oberon will need to flush the corresponding TTEs in
* Cache. We only need to flush every cache line.
* Extra PIO's are expensive.
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
CSR_XS(dev_hdl,
MMU_TTE_CACHE_FLUSH_ADDRESS,
(pxu_p->tsb_paddr+
(tsb_index*MMU_TTE_SIZE)));
}
}
}
} else {
caddr_t a = (caddr_t)addr;
for (i = 0; i < pages; i++, a += MMU_PAGE_SIZE, tsb_index++) {
px_iopfn_t pfn = hat_getpfnum(kas.a_hat, a);
pxu_p->tsb_vaddr[tsb_index] = MMU_PTOB(pfn) | attr;
/*
* Oberon will need to flush the corresponding TTEs in
* Cache. We only need to flush every cache line.
* Extra PIO's are expensive.
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
CSR_XS(dev_hdl,
MMU_TTE_CACHE_FLUSH_ADDRESS,
(pxu_p->tsb_paddr+
(tsb_index*MMU_TTE_SIZE)));
}
}
}
}
return (H_EOK);
}
/* ARGSUSED */
uint64_t
hvio_iommu_demap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
pages_t pages)
{
tsbindex_t tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
int i;
for (i = 0; i < pages; i++, tsb_index++) {
pxu_p->tsb_vaddr[tsb_index] = MMU_INVALID_TTE;
/*
* Oberon will need to flush the corresponding TTEs in
* Cache. We only need to flush every cache line.
* Extra PIO's are expensive.
*/
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
if ((i == (pages-1))||!((tsb_index+1) & 0x7)) {
CSR_XS(dev_hdl,
MMU_TTE_CACHE_FLUSH_ADDRESS,
(pxu_p->tsb_paddr+
(tsb_index*MMU_TTE_SIZE)));
}
}
}
return (H_EOK);
}
/* ARGSUSED */
uint64_t
hvio_iommu_getmap(devhandle_t dev_hdl, pxu_t *pxu_p, tsbid_t tsbid,
io_attributes_t *attr_p, r_addr_t *r_addr_p)
{
tsbindex_t tsb_index = PCI_TSBID_TO_TSBINDEX(tsbid);
uint64_t *tte_addr;
uint64_t ret = H_EOK;
tte_addr = (uint64_t *)(pxu_p->tsb_vaddr) + tsb_index;
if (*tte_addr & MMU_TTE_V) {
*r_addr_p = mmu_tte_to_pa(*tte_addr, pxu_p);
*attr_p = (*tte_addr & MMU_TTE_W) ?
PCI_MAP_ATTR_WRITE:PCI_MAP_ATTR_READ;
} else {
*r_addr_p = 0;
*attr_p = 0;
ret = H_ENOMAP;
}
return (ret);
}
/* ARGSUSED */
uint64_t
hvio_get_bypass_base(pxu_t *pxu_p)
{
uint64_t base;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
base = MMU_OBERON_BYPASS_BASE;
break;
case PX_CHIP_FIRE:
base = MMU_FIRE_BYPASS_BASE;
break;
default:
DBG(DBG_MMU, NULL,
"hvio_get_bypass_base - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
base = 0;
break;
}
return (base);
}
/* ARGSUSED */
uint64_t
hvio_get_bypass_end(pxu_t *pxu_p)
{
uint64_t end;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
end = MMU_OBERON_BYPASS_END;
break;
case PX_CHIP_FIRE:
end = MMU_FIRE_BYPASS_END;
break;
default:
DBG(DBG_MMU, NULL,
"hvio_get_bypass_end - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
end = 0;
break;
}
return (end);
}
/* ARGSUSED */
uint64_t
hvio_iommu_getbypass(devhandle_t dev_hdl, pxu_t *pxu_p, r_addr_t ra,
io_attributes_t attr, io_addr_t *io_addr_p)
{
uint64_t pfn = MMU_BTOP(ra);
*io_addr_p = hvio_get_bypass_base(pxu_p) | ra |
(pf_is_memory(pfn) ? 0 : mmu_bypass_noncache(pxu_p));
return (H_EOK);
}
/*
* Generic IO Interrupt Servies
*/
/*
* Converts a device specific interrupt number given by the
* arguments devhandle and devino into a system specific ino.
*/
/* ARGSUSED */
uint64_t
hvio_intr_devino_to_sysino(devhandle_t dev_hdl, pxu_t *pxu_p, devino_t devino,
sysino_t *sysino)
{
if (devino > INTERRUPT_MAPPING_ENTRIES) {
DBG(DBG_IB, NULL, "ino %x is invalid\n", devino);
return (H_ENOINTR);
}
*sysino = DEVINO_TO_SYSINO(pxu_p->portid, devino);
return (H_EOK);
}
/*
* Returns state in intr_valid_state if the interrupt defined by sysino
* is valid (enabled) or not-valid (disabled).
*/
uint64_t
hvio_intr_getvalid(devhandle_t dev_hdl, sysino_t sysino,
intr_valid_state_t *intr_valid_state)
{
if (CSRA_BR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
SYSINO_TO_DEVINO(sysino), ENTRIES_V)) {
*intr_valid_state = INTR_VALID;
} else {
*intr_valid_state = INTR_NOTVALID;
}
return (H_EOK);
}
/*
* Sets the 'valid' state of the interrupt defined by
* the argument sysino to the state defined by the
* argument intr_valid_state.
