db21554.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Intel 21554 PCI to PCI bus bridge nexus driver for sun4u platforms.
* Please note that 21554 is not a transparent bridge.
* This driver can be used when the 21554 bridge is used like a
* transparent bridge. The host OBP or the OS PCI Resource Allocator
* (during a hotplug/hotswap operation) must represent this device
* as a nexus and do the device tree representation of the child
* nodes underneath.
* Interrupt routing of the children must be done as per the PCI
* specifications recommendation similar to that of a transparent
* bridge.
* Address translations from secondary across primary can be 1:1
* or non 1:1. Currently only 1:1 translations are supported.
* Configuration cycles are indirect. Memory and IO cycles are direct.
*/
/*
* INCLUDES
*/
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/modctl.h>
#include <sys/autoconf.h>
#include <sys/ddi_impldefs.h>
#include <sys/ddi_subrdefs.h>
#include <sys/pci.h>
#include <sys/pci/pci_nexus.h>
#include <sys/pci/pci_regs.h>
#include <sys/pci/db21554_config.h> /* 21554 configuration space registers */
#include <sys/pci/db21554_csr.h> /* 21554 control status register layout */
#include <sys/pci/db21554_ctrl.h> /* driver private control structure */
#include <sys/pci/db21554_debug.h> /* driver debug declarations */
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/fm/protocol.h>
#include <sys/ddifm.h>
#include <sys/promif.h>
#include <sys/file.h>
#include <sys/hotplug/pci/pcihp.h>
/*
* DEFINES.
*/
#define DB_DEBUG
#define DB_MODINFO_DESCRIPTION "Intel/21554 pci-pci nexus:v%I%"
#define DB_DVMA_START 0xc0000000
#define DB_DVMA_LEN 0x20000000
#ifdef DB_DEBUG
/* ioctl definitions */
#define DB_PCI_READ_CONF_HEADER 1
#define DEF_INVALID_REG_VAL -1
/* Default values for secondary cache line and latency timer */
#define DB_SEC_LATENCY_TIMER_VAL 0x40
#define DB_SEC_CACHELN_SIZE_VAL 0x10
/* complete chip status information */
typedef struct db_pci_data {
char name[256];
uint32_t instance;
db_pci_header_t pri_hdr;
db_pci_header_t sec_hdr;
db_conf_regs_t conf_regs;
} db_pci_data_t;
#endif
/*
* LOCALS
*/
/*
* The next set of variables are control parameters for debug purposes only.
* Changing the default values as assigned below are not recommended.
* In some cases, the non-default values are mostly application specific and
* hence may not have been tested yet.
*
* db_conf_map_mode : specifies the access method used for generating
* configuration cycles. Default value indicates
* the indirect configuration method.
* db_io_map_mode : specifies the access method used for generating
* IO cycles. Default value indicates the direct
* method.
* db_pci_own_wait : For indirect cycles, indicates the wait period
* for acquiring the bus, when the bus is busy.
* db_pci_release_wait:For indirect cycles, indicates the wait period
* for releasing the bus when the bus is busy.
* db_pci_max_wait : max. wait time when bus is busy for indirect cycles
* db_set_latency_timer_register :
* when 1, the driver overwrites the OBP assigned
* latency timer register setting for every child
* device during child initialization.
* db_set_cache_line_size_register :
* when 1, the driver overwrites the OBP assigned
* cache line register setting for every child
* device during child initialization.
* db_use_config_own_bit:
* when 1, the driver will use the "config own bit"
* for accessing the configuration address and data
* registers.
*/
static uint32_t db_pci_own_wait = DB_PCI_WAIT_MS;
static uint32_t db_pci_release_wait = DB_PCI_WAIT_MS;
static uint32_t db_pci_max_wait = DB_PCI_TIMEOUT;
static uint32_t db_conf_map_mode = DB_CONF_MAP_INDIRECT_CONF;
static uint32_t db_io_map_mode = DB_IO_MAP_DIRECT;
static uint32_t db_set_latency_timer_register = 1;
static uint32_t db_set_cache_line_size_register = 1;
static uint32_t db_use_config_own_bit = 0;
/*
* Properties that can be set via .conf files.
*/
/*
* By default, we forward SERR# from secondary to primary. This behavior
* can be controlled via a property "serr-fwd-enable", type integer.
* Values are 0 or 1.
* 0 means 'do not forward SERR#'.
* 1 means forwards SERR# to the host. Should be the default.
*/
static uint32_t db_serr_fwd_enable = 1;
/*
* The next set of parameters are performance tuning parameters.
* These are in the form of properties settable through a .conf file.
* In case if the properties are absent the following defaults are assumed.
* These initial default values can be overwritten via /etc/system also.
*
* -1 means no setting is done ie. we either get OBP assigned value
* or reset values (at hotplug time for example).
*/
/* primary latency timer: property "p-latency-timer" : type integer */
static int8_t p_latency_timer = DEF_INVALID_REG_VAL;
/* secondary latency timer: property "s-latency-timer": type integer */
/*
* Currently on the secondary side the latency timer is not
* set by the serial PROM which causes performance degradation.
* Set the secondary latency timer register.
*/
static int8_t s_latency_timer = DB_SEC_LATENCY_TIMER_VAL;
/* primary cache line size: property "p-cache-line-size" : type integer */
static int8_t p_cache_line_size = DEF_INVALID_REG_VAL;
/* secondary cache line size: property "s-cache-line-size" : type integer */
/*
* Currently on the secondary side the cache line size is not
* set by the serial PROM which causes performance degradation.
* Set the secondary cache line size register.
*/
static int8_t s_cache_line_size = DB_SEC_CACHELN_SIZE_VAL;
/*
* control primary posted write queue threshold limit:
* property "p-pwrite-threshold" : type integer : values are 0 or 1.
* 1 enables control. 0 does not, and is the default reset value.
*/
static int8_t p_pwrite_threshold = DEF_INVALID_REG_VAL;
/*
* control secondary posted write queue threshold limit:
* property "s-pwrite-threshold" : type integer : values are 0 or 1.
* 1 enables control. 0 does not, and is the default reset value.
*/
static int8_t s_pwrite_threshold = DEF_INVALID_REG_VAL;
/*
* control read queue threshold for initiating delayed read transaction
* on primary bus.
* property "p-dread-threshold" : type integer: values are
*
* 0 : reset value, default behavior: at least 8DWords free for all MR
* 1 : reserved
* 2 : at least one cache line free for MRL and MRM, 8 DWords free for MR
* 3 : at least one cache line free for all MR
*/
static int8_t p_dread_threshold = DEF_INVALID_REG_VAL;
/*
* control read queue threshold for initiating delayed read transaction
* on secondary bus.
* property "s-dread-threshold" : type integer: values are
*
* 0 : reset value, default behavior: at least 8DWords free for all MR
* 1 : reserved
* 2 : at least one cache line free for MRL and MRM, 8 DWords free for MR
* 3 : at least one cache line free for all MR
*/
static int8_t s_dread_threshold = DEF_INVALID_REG_VAL;
/*
* control how 21554 issues delayed transactions on the target bus.
* property "delayed-trans-order" : type integer: values are 0 or 1.
* 1 means repeat transaction on same target on target retries.
* 0 is the reset/default value, and means enable round robin based
* reads on other targets in read queue on any target retries.
*/
static int8_t delayed_trans_order = DEF_INVALID_REG_VAL;
/*
* In case if the system DVMA information is not available, as it is
* prior to s28q1, the system dvma range can be set via these parameters.
*/
static uint32_t db_dvma_start = DB_DVMA_START;
static uint32_t db_dvma_len = DB_DVMA_LEN;
/*
* Default command register settings for all PCI nodes this nexus initializes.
*/
static uint16_t db_command_default =
PCI_COMM_SERR_ENABLE |
PCI_COMM_PARITY_DETECT |
PCI_COMM_ME |
PCI_COMM_MAE |
PCI_COMM_IO |
PCI_COMM_BACK2BACK_ENAB |
PCI_COMM_MEMWR_INVAL;
static int db_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int db_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static void db_get_perf_parameters(db_ctrl_t *dbp);
static void db_set_perf_parameters(db_ctrl_t *dbp);
static void db_enable_io(db_ctrl_t *dbp);
static void db_orientation(db_ctrl_t *dbp);
static void db_set_dvma_range(db_ctrl_t *dbp);
static int db_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result);
static int db_pci_map(dev_info_t *, dev_info_t *, ddi_map_req_t *,
off_t, off_t, caddr_t *);
static int db_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t,
void *, void *);
static int db_intr_ops(dev_info_t *dip, dev_info_t *rdip,
ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp,
void *result);
static dev_info_t *db_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip);
static int db_fm_init_child(dev_info_t *dip, dev_info_t *tdip, int cap,
ddi_iblock_cookie_t *ibc);
static void db_bus_enter(dev_info_t *dip, ddi_acc_handle_t handle);
static void db_bus_exit(dev_info_t *dip, ddi_acc_handle_t handle);
struct bus_ops db_bus_ops = {
BUSO_REV,
db_pci_map,
0,
0,
0,
i_ddi_map_fault,
ddi_dma_map,
ddi_dma_allochdl,
ddi_dma_freehdl,
ddi_dma_bindhdl,
ddi_dma_unbindhdl,
ddi_dma_flush,
ddi_dma_win,
ddi_dma_mctl,
db_ctlops,
ddi_bus_prop_op,
ndi_busop_get_eventcookie,
ndi_busop_add_eventcall,
ndi_busop_remove_eventcall,
ndi_post_event,
0,
0,
0,
db_fm_init_child,
NULL,
db_bus_enter,
db_bus_exit,
0,
db_intr_ops
};
static int db_open(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
static int db_close(dev_t dev, int flag, int otyp, cred_t *cred_p);
static int db_ioctl(dev_t dev, int cmd, intptr_t arg, int flag,
cred_t *cred_p, int *rval_p);
#ifdef DB_DEBUG
static dev_info_t *db_lookup_child_name(db_ctrl_t *dbp, char *name,
int instance);
static void db_pci_get_header(ddi_acc_handle_t config_handle,
db_pci_header_t *ph, off_t hdr_off);
static void db_pci_get_conf_regs(ddi_acc_handle_t config_handle,
db_conf_regs_t *cr);
#endif /* DB_DEBUG */
#ifdef DEBUG
static void
db_debug(uint64_t func_id, dev_info_t *dip, char *fmt,
uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5);
#endif
static int db_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp);
static struct cb_ops db_cb_ops = {
db_open, /* open */
db_close, /* close */
nulldev, /* strategy */
nulldev, /* print */
nulldev, /* dump */
nulldev, /* read */
nulldev, /* write */
db_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
db_prop_op, /* cb_prop_op */
NULL, /* streamtab */
D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
static uint8_t db_ddi_get8(ddi_acc_impl_t *handle, uint8_t *addr);
static uint16_t db_ddi_get16(ddi_acc_impl_t *handle, uint16_t *addr);
static uint32_t db_ddi_get32(ddi_acc_impl_t *handle, uint32_t *addr);
static uint64_t db_ddi_get64(ddi_acc_impl_t *handle, uint64_t *addr);
static void db_ddi_put8(ddi_acc_impl_t *handle, uint8_t *addr,
uint8_t data);
static void db_ddi_put16(ddi_acc_impl_t *handle, uint16_t *addr,
uint16_t data);
static void db_ddi_put32(ddi_acc_impl_t *handle, uint32_t *addr,
uint32_t data);
static void db_ddi_put64(ddi_acc_impl_t *handle, uint64_t *addr,
uint64_t data);
static void db_ddi_rep_get8(ddi_acc_impl_t *handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_get16(ddi_acc_impl_t *handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_get32(ddi_acc_impl_t *handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_get64(ddi_acc_impl_t *handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_put8(ddi_acc_impl_t *handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_put16(ddi_acc_impl_t *handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_put32(ddi_acc_impl_t *handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);
static void db_ddi_rep_put64(ddi_acc_impl_t *handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);
static struct dev_ops db_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* refcnt */
db_getinfo, /* info */
nulldev, /* identify */
nulldev, /* probe */
db_attach, /* attach */
db_detach, /* detach */
nulldev, /* reset */
&db_cb_ops, /* driver operations */
&db_bus_ops, /* bus operations */
ddi_power
};
/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {
&mod_driverops, /* Type of module */
DB_MODINFO_DESCRIPTION,
&db_dev_ops /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
/* soft state pointer and structure template. */
static void *db_state;
/*
* forward function declarations:
*/
static void db_uninitchild(dev_info_t *);
static int db_initchild(dev_info_t *child);
static int db_create_pci_prop(dev_info_t *child);
static int db_save_config_regs(db_ctrl_t *dbp);
static int db_restore_config_regs(db_ctrl_t *dbp);
/*
* FMA error callback
* Register error handling callback with our parent. We will just call
* our children's error callbacks and return their status.
