daktari.c revision fa9e4066f08beec538e775443c5be79dd423fcab
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/cpuvar.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sunddi.h>
#include <sys/ddi.h>
#include <sys/sysmacros.h>
#include <sys/note.h>
#include <sys/modctl.h> /* for modload() */
#include <sys/platform_module.h>
#include <sys/errno.h>
#include <sys/daktari.h>
#include <sys/machsystm.h>
#include <sys/promif.h>
#include <vm/page.h>
#include <sys/memnode.h>
#include <vm/vm_dep.h>
/* I2C Stuff */
#include <sys/i2c/clients/i2c_client.h>
int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
/* Daktari Keyswitch Information */
#define DAK_KEY_POLL_PORT 3
#define DAK_KEY_POLL_BIT 2
#define DAK_KEY_POLL_INTVL 10
static boolean_t key_locked_bit;
static clock_t keypoll_timeout_hz;
/*
* Table that maps memory slices to a specific memnode.
*/
int slice_to_memnode[DAK_MAX_SLICE];
/*
* For software memory interleaving support.
*/
static void update_mem_bounds(int, int, int, uint64_t, uint64_t);
static uint64_t
slice_table[DAK_SBD_SLOTS][DAK_CPUS_PER_BOARD][DAK_BANKS_PER_MC][2];
#define SLICE_PA 0
#define SLICE_SPAN 1
int (*daktari_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
extern void (*abort_seq_handler)();
static int daktari_dev_search(dev_info_t *, void *);
static void keyswitch_poll(void *);
static void daktari_abort_seq_handler(char *msg);
void
startup_platform(void)
{
/*
* Disable an active h/w watchdog timer
* upon exit to OBP.
*/
extern int disable_watchdog_on_exit;
disable_watchdog_on_exit = 1;
}
int
set_platform_tsb_spares()
{
return (0);
}
#pragma weak mmu_init_large_pages
void
set_platform_defaults(void)
{
extern int ts_dispatch_extended;
extern uchar_t *ctx_pgsz_array;
extern void mmu_init_large_pages(size_t);
/*
* Use the alternate TS dispatch table for USIII+ forward,
* which is better tuned for large servers.
*/
if ((ts_dispatch_extended == -1) && (ctx_pgsz_array != NULL))
ts_dispatch_extended = 1;
if ((mmu_page_sizes == max_mmu_page_sizes) &&
(mmu_ism_pagesize != MMU_PAGESIZE32M)) {
if (&mmu_init_large_pages)
mmu_init_large_pages(mmu_ism_pagesize);
}
}
void
load_platform_modules(void)
{
if (modload("misc", "pcihp") < 0) {
cmn_err(CE_NOTE, "pcihp driver failed to load");
}
if (modload("drv", "pmc") < 0) {
cmn_err(CE_NOTE, "pmc driver failed to load");
}
}
void
load_platform_drivers(void)
{
char **drv;
dev_info_t *keysw_dip;
static char *boot_time_drivers[] = {
"hpc3130",
"todds1287",
"mc-us3",
"ssc050",
"pcisch",
NULL
};
for (drv = boot_time_drivers; *drv; drv++) {
if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
*drv);
}
/*
* mc-us3 & ssc050 must stay loaded for plat_get_mem_unum()
* and keyswitch_poll()
*/
(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
(void) ddi_hold_driver(ddi_name_to_major("ssc050"));
/* Gain access into the ssc050_get_port function */
daktari_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
if (daktari_ssc050_get_port_bit == NULL) {
cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
return;
}
ddi_walk_devs(ddi_root_node(), daktari_dev_search, (void *)&keysw_dip);
ASSERT(keysw_dip != NULL);
keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
keyswitch_poll(keysw_dip);
abort_seq_handler = daktari_abort_seq_handler;
}
static int
daktari_dev_search(dev_info_t *dip, void *arg)
{
char *compatible = NULL; /* Search tree for "i2c-ssc050" */
int *dev_regs; /* Info about where the device is. */
uint_t len;
int err;
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"compatible", &compatible) != DDI_PROP_SUCCESS)
return (DDI_WALK_CONTINUE);
if (strcmp(compatible, "i2c-ssc050") == 0) {
ddi_prop_free(compatible);
err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
if (err != DDI_PROP_SUCCESS) {
return (DDI_WALK_CONTINUE);
}
/*
* regs[0] contains the bus number and regs[1]
* contains the device address of the i2c device.
* 0x82 is the device address of the i2c device
* from which the key switch position is read.
