adm1026.c revision 193974072f41a843678abf5f61979c748687e66b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */
#include <sys/modctl.h> /* for modldrv */
#include <sys/open.h> /* for open params. */
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/sunddi.h>
#include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */
#include <sys/ddi.h>
#include <sys/file.h>
#include <sys/note.h>
#include <sys/i2c/clients/i2c_gpio.h>
#include <sys/i2c/clients/adm1026_impl.h>
/*
* This driver supports the GPIO subset of the full ADM1026 register set.
* The driver is designed to allow modifying and reading the Polarity and
* Direction bits of the ADM1026's 16 GPIO pins via the 4 GPIO Config
* registers. In addition, the driver supports modifying and reading
* the 16 GPIO pins via the 2 GPIO input/output registers.
*
* The 4 GPIO Config registers configure the direction and polarity of
* the 16 GPIO pins. When a Polarity bit is set to 0, the GPIO pin is
* active low, otherwise, it is active high. When a Direction bit is set
* to 0, the GPIO pin configured as an input; otherwise, it is an output.
*
* The 2 GPIO input/output registers (Status Register 5 & 6 ) behave as follows.
* When a GPIO pin is configured as an input, the bit is set when its GPIO
* pin is asserted. When a GPIO pin is configured as an output, the bit
* asserts the GPIO pin.
*
* The commands supported in the ioctl routine are:
* GPIO_GET_OUTPUT -- Read GPIO0-GPIO15 bits in Status Register 5 & 6
* GPIO_SET_OUTPUT -- Modify GPIO0-GPIO15 bits in Status Register 5 & 6
* GPIO_GET_POLARITY -- Read GPIO0-GPIO15 Polarity bits in GPIO Config 1-4
* GPIO_SET_POLARITY -- Modify GPIO0-GPIO15 Polarity bits in GPIO Config 1-4
* GPIO_GET_CONFIG -- Read GPIO0-GPIO15 Direction bits in GPIO Config 1-4
* GPIO_SET_CONFIG -- Modify GPIO0-GPIO15 Direction bits in GPIO Config 1-4
*
* A pointer to the i2c_gpio_t data structure is sent as the third argument
* in the ioctl call. The reg_mask and reg_val members of i2c_gpio_t are
* used to logically represent the 16 GPIO pins, thus only the lower 16 bits
* of each member is used. The reg_mask member identifies the GPIO pin(s)
* that the user wants to read or modify and reg_val has the actual value of
* what the corresponding GPIO pin should be set to.
*
* For example, a reg_mask of 0x8001 indicates that the ioctl should only
* access GPIO15 and GPIO0.
*/
static void *adm1026soft_statep;
static int adm1026_do_attach(dev_info_t *);
static int adm1026_do_detach(dev_info_t *);
static int adm1026_do_resume(void);
static int adm1026_do_suspend(void);
static int adm1026_get8(adm1026_unit_t *unitp, uint8_t reg, uint8_t *val);
static int adm1026_put8(adm1026_unit_t *unitp, uint8_t reg, uint8_t val);
/*
* cb ops (only need ioctl)
*/
static int adm1026_open(dev_t *, int, int, cred_t *);
static int adm1026_close(dev_t, int, int, cred_t *);
static int adm1026_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
static struct cb_ops adm1026_cbops = {
adm1026_open, /* open */
adm1026_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
adm1026_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* cb_prop_op */
NULL, /* streamtab */
