us3_jalapeno.c revision 5cff782560a1c3cf913ba5574a5123a299f3315e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/ddi.h>
#include <sys/sysmacros.h>
#include <sys/archsystm.h>
#include <sys/vmsystm.h>
#include <sys/machparam.h>
#include <sys/machsystm.h>
#include <sys/machthread.h>
#include <sys/cpu.h>
#include <sys/cmp.h>
#include <sys/elf_SPARC.h>
#include <vm/hat_sfmmu.h>
#include <vm/seg_kmem.h>
#include <sys/cpuvar.h>
#include <sys/cheetahregs.h>
#include <sys/us3_module.h>
#include <sys/async.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/dditypes.h>
#include <sys/prom_debug.h>
#include <sys/prom_plat.h>
#include <sys/cpu_module.h>
#include <sys/sysmacros.h>
#include <sys/intreg.h>
#include <sys/clock.h>
#include <sys/platform_module.h>
#include <sys/machtrap.h>
#include <sys/ontrap.h>
#include <sys/panic.h>
#include <sys/memlist.h>
#include <sys/bootconf.h>
#include <sys/ivintr.h>
#include <sys/atomic.h>
#include <sys/fm/protocol.h>
#include <sys/fm/cpu/UltraSPARC-III.h>
#include <sys/errclassify.h>
#ifdef CHEETAHPLUS_ERRATUM_25
#include <sys/cyclic.h>
#endif /* CHEETAHPLUS_ERRATUM_25 */
/* cpu estar private data */
typedef struct {
uint8_t state : 7;
uint8_t valid : 1;
} mcu_fsm_def_t;
mcu_fsm_def_t mcu_fsm_init_state[NCPU];
#if defined(JALAPENO) && defined(JALAPENO_ERRATA_85)
/*
* jp_errata_85_enable can be set to 0 in /etc/system to disable
* JP Errata 85 workaround.
*
* jp_errata_85_allow_slow_scrub is usually set to !jp_errata_85_enable,
* but can be overridden in /etc/system. If set, it allows the scrubber
* to run in 1/2 or 1/32 mode. If a cpu is vulnerable to errata 85,
* this value should be zero.
*
* jp_errata_85_active is an internal variable and must not be
* set/changed via /etc/system or in any other way.
*/
extern int jp_errata_85_enable; /* for /etc/system use */
extern int jp_errata_85_allow_slow_scrub; /* for /etc/system use */
int jp_errata_85_active = -1; /* warn: modified in code ONLY */
uint64_t jp_estar_tl0_data[8];
uint64_t jp_estar_tl1_data[8];
#endif /* JALAPENO && JALAPENO_ERRATA_85 */
/*
* Setup trap handlers.
*/
void
cpu_init_trap(void)
{
CH_SET_TRAP(tt_pil15, ch_pil15_interrupt_instr);
CH_SET_TRAP(tt0_fecc, fecc_err_instr);
CH_SET_TRAP(tt1_fecc, fecc_err_tl1_instr);
CH_SET_TRAP(tt1_swtrap0, fecc_err_tl1_cont_instr);
CH_SET_TRAP(tt0_dperr, dcache_parity_instr);
CH_SET_TRAP(tt1_dperr, dcache_parity_tl1_instr);
CH_SET_TRAP(tt1_swtrap1, dcache_parity_tl1_cont_instr);
CH_SET_TRAP(tt0_iperr, icache_parity_instr);
CH_SET_TRAP(tt1_iperr, icache_parity_tl1_instr);
CH_SET_TRAP(tt1_swtrap2, icache_parity_tl1_cont_instr);
}
static int
getintprop(pnode_t node, char *name, int deflt)
{
int value;
switch (prom_getproplen(node, name)) {
case sizeof (int):
(void) prom_getprop(node, name, (caddr_t)&value);
break;
default:
value = deflt;
break;
}
return (value);
}
/*
* Set the magic constants of the implementation.
*/
/*ARGSUSED*/
void
cpu_fiximp(pnode_t dnode)
{
int i, a;
extern int vac_size, vac_shift;
extern uint_t vac_mask;
static struct {
char *name;
int *var;
int defval;
} prop[] = {
"dcache-size", &dcache_size, CH_DCACHE_SIZE,
"dcache-line-size", &dcache_linesize, CH_DCACHE_LSIZE,
"icache-size", &icache_size, CH_ICACHE_SIZE,
"icache-line-size", &icache_linesize, CH_ICACHE_LSIZE,
"ecache-size", &ecache_size, JP_ECACHE_MAX_SIZE,
"ecache-line-size", &ecache_alignsize, JP_ECACHE_MAX_LSIZE,
"ecache-associativity", &ecache_associativity, JP_ECACHE_NWAY
};
for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++)
*prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval);
ecache_setsize = ecache_size / ecache_associativity;
vac_size = CH_VAC_SIZE;
vac_mask = MMU_PAGEMASK & (vac_size - 1);
i = 0; a = vac_size;
while (a >>= 1)
++i;
vac_shift = i;
shm_alignment = vac_size;
vac = 1;
}
void
send_mondo_set(cpuset_t set)
{
int lo, busy, nack, shipped = 0;
uint16_t i, cpuids[IDSR_BN_SETS];
uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
uint64_t starttick, endtick, tick, lasttick;
#ifdef CHEETAHPLUS_ERRATUM_25
int recovered = 0;
int cpuid;
#endif
ASSERT(!CPUSET_ISNULL(set));
starttick = lasttick = gettick();
/*
* Lower 2 bits of the agent ID determine which BUSY/NACK pair
* will be used for dispatching interrupt. For now, assume
* there are no more than IDSR_BN_SETS CPUs, hence no aliasing
* issues with respect to BUSY/NACK pair usage.