*/
if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
*((dev_info_t **)arg) = dip;
ddi_prop_free(dev_regs);
return (DDI_WALK_TERMINATE);
}
ddi_prop_free(dev_regs);
} else {
ddi_prop_free(compatible);
}
return (DDI_WALK_CONTINUE);
}
static void
keyswitch_poll(void *arg)
{
dev_info_t *dip = arg;
uchar_t port_byte;
int port = DAK_KEY_POLL_PORT;
int bit = DAK_KEY_POLL_BIT;
int err;
err = daktari_ssc050_get_port_bit(dip, port, bit,
&port_byte, I2C_NOSLEEP);
if (err != 0) {
return;
}
key_locked_bit = (boolean_t)((port_byte & 0x1));
timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
}
static void
daktari_abort_seq_handler(char *msg)
{
if (key_locked_bit == 0)
cmn_err(CE_CONT, "KEY in LOCKED position, "
"ignoring debug enter sequence");
else {
debug_enter(msg);
}
}
int
plat_cpu_poweron(struct cpu *cp)
{
_NOTE(ARGUNUSED(cp))
return (ENOTSUP);
}
int
plat_cpu_poweroff(struct cpu *cp)
{
_NOTE(ARGUNUSED(cp))
return (ENOTSUP);
}
/*
* Given a pfn, return the board and beginning/end of the page's
* memory controller's address range.
*/
static int
plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
{
int bd, cpu, bank;
for (bd = 0; bd < DAK_SBD_SLOTS; bd++) {
for (cpu = 0; cpu < DAK_CPUS_PER_BOARD; cpu++) {
for (bank = 0; bank < DAK_BANKS_PER_MC; bank++) {
uint64_t *slice = slice_table[bd][cpu][bank];
uint64_t base = btop(slice[SLICE_PA]);
uint64_t len = btop(slice[SLICE_SPAN]);
if (len && pfn >= base && pfn < (base + len)) {
*first = base;
*last = base + len - 1;
return (bd);
}
}
}
}
panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
/* NOTREACHED */
}
/*ARGSUSED*/
void
plat_freelist_process(int mnode)
{}
/*
* Called for each board/cpu/PA range detected in plat_fill_mc().
*/
static void
update_mem_bounds(int boardid, int cpuid, int bankid,
uint64_t base, uint64_t size)
{
uint64_t end;
int mnode;
slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
end = base + size - 1;
/*
* First see if this board already has a memnode associated
* with it. If not, see if this slice has a memnode. This
* covers the cases where a single slice covers multiple
* boards (cross-board interleaving) and where a single
* board has multiple slices (1+GB DIMMs).
*/
if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
mnode = mem_node_alloc();
ASSERT(mnode >= 0);
ASSERT(mnode < MAX_MEM_NODES);
plat_assign_lgrphand_to_mem_node(boardid, mnode);
}
base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
while (base < end) {
slice_to_memnode[PA_2_SLICE(base)] = mnode;
base += (1ul << PA_SLICE_SHIFT);
}
}
/*
* Dynamically detect memory slices in the system by decoding
* the cpu memory decoder registers at boot time.
*/
void
plat_fill_mc(pnode_t nodeid)
{
uint64_t mc_addr, saf_addr;
uint64_t mc_decode[DAK_BANKS_PER_MC];
uint64_t base, size;
uint64_t saf_mask;
uint64_t offset;
uint32_t regs[4];
int len;
int local_mc;
int portid;
int boardid;
int cpuid;
int i;
if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
(portid == -1))
return;
/*
* Decode the board number from the MC portid. Assumes
* portid == safari agentid.
*/
boardid = DAK_GETSLOT(portid);
cpuid = DAK_GETSID(portid);
/*
* The "reg" property returns 4 32-bit values. The first two are
* combined to form a 64-bit address. The second two are for a
* 64-bit size, but we don't actually need to look at that value.
*/
len = prom_getproplen(nodeid, "reg");
if (len != (sizeof (uint32_t) * 4)) {
prom_printf("Warning: malformed 'reg' property\n");
return;
}
if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
return;
mc_addr = ((uint64_t)regs[0]) << 32;
mc_addr |= (uint64_t)regs[1];
/*
* Figure out whether the memory controller we are examining
* belongs to this CPU or a different one.
*/
saf_addr = lddsafaddr(8);
saf_mask = (uint64_t)SAF_MASK;
if ((mc_addr & saf_mask) == saf_addr)
local_mc = 1;
else
local_mc = 0;
for (i = 0; i < DAK_BANKS_PER_MC; i++) {
/*
* Memory decode masks are at offsets 0x10 - 0x28.