D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/*
* dev ops
*/
static int adm1026_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int adm1026_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static struct dev_ops adm1026_ops = {
DEVO_REV,
0,
ddi_getinfo_1to1,
nulldev,
nulldev,
adm1026_attach,
adm1026_detach,
nodev,
&adm1026_cbops,
NULL,
NULL,
ddi_quiesce_not_needed, /* quiesce */
};
extern struct mod_ops mod_driverops;
static struct modldrv adm1026_modldrv = {
&mod_driverops, /* type of module - driver */
"ADM1026 i2c device driver: 1.3",
&adm1026_ops
};
static struct modlinkage adm1026_modlinkage = {
MODREV_1,
&adm1026_modldrv,
0
};
int
_init(void)
{
int error;
error = mod_install(&adm1026_modlinkage);
if (!error)
(void) ddi_soft_state_init(&adm1026soft_statep,
sizeof (struct adm1026_unit), 1);
return (error);
}
int
_fini(void)
{
int error;
error = mod_remove(&adm1026_modlinkage);
if (!error)
ddi_soft_state_fini(&adm1026soft_statep);
return (error);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&adm1026_modlinkage, modinfop));
}
static int
adm1026_open(dev_t *devp, int flags, int otyp, cred_t *credp)
{
_NOTE(ARGUNUSED(credp))
adm1026_unit_t *unitp;
int instance;
int error = 0;
instance = getminor(*devp);
D2CMN_ERR((CE_WARN, "adm1026_open: instance=%d\n", instance));
if (instance < 0) {
return (ENXIO);
}
unitp = (struct adm1026_unit *)
ddi_get_soft_state(adm1026soft_statep, instance);
if (unitp == NULL) {
return (ENXIO);
}
if (otyp != OTYP_CHR) {
return (EINVAL);
}
mutex_enter(&unitp->adm1026_mutex);
if (flags & FEXCL) {
if (unitp->adm1026_oflag != 0) {
error = EBUSY;
} else {
unitp->adm1026_oflag = FEXCL;
}
} else {
if (unitp->adm1026_oflag == FEXCL) {
error = EBUSY;
} else {
unitp->adm1026_oflag = FOPEN;
}
}
mutex_exit(&unitp->adm1026_mutex);
return (error);
}
static int
adm1026_close(dev_t dev, int flags, int otyp, cred_t *credp)
{
_NOTE(ARGUNUSED(flags, otyp, credp))
adm1026_unit_t *unitp;
int instance;
instance = getminor(dev);
D2CMN_ERR((CE_WARN, "adm1026_close: instance=%d\n", instance));
if (instance < 0) {
return (ENXIO);
}
unitp = (struct adm1026_unit *)
ddi_get_soft_state(adm1026soft_statep, instance);
if (unitp == NULL) {
return (ENXIO);
}
mutex_enter(&unitp->adm1026_mutex);
unitp->adm1026_oflag = 0;
mutex_exit(&unitp->adm1026_mutex);
return (DDI_SUCCESS);
}
static int
adm1026_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
D2CMN_ERR((CE_WARN, "adm1026_attach: cmd=%x\n", cmd));
switch (cmd) {
case DDI_ATTACH:
return (adm1026_do_attach(dip));
case DDI_RESUME:
return (adm1026_do_resume());
default:
return (DDI_FAILURE);
}
}
static int
adm1026_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
D2CMN_ERR((CE_WARN, "adm1026_detach: cmd=%x\n", cmd));
switch (cmd) {
case DDI_DETACH:
return (adm1026_do_detach(dip));
case DDI_SUSPEND:
return (adm1026_do_suspend());
default:
return (DDI_FAILURE);
}
}
static int
adm1026_do_attach(dev_info_t *dip)
{
adm1026_unit_t *unitp;
int instance;
instance = ddi_get_instance(dip);
D2CMN_ERR((CE_WARN, "adm1026_do_attach: instance=%d, dip=%p",
instance, (void *)dip));
if (ddi_soft_state_zalloc(adm1026soft_statep, instance) != 0) {