*/
static int db_err_callback(dev_info_t *dip, ddi_fm_error_t *derr,
const void *impl_data);
/*
* init/fini routines to alloc/dealloc fm structures and
* register/unregister our callback.
*/
static void db_fm_init(db_ctrl_t *db_p);
static void db_fm_fini(db_ctrl_t *db_p);
int
_init(void)
{
int rc;
DB_DEBUG0(DB_INIT|DB_DONT_DISPLAY_DIP, NULL, "enter\n");
if (((rc = ddi_soft_state_init(&db_state,
sizeof (db_ctrl_t), 1)) == 0) &&
((rc = mod_install(&modlinkage)) != 0))
ddi_soft_state_fini(&db_state);
DB_DEBUG1(DB_INIT|DB_DONT_DISPLAY_DIP, NULL, "exit rc=%d\n", rc);
return (rc);
}
int
_fini(void)
{
int rc;
DB_DEBUG0(DB_FINI|DB_DONT_DISPLAY_DIP, NULL, "enter\n");
if ((rc = mod_remove(&modlinkage)) == 0)
ddi_soft_state_fini(&db_state);
DB_DEBUG1(DB_FINI|DB_DONT_DISPLAY_DIP, NULL, "exit rc=%d\n", rc);
return (rc);
}
int
_info(struct modinfo *modinfop)
{
int rc;
rc = mod_info(&modlinkage, modinfop);
DB_DEBUG1(DB_INFO|DB_DONT_DISPLAY_DIP, NULL, "exit rc=%d\n", rc);
return (rc);
}
/*ARGSUSED*/
static int
db_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
db_ctrl_t *dbp;
int rc = DDI_FAILURE;
minor_t minor = getminor((dev_t)arg);
int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor);
DB_DEBUG1(DB_GETINFO|DB_DONT_DISPLAY_DIP, dip, "enter:cmd=%d\n",
infocmd);
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
if ((dbp = ddi_get_soft_state(db_state,
instance)) != NULL) {
*result = dbp->dip;
rc = DDI_SUCCESS;
} else
*result = NULL;
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)instance;
rc = DDI_SUCCESS;
break;
default:
break;
}
DB_DEBUG2(DB_GETINFO|DB_DONT_DISPLAY_DIP, dip,
"exit: result=%x, rc=%d\n", *result, rc);
return (rc);
}
static int
db_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance = ddi_get_instance(dip);
db_ctrl_t *dbp;
int rc = DDI_SUCCESS;
ddi_device_acc_attr_t db_csr_attr = { /* CSR map attributes */
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC
};
off_t bar_size;
int range_size;
char name[32];
DB_DEBUG1(DB_ATTACH, dip, "enter: cmd=%d\n", cmd);
switch (cmd) {
case DDI_ATTACH:
if (ddi_soft_state_zalloc(db_state, instance) != DDI_SUCCESS) {
rc = DDI_FAILURE;
break;
}
dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
dbp->dip = dip;
mutex_init(&dbp->db_mutex, NULL, MUTEX_DRIVER, NULL);
dbp->db_soft_state = DB_SOFT_STATE_CLOSED;
/*
* Cannot use pci_config_setup here as we'd need
* to get a pointer to the address map to be able
* to set the bus private handle during child map
* operation.
*/
if ((rc = ddi_regs_map_setup(dip, DB_PCI_CONF_RNUMBER,
(caddr_t *)&dbp->conf_io, DB_PCI_CONF_OFFSET,
PCI_CONF_HDR_SIZE, &db_csr_attr, &dbp->conf_handle))
!= DDI_SUCCESS) {
cmn_err(CE_WARN,
"%s#%d: cannot map configuration space",
ddi_driver_name(dip), ddi_get_instance(dip));
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
db_get_perf_parameters(dbp);
if (ddi_dev_regsize(dip, DB_CSR_MEMBAR_RNUMBER, &bar_size)
!= DDI_SUCCESS) {
cmn_err(CE_WARN, "%s#%d: cannot get memory CSR size",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
ddi_regs_map_free(&dbp->conf_handle);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
/* map memory CSR space */
if (ddi_regs_map_setup(dip, DB_CSR_MEMBAR_RNUMBER,
(caddr_t *)&dbp->csr_mem, DB_CSR_MEM_OFFSET, bar_size,
&db_csr_attr, &dbp->csr_mem_handle) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s#%d: cannot map memory CSR space",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
ddi_regs_map_free(&dbp->conf_handle);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
if (ddi_dev_regsize(dip, DB_CSR_IOBAR_RNUMBER, &bar_size)
!= DDI_SUCCESS) {
cmn_err(CE_WARN, "%s#%d: cannot get IO CSR size",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
ddi_regs_map_free(&dbp->csr_mem_handle);
ddi_regs_map_free(&dbp->conf_handle);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
/*
* map IO CSR space. We need this map to initiate
* indirect configuration transactions as this is a better
* option than doing through configuration space map.
*/
if (ddi_regs_map_setup(dip, DB_CSR_IOBAR_RNUMBER,
(caddr_t *)&dbp->csr_io, DB_CSR_IO_OFFSET, bar_size,
&db_csr_attr, &dbp->csr_io_handle) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s#%d: cannot map IO CSR space",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
ddi_regs_map_free(&dbp->csr_mem_handle);
ddi_regs_map_free(&dbp->conf_handle);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
db_orientation(dbp);
if (dbp->dev_state & DB_SECONDARY_NEXUS) {
if (pcihp_init(dip) != DDI_SUCCESS)
cmn_err(CE_WARN,
"%s#%d: could not register with hotplug",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
} else {
/*
* create minor node for devctl interfaces
*/
if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
PCIHP_AP_MINOR_NUM(instance, PCIHP_DEVCTL_MINOR),
DDI_NT_NEXUS, 0) != DDI_SUCCESS) {
ddi_regs_map_free(&dbp->csr_io_handle);
ddi_regs_map_free(&dbp->csr_mem_handle);
ddi_regs_map_free(&dbp->conf_handle);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
}
db_enable_io(dbp);
range_size = sizeof (dbp->range);
if (ddi_getlongprop_buf(DDI_DEV_T_NONE, dip,
DDI_PROP_DONTPASS, "bus-range", (caddr_t)&dbp->range,
&range_size) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"%s#%d: cannot get bus-range property",
ddi_driver_name(dip), ddi_get_instance(dip));
if (dbp->dev_state & DB_SECONDARY_NEXUS)
(void) pcihp_uninit(dip);
else
ddi_remove_minor_node(dip, "devctl");
ddi_regs_map_free(&dbp->csr_mem_handle);
ddi_regs_map_free(&dbp->csr_io_handle);
ddi_regs_map_free(&dbp->conf_handle);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
rc = DDI_FAILURE;
break;
}
(void) sprintf(name, "%d", instance);
if (ddi_create_minor_node(dip, name, S_IFCHR,
PCIHP_AP_MINOR_NUM(instance, PCIHP_DEBUG_MINOR),
NULL, NULL) == DDI_FAILURE) {
cmn_err(CE_NOTE, "%s#%d: node creation failure",
ddi_driver_name(dbp->dip), instance);
}
mutex_init(&dbp->db_busown, NULL, MUTEX_DRIVER, NULL);
db_fm_init(dbp);
ddi_report_dev(dip);
dbp->dev_state |= DB_ATTACHED;
break;
case DDI_RESUME:
/*
* Get the soft state structure for the bridge.
*/
dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
db_enable_io(dbp);
(void) db_restore_config_regs(dbp);
dbp->dev_state &= ~DB_SUSPENDED;
break;
default:
rc = DDI_FAILURE; /* not supported yet */
break;
}
DB_DEBUG1(DB_ATTACH, dip, "exit: rc=%d\n", rc);
return (rc);
}
static int
db_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int instance = ddi_get_instance(dip);
db_ctrl_t *dbp;
int rc = DDI_SUCCESS;
char name[32];
dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
DB_DEBUG1(DB_DETACH, dip, "enter: cmd=%d\n", cmd);
switch (cmd) {
case DDI_DETACH :
db_fm_fini(dbp);
if (dbp->dev_state & DB_SECONDARY_NEXUS)
if (pcihp_uninit(dip) == DDI_FAILURE)
return (DDI_FAILURE);
else
ddi_remove_minor_node(dip, "devctl");
mutex_destroy(&dbp->db_busown);
ddi_regs_map_free(&dbp->csr_mem_handle);
ddi_regs_map_free(&dbp->csr_io_handle);
ddi_regs_map_free(&dbp->conf_handle);
dbp->dev_state &= ~DB_ATTACHED;
(void) sprintf(name, "%d", instance);
ddi_remove_minor_node(dip, name);
mutex_destroy(&dbp->db_mutex);
ddi_soft_state_free(db_state, instance);
break;
case DDI_SUSPEND :
if (db_save_config_regs(dbp) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"%s#%d: Ignoring Child state Suspend Error",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
}
dbp->dev_state |= DB_SUSPENDED;
break;
default :
rc = DDI_FAILURE;
break;
}
DB_DEBUG1(DB_DETACH, dip, "exit: rc=%d\n", rc);
return (rc);
}
static void
db_get_perf_parameters(db_ctrl_t *dbp)
{
dbp->p_latency_timer = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "p-latency-timer", p_latency_timer);
dbp->s_latency_timer = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "s-latency-timer", s_latency_timer);
dbp->p_cache_line_size = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "p-cache-line-size", p_cache_line_size);
dbp->s_cache_line_size = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "s-cache-line-size", s_cache_line_size);
dbp->p_pwrite_threshold = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "p-pwrite-threshold", p_pwrite_threshold);
dbp->s_pwrite_threshold = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "s-pwrite-threshold", s_pwrite_threshold);
dbp->p_dread_threshold = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "p-dread-threshold", p_dread_threshold);
dbp->s_dread_threshold = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "s-dread-threshold", s_dread_threshold);
dbp->delayed_trans_order = (int8_t)ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "delayed-trans-order", delayed_trans_order);
}
static void
db_set_perf_parameters(db_ctrl_t *dbp)
{
uint_t poffset = 0, soffset = 0;
if (dbp->dev_state & DB_SECONDARY_NEXUS)
poffset = DB_SCONF_PRI_HDR_OFF;
else
soffset = DB_PCONF_SEC_HDR_OFF;
if ((dbp->p_latency_timer != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->p_latency_timer != -1))
ddi_put8(dbp->conf_handle,
(uint8_t *)dbp->conf_io+poffset+PCI_CONF_LATENCY_TIMER,
dbp->p_latency_timer);
if ((dbp->s_latency_timer != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->s_latency_timer != -1))
ddi_put8(dbp->conf_handle,
(uint8_t *)dbp->conf_io+soffset+PCI_CONF_LATENCY_TIMER,
dbp->s_latency_timer);
if ((dbp->p_cache_line_size != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->p_cache_line_size != -1))
ddi_put8(dbp->conf_handle,
(uint8_t *)dbp->conf_io+poffset+PCI_CONF_CACHE_LINESZ,
dbp->p_cache_line_size);
if ((dbp->s_cache_line_size != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->s_cache_line_size != -1))
ddi_put8(dbp->conf_handle,
(uint8_t *)dbp->conf_io+soffset+PCI_CONF_CACHE_LINESZ,
dbp->s_cache_line_size);
if ((dbp->p_pwrite_threshold != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->p_pwrite_threshold != -1))
ddi_put16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1),
(ddi_get16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1)) &
~P_PW_THRESHOLD) |
(dbp->p_pwrite_threshold?P_PW_THRESHOLD:0));
if ((dbp->s_pwrite_threshold != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->s_pwrite_threshold != -1))
ddi_put16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1),
(ddi_get16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1)) &
~S_PW_THRESHOLD) |
(dbp->s_pwrite_threshold?S_PW_THRESHOLD:0));
/* primary delayed read threshold. 0x01 is reserved ?. */
if ((dbp->p_dread_threshold != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->p_dread_threshold != -1))
ddi_put16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1),
((ddi_get16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1)) &
~P_DREAD_THRESHOLD_MASK) |
((dbp->p_dread_threshold &
DREAD_THRESHOLD_VALBITS)<<2)));
/* secondary delayed read threshold. 0x01 is reserved ?. */
if ((dbp->s_dread_threshold != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->s_dread_threshold != -1))
ddi_put16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1),
((ddi_get16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL1)) &
~S_DREAD_THRESHOLD_MASK) |
((dbp->s_dread_threshold &
DREAD_THRESHOLD_VALBITS)<<4)));
if ((dbp->delayed_trans_order != (int8_t)DEF_INVALID_REG_VAL) &&
(dbp->delayed_trans_order != -1))
ddi_put16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL0),
(ddi_get16(dbp->conf_handle, (uint16_t *)
((uchar_t *)dbp->conf_io+DB_CONF_CHIP_CTRL0)) &
~DELAYED_TRANS_ORDER) |
(dbp->delayed_trans_order?DELAYED_TRANS_ORDER:0));
}
static void
db_orientation(db_ctrl_t *dbp)
{
dev_info_t *dip = dbp->dip;
uint8_t pif;
uint32_t mem1;
uint32_t newval;
/*
* determine orientation of drawbridge and enable
* Upstream or Downstream path.