*/
offset = 0x10 + (i << 3);
/*
* If the memory controller is local to this CPU, we use
* the special ASI to read the decode registers.
* Otherwise, we load the values from a magic address in
* I/O space.
*/
if (local_mc)
mc_decode[i] = lddmcdecode(offset);
else
mc_decode[i] = lddphysio(mc_addr | offset);
/*
* If the upper bit is set, we have a valid mask
*/
if ((int64_t)mc_decode[i] < 0) {
/*
* The memory decode register is a bitmask field,
* so we can decode that into both a base and
* a span.
*/
base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
size = MC_UK2SPAN(mc_decode[i]);
update_mem_bounds(boardid, cpuid, i, base, size);
}
}
}
/*
* This routine is run midway through the boot process. By the time we get
* here, we know about all the active CPU boards in the system, and we have
* extracted information about each board's memory from the memory
* controllers. We have also figured out which ranges of memory will be
* assigned to which memnodes, so we walk the slice table to build the table
* of memnodes.
*/
/* ARGSUSED */
void
plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
{
int slice;
pfn_t basepfn;
pgcnt_t npgs;
mem_node_pfn_shift = PFN_SLICE_SHIFT;
mem_node_physalign = (1ull << PA_SLICE_SHIFT);
npgs = 1ull << PFN_SLICE_SHIFT;
for (slice = 0; slice < DAK_MAX_SLICE; slice++) {
if (slice_to_memnode[slice] == -1)
continue;
basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
mem_node_add_slice(basepfn, basepfn + npgs - 1);
}
}
/*
* Daktari support for lgroups.
*
* On Daktari, an lgroup platform handle == slot number.
*
* Mappings between lgroup handles and memnodes are managed
* in addition to mappings between memory slices and memnodes
* to support cross-board interleaving as well as multiple
* slices per board (e.g. >1GB DIMMs). The initial mapping
* of memnodes to lgroup handles is determined at boot time.
*/
int
plat_pfn_to_mem_node(pfn_t pfn)
{
return (slice_to_memnode[PFN_2_SLICE(pfn)]);
}
/*
* Return the platform handle for the lgroup containing the given CPU
*
* For Daktari, lgroup platform handle == slot number
*/
lgrp_handle_t
plat_lgrp_cpu_to_hand(processorid_t id)
{
return (DAK_GETSLOT(id));
}
/*
* Platform specific lgroup initialization
*/
void
plat_lgrp_init(void)
{
int i;
/*
* Initialize lookup tables to invalid values so we catch
* any illegal use of them.
*/
for (i = 0; i < DAK_MAX_SLICE; i++) {
slice_to_memnode[i] = -1;
}
}
/*
* Return latency between "from" and "to" lgroups
*
* This latency number can only be used for relative comparison
* between lgroups on the running system, cannot be used across platforms,
* and may not reflect the actual latency. It is platform and implementation
* specific, so platform gets to decide its value. It would be nice if the
* number was at least proportional to make comparisons more meaningful though.
* NOTE: The numbers below are supposed to be load latencies for uncached
* memory divided by 10.
*/
int
plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
{
/*
* Return min remote latency when there are more than two lgroups
* (root and child) and getting latency between two different lgroups
* or root is involved
*/
if (lgrp_optimizations() && (from != to ||
from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
return (21);
else
return (19);
}
/*
* No platform drivers on this platform
*/
char *platform_module_list[] = {
(char *)0
};
/*ARGSUSED*/
void
plat_tod_fault(enum tod_fault_type tod_bad)
{
}
/*ARGSUSED*/
int
plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
{
if (flt_in_memory && (p2get_mem_unum != NULL))
return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
buf, buflen, lenp));
else
return (ENOTSUP);
}
/*
* This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
* driver giving each platform the opportunity to add platform
* specific label information to the unum for ECC error logging purposes.
*/
void
plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
{
_NOTE(ARGUNUSED(bank, dimm))
char board = DAK_GETSLOT_LABEL(mcid);
char old_unum[UNUM_NAMLEN];
strcpy(old_unum, unum);
snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
}
int
plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
{
char board = DAK_GETSLOT_LABEL(cpuid);
if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
return (ENOSPC);
} else {
*lenp = strlen(buf);
return (0);
}
}
/*
* The zuluvm module requires a dmv interrupt for each installed zulu board.
*/
void
plat_dmv_params(uint_t *hwint, uint_t *swint)
{
*hwint = 0;
*swint = DAK_SBD_SLOTS - 1;
}