cmn_err(CE_WARN, "%s%d: ddi_soft_state_zalloc() failed",
ddi_get_name(dip), instance);
return (DDI_FAILURE);
}
unitp = ddi_get_soft_state(adm1026soft_statep, instance);
if (unitp == NULL) {
cmn_err(CE_WARN, "%s%d: ddi_get_soft_state(), no memory",
ddi_get_name(dip), instance);
return (ENOMEM);
}
D2CMN_ERR((CE_WARN, "adm1026_do_attach: ddi_create_minor_node"));
if (ddi_create_minor_node(dip, "adm1026", S_IFCHR, instance,
"ddi_i2c:led_control", NULL) == DDI_FAILURE) {
cmn_err(CE_WARN,
"adm1026_do_attach: ddi_create_minor_node failed");
ddi_soft_state_free(adm1026soft_statep, instance);
return (DDI_FAILURE);
}
D2CMN_ERR((CE_WARN, "adm1026_do_attach: i2c_client_register"));
if (i2c_client_register(dip, &unitp->adm1026_hdl) != I2C_SUCCESS) {
ddi_remove_minor_node(dip, NULL);
ddi_soft_state_free(adm1026soft_statep, instance);
cmn_err(CE_WARN,
"adm1026_do_attach: i2c_client_register failed");
return (DDI_FAILURE);
}
mutex_init(&unitp->adm1026_mutex, NULL, MUTEX_DRIVER, NULL);
D2CMN_ERR((CE_WARN, "adm1026_do_attach: DDI_SUCCESS"));
return (DDI_SUCCESS);
}
static int
adm1026_do_resume(void)
{
int ret = DDI_SUCCESS;
return (ret);
}
static int
adm1026_do_suspend()
{
int ret = DDI_SUCCESS;
return (ret);
}
static int
adm1026_do_detach(dev_info_t *dip)
{
adm1026_unit_t *unitp;
int instance;
instance = ddi_get_instance(dip);
unitp = ddi_get_soft_state(adm1026soft_statep, instance);
if (unitp == NULL) {
cmn_err(CE_WARN,
"adm1026_do_detach: ddi_get_soft_state failed");
return (ENOMEM);
}
i2c_client_unregister(unitp->adm1026_hdl);
ddi_remove_minor_node(dip, NULL);
mutex_destroy(&unitp->adm1026_mutex);
ddi_soft_state_free(adm1026soft_statep, instance);
return (DDI_SUCCESS);
}
static int
adm1026_get8(adm1026_unit_t *unitp, uint8_t reg, uint8_t *val)
{
i2c_transfer_t *i2c_tran_pointer = NULL;
int err = DDI_SUCCESS;
(void) i2c_transfer_alloc(unitp->adm1026_hdl, &i2c_tran_pointer,
1, 1, I2C_SLEEP);
if (i2c_tran_pointer == NULL)
return (ENOMEM);
i2c_tran_pointer->i2c_flags = I2C_WR_RD;
i2c_tran_pointer->i2c_wbuf[0] = (uchar_t)reg;
err = i2c_transfer(unitp->adm1026_hdl, i2c_tran_pointer);
if (err) {
D1CMN_ERR((CE_WARN,
"adm1026_get8: I2C_WR_RD reg=0x%x failed", reg));
} else {
*val = i2c_tran_pointer->i2c_rbuf[0];
D1CMN_ERR((CE_WARN, "adm1026_get8: reg=%02x, val=%02x",
reg, *val));
}
i2c_transfer_free(unitp->adm1026_hdl, i2c_tran_pointer);
return (err);
}
static int
adm1026_put8(adm1026_unit_t *unitp, uint8_t reg, uint8_t val)
{
i2c_transfer_t *i2c_tran_pointer = NULL;
int err = DDI_SUCCESS;
D1CMN_ERR((CE_WARN, "adm1026_put8: reg=%02x, val=%02x\n", reg, val));
(void) i2c_transfer_alloc(unitp->adm1026_hdl, &i2c_tran_pointer,
2, 0, I2C_SLEEP);
if (i2c_tran_pointer == NULL)
return (ENOMEM);
i2c_tran_pointer->i2c_flags = I2C_WR;
i2c_tran_pointer->i2c_wbuf[0] = reg;
i2c_tran_pointer->i2c_wbuf[1] = val;
err = i2c_transfer(unitp->adm1026_hdl, i2c_tran_pointer);
if (err)
D2CMN_ERR((CE_WARN, "adm1026_put8: return=%x", err));
i2c_transfer_free(unitp->adm1026_hdl, i2c_tran_pointer);
return (err);
}
/*
* adm1026_send8:
* Read the i2c register, apply the mask to contents so that only
* bits in mask affected. Or in value and write it back to the i2c register.