*/
/*
* if PIF is set correctly, use it to determine orientation
*/
pif = ddi_get8(dbp->conf_handle, (uchar_t *)dbp->conf_io +
PCI_CONF_PROGCLASS);
if (pif & 0xff) {
if (pif & DB_PIF_SECONDARY_TO_HOST) {
dbp->dev_state = DB_SECONDARY_NEXUS;
DB_DEBUG0(DB_ATTACH, dip,
"db_orientation: pif secondary\n");
return;
}
if (pif & DB_PIF_PRIMARY_TO_HOST) {
dbp->dev_state = DB_PRIMARY_NEXUS;
DB_DEBUG0(DB_ATTACH, dip,
"db_orientation: pif primary\n");
return;
}
/* otherwise, fall through */
}
/*
* otherwise, test the chip directly by trying to write
* downstream mem1 setup register, only writeable from
* secondary.
*/
mem1 = ddi_get32(dbp->conf_handle,
(uint32_t *)((uchar_t *)dbp->conf_io +
DB_CONF_DS_IO_MEM1_SETUP));
ddi_put32(dbp->conf_handle,
(uint32_t *)((uchar_t *)(dbp->conf_io +
DB_CONF_DS_IO_MEM1_SETUP)), ~mem1);
newval = ddi_get32(dbp->conf_handle,
(uint32_t *)((uchar_t *)dbp->conf_io +
DB_CONF_DS_IO_MEM1_SETUP));
if (newval == mem1)
/* we couldn't write it, orientation is primary */
dbp->dev_state = DB_PRIMARY_NEXUS;
else {
/*
* we could write it, therefore orientation secondary.
* restore mem1 value.
*/
dbp->dev_state = DB_SECONDARY_NEXUS;
ddi_put32(dbp->conf_handle,
(uint32_t *)((uchar_t *)(dbp->conf_io +
DB_CONF_DS_IO_MEM1_SETUP)), mem1);
}
if (dbp->dev_state & DB_PRIMARY_NEXUS) {
DB_DEBUG0(DB_ATTACH, dip, "db_orientation: chip primary\n");
} else {
DB_DEBUG0(DB_ATTACH, dip, "db_orientation: chip secondary\n");
}
}
static void
db_enable_io(db_ctrl_t *dbp)
{
dev_info_t *dip = dbp->dip;
pci_regspec_t *reg;
int rcount, length, i;
uint32_t offset;
uint32_t p_offset, s_offset;
uint16_t regval;
uint16_t enable;
/*
* Step 0:
* setup the primary and secondary offset and enable
* values based on the orientation of 21554.
*/
if (dbp->dev_state & DB_PRIMARY_NEXUS) {
DB_DEBUG0(DB_ATTACH, dip, "db_enable_io: primary\n");
p_offset = 0;
s_offset = DB_SCONF_HDR_OFF;
enable = DS_ENABLE;
} else {
DB_DEBUG0(DB_ATTACH, dip, "db_enable_io: secondary\n");
p_offset = DB_SCONF_HDR_OFF;
s_offset = 0;
enable = US_ENABLE;
}
db_set_perf_parameters(dbp);
db_set_dvma_range(dbp);
/*
* Step 1:
* setup latency timer and cache line size parameters
* which are used for child initialization.
*/
dbp->latency_timer = ddi_get8(dbp->conf_handle, (uint8_t *)
((caddr_t)dbp->conf_io+PCI_CONF_LATENCY_TIMER));
dbp->cache_line_size = ddi_get8(dbp->conf_handle, (uint8_t *)
((caddr_t)dbp->conf_io+PCI_CONF_CACHE_LINESZ));
DB_DEBUG2(DB_ATTACH, dip,
"db_enable_io: latency %d, cache line size %d\n",
dbp->latency_timer, dbp->cache_line_size);
/*
* Step 2: program command reg on both primary and secondary
* interfaces.
*/
ddi_put16(dbp->conf_handle, (uint16_t *)((caddr_t)dbp->conf_io +
(off_t)(p_offset + PCI_CONF_COMM)), db_command_default);
ddi_put16(dbp->conf_handle, (uint16_t *)((caddr_t)dbp->conf_io +
(off_t)(s_offset + PCI_CONF_COMM)), db_command_default);
/*
* Step 3:
* set up translated base registers, using the primary/
* secondary interface pci configuration Base Address
* Registers (BAR's).
*/
/* mem0 translated base is setup for primary orientation only. */
if (dbp->dev_state & DB_PRIMARY_NEXUS) {
/*
* And only if the 21554 device node property indicates
* the size of base0 register to be larger than csr map
* space, DB_CSR_SIZE=4K.
*
* Note : Setting up 1:1 translations only (for now:), i.e.
* no look up table.
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (caddr_t)&reg,
&length) != DDI_PROP_SUCCESS) {
DB_DEBUG0(DB_ATTACH, dip,
"Failed to read reg property\n");
return;
}
/* Find device node's base0 reg property and check its size */
rcount = length / sizeof (pci_regspec_t);
for (i = 0; i < rcount; i++) {
offset = PCI_REG_REG_G(reg[i].pci_phys_hi);
if ((offset == PCI_CONF_BASE0) &&
(reg[i].pci_size_low > DB_CSR_SIZE))
break;
}
/*
* set up mem0 translated base, if base0 register was
* found and its size was larger than csr map space.
*/
if (i != rcount) {
DB_DEBUG0(DB_ATTACH, dip,
"db_enable_io: setting up MEM0_TR_BASE\n");
DB_DEBUG1(DB_ATTACH, dip, "BASE0 register = %x\n",
pci_config_get32(dbp->conf_handle,
(off_t)(p_offset + PCI_CONF_BASE0)));
pci_config_put32(dbp->conf_handle,
(off_t)DB_CONF_DS_MEM0_TR_BASE,
pci_config_get32(dbp->conf_handle,
(off_t)(p_offset + PCI_CONF_BASE0)));
DB_DEBUG1(DB_ATTACH, dip,
"db_enable_io: MEM0_TR_BASE set value = %x\n",
pci_config_get32(dbp->conf_handle,
(off_t)DB_CONF_DS_MEM0_TR_BASE));
}
kmem_free(reg, length);
}
pci_config_put32(dbp->conf_handle, (off_t)DB_CONF_DS_IO_MEM1_TR_BASE,
((pci_config_get32(dbp->conf_handle,
(off_t)(p_offset + PCI_CONF_BASE2))) & ~DB_IO_BIT));
pci_config_put32(dbp->conf_handle, (off_t)DB_CONF_DS_MEM2_TR_BASE,
((pci_config_get32(dbp->conf_handle,
(off_t)(p_offset + PCI_CONF_BASE3))) & ~DB_IO_BIT));
pci_config_put32(dbp->conf_handle, (off_t)DB_CONF_DS_MEM3_TR_BASE,
((pci_config_get32(dbp->conf_handle,
(off_t)(p_offset + PCI_CONF_BASE4))) & ~DB_IO_BIT));
pci_config_put32(dbp->conf_handle, (off_t)DB_CONF_US_IO_MEM0_TR_BASE,
((pci_config_get32(dbp->conf_handle,
(off_t)(s_offset + PCI_CONF_BASE2))) & ~DB_IO_BIT));
pci_config_put32(dbp->conf_handle, (off_t)DB_CONF_US_MEM1_TR_BASE,
((pci_config_get32(dbp->conf_handle,
(off_t)(s_offset + PCI_CONF_BASE3))) & ~DB_IO_BIT));
/*
* Step 4: enable downstream (for primary orientation) or upstream
* (for secondary orientation) bits in Configuration Control
* and Status register, if not already enabled.
*/
regval = pci_config_get16(dbp->conf_handle, (off_t)DB_CONF_CONF_CSR);
DB_DEBUG1(DB_ATTACH, dip, "db_enable_io: CSR value before: %x\n",
regval);
if (!(regval & enable)) {
/* enable down/upstream configuration transactions */
regval |= enable;
pci_config_put16(dbp->conf_handle, (off_t)DB_CONF_CONF_CSR,
regval);
regval = pci_config_get16(dbp->conf_handle,
(off_t)DB_CONF_CONF_CSR);
}
DB_DEBUG1(DB_ATTACH, dip, "db_enable_io: CSR value after: %x\n",
regval);
/*
* Step 5: enable downstream/upstream I/O (through CSR space)
*/
regval = ddi_get16(dbp->csr_mem_handle,
(uint16_t *)((uchar_t *)dbp->csr_mem + DB_CSR_IO_CSR));
DB_DEBUG1(DB_ATTACH, dip, "db_enable_io: IO_CSR value before: %x\n",
regval);
if (!(regval & enable)) {
regval |= enable;
ddi_put16(dbp->csr_mem_handle,
(uint16_t *)((uchar_t *)dbp->csr_mem +
DB_CSR_IO_CSR), regval);
regval = ddi_get16(dbp->csr_mem_handle,
(uint16_t *)((uchar_t *)dbp->csr_mem + DB_CSR_IO_CSR));
}
DB_DEBUG1(DB_ATTACH, dip, "db_enable_io: IO_CSR value after: %x\n",
regval);
/*
* Step 6: if 21554 orientation is primary to host,
* forward SERR# to host.
*/
if (dbp->dev_state & DB_PRIMARY_NEXUS) {
dbp->serr_fwd_enable = ddi_prop_get_int(DDI_DEV_T_ANY,
dbp->dip, 0, "serr-fwd-enable", db_serr_fwd_enable);
regval = ddi_get16(dbp->conf_handle,
(uint16_t *)((uchar_t *)dbp->conf_io +
DB_CONF_CHIP_CTRL0));
DB_DEBUG1(DB_ATTACH, dip,
"db_enable_io: CHIP_CTRL0 value before: %x\n", regval);
ddi_put16(dbp->conf_handle,
(uint16_t *)((uchar_t *)dbp->conf_io +
DB_CONF_CHIP_CTRL0),
(regval & ~SERR_FWD) |
(dbp->serr_fwd_enable?SERR_FWD:0));
regval = ddi_get16(dbp->conf_handle,
(uint16_t *)((uchar_t *)dbp->conf_io +
DB_CONF_CHIP_CTRL0));
DB_DEBUG1(DB_ATTACH, dip,
"db_enable_io: CHIP_CTRL0 value after: %x\n", regval);
}
/*
* Step 7: if orientation is secondary, make sure primary lockout
* disable is reset.
*/
if (dbp->dev_state & DB_SECONDARY_NEXUS) {
regval = pci_config_get16(dbp->conf_handle,
(off_t)DB_CONF_CHIP_CTRL0);
DB_DEBUG1(DB_ATTACH, dip,
"db_enable_io: chip ctrl (0x%x) before\n", regval);
if (regval & PLOCKOUT)
pci_config_put16(dbp->conf_handle,
(off_t)DB_CONF_CHIP_CTRL0,
(regval & ~PLOCKOUT));
regval = pci_config_get16(dbp->conf_handle,
(off_t)DB_CONF_CHIP_CTRL0);
DB_DEBUG1(DB_ATTACH, dip,
"db_enable_io: chip ctrl (0x%x) after\n", regval);
}
}
/*
* Set DVMA Address Range.
* This code is common to both orientations of the nexus driver.