*/
uint64_t
hvio_intr_setvalid(devhandle_t dev_hdl, sysino_t sysino,
intr_valid_state_t intr_valid_state)
{
switch (intr_valid_state) {
case INTR_VALID:
CSRA_BS((caddr_t)dev_hdl, INTERRUPT_MAPPING,
SYSINO_TO_DEVINO(sysino), ENTRIES_V);
break;
case INTR_NOTVALID:
CSRA_BC((caddr_t)dev_hdl, INTERRUPT_MAPPING,
SYSINO_TO_DEVINO(sysino), ENTRIES_V);
break;
default:
return (EINVAL);
}
return (H_EOK);
}
/*
* Returns the current state of the interrupt given by the sysino
* argument.
*/
uint64_t
hvio_intr_getstate(devhandle_t dev_hdl, sysino_t sysino,
intr_state_t *intr_state)
{
intr_state_t state;
state = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_CLEAR,
SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE);
switch (state) {
case INTERRUPT_IDLE_STATE:
*intr_state = INTR_IDLE_STATE;
break;
case INTERRUPT_RECEIVED_STATE:
*intr_state = INTR_RECEIVED_STATE;
break;
case INTERRUPT_PENDING_STATE:
*intr_state = INTR_DELIVERED_STATE;
break;
default:
return (EINVAL);
}
return (H_EOK);
}
/*
* Sets the current state of the interrupt given by the sysino
* argument to the value given in the argument intr_state.
*
* Note: Setting the state to INTR_IDLE clears any pending
* interrupt for sysino.
*/
uint64_t
hvio_intr_setstate(devhandle_t dev_hdl, sysino_t sysino,
intr_state_t intr_state)
{
intr_state_t state;
switch (intr_state) {
case INTR_IDLE_STATE:
state = INTERRUPT_IDLE_STATE;
break;
case INTR_DELIVERED_STATE:
state = INTERRUPT_PENDING_STATE;
break;
default:
return (EINVAL);
}
CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR,
SYSINO_TO_DEVINO(sysino), ENTRIES_INT_STATE, state);
return (H_EOK);
}
/*
* Returns the cpuid that is the current target of the
* interrupt given by the sysino argument.
*
* The cpuid value returned is undefined if the target
* has not been set via intr_settarget.
*/
uint64_t
hvio_intr_gettarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
cpuid_t *cpuid)
{
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
SYSINO_TO_DEVINO(sysino), ENTRIES_T_DESTID);
break;
case PX_CHIP_FIRE:
*cpuid = CSRA_FR((caddr_t)dev_hdl, INTERRUPT_MAPPING,
SYSINO_TO_DEVINO(sysino), ENTRIES_T_JPID);
break;
default:
DBG(DBG_CB, NULL, "hvio_intr_gettarget - "
"unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
return (EINVAL);
}
return (H_EOK);
}
/*
* Set the target cpu for the interrupt defined by the argument
* sysino to the target cpu value defined by the argument cpuid.
*/
uint64_t
hvio_intr_settarget(devhandle_t dev_hdl, pxu_t *pxu_p, sysino_t sysino,
cpuid_t cpuid)
{
uint64_t val, intr_controller;
uint32_t ino = SYSINO_TO_DEVINO(sysino);
/*
* For now, we assign interrupt controller in a round
* robin fashion. Later, we may need to come up with
* a more efficient assignment algorithm.
*/
intr_controller = 0x1ull << (cpuid % 4);
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
val = (((cpuid &
INTERRUPT_MAPPING_ENTRIES_T_DESTID_MASK) <<
INTERRUPT_MAPPING_ENTRIES_T_DESTID) |
((intr_controller &
INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
<< INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
break;
case PX_CHIP_FIRE:
val = (((cpuid & INTERRUPT_MAPPING_ENTRIES_T_JPID_MASK) <<
INTERRUPT_MAPPING_ENTRIES_T_JPID) |
((intr_controller &
INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM_MASK)
<< INTERRUPT_MAPPING_ENTRIES_INT_CNTRL_NUM));
break;
default:
DBG(DBG_CB, NULL, "hvio_intr_settarget - "
"unknown chip type: 0x%x\n", PX_CHIP_TYPE(pxu_p));
return (EINVAL);
}
/* For EQ interrupts, set DATA MONDO bit */
if ((ino >= PX_DEFAULT_MSIQ_1ST_DEVINO) &&
(ino < (PX_DEFAULT_MSIQ_1ST_DEVINO + PX_DEFAULT_MSIQ_CNT)))
val |= (0x1ull << INTERRUPT_MAPPING_ENTRIES_MDO_MODE);
CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, ino, val);
return (H_EOK);
}
/*
* MSIQ Functions:
*/
uint64_t
hvio_msiq_init(devhandle_t dev_hdl, pxu_t *pxu_p)
{
CSRA_XS((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS, 0,
(uint64_t)pxu_p->msiq_mapped_p);
DBG(DBG_IB, NULL,
"hvio_msiq_init: EVENT_QUEUE_BASE_ADDRESS 0x%llx\n",
CSR_XR((caddr_t)dev_hdl, EVENT_QUEUE_BASE_ADDRESS));
CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0, 0,
(uint64_t)ID_TO_IGN(pxu_p->portid) << INO_BITS);