*/
static int
adm1026_send8(adm1026_unit_t *unitp, uint8_t reg, uint8_t reg_val,
uint8_t reg_mask)
{
uint8_t val = 0;
int err;
if ((err = adm1026_get8(unitp, reg, &val)) != I2C_SUCCESS)
return (err);
val &= ~reg_mask;
val |= (reg_val & reg_mask);
return (adm1026_put8(unitp, reg, val));
}
/*
* adm1026_set_output:
* The low 16 bits of the mask is a 1:1 mask indicating which of the
* 16 GPIO pin(s) to set.
*/
static int
adm1026_set_output(adm1026_unit_t *unitp, uint32_t val, uint32_t mask)
{
int err = I2C_SUCCESS;
if (mask & 0xff)
err = adm1026_send8(unitp, ADM1026_STS_REG5, (uint8_t)val,
(uint8_t)mask);
if ((err == I2C_SUCCESS) && (mask & 0xff00))
err = adm1026_send8(unitp, ADM1026_STS_REG6,
(uint8_t)(val >> OUTPUT_SHIFT),
(uint8_t)(mask >> OUTPUT_SHIFT));
return (err);
}
/*
* adm1026_get_output:
* The low 16 bits of the mask is a 1:1 mask indicating which of the
* 16 GPIO pin(s) to get.
*/
static int
adm1026_get_output(adm1026_unit_t *unitp, uint32_t mask, uint32_t *val)
{
uint8_t reg_val = 0;
int err = I2C_SUCCESS;
if (mask & 0xff) {
err = adm1026_get8(unitp, ADM1026_STS_REG5, &reg_val);
if (err != I2C_SUCCESS)
return (err);
*val = reg_val;
}
if (mask & 0xff00) {
err = adm1026_get8(unitp, ADM1026_STS_REG6, &reg_val);
if (err != I2C_SUCCESS)
return (err);
*val |= ((reg_val << OUTPUT_SHIFT) & (mask & 0xff00));
}
return (err);
}
/*
* adm1026_set_config:
* The low 16 bits of the mask is a 1:1 mask indicating which of the
* 16 GPIO pin(s) to set the polarity or direction configuration for.
* Each GPIO pin has 2 bits of configuration - 1 polarity bit and 1
* direction bit. Traverse the mask 4 bits at a time to determine
* which of the 4 GPIO Config registers to access and apply the value
* based on whether cmd is GPIO_SET_CONFIG (set Direction) or
* GPIO_SET_POLARITY.
*/
static int
adm1026_set_config(adm1026_unit_t *unitp, int cmd, uint32_t val, uint32_t mask)
{
int i;
uint8_t r;
uint32_t m = mask, v = val;
int err = I2C_SUCCESS;
for (i = 0, r = ADM1026_GPIO_CFG1; i < BYTES_PER_CONFIG; i++, r++) {
if (m & GPIO_CFG_MASK) {
int j;
uint8_t mm = 0, vv = 0;
uint8_t bit = (cmd == GPIO_SET_CONFIG) ?
DIR_BIT : POLARITY_BIT;
for (j = 0; j < GPIOS_PER_CFG_BYTE; j++) {
if (m & (1 << j)) {
mm |= (bit << (j * BITSPERCFG));
}
if (v & (1 << j)) {
vv |= (bit << (j * BITSPERCFG));
}
}
D2CMN_ERR((CE_WARN, "adm1026_set_config: r=%02x, "
"vv=%02x, mm=%02x, m=%02x", r, vv, mm, m));
err = adm1026_send8(unitp, r, vv, mm);
if (err != I2C_SUCCESS)
return (err);
}
m >>= GPIOS_PER_CFG_BYTE;
v >>= GPIOS_PER_CFG_BYTE;
}
return (err);
}
/*
* adm1026_get_config:
* The low 16 bits of the mask is a 1:1 mask indicating which of the
* 16 GPIO pin(s) to get the polarity or direction configuration for.