*/
static void
db_set_dvma_range(db_ctrl_t *dbp)
{
uint32_t dvma_start = 0;
uint32_t dvma_len = 0;
uint64_t db_allocd = 0;
uint32_t *dvma_prop;
uint32_t dvma_size[2]; /* dvma size may span over 2 BARs */
uint32_t dvma_bar[2]; /* dvma range may span over 2 BARs */
int dvma_prop_len;
uint64_t new_dvma_start, new_dvma_len, new_dvma_end;
/*
* Need to traverse up the tree looking for a
* "virtual-dma" property that specifies the
* HPB DVMA range.
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_get_parent(dbp->dip), 0,
"virtual-dma", (caddr_t)&dvma_prop, &dvma_prop_len)
== DDI_SUCCESS) {
dvma_start = dvma_prop[0];
dvma_len = dvma_prop[1];
kmem_free((caddr_t)dvma_prop, dvma_prop_len);
} else {
/*
* For initial implementation, lets avoid a warning since this
* change has not been implemented in the host-pci nexus
* driver.
*/
cmn_err(CE_WARN,
"%s#%d: Could not get \"virtual-dma\" property",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
dvma_start = db_dvma_start;
dvma_len = db_dvma_len;
}
DB_DEBUG2(DB_DVMA, dbp->dip,
"DVMA Range is %lx,%lx\n", dvma_start, dvma_len);
dvma_size[0] = dvma_size[1] = 0;
/* Validate DVMA size programming and system requirements. */
if (dbp->dev_state & DB_SECONDARY_NEXUS) {
dvma_size[0] = pci_config_get32(dbp->conf_handle,
DB_CONF_DS_IO_MEM1_SETUP);
if (!(dvma_size[0] & 1)) /* make sure it is not a IO BAR */
dvma_size[0] = ((~dvma_size[0]) + 1) & 0xfffff000;
else
dvma_size[0] = 0;
dvma_size[1] = db_dvma_len;
} else {
dvma_size[0] = pci_config_get32(dbp->conf_handle,
DB_CONF_US_IO_MEM0_SETUP);
if (!(dvma_size[0] & 1)) /* make sure it is not a IO BAR */
dvma_size[0] = ((~dvma_size[0]) + 1) & 0xfffff000;
else
dvma_size[0] = 0;
dvma_size[1] = ((~(pci_config_get32(dbp->conf_handle,
DB_CONF_US_MEM1_SETUP))) + 1) & 0xfffff000;
}
DB_DEBUG2(DB_DVMA, dbp->dip, "DVMA size register pair %lx, %lx\n",
dvma_size[0], dvma_size[1]);
#ifdef DEBUG
if ((dvma_size[0] + dvma_size[1]) < dvma_len)
cmn_err(CE_WARN, "%s#%d: DVMA window (%u) does not coincide"
" with system requirements",
ddi_driver_name(dbp->dip), ddi_get_instance(dbp->dip),
(dvma_size[0] + dvma_size[1]));
#endif
dvma_bar[0] = dvma_bar[1] = 0xFFFFFFFF;
db_allocd = 0;
new_dvma_start = dvma_start;
new_dvma_len = dvma_len;
/* now, program the correct DVMA range over the 2 BARs. Max 4GB */
if (dvma_size[0]) {
dvma_bar[0] = (uint32_t)(dvma_start & (~(dvma_size[0] - 1)));
new_dvma_end = (uint64_t)((uint64_t)dvma_bar[0] +
(uint64_t)dvma_size[0]);
if (new_dvma_end > (new_dvma_start + new_dvma_len))
new_dvma_end = new_dvma_start + new_dvma_len;
db_allocd += (new_dvma_end - new_dvma_start);
new_dvma_start = new_dvma_end;
new_dvma_len = dvma_len - db_allocd;
}
/*
* It does not serve any purpose to set the other DVMA register
* when we have already met the memory requirements so leave it
* disabled.
*/
if ((db_allocd != dvma_len) && dvma_size[1]) {
dvma_bar[1] = (uint32_t)((dvma_start + db_allocd) &
(~(dvma_size[1] - 1)));
new_dvma_end = (uint64_t)((uint64_t)dvma_bar[1] +
(uint64_t)dvma_size[1]);
if (new_dvma_end > (new_dvma_start + new_dvma_len))
new_dvma_end = new_dvma_start + new_dvma_len;
db_allocd += (new_dvma_end - new_dvma_start);
}
/* In case of secondary orientation, DVMA BAR0 is 0. */
if (dbp->dev_state & DB_SECONDARY_NEXUS)
dvma_bar[0] = 0;
if (db_allocd != dvma_len) {
cmn_err(CE_WARN, "%s#%d: dvma range error!",
ddi_driver_name(dbp->dip), ddi_get_instance(dbp->dip));
}
DB_DEBUG2(DB_DVMA, dbp->dip, "DVMA BARs set as %x, %x\n",
dvma_bar[0], dvma_bar[1]);
/* configure the setup register and DVMA BARs. */
if (dbp->dev_state & DB_SECONDARY_NEXUS) {
if (dvma_bar[0] != 0xFFFFFFFF) {
#ifdef DB_SEC_SETUP_WRITE
/*
* No need to program the setup register
* as the PROM would have done it.
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_DS_MEM1_SETUP,
(uint32_t)(((~(dvma_size[0] - 1)) |
(pci_config_get32(dbp->conf_handle,
DB_CONF_DS_MEM1_SETUP) & 0xF)) | 0x80000000));
#endif
/*
* when translations are to be provided, this will
* change.
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_DS_IO_MEM1_TR_BASE,
(uint32_t)dvma_bar[0]);
pci_config_put32(dbp->conf_handle,
DB_SCONF_DS_IO_MEM1, dvma_bar[0]);
}
if (dvma_bar[1] != 0xFFFFFFFF) {
#ifdef DB_SEC_SETUP_WRITE
/*
* No need to program the setup register
* as the PROM would have done it.
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_DS_MEM2_SETUP,
(uint32_t)(((~(dvma_size[1] - 1)) |
(pci_config_get32(dbp->conf_handle,
DB_CONF_DS_MEM2_SETUP) & 0xF)) | 0x80000000));
#endif
/*
* when translations are to be provided, this will
* change.
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_DS_MEM2_TR_BASE, (uint32_t)dvma_bar[1]);
pci_config_put32(dbp->conf_handle,
DB_SCONF_DS_MEM2, dvma_bar[1]);
}
} else {
if (dvma_bar[0] != 0xFFFFFFFF) {
#ifdef DB_CONF_P2S_WRITE_ENABLED /* primary to secondary write enabled */
/*
* We have a problem with this setup, because the
* US_MEM1 setup register cannot be written from the
* primary interface...!!! Hence in this configuration,
* we cannot dynamically program the DVMA range!
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_US_IO_MEM0_SETUP,
(uint32_t)(((~(dvma_size[0] - 1)) |
(pci_config_get32(dbp->conf_handle,
DB_CONF_US_IO_MEM0_SETUP) & 0xF)) |
0x80000000));
#endif
/*
* when translations are to be provided, this will
* change.
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_US_IO_MEM0_TR_BASE,
(uint32_t)dvma_bar[0]);
pci_config_put32(dbp->conf_handle,
DB_PCONF_US_IO_MEM0, dvma_bar[0]);
}
if (dvma_bar[1] != 0xFFFFFFFF) {
#ifdef DB_CONF_P2S_WRITE_ENABLED /* primary to secondary write enabled */
/*
* We have a problem with this setup, because the
* US_MEM1 setup register cannot be written from the
* primary interface...!!! Hence in this configuration,
* we cannot dynamically program the DVMA range!
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_US_MEM1_SETUP,
(uint32_t)(((~(dvma_size[1] - 1)) |
(pci_config_get32(dbp->conf_handle,
DB_CONF_US_MEM1_SETUP) & 0xF)) | 0x80000000));
#endif
/*
* when translations are to be provided, this will
* change.
*/
pci_config_put32(dbp->conf_handle,
DB_CONF_US_MEM1_TR_BASE, (uint32_t)dvma_bar[1]);
pci_config_put32(dbp->conf_handle,
DB_PCONF_US_MEM1, dvma_bar[1]);
}
}
}
/*ARGSUSED*/
static int
db_open(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
{
minor_t minor = getminor(*dev_p);
int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor);
db_ctrl_t *dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
if (dbp == (db_ctrl_t *)NULL)
return (ENXIO);
/*
* check for debug node
*/
if ((minor & 0xff) == 0xfe)
return (0);
if (dbp->dev_state & DB_SECONDARY_NEXUS)
return ((pcihp_get_cb_ops())->cb_open(dev_p, flag,
otyp, cred_p));
/*
* Handle the open by tracking the device state.
*/
mutex_enter(&dbp->db_mutex);
if (flag & FEXCL) {
if (dbp->db_soft_state != DB_SOFT_STATE_CLOSED) {
mutex_exit(&dbp->db_mutex);
return (EBUSY);
}
dbp->db_soft_state = DB_SOFT_STATE_OPEN_EXCL;
} else {
if (dbp->db_soft_state == DB_SOFT_STATE_OPEN_EXCL) {
mutex_exit(&dbp->db_mutex);
return (EBUSY);
}
dbp->db_soft_state = DB_SOFT_STATE_OPEN;
}
mutex_exit(&dbp->db_mutex);
return (0);
}
/*ARGSUSED*/
static int
db_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
{
minor_t minor = getminor(dev);
int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor);
db_ctrl_t *dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
if (dbp == (db_ctrl_t *)NULL)
return (ENXIO);
/*
* check for debug node
*/
if ((minor & 0xff) == 0xfe)
return (0);
if (dbp->dev_state & DB_SECONDARY_NEXUS)
return ((pcihp_get_cb_ops())->cb_close(dev, flag,
otyp, cred_p));
mutex_enter(&dbp->db_mutex);
dbp->db_soft_state = DB_SOFT_STATE_CLOSED;
mutex_exit(&dbp->db_mutex);
return (0);
}
/*ARGSUSED*/
static int
db_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
int *rval_p)
{
int rc = DDI_SUCCESS;
#ifdef DB_DEBUG
ddi_acc_handle_t config_handle;
db_pci_data_t pci_data;
dev_info_t *child_dip;
#endif
dev_info_t *self;
minor_t minor = getminor(dev);
int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor);
struct devctl_iocdata *dcp;
uint_t bus_state;
db_ctrl_t *dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
#ifdef DB_DEBUG
/*
* try this first whether were SECONDARY_NEXUS or not
*/
if (cmd == DB_PCI_READ_CONF_HEADER) {
if (ddi_copyin((caddr_t)arg, (caddr_t)&pci_data,
sizeof (db_pci_data_t), mode)) {
rc = EFAULT;
return (rc);
}
if (strcmp(pci_data.name, "") == 0) {
child_dip = dbp->dip;
(void) strcpy(pci_data.name,
ddi_get_name(dbp->dip));
} else {
if ((child_dip = db_lookup_child_name(dbp,
pci_data.name, pci_data.instance))
== (dev_info_t *)NULL) {
rc = ENXIO;
return (rc);
} else {
if (ddi_getprop(DDI_DEV_T_ANY,
child_dip, DDI_PROP_DONTPASS,
"vendor-id", DB_INVAL_VEND)
== DB_INVAL_VEND) {
/* non PCI device */
rc = EINVAL;
return (rc);
}
}
}
pci_data.instance = ddi_get_instance(child_dip);
(void) pci_config_setup(child_dip, &config_handle);
db_pci_get_header(config_handle, &pci_data.pri_hdr, 0);
/* if it is the drawbridge itself, read sec header */
if (child_dip == dbp->dip) {
db_pci_get_header(config_handle,
&pci_data.sec_hdr, DB_PCONF_SEC_HDR_OFF);
db_pci_get_conf_regs(config_handle,
&pci_data.conf_regs);
}
pci_config_teardown(&config_handle);
if (ddi_copyout((caddr_t)&pci_data, (caddr_t)arg,
sizeof (db_pci_data_t), mode)) {
rc = EFAULT;
return (rc);
}
return (rc);
}
#endif /* DB_DEBUG */
/*
* if secondary nexus (hotplug), then use pcihp_ioctl to do everything
*/
if (dbp->dev_state & DB_SECONDARY_NEXUS)
return ((pcihp_get_cb_ops())->cb_ioctl(dev, cmd,
arg, mode, cred_p, rval_p));
/*
* if not secondary nexus, we do DEVCTL_DEVICE and DEVCTL_BUS ourselves
*/
self = dbp->dip;
/*
* We can use the generic implementation for these ioctls
*/
switch (cmd) {
case DEVCTL_DEVICE_GETSTATE:
case DEVCTL_DEVICE_ONLINE:
case DEVCTL_DEVICE_OFFLINE:
case DEVCTL_BUS_GETSTATE:
return (ndi_devctl_ioctl(self, cmd, arg, mode, 0));
}
/*
* read devctl ioctl data
*/
if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS)
return (EFAULT);
switch (cmd) {
case DEVCTL_DEVICE_RESET:
rc = ENOTSUP;
break;
case DEVCTL_BUS_QUIESCE:
if (ndi_get_bus_state(self, &bus_state) == NDI_SUCCESS)
if (bus_state == BUS_QUIESCED)
break;
(void) ndi_set_bus_state(self, BUS_QUIESCED);
break;
case DEVCTL_BUS_UNQUIESCE:
if (ndi_get_bus_state(self, &bus_state) == NDI_SUCCESS)
if (bus_state == BUS_ACTIVE)
break;
(void) ndi_set_bus_state(self, BUS_ACTIVE);
break;
case DEVCTL_BUS_RESET:
rc = ENOTSUP;
break;
case DEVCTL_BUS_RESETALL:
rc = ENOTSUP;
break;
default:
rc = ENOTTY;
}
ndi_dc_freehdl(dcp);
return (rc);
}
#ifdef DB_DEBUG
static dev_info_t *
db_lookup_child_name(db_ctrl_t *dbp, char *name, int instance)
{
dev_info_t *cdip, *pdip = dbp->dip;
for (cdip = ddi_get_child(pdip); cdip;
cdip = ddi_get_next_sibling(pdip)) {
do {
if (strcmp(ddi_node_name(cdip), name) == 0) {
if (instance != -1) {
if (ddi_get_instance(cdip) == instance)
return (cdip);
} else
return (cdip);
}
pdip = cdip;
} while ((cdip = ddi_get_child(pdip)));
cdip = ddi_get_next_sibling(pdip);
if (cdip == NULL) {
pdip = ddi_get_parent(pdip);
if (pdip == dbp->dip)
break;
}
}
return (NULL);
}
static void
db_pci_get_header(ddi_acc_handle_t config_handle, db_pci_header_t *ph,
off_t hdr_off)
{
ph->venid = pci_config_get16(config_handle, hdr_off + PCI_CONF_VENID);
ph->devid = pci_config_get16(config_handle, hdr_off + PCI_CONF_DEVID);
ph->command = pci_config_get16(config_handle, hdr_off + PCI_CONF_COMM);
ph->status = pci_config_get16(config_handle, hdr_off + PCI_CONF_STAT);
ph->revid = pci_config_get8(config_handle, hdr_off + PCI_CONF_REVID);
ph->pif = pci_config_get8(config_handle, hdr_off + PCI_CONF_PROGCLASS);
ph->subclass = pci_config_get8(config_handle,
hdr_off + PCI_CONF_SUBCLASS);
ph->class = pci_config_get8(config_handle,
hdr_off + PCI_CONF_BASCLASS);
ph->cacheline = pci_config_get8(config_handle,
hdr_off + PCI_CONF_CACHE_LINESZ);
ph->lat = pci_config_get8(config_handle,
hdr_off + PCI_CONF_LATENCY_TIMER);
ph->hdr_type = pci_config_get8(config_handle,
hdr_off + PCI_CONF_HEADER);
ph->bist = pci_config_get8(config_handle, hdr_off + PCI_CONF_BIST);
ph->bar0 = pci_config_get32(config_handle, hdr_off + PCI_CONF_BASE0);
ph->bar1 = pci_config_get32(config_handle, hdr_off + PCI_CONF_BASE1);
ph->bar2 = pci_config_get32(config_handle, hdr_off + PCI_CONF_BASE2);
ph->bar3 = pci_config_get32(config_handle, hdr_off + PCI_CONF_BASE3);
ph->bar4 = pci_config_get32(config_handle, hdr_off + PCI_CONF_BASE4);
ph->bar5 = pci_config_get32(config_handle, hdr_off + PCI_CONF_BASE5);
ph->cardbus_cisp = pci_config_get32(config_handle,
hdr_off + PCI_CONF_CIS);
ph->sub_venid = pci_config_get16(config_handle,
hdr_off + PCI_CONF_SUBVENID);
ph->sub_devid = pci_config_get16(config_handle,
hdr_off + PCI_CONF_SUBSYSID);
ph->exprom_bar = pci_config_get32(config_handle,
hdr_off + PCI_CONF_ROM);
ph->int_line = pci_config_get8(config_handle, hdr_off + PCI_CONF_ILINE);
ph->int_pin = pci_config_get8(config_handle, hdr_off + PCI_CONF_IPIN);
ph->min_gnt = pci_config_get8(config_handle, hdr_off + PCI_CONF_MIN_G);
ph->max_lat = pci_config_get8(config_handle, hdr_off + PCI_CONF_MAX_L);
}
static void
db_pci_get_conf_regs(ddi_acc_handle_t config_handle, db_conf_regs_t *cr)
{
cr->ds_mem0_tr_base = pci_config_get32(config_handle,
DB_CONF_DS_MEM0_TR_BASE);
cr->ds_io_mem1_tr_base = pci_config_get32(config_handle,
DB_CONF_DS_IO_MEM1_TR_BASE);
cr->ds_mem2_tr_base = pci_config_get32(config_handle,
DB_CONF_DS_MEM2_TR_BASE);
cr->ds_mem3_tr_base = pci_config_get32(config_handle,
DB_CONF_DS_MEM3_TR_BASE);
cr->us_io_mem0_tr_base = pci_config_get32(config_handle,
DB_CONF_US_IO_MEM0_TR_BASE);
cr->us_mem1_tr_base = pci_config_get32(config_handle,
DB_CONF_US_MEM1_TR_BASE);
cr->ds_mem0_setup_reg = pci_config_get32(config_handle,
DB_CONF_DS_MEM0_SETUP);
cr->ds_io_mem1_setup_reg = pci_config_get32(config_handle,
DB_CONF_DS_IO_MEM1_SETUP);
cr->ds_mem2_setup_reg = pci_config_get32(config_handle,
DB_CONF_DS_MEM2_SETUP);
cr->ds_mem3_setup_reg = pci_config_get64(config_handle,
DB_CONF_DS_MEM3_SETUP);
cr->p_exp_rom_setup = pci_config_get32(config_handle,
DB_CONF_PRIM_EXP_ROM_SETUP);
cr->us_io_mem0_setup_reg = pci_config_get32(config_handle,
DB_CONF_US_IO_MEM0_SETUP);
cr->us_mem1_setup_reg = pci_config_get32(config_handle,
DB_CONF_US_MEM1_SETUP);
cr->chip_control0 = pci_config_get16(config_handle, DB_CONF_CHIP_CTRL0);
cr->chip_control1 = pci_config_get16(config_handle, DB_CONF_CHIP_CTRL1);
cr->chip_status = pci_config_get16(config_handle, DB_CONF_STATUS);
cr->arb_control = pci_config_get16(config_handle, DB_CONF_ARBITER_CTRL);
cr->p_serr_disables = pci_config_get8(config_handle,
DB_CONF_PRIM_SERR_DISABLES);
cr->s_serr_disables = pci_config_get8(config_handle,
DB_CONF_PRIM_SERR_DISABLES);
cr->config_csr = pci_config_get16(config_handle, DB_CONF_CONF_CSR);
cr->reset_control = pci_config_get32(config_handle, DB_CONF_RESET_CTRL);
cr->pm_cap = pci_config_get16(config_handle, DB_CONF_PM_CAP);
cr->pm_csr = pci_config_get16(config_handle, DB_CONF_PM_CSR);
cr->hs_csr = pci_config_get8(config_handle, DB_CONF_HS_CSR);
}
#endif /* DB_DEBUG */
/*
* Function: db_pci_map
*
* Note: Only memory accesses are direct. IO could be direct
* or indirect. Config accesses are always indirect.
* The question here is, does the "assigned-addresses"
* property entry represents the addresses in the
* local domain or the host domain itself.
* Strictly speaking, the assumption should be that
* it is in the local domain, as the transactions
* upstream or downstream are automatically
* translated by the bridge chip anyway.
*
* Return values:
* DDI_SUCCESS: map call by child device success
* DDI_FAILURE: map operation failed.
*/
static int
db_pci_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
off_t offset, off_t len, caddr_t *addrp)
{
register dev_info_t *pdip;
int reg_proplen, num_regs, rnumber;
uint_t addr_space_type;
pci_regspec_t *pci_regsetp, pci_reg;
db_ctrl_t *dbp;
db_acc_pvt_t *db_pvt;
ddi_acc_impl_t *ap;
ddi_acc_hdl_t *hp;
db_acc_cfg_addr_t *pci_addr;
int instance = ddi_get_instance(dip);
DB_DEBUG0(DB_PCI_MAP, dip, "enter\n");
/* get map type. check for config space */
switch (mp->map_type) {
case DDI_MT_RNUMBER :
/* get the reg number */
rnumber = mp->map_obj.rnumber;
if (ddi_getlongprop(DDI_DEV_T_ANY, rdip,
DDI_PROP_DONTPASS, "reg",
(caddr_t)&pci_regsetp, &reg_proplen)
!= DDI_SUCCESS)
return (DDI_FAILURE);
num_regs = reg_proplen / (int)sizeof (pci_regspec_t);
if (rnumber >= num_regs) {
/* this is a DDI_ME_RNUMBER_RANGE error */
kmem_free(pci_regsetp, reg_proplen);
return (DDI_FAILURE);
}
pci_reg = pci_regsetp[rnumber];
kmem_free(pci_regsetp, reg_proplen);
/* FALLTHROUGH */
case DDI_MT_REGSPEC :
if (mp->map_type == DDI_MT_REGSPEC)
pci_reg = *(pci_regspec_t *)mp->map_obj.rp;
/*
* Intercept config space accesses only. All other
* requests go to the parent.
*/
addr_space_type = pci_reg.pci_phys_hi & PCI_ADDR_MASK;
DB_DEBUG3(DB_PCI_MAP, dip, "rdip=%lx, rnum=%d(%d)\n",
rdip, rnumber, num_regs);
/* if we do direct map IO, then lets break here */
if ((db_io_map_mode & DB_IO_MAP_DIRECT) &&
(addr_space_type == PCI_ADDR_IO))
break;
if ((addr_space_type != PCI_ADDR_CONFIG) &&
(addr_space_type != PCI_ADDR_IO))
break;
/*
* User mapping requests not legal for indirect
* IO/Config Space
*/
if (mp->map_op == DDI_MO_MAP_HANDLE)
return (DDI_FAILURE);
dbp = (db_ctrl_t *)ddi_get_soft_state(db_state,
instance);
/* get our common access handle */
hp = (ddi_acc_hdl_t *)mp->map_handlep;
/* Check for unmap operation */
if ((mp->map_op == DDI_MO_UNMAP) ||
(mp->map_op == DDI_MO_UNLOCK)) {
/*
* free up memory allocated for our
* private access handle.
*/
db_pvt = (db_acc_pvt_t *)
hp->ah_bus_private;
DB_DEBUG1(DB_PCI_MAP, dip,
"unmap rdip=%lx\n", rdip);
kmem_free((void *)db_pvt,
sizeof (db_acc_pvt_t));
/*
* unmap operation of PCI IO/config
* space.
*/
return (DDI_SUCCESS);
}
if (addr_space_type == PCI_ADDR_CONFIG) {
/* Config space access range check */
if ((offset >= PCI_CONF_HDR_SIZE) ||
(len > PCI_CONF_HDR_SIZE) ||
(offset + len > PCI_CONF_HDR_SIZE)) {
return (DDI_FAILURE);
}
}
/* define the complete access handle */
hp = (ddi_acc_hdl_t *)mp->map_handlep;
ap = (ddi_acc_impl_t *)hp->ah_platform_private;
ap->ahi_get8 = db_ddi_get8;
ap->ahi_get16 = db_ddi_get16;
ap->ahi_get32 = db_ddi_get32;
ap->ahi_get64 = db_ddi_get64;
ap->ahi_put8 = db_ddi_put8;
ap->ahi_put16 = db_ddi_put16;
ap->ahi_put32 = db_ddi_put32;
ap->ahi_put64 = db_ddi_put64;
ap->ahi_rep_get8 = db_ddi_rep_get8;
ap->ahi_rep_get16 = db_ddi_rep_get16;
ap->ahi_rep_get32 = db_ddi_rep_get32;
ap->ahi_rep_get64 = db_ddi_rep_get64;
ap->ahi_rep_put8 = db_ddi_rep_put8;
ap->ahi_rep_put16 = db_ddi_rep_put16;
ap->ahi_rep_put32 = db_ddi_rep_put32;
ap->ahi_rep_put64 = db_ddi_rep_put64;
/* Initialize to default check/notify functions */
ap->ahi_fault = 0;
ap->ahi_fault_check = i_ddi_acc_fault_check;
ap->ahi_fault_notify = i_ddi_acc_fault_notify;
/* allocate memory for our private handle */
db_pvt = kmem_zalloc(sizeof (db_acc_pvt_t), KM_SLEEP);
hp->ah_bus_private = (void *)db_pvt;
db_pvt->dbp = dbp;
/* record the device address for future use */
pci_addr = &db_pvt->dev_addr;
pci_addr->c_busnum =
PCI_REG_BUS_G(pci_reg.pci_phys_hi);
pci_addr->c_devnum =
PCI_REG_DEV_G(pci_reg.pci_phys_hi);
pci_addr->c_funcnum =
PCI_REG_FUNC_G(pci_reg.pci_phys_hi);
/*
* We should keep the upstream or
* downstream info in our own ah_bus_private
* structure, so that we do not waste our
* time in the actual IO routines, figuring out
* if we should use upstream or downstream
* configuration addr/data register.