DBG(DBG_IB, NULL, "hvio_msiq_init: "
"INTERRUPT_MONDO_DATA_0: 0x%llx\n",
CSR_XR((caddr_t)dev_hdl, INTERRUPT_MONDO_DATA_0));
return (H_EOK);
}
uint64_t
hvio_msiq_getvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
pci_msiq_valid_state_t *msiq_valid_state)
{
uint32_t eq_state;
uint64_t ret = H_EOK;
eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
msiq_id, ENTRIES_STATE);
switch (eq_state) {
case EQ_IDLE_STATE:
*msiq_valid_state = PCI_MSIQ_INVALID;
break;
case EQ_ACTIVE_STATE:
case EQ_ERROR_STATE:
*msiq_valid_state = PCI_MSIQ_VALID;
break;
default:
ret = H_EIO;
break;
}
return (ret);
}
uint64_t
hvio_msiq_setvalid(devhandle_t dev_hdl, msiqid_t msiq_id,
pci_msiq_valid_state_t msiq_valid_state)
{
uint64_t ret = H_EOK;
switch (msiq_valid_state) {
case PCI_MSIQ_INVALID:
CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
msiq_id, ENTRIES_DIS);
break;
case PCI_MSIQ_VALID:
CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
msiq_id, ENTRIES_EN);
break;
default:
ret = H_EINVAL;
break;
}
return (ret);
}
uint64_t
hvio_msiq_getstate(devhandle_t dev_hdl, msiqid_t msiq_id,
pci_msiq_state_t *msiq_state)
{
uint32_t eq_state;
uint64_t ret = H_EOK;
eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
msiq_id, ENTRIES_STATE);
switch (eq_state) {
case EQ_IDLE_STATE:
case EQ_ACTIVE_STATE:
*msiq_state = PCI_MSIQ_STATE_IDLE;
break;
case EQ_ERROR_STATE:
*msiq_state = PCI_MSIQ_STATE_ERROR;
break;
default:
ret = H_EIO;
}
return (ret);
}
uint64_t
hvio_msiq_setstate(devhandle_t dev_hdl, msiqid_t msiq_id,
pci_msiq_state_t msiq_state)
{
uint32_t eq_state;
uint64_t ret = H_EOK;
eq_state = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_STATE,
msiq_id, ENTRIES_STATE);
switch (eq_state) {
case EQ_IDLE_STATE:
if (msiq_state == PCI_MSIQ_STATE_ERROR)
ret = H_EIO;
break;
case EQ_ACTIVE_STATE:
if (msiq_state == PCI_MSIQ_STATE_ERROR)
CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
msiq_id, ENTRIES_ENOVERR);
else
ret = H_EIO;
break;
case EQ_ERROR_STATE:
if (msiq_state == PCI_MSIQ_STATE_IDLE)
CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_CLEAR,
msiq_id, ENTRIES_E2I);
else
ret = H_EIO;
break;
default:
ret = H_EIO;
}
return (ret);
}
uint64_t
hvio_msiq_gethead(devhandle_t dev_hdl, msiqid_t msiq_id,
msiqhead_t *msiq_head)
{
*msiq_head = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_HEAD,
msiq_id, ENTRIES_HEAD);
return (H_EOK);
}
uint64_t
hvio_msiq_sethead(devhandle_t dev_hdl, msiqid_t msiq_id,
msiqhead_t msiq_head)
{
CSRA_FS((caddr_t)dev_hdl, EVENT_QUEUE_HEAD, msiq_id,
ENTRIES_HEAD, msiq_head);
return (H_EOK);
}
uint64_t
hvio_msiq_gettail(devhandle_t dev_hdl, msiqid_t msiq_id,
msiqtail_t *msiq_tail)
{
*msiq_tail = CSRA_FR((caddr_t)dev_hdl, EVENT_QUEUE_TAIL,
msiq_id, ENTRIES_TAIL);
return (H_EOK);
}
/*
* MSI Functions:
*/
uint64_t
hvio_msi_init(devhandle_t dev_hdl, uint64_t addr32, uint64_t addr64)
{
/* PCI MEM 32 resources to perform 32 bit MSI transactions */
CSRA_FS((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS, 0,
ADDR, (uint64_t)addr32 >> MSI_32_BIT_ADDRESS_ADDR);
DBG(DBG_IB, NULL, "hvio_msiq_init: MSI_32_BIT_ADDRESS: 0x%llx\n",
CSR_XR((caddr_t)dev_hdl, MSI_32_BIT_ADDRESS));
/* Reserve PCI MEM 64 resources to perform 64 bit MSI transactions */
CSRA_FS((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS, 0,
ADDR, (uint64_t)addr64 >> MSI_64_BIT_ADDRESS_ADDR);
DBG(DBG_IB, NULL, "hvio_msiq_init: MSI_64_BIT_ADDRESS: 0x%llx\n",
CSR_XR((caddr_t)dev_hdl, MSI_64_BIT_ADDRESS));
return (H_EOK);
}
uint64_t
hvio_msi_getmsiq(devhandle_t dev_hdl, msinum_t msi_num,
msiqid_t *msiq_id)
{
*msiq_id = CSRA_FR((caddr_t)dev_hdl, MSI_MAPPING,
msi_num, ENTRIES_EQNUM);
return (H_EOK);
}
uint64_t
hvio_msi_setmsiq(devhandle_t dev_hdl, msinum_t msi_num,
msiqid_t msiq_id)
{
CSRA_FS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
ENTRIES_EQNUM, msiq_id);
return (H_EOK);
}
uint64_t
hvio_msi_getvalid(devhandle_t dev_hdl, msinum_t msi_num,
pci_msi_valid_state_t *msi_valid_state)
{
*msi_valid_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
msi_num, ENTRIES_V);
return (H_EOK);
}
uint64_t
hvio_msi_setvalid(devhandle_t dev_hdl, msinum_t msi_num,
pci_msi_valid_state_t msi_valid_state)
{