*/
for (i = 0; i < NCPU; i++)
if (CPU_IN_SET(set, i)) {
shipit(i, shipped /* ignored */);
nackmask |= IDSR_NACK_BIT(CPUID_TO_BN_PAIR(i));
cpuids[CPUID_TO_BN_PAIR(i)] = i;
shipped++;
CPUSET_DEL(set, i);
if (CPUSET_ISNULL(set))
break;
}
CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
busymask = IDSR_NACK_TO_BUSY(nackmask);
busy = nack = 0;
endtick = starttick + xc_tick_limit;
for (;;) {
idsr = getidsr();
if (idsr == 0)
break;
tick = gettick();
/*
* If there is a big jump between the current tick
* count and lasttick, we have probably hit a break
* point. Adjust endtick accordingly to avoid panic.
*/
if (tick > (lasttick + xc_tick_jump_limit))
endtick += (tick - lasttick);
lasttick = tick;
if (tick > endtick) {
if (panic_quiesce)
return;
#ifdef CHEETAHPLUS_ERRATUM_25
cpuid = -1;
for (i = 0; i < IDSR_BN_SETS; i++) {
if (idsr & (IDSR_NACK_BIT(i) |
IDSR_BUSY_BIT(i))) {
cpuid = cpuids[i];
break;
}
}
if (cheetah_sendmondo_recover && cpuid != -1 &&
recovered == 0) {
if (mondo_recover(cpuid, i)) {
/*
* We claimed the whole memory or
* full scan is disabled.
*/
recovered++;
}
tick = gettick();
endtick = tick + xc_tick_limit;
lasttick = tick;
/*
* Recheck idsr
*/
continue;
} else
#endif /* CHEETAHPLUS_ERRATUM_25 */
{
cmn_err(CE_CONT, "send mondo timeout "
"[%d NACK %d BUSY]\nIDSR 0x%"
"" PRIx64 " cpuids:", nack, busy, idsr);
for (i = 0; i < IDSR_BN_SETS; i++) {
if (idsr & (IDSR_NACK_BIT(i) |
IDSR_BUSY_BIT(i))) {
cmn_err(CE_CONT, " 0x%x",
cpuids[i]);
}
}
cmn_err(CE_CONT, "\n");
cmn_err(CE_PANIC, "send_mondo_set: timeout");
}
}
curnack = idsr & nackmask;
curbusy = idsr & busymask;
if (curbusy) {
busy++;
continue;
}
#ifdef SEND_MONDO_STATS
{
int n = gettick() - starttick;
if (n < 8192)
x_nack_stimes[n >> 7]++;
}
#endif
while (gettick() < (tick + sys_clock_mhz))
;
do {
lo = lowbit(curnack) - 1;
i = IDSR_NACK_IDX(lo);
shipit(cpuids[i], i);
curnack &= ~(1ull << lo);
} while (curnack);
nack++;
busy = 0;
}
#ifdef SEND_MONDO_STATS
{
int n = gettick() - starttick;
if (n < 8192)
x_set_stimes[n >> 7]++;
else
x_set_ltimes[(n >> 13) & 0xf]++;
}
x_set_cpus[shipped]++;
#endif
}
/*
* Handles error logging for implementation specific error types
*/
int
cpu_impl_async_log_err(void *flt, errorq_elem_t *eqep)
{
ch_async_flt_t *ch_flt = (ch_async_flt_t *)flt;
struct async_flt *aflt = (struct async_flt *)flt;
uint64_t errors;
switch (ch_flt->flt_type) {
case CPU_IC_PARITY:
cpu_async_log_ic_parity_err(flt);
return (CH_ASYNC_LOG_DONE);
case CPU_DC_PARITY:
cpu_async_log_dc_parity_err(flt);
return (CH_ASYNC_LOG_DONE);
case CPU_RCE:
if (page_retire_check(aflt->flt_addr, &errors) == EINVAL) {
CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
CE_XDIAG_SKIP_NOPP);
} else if (errors != PR_OK) {
CE_XDIAG_SETSKIPCODE(aflt->flt_disp,
CE_XDIAG_SKIP_PAGEDET);
} else if (ce_scrub_xdiag_recirc(aflt, ce_queue, eqep,
offsetof(ch_async_flt_t, cmn_asyncflt))) {
return (CH_ASYNC_LOG_RECIRC);
}
/*FALLTHRU*/
/*
* cases where we just want to report the error and continue.