* So, check orientation and setup registers
* right now.
*/
switch (addr_space_type) {
case PCI_ADDR_CONFIG :
if (dbp->dev_state & DB_PRIMARY_NEXUS) {
DB_DEBUG0(DB_PCI_MAP, dip, "primary\n");
db_pvt->mask = DS8_CONF_OWN;
if (db_conf_map_mode &
DB_CONF_MAP_INDIRECT_IO) {
DB_DEBUG0(DB_PCI_MAP, dip,
"INDIRECT_CONF\n");
db_pvt->handle =
dbp->csr_io_handle;
db_pvt->addr =
(uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_DS_CONF_ADDR);
db_pvt->data =
(uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_DS_CONF_DATA);
db_pvt->bus_own =
(uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_DS_CONF_OWN);
db_pvt->bus_release =
(uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_DS_CONF_CSR);
} else {
DB_DEBUG0(DB_PCI_MAP, dip,
"DIRECT_CONF\n");
db_pvt->handle =
dbp->conf_handle;
db_pvt->addr =
(uint32_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF_DS_CONF_ADDR);
db_pvt->data = (uint32_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF_DS_CONF_DATA);
db_pvt->bus_own =
(uint8_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF8_DS_CONF_OWN);
db_pvt->bus_release =
(uint8_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF8_DS_CONF_CSR);
}
} else {
DB_DEBUG0(DB_PCI_MAP, dip,
"secondary\n");
db_pvt->mask = US8_CONF_OWN;
if (db_conf_map_mode &
DB_CONF_MAP_INDIRECT_IO) {
DB_DEBUG0(DB_PCI_MAP, dip,
"INDIRECT_CONF\n");
db_pvt->handle =
dbp->csr_io_handle;
db_pvt->addr =
(uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_US_CONF_ADDR);
db_pvt->data =
(uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_US_CONF_DATA);
db_pvt->bus_own =
(uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_US_CONF_OWN);
db_pvt->bus_release =
(uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_US_CONF_CSR);
} else {
DB_DEBUG0(DB_PCI_MAP, dip,
"DIRECT_CONF\n");
db_pvt->handle =
dbp->conf_handle;
db_pvt->addr =
(uint32_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF_US_CONF_ADDR);
db_pvt->data =
(uint32_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF_US_CONF_DATA);
db_pvt->bus_own =
(uint8_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF8_US_CONF_OWN);
db_pvt->bus_release =
(uint8_t *)
((uchar_t *)dbp->conf_io
+ DB_CONF8_US_CONF_CSR);
}
}
break;
case PCI_ADDR_IO :
DB_DEBUG0(DB_PCI_MAP, dip, "PCI_ADDR_IO\n");
/* ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE; */
db_pvt->handle = dbp->csr_io_handle;
if (dbp->dev_state & DB_PRIMARY_NEXUS) {
DB_DEBUG0(DB_PCI_MAP, dip, "primary\n");
db_pvt->addr = (uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_DS_IO_ADDR);
db_pvt->data = (uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_DS_IO_DATA);
db_pvt->bus_own = (uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_DS_IO_OWN);
db_pvt->bus_release = (uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_DS_IO_CSR);
db_pvt->mask = DS8_IO_OWN;
} else {
DB_DEBUG0(DB_PCI_MAP, dip,
"secondary\n");
db_pvt->addr = (uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_US_IO_ADDR);
db_pvt->data = (uint32_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR_US_IO_DATA);
db_pvt->bus_own = (uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_US_IO_OWN);
db_pvt->bus_release = (uint8_t *)
((uchar_t *)dbp->csr_io
+ DB_CSR8_US_IO_CSR);
db_pvt->mask = US8_IO_OWN;
}
break;
default :
DB_DEBUG0(DB_PCI_MAP, dip,
"PCI_ADDR unknown\n");
break;
}
/* make and store a type 0/1 address in the *addrp */
if (pci_addr->c_busnum == dbp->range.lo) {
*addrp = (caddr_t)DB_PCI_REG_ADDR_TYPE0(
pci_addr->c_busnum,
pci_addr->c_devnum,
pci_addr->c_funcnum,
offset);
db_pvt->access_mode |= DB_PCI_CONF_CYCLE_TYPE0;
DB_DEBUG0(DB_PCI_MAP, dip,
"access mode type 0\n");
} else {
*addrp = (caddr_t)DB_PCI_REG_ADDR_TYPE1(
pci_addr->c_busnum,
pci_addr->c_devnum,
pci_addr->c_funcnum,
offset);
db_pvt->access_mode |= DB_PCI_CONF_CYCLE_TYPE1;
DB_DEBUG0(DB_PCI_MAP, dip,
"access mode type 1\n");
}
DB_DEBUG4(DB_PCI_MAP, dip, "addrp<%x,%x,%x> = %lx\n",
pci_addr->c_busnum, pci_addr->c_devnum,
pci_addr->c_funcnum, *addrp);
return (DDI_SUCCESS);
default :
DB_DEBUG1(DB_PCI_MAP, dip, "DDI other %x\n",
mp->map_type);
break;
}
DB_DEBUG0(DB_PCI_MAP, dip, "exit\n");
pdip = (dev_info_t *)DEVI(dip)->devi_parent;
return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)
(pdip, rdip, mp, offset, len, addrp));
}
#ifdef DB_DEBUG
char *db_ctlop_name[] = {
"DDI_CTLOPS_DMAPMAPC",
"DDI_CTLOPS_INITCHILD",
"DDI_CTLOPS_UNINITCHILD",
"DDI_CTLOPS_REPORTDEV",
"DDI_CTLOPS_REPORTINT",
"DDI_CTLOPS_REGSIZE",
"DDI_CTLOPS_NREGS",
"DDI_CTLOPS_NINTRS",
"DDI_CTLOPS_SIDDEV",
"DDI_CTLOPS_SLAVEONLY",
"DDI_CTLOPS_AFFINITY",
"DDI_CTLOPS_IOMIN",
"DDI_CTLOPS_PTOB",
"DDI_CTLOPS_BTOP",
"DDI_CTLOPS_BTOPR",
"DDI_CTLOPS_RESERVED1",
"DDI_CTLOPS_RESERVED2",
"DDI_CTLOPS_RESERVED3",
"DDI_CTLOPS_INTR_HILEVEL",
"DDI_CTLOPS_XLATE_INTRS",
"DDI_CTLOPS_DVMAPAGESIZE",
"DDI_CTLOPS_POWER",
"DDI_CTLOPS_ATTACH",
"DDI_CTLOPS_DETACH",
"DDI_CTLOPS_POKE",
"DDI_CTLOPS_PEEK"
};
#endif
static int
db_ctlops(dev_info_t *dip, dev_info_t *rdip,
ddi_ctl_enum_t ctlop, void *arg, void *result)
{
if ((ctlop >= DDI_CTLOPS_DMAPMAPC) &&
(ctlop <= DDI_CTLOPS_DETACH)) {
DB_DEBUG1(DB_CTLOPS, dip, "ctlop=%s\n", db_ctlop_name[ctlop]);
} else {
DB_DEBUG1(DB_CTLOPS, dip, "ctlop=%d\n", ctlop);
}
switch (ctlop) {
case DDI_CTLOPS_REPORTDEV :
if (rdip == (dev_info_t *)0)
return (DDI_FAILURE);
cmn_err(CE_CONT, "?PCI-device: %s@%s, %s#%d\n",
ddi_node_name(rdip), ddi_get_name_addr(rdip),
ddi_driver_name(rdip),
ddi_get_instance(rdip));
return (DDI_SUCCESS);
case DDI_CTLOPS_INITCHILD :
return (db_initchild((dev_info_t *)arg));
case DDI_CTLOPS_UNINITCHILD :
db_uninitchild((dev_info_t *)arg);
return (DDI_SUCCESS);
case DDI_CTLOPS_SIDDEV :
return (DDI_SUCCESS);
case DDI_CTLOPS_REGSIZE :
case DDI_CTLOPS_NREGS :
if (rdip == (dev_info_t *)0)
return (DDI_FAILURE);
/* fall through */
default :
return (ddi_ctlops(dip, rdip, ctlop, arg, result));
}
}
static dev_info_t *
db_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
{
dev_info_t *cdip = rdip;
for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
;
return (cdip);
}
static int
db_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
ddi_intr_handle_impl_t *hdlp, void *result)
{
ddi_ispec_t *ip = (ddi_ispec_t *)hdlp->ih_private;
dev_info_t *cdip = rdip;
pci_regspec_t *pci_rp;
int reglen, len;
uint32_t d, intr;
DB_DEBUG1(DB_INTR_OPS, dip, "intr_op=%d\n", intr_op);
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
goto done;
/*
* If the interrupt-map property is defined at this
* node, it will have performed the interrupt
* translation as part of the property, so no
* rotation needs to be done.
*/
if (ddi_getproplen(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"interrupt-map", &len) == DDI_PROP_SUCCESS)
goto done;
cdip = db_get_my_childs_dip(dip, rdip);
/*
* Use the devices reg property to determine it's
* PCI bus number and device number.
*/
if (ddi_getlongprop(DDI_DEV_T_NONE, cdip, DDI_PROP_DONTPASS,
"reg", (caddr_t)&pci_rp, &reglen) != DDI_SUCCESS)
return (DDI_FAILURE);
intr = *ip->is_intr;
/* Spin the interrupt */
d = PCI_REG_DEV_G(pci_rp[0].pci_phys_hi);
if ((intr >= PCI_INTA) && (intr <= PCI_INTD))
*ip->is_intr = ((intr - 1 + (d % 4)) % 4 + 1);
else
cmn_err(CE_WARN, "%s#%d: %s: PCI intr=%x out of range",
ddi_driver_name(rdip), ddi_get_instance(rdip),
ddi_driver_name(dip), intr);
DB_DEBUG3(DB_INTR_OPS, dip, "intr=%d, d=%d, is_intr=%d\n",
intr, d, *ip->is_intr);
kmem_free(pci_rp, reglen);
done:
/* Pass up the request to our parent. */
return (i_ddi_intr_ops(dip, rdip, intr_op, hdlp, result));
}
static int
db_name_child(dev_info_t *child, char *name, int namelen)
{
uint_t n, slot, func;
pci_regspec_t *pci_rp;
if (ndi_dev_is_persistent_node(child) == 0) {
char **unit_addr;
/* name .conf nodes by "unit-address" property" */
if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS, "unit-address", &unit_addr, &n) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "cannot name node from %s.conf",
ddi_driver_name(child));
return (DDI_FAILURE);
}
if (n != 1 || *unit_addr == NULL || **unit_addr == 0) {
cmn_err(CE_WARN, "unit-address property in %s.conf"
" not well-formed", ddi_driver_name(child));
ddi_prop_free(unit_addr);
return (DDI_FAILURE);
}
(void) snprintf(name, namelen, "%s", *unit_addr);
ddi_prop_free(unit_addr);
return (DDI_SUCCESS);
}
/* name hardware nodes by "reg" property */
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, child, 0, "reg",
(int **)&pci_rp, &n) != DDI_SUCCESS)
return (DDI_FAILURE);
/* get the device identifications */
slot = PCI_REG_DEV_G(pci_rp->pci_phys_hi);
func = PCI_REG_FUNC_G(pci_rp->pci_phys_hi);
if (func != 0)
(void) snprintf(name, namelen, "%x,%x", slot, func);
else
(void) snprintf(name, namelen, "%x", slot);
ddi_prop_free(pci_rp);
return (DDI_SUCCESS);
}
static int
db_initchild(dev_info_t *child)
{
char name[MAXNAMELEN];
ddi_acc_handle_t config_handle;
ushort_t command_preserve, command;
uint_t n;
ushort_t bcr;
uchar_t header_type, min_gnt, latency_timer;
db_ctrl_t *dbp;
if (db_name_child(child, name, MAXNAMELEN) != DDI_SUCCESS)
return (DDI_FAILURE);
ddi_set_name_addr(child, name);
ddi_set_parent_data(child, NULL);
/*
* Pseudo nodes indicate a prototype node with per-instance
* properties to be merged into the real h/w device node.