uint64_t ret = H_EOK;
switch (msi_valid_state) {
case PCI_MSI_VALID:
CSRA_BS((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
ENTRIES_V);
break;
case PCI_MSI_INVALID:
CSRA_BC((caddr_t)dev_hdl, MSI_MAPPING, msi_num,
ENTRIES_V);
break;
default:
ret = H_EINVAL;
}
return (ret);
}
uint64_t
hvio_msi_getstate(devhandle_t dev_hdl, msinum_t msi_num,
pci_msi_state_t *msi_state)
{
*msi_state = CSRA_BR((caddr_t)dev_hdl, MSI_MAPPING,
msi_num, ENTRIES_EQWR_N);
return (H_EOK);
}
uint64_t
hvio_msi_setstate(devhandle_t dev_hdl, msinum_t msi_num,
pci_msi_state_t msi_state)
{
uint64_t ret = H_EOK;
switch (msi_state) {
case PCI_MSI_STATE_IDLE:
CSRA_BS((caddr_t)dev_hdl, MSI_CLEAR, msi_num,
ENTRIES_EQWR_N);
break;
case PCI_MSI_STATE_DELIVERED:
default:
ret = H_EINVAL;
break;
}
return (ret);
}
/*
* MSG Functions:
*/
uint64_t
hvio_msg_getmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
msiqid_t *msiq_id)
{
uint64_t ret = H_EOK;
switch (msg_type) {
case PCIE_PME_MSG:
*msiq_id = CSR_FR((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM);
break;
case PCIE_PME_ACK_MSG:
*msiq_id = CSR_FR((caddr_t)dev_hdl, PME_TO_ACK_MAPPING,
EQNUM);
break;
case PCIE_CORR_MSG:
*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM);
break;
case PCIE_NONFATAL_MSG:
*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING,
EQNUM);
break;
case PCIE_FATAL_MSG:
*msiq_id = CSR_FR((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM);
break;
default:
ret = H_EINVAL;
break;
}
return (ret);
}
uint64_t
hvio_msg_setmsiq(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
msiqid_t msiq_id)
{
uint64_t ret = H_EOK;
switch (msg_type) {
case PCIE_PME_MSG:
CSR_FS((caddr_t)dev_hdl, PM_PME_MAPPING, EQNUM, msiq_id);
break;
case PCIE_PME_ACK_MSG:
CSR_FS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, EQNUM, msiq_id);
break;
case PCIE_CORR_MSG:
CSR_FS((caddr_t)dev_hdl, ERR_COR_MAPPING, EQNUM, msiq_id);
break;
case PCIE_NONFATAL_MSG:
CSR_FS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, EQNUM, msiq_id);
break;
case PCIE_FATAL_MSG:
CSR_FS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, EQNUM, msiq_id);
break;
default:
ret = H_EINVAL;
break;
}
return (ret);
}
uint64_t
hvio_msg_getvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
pcie_msg_valid_state_t *msg_valid_state)
{
uint64_t ret = H_EOK;
switch (msg_type) {
case PCIE_PME_MSG:
*msg_valid_state = CSR_BR((caddr_t)dev_hdl, PM_PME_MAPPING, V);
break;
case PCIE_PME_ACK_MSG:
*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
PME_TO_ACK_MAPPING, V);
break;
case PCIE_CORR_MSG:
*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
break;
case PCIE_NONFATAL_MSG:
*msg_valid_state = CSR_BR((caddr_t)dev_hdl,
ERR_NONFATAL_MAPPING, V);
break;
case PCIE_FATAL_MSG:
*msg_valid_state = CSR_BR((caddr_t)dev_hdl, ERR_FATAL_MAPPING,
V);
break;
default:
ret = H_EINVAL;
break;
}
return (ret);
}
uint64_t
hvio_msg_setvalid(devhandle_t dev_hdl, pcie_msg_type_t msg_type,
pcie_msg_valid_state_t msg_valid_state)
{
uint64_t ret = H_EOK;
switch (msg_valid_state) {
case PCIE_MSG_VALID:
switch (msg_type) {
case PCIE_PME_MSG:
CSR_BS((caddr_t)dev_hdl, PM_PME_MAPPING, V);
break;
case PCIE_PME_ACK_MSG:
CSR_BS((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
break;
case PCIE_CORR_MSG:
CSR_BS((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
break;
case PCIE_NONFATAL_MSG:
CSR_BS((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
break;
case PCIE_FATAL_MSG:
CSR_BS((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
break;
default:
ret = H_EINVAL;
break;
}
break;
case PCIE_MSG_INVALID:
switch (msg_type) {
case PCIE_PME_MSG:
CSR_BC((caddr_t)dev_hdl, PM_PME_MAPPING, V);
break;
case PCIE_PME_ACK_MSG:
CSR_BC((caddr_t)dev_hdl, PME_TO_ACK_MAPPING, V);
break;
case PCIE_CORR_MSG:
CSR_BC((caddr_t)dev_hdl, ERR_COR_MAPPING, V);
break;
case PCIE_NONFATAL_MSG:
CSR_BC((caddr_t)dev_hdl, ERR_NONFATAL_MAPPING, V);
break;
case PCIE_FATAL_MSG:
CSR_BC((caddr_t)dev_hdl, ERR_FATAL_MAPPING, V);
break;
default:
ret = H_EINVAL;
break;
}
break;
default:
ret = H_EINVAL;
}
return (ret);
}
/*
* Suspend/Resume Functions:
* (pec, mmu, ib)
* cb
* Registers saved have all been touched in the XXX_init functions.