* Each GPIO pin has 2 bits of configuration - 1 polarity bit and 1
* direction bit. Traverse the mask 4 bits at a time to determine
* which of the 4 GPIO Config registers to access and build the return
* value based on whether cmd is GPIO_GET_CONFIG (get Direction) or
* GPIO_GET_POLARITY.
*/
static int
adm1026_get_config(adm1026_unit_t *unitp, int cmd, uint32_t mask, uint32_t *val)
{
int i, j;
uint8_t r;
int err = I2C_SUCCESS;
*val = 0;
for (i = 0, r = ADM1026_GPIO_CFG1; i < BYTES_PER_CONFIG; i++, r++) {
if (mask & GPIO_CFG_MASK) {
uint8_t newval = 0, x;
uint8_t bit = (cmd == GPIO_GET_CONFIG) ?
DIR_BIT : POLARITY_BIT;
err = adm1026_get8(unitp, r, &x);
if (err != I2C_SUCCESS)
return (err);
for (j = 0; j < GPIOS_PER_CFG_BYTE; j++) {
if (mask & (1 << j)) {
if (x & (bit << (j * BITSPERCFG)))
newval |= (1 << j);
}
}
*val |= (newval << (i * GPIOS_PER_CFG_BYTE));
} else
*val <<= GPIOS_PER_CFG_BYTE;
mask >>= GPIOS_PER_CFG_BYTE;
}
return (err);
}
static int
adm1026_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
_NOTE(ARGUNUSED(credp, rvalp))
adm1026_unit_t *unitp;
int instance;
int err = DDI_SUCCESS;
i2c_gpio_t g_buf;
instance = getminor(dev);
D2CMN_ERR((CE_WARN, "adm1026_ioctl: instance=%d, cmd=%x\n",
instance, cmd));
unitp = (struct adm1026_unit *)
ddi_get_soft_state(adm1026soft_statep, instance);
if (unitp == NULL) {
cmn_err(CE_WARN, "adm1026_ioctl: ddi_get_soft_state failed");
err = ENOMEM;
return (err);
}
mutex_enter(&unitp->adm1026_mutex);
if (ddi_copyin((caddr_t)arg, &g_buf,
sizeof (i2c_gpio_t), mode) != DDI_SUCCESS) {
mutex_exit(&unitp->adm1026_mutex);
return (EFAULT);
}
if (g_buf.reg_mask & 0xffff0000) {
cmn_err(CE_WARN,
"adm1026_ioctl: reg_mask too large. "
"Only bits 15-0 supported");
mutex_exit(&unitp->adm1026_mutex);
return (EINVAL);
}
switch (cmd) {
case GPIO_SET_OUTPUT:
err = adm1026_set_output(unitp, g_buf.reg_val, g_buf.reg_mask);
break;
case GPIO_GET_OUTPUT:
err = adm1026_get_output(unitp, g_buf.reg_mask, &g_buf.reg_val);
if (err == DDI_SUCCESS)
err = ddi_copyout(&g_buf, (caddr_t)arg,
sizeof (i2c_gpio_t), mode);
break;
case GPIO_SET_CONFIG:
case GPIO_SET_POLARITY:
err = adm1026_set_config(unitp, cmd, g_buf.reg_val,
g_buf.reg_mask);
break;
case GPIO_GET_CONFIG:
case GPIO_GET_POLARITY:
err = adm1026_get_config(unitp, cmd, g_buf.reg_mask,
&g_buf.reg_val);
if (err == DDI_SUCCESS)
err = ddi_copyout(&g_buf, (caddr_t)arg,
sizeof (i2c_gpio_t), mode);
break;
default:
D2CMN_ERR((CE_WARN,
"adm1026_ioctl: Invalid ioctl cmd %x\n", cmd));
err = EINVAL;
}
mutex_exit(&unitp->adm1026_mutex);
if (err) {
D2CMN_ERR((CE_WARN,
"adm1026_ioctl: failed, err=%x\n", err));
if (err == DDI_FAILURE)
err = EIO;
}
return (err);
}