* The interpretation of the unit-address is DD[,F]
* where DD is the device id and F is the function.
*/
if (ndi_dev_is_persistent_node(child) == 0) {
extern int pci_allow_pseudo_children;
/*
* Try to merge the properties from this prototype
* node into real h/w nodes.
*/
if (ndi_merge_node(child, db_name_child) == DDI_SUCCESS) {
/*
* Merged ok - return failure to remove the node.
*/
return (DDI_FAILURE);
}
/* workaround for ddivs to run under PCI */
if (pci_allow_pseudo_children) {
return (DDI_SUCCESS);
}
/*
* The child was not merged into a h/w node,
* but there's not much we can do with it other
* than return failure to cause the node to be removed.
*/
cmn_err(CE_WARN, "!%s@%s: %s.conf properties not merged",
ddi_driver_name(child), ddi_get_name_addr(child),
ddi_driver_name(child));
return (DDI_NOT_WELL_FORMED);
}
if ((db_create_pci_prop(child) != DDI_SUCCESS) ||
(pci_config_setup(child, &config_handle) != DDI_SUCCESS)) {
db_uninitchild(child);
return (DDI_FAILURE);
}
/*
* Determine the configuration header type.
*/
header_type = pci_config_get8(config_handle, PCI_CONF_HEADER);
/*
* Support for the "command-preserve" property.
*/
command_preserve = ddi_prop_get_int(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS, "command-preserve", 0);
command = pci_config_get16(config_handle, PCI_CONF_COMM);
command &= (command_preserve | PCI_COMM_BACK2BACK_ENAB);
command |= (db_command_default & ~command_preserve);
pci_config_put16(config_handle, PCI_CONF_COMM, command);
DB_DEBUG2(DB_INITCHILD, ddi_get_parent(child),
"initializing device vend=%x, devid=%x\n",
pci_config_get16(config_handle, PCI_CONF_VENID),
pci_config_get16(config_handle, PCI_CONF_DEVID));
/*
* If the device has a bus control register then program it
* based on the settings in the command register.
*/
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) {
bcr = pci_config_get8(config_handle, PCI_BCNF_BCNTRL);
if (db_command_default & PCI_COMM_PARITY_DETECT)
bcr |= PCI_BCNF_BCNTRL_PARITY_ENABLE;
if (db_command_default & PCI_COMM_SERR_ENABLE)
bcr |= PCI_BCNF_BCNTRL_SERR_ENABLE;
bcr |= PCI_BCNF_BCNTRL_MAST_AB_MODE;
pci_config_put8(config_handle, PCI_BCNF_BCNTRL, bcr);
}
dbp = (db_ctrl_t *)ddi_get_soft_state(db_state,
ddi_get_instance(ddi_get_parent(child)));
/*
* Initialize cache-line-size configuration register if needed.
*/
if (db_set_cache_line_size_register &&
ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
"cache-line-size", 0) == 0) {
pci_config_put8(config_handle, PCI_CONF_CACHE_LINESZ,
dbp->cache_line_size);
n = pci_config_get8(config_handle, PCI_CONF_CACHE_LINESZ);
if (n != 0) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, child,
"cache-line-size", n);
}
DB_DEBUG1(DB_INITCHILD, ddi_get_parent(child),
"\nChild Device Cache Size %x\n", dbp->cache_line_size);
}
/*
* Initialize latency timer configuration registers if needed.
*/
if (db_set_latency_timer_register &&
ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
"latency-timer", 0) == 0) {
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) {
latency_timer = dbp->p_latency_timer;
pci_config_put8(config_handle, PCI_BCNF_LATENCY_TIMER,
dbp->latency_timer);
} else {
min_gnt = pci_config_get8(config_handle,
PCI_CONF_MIN_G);
latency_timer = min_gnt * 8;
}
pci_config_put8(config_handle, PCI_CONF_LATENCY_TIMER,
latency_timer);
n = pci_config_get8(config_handle, PCI_CONF_LATENCY_TIMER);
if (n != 0) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, child,
"latency-timer", n);
}
DB_DEBUG1(DB_INITCHILD, ddi_get_parent(child),
"\nChild Device latency %x\n", latency_timer);
}
pci_config_teardown(&config_handle);
return (DDI_SUCCESS);
}
static void
db_uninitchild(dev_info_t *dip)
{
ddi_set_name_addr(dip, NULL);
/*
* Strip the node to properly convert it back to prototype form
*/
impl_rem_dev_props(dip);
}
static int
db_create_pci_prop(dev_info_t *child)
{
pci_regspec_t *pci_rp;
int length;
int value;
/* get child "reg" property */
value = ddi_getlongprop(DDI_DEV_T_NONE, child, DDI_PROP_CANSLEEP,
"reg", (caddr_t)&pci_rp, &length);
if (value != DDI_SUCCESS)
return (value);
(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, child, "reg",
(uchar_t *)pci_rp, length);
/*
* free the memory allocated by ddi_getlongprop ().
*/
kmem_free(pci_rp, length);
/*
* No need to create any 1275 properties here, because either
* the OBP creates them or the hotplug framework creates it
* during a hotplug operation. So lets return here.
*/
return (DDI_SUCCESS);
}
/*
* db_save_config_regs
*
* This routine saves the state of the configuration registers of all
* immediate child nodes.
*
* used by: db_detach() on suspends
*
* return value: DDI_SUCCESS: ALl children state saved.
* DDI_FAILURE: Child device state could not be saved.
*/
static int
db_save_config_regs(db_ctrl_t *dbp)
{
int i;
dev_info_t *dip;
ddi_acc_handle_t config_handle;
db_cfg_state_t *statep;
for (i = 0, dip = ddi_get_child(dbp->dip); dip != NULL;
dip = ddi_get_next_sibling(dip)) {
if (i_ddi_node_state(dip) >= DS_ATTACHED)
i++;
}
dbp->config_state_index = i;
if (!i) {
/* no children */
dbp->db_config_state_p = NULL;
return (DDI_SUCCESS);
}
/* i now equals the total number of child devices */
dbp->db_config_state_p =
kmem_zalloc(i * sizeof (db_cfg_state_t), KM_NOSLEEP);
if (!dbp->db_config_state_p) {
cmn_err(CE_WARN,
"%s#%d: No memory to save state for child %s#%d\n",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip),
ddi_get_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
for (statep = dbp->db_config_state_p,
dip = ddi_get_child(dbp->dip);
dip != NULL;
dip = ddi_get_next_sibling(dip)) {
if (i_ddi_node_state(dip) < DS_ATTACHED)
continue;
if (pci_config_setup(dip, &config_handle) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"%s#%d: can't config space for %s#%d",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip),
ddi_driver_name(dip),
ddi_get_instance(dip));
continue;
}
statep->dip = dip;
statep->command =
pci_config_get16(config_handle, PCI_CONF_COMM);
statep->header_type =
pci_config_get8(config_handle, PCI_CONF_HEADER);
if ((statep->header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE)
statep->bridge_control =
pci_config_get16(config_handle, PCI_BCNF_BCNTRL);
statep->cache_line_size =
pci_config_get8(config_handle, PCI_CONF_CACHE_LINESZ);
statep->latency_timer =
pci_config_get8(config_handle, PCI_CONF_LATENCY_TIMER);
if ((statep->header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE)
statep->sec_latency_timer =
pci_config_get8(config_handle,
PCI_BCNF_LATENCY_TIMER);
pci_config_teardown(&config_handle);
statep++;
}
return (DDI_SUCCESS);
}
/*
* db_restore_config_regs
*
* This routine restores the state of the configuration registers of
* all immediate child nodes.
*
* used by: db_attach() on resume
*
* return value: none
*/
static int
db_restore_config_regs(db_ctrl_t *dbp)
{
int i;
dev_info_t *dip;
ddi_acc_handle_t config_handle;
db_cfg_state_t *statep = dbp->db_config_state_p;
for (i = 0; i < dbp->config_state_index; i++, statep++) {
dip = statep->dip;
if (!dip) {
cmn_err(CE_WARN,
"%s#%d: skipping bad dev info (index %d)",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip), i);
continue;
}
if (pci_config_setup(dip, &config_handle) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"%s#%d: can't config space for %s#%d",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip),
ddi_driver_name(dip),
ddi_get_instance(dip));
continue;
}
pci_config_put16(config_handle, PCI_CONF_COMM, statep->command);
if ((statep->header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE)
pci_config_put16(config_handle, PCI_BCNF_BCNTRL,
statep->bridge_control);
pci_config_put8(config_handle, PCI_CONF_CACHE_LINESZ,
statep->cache_line_size);
pci_config_put8(config_handle, PCI_CONF_LATENCY_TIMER,
statep->latency_timer);
if ((statep->header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE)
pci_config_put8(config_handle, PCI_BCNF_LATENCY_TIMER,
statep->sec_latency_timer);
pci_config_teardown(&config_handle);
}
kmem_free(dbp->db_config_state_p,
dbp->config_state_index * sizeof (db_cfg_state_t));
dbp->db_config_state_p = NULL;
dbp->config_state_index = 0;
return (DDI_SUCCESS);
}
/* put a type 0/1 address on the bus */
static void
db_put_reg_conf_addr(db_acc_pvt_t *db_pvt, uint32_t conf_addr)
{
if (db_pvt->access_mode & DB_PCI_CONF_CYCLE_TYPE0)\
ddi_put32(db_pvt->handle, db_pvt->addr, (uint32_t)\
DB_PCI_CONF_CYCLE_TYPE0_ADDR((conf_addr)));\
else /* type 1 cycle */\
ddi_put32(db_pvt->handle, db_pvt->addr, (uint32_t)\
DB_PCI_CONF_CYCLE_TYPE1_ADDR((conf_addr)));
}
/* Get 8bits data off the 32bit data */
static uint8_t
db_get_data8(uint32_t addr, uint32_t data)
{
return (((data) >> (((addr) & 3) * 8)) & 0xff);
}
/* Get 16bits data off the 32bit data */
static uint16_t
db_get_data16(uint32_t addr, uint32_t data)
{
return (((data) >> (((addr) & 3) * 8)) & 0xffff);
}
/* merge 8bit data into the 32bit data */
static uint32_t
db_put_data8(uint32_t addr, uint32_t rdata, uint8_t wdata)
{
return ((rdata & (~((0xff << ((((addr) & 3) * 8))) & 0xffffffff))) |
(((wdata) & 0xff)<<((((addr) & 3))*8)));
}
/* merge 16bit data into the 32bit data */
static uint32_t
db_put_data16(uint32_t addr, uint32_t rdata, uint16_t wdata)
{
return ((rdata & (~((0xffff << ((((addr) & 3) * 8))) & 0xffffffff))) |
(((wdata) & 0xffff) << ((((addr) & 3))*8)));
}
/*
* For the next set of PCI configuration IO calls, we need
* to make sure we own the bus before generating the config cycles,
* using the drawbridge's semaphore method.
*/
/*
* Function to read 8 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static uint8_t
db_ddi_get8(ddi_acc_impl_t *handle, uint8_t *addr)
{
uint32_t data;
data = db_ddi_get32(handle, (uint32_t *)addr);
return (db_get_data8((uint32_t)addr, data));
}
/*
* Function to read 16 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static uint16_t
db_ddi_get16(ddi_acc_impl_t *handle, uint16_t *addr)
{
uint32_t data;
data = db_ddi_get32(handle, (uint32_t *)addr);
return (db_get_data16((uint32_t)addr, data));
}
/*
* Function to read 32 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static uint32_t
db_ddi_get32(ddi_acc_impl_t *handle, uint32_t *addr)
{
db_acc_pvt_t *db_pvt = (db_acc_pvt_t *)
handle->ahi_common.ah_bus_private;
uint32_t wait_count = 0;
uint32_t data;
db_ctrl_t *dbp;
dbp = db_pvt->dbp;
mutex_enter(&dbp->db_busown);
if (db_use_config_own_bit) {
/*
* check if (upstream/downstream)configuration address own
* bit set. With this set, we cannot proceed.