*/
uint64_t
hvio_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
{
uint64_t *config_state;
int total_size;
int i;
if (msiq_suspend(dev_hdl, pxu_p) != H_EOK)
return (H_EIO);
total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
config_state = kmem_zalloc(total_size, KM_NOSLEEP);
if (config_state == NULL) {
return (H_EIO);
}
/*
* Soft state for suspend/resume from pxu_t
* uint64_t *pec_config_state;
* uint64_t *mmu_config_state;
* uint64_t *ib_intr_map;
* uint64_t *ib_config_state;
* uint64_t *xcb_config_state;
*/
/* Save the PEC configuration states */
pxu_p->pec_config_state = config_state;
for (i = 0; i < PEC_KEYS; i++) {
if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
(pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
pxu_p->pec_config_state[i] =
CSR_XR((caddr_t)dev_hdl,
pec_config_state_regs[i].reg);
}
}
/* Save the MMU configuration states */
pxu_p->mmu_config_state = pxu_p->pec_config_state + PEC_KEYS;
for (i = 0; i < MMU_KEYS; i++) {
pxu_p->mmu_config_state[i] =
CSR_XR((caddr_t)dev_hdl, mmu_config_state_regs[i]);
}
/* Save the interrupt mapping registers */
pxu_p->ib_intr_map = pxu_p->mmu_config_state + MMU_KEYS;
for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
pxu_p->ib_intr_map[i] =
CSRA_XR((caddr_t)dev_hdl, INTERRUPT_MAPPING, i);
}
/* Save the IB configuration states */
pxu_p->ib_config_state = pxu_p->ib_intr_map + INTERRUPT_MAPPING_ENTRIES;
for (i = 0; i < IB_KEYS; i++) {
pxu_p->ib_config_state[i] =
CSR_XR((caddr_t)dev_hdl, ib_config_state_regs[i]);
}
return (H_EOK);
}
void
hvio_resume(devhandle_t dev_hdl, devino_t devino, pxu_t *pxu_p)
{
int total_size;
sysino_t sysino;
int i;
/* Make sure that suspend actually did occur */
if (!pxu_p->pec_config_state) {
return;
}
/* Restore IB configuration states */
for (i = 0; i < IB_KEYS; i++) {
CSR_XS((caddr_t)dev_hdl, ib_config_state_regs[i],
pxu_p->ib_config_state[i]);
}
/*
* Restore the interrupt mapping registers
* And make sure the intrs are idle.
*/
for (i = 0; i < INTERRUPT_MAPPING_ENTRIES; i++) {
CSRA_FS((caddr_t)dev_hdl, INTERRUPT_CLEAR, i,
ENTRIES_INT_STATE, INTERRUPT_IDLE_STATE);
CSRA_XS((caddr_t)dev_hdl, INTERRUPT_MAPPING, i,
pxu_p->ib_intr_map[i]);
}
/* Restore MMU configuration states */
/* Clear the cache. */
CSR_XS((caddr_t)dev_hdl, MMU_TTE_CACHE_INVALIDATE, -1ull);
for (i = 0; i < MMU_KEYS; i++) {
CSR_XS((caddr_t)dev_hdl, mmu_config_state_regs[i],
pxu_p->mmu_config_state[i]);
}
/* Restore PEC configuration states */
/* Make sure all reset bits are low until error is detected */
CSR_XS((caddr_t)dev_hdl, LPU_RESET, 0ull);
for (i = 0; i < PEC_KEYS; i++) {
if ((pec_config_state_regs[i].chip == PX_CHIP_TYPE(pxu_p)) ||
(pec_config_state_regs[i].chip == PX_CHIP_UNIDENTIFIED)) {
CSR_XS((caddr_t)dev_hdl, pec_config_state_regs[i].reg,
pxu_p->pec_config_state[i]);
}
}
/* Enable PCI-E interrupt */
(void) hvio_intr_devino_to_sysino(dev_hdl, pxu_p, devino, &sysino);
(void) hvio_intr_setstate(dev_hdl, sysino, INTR_IDLE_STATE);
total_size = PEC_SIZE + MMU_SIZE + IB_SIZE + IB_MAP_SIZE;
kmem_free(pxu_p->pec_config_state, total_size);
pxu_p->pec_config_state = NULL;
pxu_p->mmu_config_state = NULL;
pxu_p->ib_config_state = NULL;
pxu_p->ib_intr_map = NULL;
msiq_resume(dev_hdl, pxu_p);
}
uint64_t
hvio_cb_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
{
uint64_t *config_state, *cb_regs;
int i, cb_size, cb_keys;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
cb_size = UBC_SIZE;
cb_keys = UBC_KEYS;
cb_regs = ubc_config_state_regs;
break;
case PX_CHIP_FIRE:
cb_size = JBC_SIZE;
cb_keys = JBC_KEYS;
cb_regs = jbc_config_state_regs;
break;
default:
DBG(DBG_CB, NULL, "hvio_cb_suspend - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
break;
}
config_state = kmem_zalloc(cb_size, KM_NOSLEEP);
if (config_state == NULL) {
return (H_EIO);
}
/* Save the configuration states */
pxu_p->xcb_config_state = config_state;
for (i = 0; i < cb_keys; i++) {
pxu_p->xcb_config_state[i] =
CSR_XR((caddr_t)dev_hdl, cb_regs[i]);
}
return (H_EOK);
}
void
hvio_cb_resume(devhandle_t pci_dev_hdl, devhandle_t xbus_dev_hdl,
devino_t devino, pxu_t *pxu_p)
{
sysino_t sysino;
uint64_t *cb_regs;
int i, cb_size, cb_keys;
switch (PX_CHIP_TYPE(pxu_p)) {
case PX_CHIP_OBERON:
cb_size = UBC_SIZE;
cb_keys = UBC_KEYS;
cb_regs = ubc_config_state_regs;
/*
* No reason to have any reset bits high until an error is
* detected on the link.
*/
CSR_XS((caddr_t)xbus_dev_hdl, UBC_ERROR_STATUS_CLEAR, -1ull);
break;
case PX_CHIP_FIRE:
cb_size = JBC_SIZE;
cb_keys = JBC_KEYS;
cb_regs = jbc_config_state_regs;
/*
* No reason to have any reset bits high until an error is
* detected on the link.
*/
CSR_XS((caddr_t)xbus_dev_hdl, JBC_ERROR_STATUS_CLEAR, -1ull);
break;
default:
DBG(DBG_CB, NULL, "hvio_cb_resume - unknown chip type: 0x%x\n",
PX_CHIP_TYPE(pxu_p));
break;
}
ASSERT(pxu_p->xcb_config_state);
/* Restore the configuration states */
for (i = 0; i < cb_keys; i++) {
CSR_XS((caddr_t)xbus_dev_hdl, cb_regs[i],
pxu_p->xcb_config_state[i]);
}
/* Enable XBC interrupt */
(void) hvio_intr_devino_to_sysino(pci_dev_hdl, pxu_p, devino, &sysino);
(void) hvio_intr_setstate(pci_dev_hdl, sysino, INTR_IDLE_STATE);
kmem_free(pxu_p->xcb_config_state, cb_size);
pxu_p->xcb_config_state = NULL;
}
static uint64_t
msiq_suspend(devhandle_t dev_hdl, pxu_t *pxu_p)
{
size_t bufsz;
volatile uint64_t *cur_p;
int i;
bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
if ((pxu_p->msiq_config_state = kmem_zalloc(bufsz, KM_NOSLEEP)) ==
NULL)
return (H_EIO);
cur_p = pxu_p->msiq_config_state;
/* Save each EQ state */
for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++)
*cur_p = CSRA_XR((caddr_t)dev_hdl, EVENT_QUEUE_STATE, i);
/* Save MSI mapping registers */
for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
*cur_p = CSRA_XR((caddr_t)dev_hdl, MSI_MAPPING, i);
/* Save all other MSIQ registers */
for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
*cur_p = CSR_XR((caddr_t)dev_hdl, msiq_config_other_regs[i]);
return (H_EOK);
}
static void
msiq_resume(devhandle_t dev_hdl, pxu_t *pxu_p)
{
size_t bufsz;
uint64_t *cur_p, state;
int i;
bufsz = MSIQ_STATE_SIZE + MSIQ_MAPPING_SIZE + MSIQ_OTHER_SIZE;
cur_p = pxu_p->msiq_config_state;
/*
* Initialize EQ base address register and
* Interrupt Mondo Data 0 register.
*/
(void) hvio_msiq_init(dev_hdl, pxu_p);
/* Restore EQ states */
for (i = 0; i < EVENT_QUEUE_STATE_ENTRIES; i++, cur_p++) {
state = (*cur_p) & EVENT_QUEUE_STATE_ENTRIES_STATE_MASK;
if ((state == EQ_ACTIVE_STATE) || (state == EQ_ERROR_STATE))
CSRA_BS((caddr_t)dev_hdl, EVENT_QUEUE_CONTROL_SET,
i, ENTRIES_EN);
}
/* Restore MSI mapping */
for (i = 0; i < MSI_MAPPING_ENTRIES; i++, cur_p++)
CSRA_XS((caddr_t)dev_hdl, MSI_MAPPING, i, *cur_p);
/*
* Restore all other registers. MSI 32 bit address and
* MSI 64 bit address are restored as part of this.
*/
for (i = 0; i < MSIQ_OTHER_KEYS; i++, cur_p++)
CSR_XS((caddr_t)dev_hdl, msiq_config_other_regs[i], *cur_p);
kmem_free(pxu_p->msiq_config_state, bufsz);
pxu_p->msiq_config_state = NULL;
}
/*
* sends PME_Turn_Off message to put the link in L2/L3 ready state.
* called by px_goto_l23ready.
* returns DDI_SUCCESS or DDI_FAILURE
*/
int
px_send_pme_turnoff(caddr_t csr_base)
{
volatile uint64_t reg;
reg = CSR_XR(csr_base, TLU_PME_TURN_OFF_GENERATE);
/* If already pending, return failure */
if (reg & (1ull << TLU_PME_TURN_OFF_GENERATE_PTO)) {
DBG(DBG_PWR, NULL, "send_pme_turnoff: pending PTO bit "
"tlu_pme_turn_off_generate = %x\n", reg);
return (DDI_FAILURE);
}
/* write to PME_Turn_off reg to boradcast */
reg |= (1ull << TLU_PME_TURN_OFF_GENERATE_PTO);
CSR_XS(csr_base, TLU_PME_TURN_OFF_GENERATE, reg);
return (DDI_SUCCESS);
}
/*
* Checks for link being in L1idle state.
* Returns
* DDI_SUCCESS - if the link is in L1idle
* DDI_FAILURE - if the link is not in L1idle
*/
int
px_link_wait4l1idle(caddr_t csr_base)
{
uint8_t ltssm_state;
int ntries = px_max_l1_tries;
while (ntries > 0) {
ltssm_state = CSR_FR(csr_base, LPU_LTSSM_STATUS1, LTSSM_STATE);
if (ltssm_state == LPU_LTSSM_L1_IDLE || (--ntries <= 0))
break;
delay(1);
}
DBG(DBG_PWR, NULL, "check_for_l1idle: ltssm_state %x\n", ltssm_state);
return ((ltssm_state == LPU_LTSSM_L1_IDLE) ? DDI_SUCCESS : DDI_FAILURE);
}
/*
* Tranisition the link to L0, after it is down.