*/
while (((ddi_get8(db_pvt->handle, db_pvt->bus_own)) &
db_pvt->mask) == db_pvt->mask) {
#ifdef DEBUG
if (dbp->db_pci_max_wait_count < wait_count)
dbp->db_pci_max_wait_count = wait_count;
#endif
drv_usecwait(db_pci_own_wait);
if (++wait_count == db_pci_max_wait) {
/*
* the man page for pci_config_* routines do
* Not specify any error condition values.
*/
cmn_err(CE_WARN,
"%s#%d: pci config bus own error",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
dbp->db_pci_err_count++;
mutex_exit(&dbp->db_busown);
return ((uint32_t)DB_CONF_FAILURE);
}
}
wait_count = 0;
}
db_put_reg_conf_addr(db_pvt, (uint32_t)addr);
data = ddi_get32(db_pvt->handle, (uint32_t *)db_pvt->data);
if (db_use_config_own_bit) {
while (((ddi_get8(db_pvt->handle, db_pvt->bus_release)) &
db_pvt->mask) == db_pvt->mask) {
#ifdef DEBUG
if (dbp->db_pci_max_wait_count < wait_count)
dbp->db_pci_max_wait_count = wait_count;
#endif
drv_usecwait(db_pci_release_wait);
if (++wait_count == db_pci_max_wait) {
/*
* the man page for pci_config_* routines do
* not specify any error condition values.
*/
cmn_err(CE_WARN,
"%s#%d: pci config bus release error",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
dbp->db_pci_err_count++;
mutex_exit(&dbp->db_busown);
return ((uint32_t)DB_CONF_FAILURE);
}
data = ddi_get32(db_pvt->handle,
(uint32_t *)db_pvt->data);
}
}
mutex_exit(&dbp->db_busown);
return (data);
}
/*
* Function to read 64 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static uint64_t
db_ddi_get64(ddi_acc_impl_t *handle, uint64_t *addr)
{
uint64_t udata, ldata;
ldata = (uint32_t)db_ddi_get32(handle, (uint32_t *)addr);
udata = (uint32_t)db_ddi_get32(handle, (uint32_t *)addr + 1);
return (ldata | (udata << 32));
}
/*
* Function to write 8 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_put8(ddi_acc_impl_t *handle, uint8_t *addr, uint8_t data)
{
uint32_t rdata;
rdata = db_ddi_get32(handle, (uint32_t *)addr);
db_ddi_put32(handle, (uint32_t *)addr,
db_put_data8((uint32_t)addr, rdata, data));
}
/*
* Function to write 16 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_put16(ddi_acc_impl_t *handle, uint16_t *addr, uint16_t data)
{
uint32_t rdata;
rdata = db_ddi_get32(handle, (uint32_t *)addr);
db_ddi_put32(handle, (uint32_t *)addr,
db_put_data16((uint32_t)addr, rdata, data));
}
/*
* Function to write 32 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_put32(ddi_acc_impl_t *handle, uint32_t *addr, uint32_t data)
{
db_acc_pvt_t *db_pvt = (db_acc_pvt_t *)
handle->ahi_common.ah_bus_private;
db_ctrl_t *dbp;
uint32_t wait_count = 0;
dbp = db_pvt->dbp;
mutex_enter(&dbp->db_busown);
if (db_use_config_own_bit) {
/*
* check if (upstream/downstream)configuration address own
* bit set. with this set, we cannot proceed.
*/
while (((ddi_get8(db_pvt->handle, db_pvt->bus_own)) &
db_pvt->mask) == db_pvt->mask) {
#ifdef DEBUG
if (dbp->db_pci_max_wait_count < wait_count)
dbp->db_pci_max_wait_count = wait_count;
#endif
drv_usecwait(db_pci_own_wait);
if (++wait_count == db_pci_max_wait) {
/*
* Since the return value is void here,
* we may need to print a message, as this
* could be a serious situation.
*/
cmn_err(CE_WARN,
"%s#%d: pci config bus own error",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
dbp->db_pci_err_count++;
mutex_exit(&dbp->db_busown);
return;
}
}
wait_count = 0;
}
db_put_reg_conf_addr(db_pvt, (uint32_t)addr);
ddi_put32(db_pvt->handle, (uint32_t *)db_pvt->data, data);
if (db_use_config_own_bit) {
while (((ddi_get8(db_pvt->handle, db_pvt->bus_release)) &
db_pvt->mask) == db_pvt->mask) {
#ifdef DEBUG
if (dbp->db_pci_max_wait_count < wait_count)
dbp->db_pci_max_wait_count = wait_count;
#endif
drv_usecwait(db_pci_release_wait);
if (++wait_count == db_pci_max_wait) {
/*
* the man page for pci_config_* routines do
* Not specify any error condition values.
*/
cmn_err(CE_WARN,
"%s#%d: pci config bus release error",
ddi_driver_name(dbp->dip),
ddi_get_instance(dbp->dip));
dbp->db_pci_err_count++;
mutex_exit(&dbp->db_busown);
return;
}
ddi_put32(db_pvt->handle, (uint32_t *)db_pvt->data,
data);
}
}
mutex_exit(&dbp->db_busown);
}
/*
* Function to write 64 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_put64(ddi_acc_impl_t *handle, uint64_t *addr, uint64_t data)
{
db_ddi_put32(handle, (uint32_t *)addr, (uint32_t)(data & 0xffffffff));
db_ddi_put32(handle, (uint32_t *)addr + 1, (uint32_t)(data >> 32));
}
/*
* Function to rep read 8 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_get8(ddi_acc_impl_t *handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*host_addr++ = db_ddi_get8(handle, dev_addr++);
else
for (; repcount; repcount--)
*host_addr++ = db_ddi_get8(handle, dev_addr);
}
/*
* Function to rep read 16 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_get16(ddi_acc_impl_t *handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*host_addr++ = db_ddi_get16(handle, dev_addr++);
else
for (; repcount; repcount--)
*host_addr++ = db_ddi_get16(handle, dev_addr);
}
/*
* Function to rep read 32 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_get32(ddi_acc_impl_t *handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*host_addr++ = db_ddi_get32(handle, dev_addr++);
else
for (; repcount; repcount--)
*host_addr++ = db_ddi_get32(handle, dev_addr);
}
/*
* Function to rep read 64 bit data off the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_get64(ddi_acc_impl_t *handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*host_addr++ = db_ddi_get64(handle, dev_addr++);
else
for (; repcount; repcount--)
*host_addr++ = db_ddi_get64(handle, dev_addr);
}
/*
* Function to rep write 8 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_put8(ddi_acc_impl_t *handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
db_ddi_put8(handle, dev_addr++, *host_addr++);
else
for (; repcount; repcount--)
db_ddi_put8(handle, dev_addr, *host_addr++);
}
/*
* Function to rep write 16 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_put16(ddi_acc_impl_t *handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
db_ddi_put16(handle, dev_addr++, *host_addr++);
else
for (; repcount; repcount--)
db_ddi_put16(handle, dev_addr, *host_addr++);
}
/*
* Function to rep write 32 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_put32(ddi_acc_impl_t *handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
db_ddi_put32(handle, dev_addr++, *host_addr++);
else
for (; repcount; repcount--)
db_ddi_put32(handle, dev_addr, *host_addr++);
}
/*
* Function to rep write 64 bit data into the PCI configuration space behind
* the 21554's host interface.
*/
static void
db_ddi_rep_put64(ddi_acc_impl_t *handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
db_ddi_put64(handle, dev_addr++, *host_addr++);
else
for (; repcount; repcount--)
db_ddi_put64(handle, dev_addr, *host_addr++);
}
#ifdef DEBUG
static void
db_debug(uint64_t func_id, dev_info_t *dip, char *fmt,
uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5)
{
char *s = NULL;
uint_t dip_no_disp = 0;
if (func_id & DB_DONT_DISPLAY_DIP) {
dip_no_disp = 1;
}
if (db_debug_funcs & func_id) {
switch (func_id) {
case DB_INIT: s = "_init"; break;
case DB_FINI: s = "_fini"; break;
case DB_INFO: s = "_info"; break;
case DB_GETINFO: s = "getinfo"; break;
case DB_ATTACH: s = "attach"; break;
case DB_DETACH: s = "detach"; break;
case DB_CTLOPS: s = "ctlops"; break;
case DB_INITCHILD: s = "initchild"; break;
case DB_REMOVECHILD: s = "removechild"; break;
case DB_INTR_OPS: s = "intr_ops"; break;
case DB_PCI_MAP: s = "map"; break;
case DB_SAVE_CONF_REGS: s = "save_conf_regs"; break;
case DB_REST_CONF_REGS: s = "restore_conf_regs"; break;
case DB_INTR: s = "intr"; break;
case DB_OPEN: s = "open"; break;
case DB_CLOSE: s = "close"; break;
case DB_IOCTL: s = "ioctl"; break;
case DB_DVMA: s = "set_dvma_range"; break;
default: s = "PCI debug unknown"; break;
}
if (s && !dip_no_disp) {
prom_printf("%s(%d): %s: ", ddi_driver_name(dip),
ddi_get_instance(dip), s);
}
prom_printf(fmt, a1, a2, a3, a4, a5);
}
}
#endif
static int db_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp)
{
minor_t minor = getminor(dev);
int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor);
db_ctrl_t *dbp = (db_ctrl_t *)ddi_get_soft_state(db_state, instance);
if (dbp == NULL)
return (ENXIO);
if (dbp->dev_state & DB_SECONDARY_NEXUS)
return ((pcihp_get_cb_ops())->cb_prop_op(dev, dip,
prop_op, flags, name, valuep, lengthp));
return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
}
/*
* Initialize our FMA resources
*/
static void
db_fm_init(db_ctrl_t *db_p)
{
ddi_fm_error_t derr;
db_p->fm_cap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
/*
* Request our capability level and get our parents capability
* and ibc.
*/
ddi_fm_init(db_p->dip, &db_p->fm_cap, &db_p->fm_ibc);
ASSERT((db_p->fm_cap & DDI_FM_EREPORT_CAPABLE) &&
(db_p->fm_cap & DDI_FM_ERRCB_CAPABLE));
pci_ereport_setup(db_p->dip);
/*
* clear any outstanding error bits
*/
bzero(&derr, sizeof (ddi_fm_error_t));
derr.fme_version = DDI_FME_VERSION;
derr.fme_flag = DDI_FM_ERR_EXPECTED;
pci_ereport_post(db_p->dip, &derr, NULL);
pci_bdg_ereport_post(db_p->dip, &derr, NULL);
/*
* Register error callback with our parent.
*/
ddi_fm_handler_register(db_p->dip, db_err_callback, NULL);
}
/*
* Breakdown our FMA resources
*/
static void
db_fm_fini(db_ctrl_t *db_p)
{
/*
* Clean up allocated fm structures
*/
ddi_fm_handler_unregister(db_p->dip);
pci_ereport_teardown(db_p->dip);
ddi_fm_fini(db_p->dip);
}
/*
* Initialize FMA resources for children devices. Called when
* child calls ddi_fm_init().
*/
/*ARGSUSED*/
static int
db_fm_init_child(dev_info_t *dip, dev_info_t *tdip, int cap,
ddi_iblock_cookie_t *ibc)
{
db_ctrl_t *db_p = (db_ctrl_t *)ddi_get_soft_state(db_state,
ddi_get_instance(dip));
*ibc = db_p->fm_ibc;
return (db_p->fm_cap);
}
/*
* FMA registered error callback
*/
static int
db_err_callback(dev_info_t *dip, ddi_fm_error_t *derr, const void *impl_data)
{
uint16_t pci_cfg_stat, pci_cfg_sec_stat;
ASSERT(impl_data == NULL);
pci_ereport_post(dip, derr, &pci_cfg_stat);
pci_bdg_ereport_post(dip, derr, &pci_cfg_sec_stat);
return (pci_bdg_check_status(dip, derr, pci_cfg_stat,
pci_cfg_sec_stat));
}
static void
db_bus_enter(dev_info_t *dip, ddi_acc_handle_t handle)
{
i_ndi_busop_access_enter(dip, handle);
}
/* ARGSUSED */
static void
db_bus_exit(dev_info_t *dip, ddi_acc_handle_t handle)
{
i_ndi_busop_access_exit(dip, handle);
}