*/
int
px_link_retrain(caddr_t csr_base)
{
volatile uint64_t reg;
reg = CSR_XR(csr_base, TLU_CONTROL);
if (!(reg & (1ull << TLU_REMAIN_DETECT_QUIET))) {
DBG(DBG_PWR, NULL, "retrain_link: detect.quiet bit not set\n");
return (DDI_FAILURE);
}
/* Clear link down bit in TLU Other Event Clear Status Register. */
CSR_BS(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR, LDN_P);
/* Clear Drain bit in TLU Status Register */
CSR_BS(csr_base, TLU_STATUS, DRAIN);
/* Clear Remain in Detect.Quiet bit in TLU Control Register */
reg = CSR_XR(csr_base, TLU_CONTROL);
reg &= ~(1ull << TLU_REMAIN_DETECT_QUIET);
CSR_XS(csr_base, TLU_CONTROL, reg);
return (DDI_SUCCESS);
}
void
px_enable_detect_quiet(caddr_t csr_base)
{
volatile uint64_t tlu_ctrl;
tlu_ctrl = CSR_XR(csr_base, TLU_CONTROL);
tlu_ctrl |= (1ull << TLU_REMAIN_DETECT_QUIET);
CSR_XS(csr_base, TLU_CONTROL, tlu_ctrl);
}
static uint_t
oberon_hp_pwron(caddr_t csr_base)
{
volatile uint64_t reg;
DBG(DBG_HP, NULL, "oberon_hp_pwron the slot\n");
/* Check Leaf Reset status */
reg = CSR_XR(csr_base, ILU_ERROR_LOG_ENABLE);
if (!(reg & (1ull << ILU_ERROR_LOG_ENABLE_SPARE3))) {
DBG(DBG_HP, NULL, "oberon_hp_pwron fails: leaf not reset\n");
goto fail;
}
/* Check Slot status */
reg = CSR_XR(csr_base, TLU_SLOT_STATUS);
if (!(reg & (1ull << TLU_SLOT_STATUS_PSD)) ||
(reg & (1ull << TLU_SLOT_STATUS_MRLS)) ||
(reg & (1ull << TLU_SLOT_STATUS_PWFD))) {
DBG(DBG_HP, NULL, "oberon_hp_pwron fails: slot status %lx\n",
reg);
goto fail;
}
/* Blink power LED, this is done from pciehpc already */
/* Turn on slot power */
CSR_BS(csr_base, HOTPLUG_CONTROL, PWREN);
/* wait to check power state */
delay(drv_usectohz(25000));
if (CSR_BR(csr_base, TLU_SLOT_STATUS, PWFD)) {
DBG(DBG_HP, NULL, "oberon_hp_pwron fails: power fault\n");
goto fail1;
}
/* power is good */
CSR_BS(csr_base, TLU_SLOT_CONTROL, PWFDEN);
/* Turn on slot clock */
CSR_BS(csr_base, HOTPLUG_CONTROL, CLKEN);
/* Release PCI-E Reset */
delay(drv_usectohz(100000));
CSR_BS(csr_base, HOTPLUG_CONTROL, N_PERST);
/*
* Open events' mask
* This should be done from pciehpc already
*/
/*
* Initialize Leaf
* SPLS = 00b, SPLV = 11001b, i.e. 25W
*/
reg = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
reg &= ~(TLU_SLOT_CAPABILITIES_SPLS_MASK <<
TLU_SLOT_CAPABILITIES_SPLS);
reg &= ~(TLU_SLOT_CAPABILITIES_SPLV_MASK <<
TLU_SLOT_CAPABILITIES_SPLS);
reg |= (0x19 << TLU_SLOT_CAPABILITIES_SPLS);
CSR_XS(csr_base, TLU_SLOT_CAPABILITIES, reg);
/* Enable PCIE port */
CSR_BS(csr_base, DLU_PORT_CONTROL, CK_EN);
CSR_BC(csr_base, FLP_PORT_CONTROL, PORT_DIS);
/* wait for the LUP_P/LUP_S */
delay(drv_usectohz(10000));
reg = CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR);
if (!(reg & (1ull << TLU_OTHER_EVENT_STATUS_CLEAR_LUP_P)) &&
!(reg & (1ull << TLU_OTHER_EVENT_STATUS_CLEAR_LUP_S))) {
DBG(DBG_HP, NULL, "oberon_hp_pwron fails to enable "
"PCI-E port\n");
goto fail2;
}
/* Turn on Power LED */
reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
reg = pcie_slotctl_pwr_indicator_set(reg,
PCIE_SLOTCTL_INDICATOR_STATE_ON);
CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
/* Notify to SCF */
CSR_BS(csr_base, HOTPLUG_CONTROL, SLOTPON);
return (DDI_SUCCESS);
fail2:
/* Link up is failed */
CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
CSR_BC(csr_base, DLU_PORT_CONTROL, CK_EN);
CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
delay(drv_usectohz(150));
CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
delay(drv_usectohz(100));
fail1:
CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
reg = pcie_slotctl_pwr_indicator_set(reg,
PCIE_SLOTCTL_INDICATOR_STATE_OFF);
CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
CSR_BC(csr_base, TLU_SLOT_STATUS, PWFD);
fail:
return (DDI_FAILURE);
}
static uint_t
oberon_hp_pwroff(caddr_t csr_base)
{
volatile uint64_t reg;
DBG(DBG_HP, NULL, "oberon_hp_pwroff the slot\n");
/* Blink power LED, this is done from pciehpc already */
/* Clear Slot Event */
CSR_BS(csr_base, TLU_SLOT_STATUS, PSDC);
/* DRN_TR_DIS on */
CSR_BS(csr_base, TLU_CONTROL, DRN_TR_DIS);
/* Disable port */
CSR_BS(csr_base, FLP_PORT_CONTROL, PORT_DIS);
/* check time or link status */
delay(drv_usectohz(10000));
/* DRN_TR_DIS off/ CK_EN off */
reg = CSR_XR(csr_base, TLU_OTHER_EVENT_STATUS_CLEAR);
if ((reg & (1ull << TLU_OTHER_EVENT_STATUS_CLEAR_LDN_P)) ||
(reg & (1ull << TLU_OTHER_EVENT_STATUS_CLEAR_LDN_S))) {
CSR_BC(csr_base, TLU_CONTROL, DRN_TR_DIS);
}
CSR_BC(csr_base, DLU_PORT_CONTROL, CK_EN);
/* PCIE reset */
CSR_BC(csr_base, HOTPLUG_CONTROL, N_PERST);
/* PCIE clock stop */
CSR_BC(csr_base, HOTPLUG_CONTROL, CLKEN);
/* Turn off slot power */
CSR_BC(csr_base, TLU_SLOT_CONTROL, PWFDEN);
CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
CSR_BC(csr_base, TLU_SLOT_STATUS, PWFD);
/* write 0 to bit 7 of ILU Error Log Enable Register */
CSR_BS(csr_base, ILU_ERROR_LOG_ENABLE, SPARE3);
/* Power LED off */
reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
reg &= ~PCIE_SLOTCTL_PWR_INDICATOR_MASK;
reg = pcie_slotctl_pwr_indicator_set(reg,
PCIE_SLOTCTL_INDICATOR_STATE_OFF);
CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
/* Indicator LED blink */
reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
reg = pcie_slotctl_attn_indicator_set(reg,
PCIE_SLOTCTL_INDICATOR_STATE_BLINK);
CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
/* Notify to SCF */
CSR_BC(csr_base, HOTPLUG_CONTROL, SLOTPON);
/*
* Check Leaf Reset
* XXX - We don't need to wait for this any more.
*/
/* Indicator LED off */
reg = CSR_XR(csr_base, TLU_SLOT_CONTROL);
reg &= ~PCIE_SLOTCTL_ATTN_INDICATOR_MASK;
reg = pcie_slotctl_attn_indicator_set(reg,
PCIE_SLOTCTL_INDICATOR_STATE_OFF);
CSR_XS(csr_base, TLU_SLOT_CONTROL, reg);
return (DDI_SUCCESS);
}
static uint_t
oberon_hpreg_get(void *cookie, off_t off)
{
caddr_t csr_base = *(caddr_t *)cookie;
volatile uint64_t val = -1ull;
switch (off) {
case PCIE_SLOTCAP:
val = CSR_XR(csr_base, TLU_SLOT_CAPABILITIES);
break;
case PCIE_SLOTCTL:
val = CSR_XR(csr_base, TLU_SLOT_CONTROL);
/* Get the power state */
val |= (CSR_XR(csr_base, HOTPLUG_CONTROL) &
(1ull << HOTPLUG_CONTROL_PWREN)) ?
0 : PCIE_SLOTCTL_PWR_CONTROL;
break;
case PCIE_SLOTSTS:
val = CSR_XR(csr_base, TLU_SLOT_STATUS);
break;
case PCIE_LINKCAP:
val = CSR_XR(csr_base, TLU_LINK_CAPABILITIES);
break;
case PCIE_LINKSTS:
val = CSR_XR(csr_base, TLU_LINK_STATUS);
break;
default:
DBG(DBG_HP, NULL, "oberon_hpreg_get(): "
"unsupported offset 0x%lx\n", off);
break;
}
return ((uint_t)val);
}
static uint_t
oberon_hpreg_put(void *cookie, off_t off, uint_t val)
{
caddr_t csr_base = *(caddr_t *)cookie;
volatile uint64_t pwr_state_on, pwr_fault;
uint_t pwr_off, ret = DDI_SUCCESS;
DBG(DBG_HP, NULL, "oberon_hpreg_put 0x%lx: cur %x, new %x\n",
off, oberon_hpreg_get(cookie, off), val);
switch (off) {
case PCIE_SLOTCTL:
/*
* Depending on the current state, insertion or removal
* will go through their respective sequences.
*/
pwr_state_on = CSR_BR(csr_base, HOTPLUG_CONTROL, PWREN);
pwr_off = val & PCIE_SLOTCTL_PWR_CONTROL;
if (!pwr_off && !pwr_state_on)
ret = oberon_hp_pwron(csr_base);
else if (pwr_off && pwr_state_on) {
pwr_fault = CSR_XR(csr_base, TLU_SLOT_STATUS) &
(1ull << TLU_SLOT_STATUS_PWFD);
if (pwr_fault)
CSR_BC(csr_base, HOTPLUG_CONTROL, PWREN);
else
ret = oberon_hp_pwroff(csr_base);
} else
CSR_XS(csr_base, TLU_SLOT_CONTROL, val);
break;
case PCIE_SLOTSTS:
CSR_XS(csr_base, TLU_SLOT_STATUS, val);
break;
default:
DBG(DBG_HP, NULL, "oberon_hpreg_put(): "
"unsupported offset 0x%lx\n", off);
ret = DDI_FAILURE;
break;
}
return (ret);
}
int
hvio_hotplug_init(dev_info_t *dip, void *arg)
{
pciehpc_regops_t *regops = (pciehpc_regops_t *)arg;
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON) {
if (!CSR_BR((caddr_t)pxu_p->px_address[PX_REG_CSR],
TLU_SLOT_CAPABILITIES, HP)) {
DBG(DBG_HP, NULL, "%s%d: hotplug capabale not set\n",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
regops->get = oberon_hpreg_get;
regops->put = oberon_hpreg_put;
/* cookie is the csr_base */
regops->cookie = (void *)&pxu_p->px_address[PX_REG_CSR];
return (DDI_SUCCESS);
}
return (DDI_ENOTSUP);
}
int
hvio_hotplug_uninit(dev_info_t *dip)
{
px_t *px_p = DIP_TO_STATE(dip);
pxu_t *pxu_p = (pxu_t *)px_p->px_plat_p;
if (PX_CHIP_TYPE(pxu_p) == PX_CHIP_OBERON)
return (DDI_SUCCESS);
return (DDI_FAILURE);
}