*/
case CPU_BPAR:
case CPU_UMS:
case CPU_FRC:
case CPU_FRU:
cpu_log_err(aflt);
return (CH_ASYNC_LOG_DONE);
/*
* Cases where we want to fall through to handle panicking.
*/
case CPU_RUE:
cpu_log_err(aflt);
return (CH_ASYNC_LOG_CONTINUE);
default:
return (CH_ASYNC_LOG_UNKNOWN);
}
}
/*
* Figure out if Ecache is direct-mapped (Cheetah or Cheetah+ with Ecache
* control ECCR_ASSOC bit off or 2-way (Cheetah+ with ECCR_ASSOC on).
* We need to do this on the fly because we may have mixed Cheetah+'s with
* both direct and 2-way Ecaches.
*/
int
cpu_ecache_nway(void)
{
return (JP_ECACHE_NWAY);
}
/*
* Note that these are entered into the table in the order:
* Fatal Errors first, orphaned UCU/UCC, AFAR Overwrite policy,
* FRC/FRU, and finally IVPE.
*
* Afar overwrite policy is:
* Jalapeno:
* UCU,UCC > RUE,UE,EDU,WDU,CPU,WBP,BP > RCE,CE,EDC,WDC,CPC >
* TO,BERR > UMS,OM
* Serrano:
* UCU,UCC > RUE,UE,EDU,WDU,CPU,WBP,BP > RCE,CE,EDC,WDC,CPC,ETI,ETC >
* TO,BERR > UMS,OM
*/
ecc_type_to_info_t ecc_type_to_info[] = {
/* Fatal Errors */
C_AFSR_JETO, "JETO ", ECC_ALL_TRAPS, CPU_FATAL,
"JETO Fatal",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_JETO,
C_AFSR_SCE, "SCE ", ECC_ALL_TRAPS, CPU_FATAL,
"SCE Fatal",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_SCE,
C_AFSR_JEIC, "JEIC ", ECC_ALL_TRAPS, CPU_FATAL,
"JEIC Fatal",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_JEIC,
C_AFSR_JEIT, "JEIT ", ECC_ALL_TRAPS, CPU_FATAL,
"JEIT Fatal",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_JEIT,
C_AFSR_JEIS, "JEIS ", ECC_ALL_TRAPS, CPU_FATAL,
"JEIS Fatal",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_JEIS,
#if defined(JALAPENO)
C_AFSR_ETP, "ETP ", ECC_ALL_TRAPS, CPU_FATAL,
"ETP Fatal",
FM_EREPORT_PAYLOAD_L2_TAG_PE,
FM_EREPORT_CPU_USIII_ETP,
#elif defined(SERRANO)
C_AFSR_ETS, "ETS ", ECC_ASYNC_TRAPS, CPU_FATAL,
"ETS Fatal",
FM_EREPORT_PAYLOAD_L2_TAG_ECC,
FM_EREPORT_CPU_USIII_ETS,
C_AFSR_ETU, "ETU ", ECC_ASYNC_TRAPS, CPU_FATAL,
"ETU Fatal",
FM_EREPORT_PAYLOAD_L2_TAG_ECC,
FM_EREPORT_CPU_USIII_ETU,
#endif /* SERRANO */
C_AFSR_IERR, "IERR ", ECC_ALL_TRAPS, CPU_FATAL,
"IERR Fatal",
FM_EREPORT_PAYLOAD_SYSTEM2,
FM_EREPORT_CPU_USIII_IERR,
C_AFSR_ISAP, "ISAP ", ECC_ALL_TRAPS, CPU_FATAL,
"ISAP Fatal",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_ISAP,
/* Orphaned UCU/UCC Errors */
C_AFSR_UCU, "OUCU ", ECC_ORPH_TRAPS, CPU_ORPH,
"Orphaned UCU",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_UCU,
C_AFSR_UCC, "OUCC ", ECC_ORPH_TRAPS, CPU_ORPH,
"Orphaned UCC",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_UCC,
/* UCU, UCC */
C_AFSR_UCU, "UCU ", ECC_F_TRAP, CPU_UE_ECACHE,
"UCU",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_UCU,
C_AFSR_UCC, "UCC ", ECC_F_TRAP, CPU_CE_ECACHE,
"UCC",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_UCC,
/* RUE, UE, EDU:ST, EDU:BLD, WDU, CPU, BP, WBP */
C_AFSR_RUE, "RUE ", ECC_ASYNC_TRAPS, CPU_RUE,
"Uncorrectable remote memory/cache (RUE)",
FM_EREPORT_PAYLOAD_MEMORY,
FM_EREPORT_CPU_USIII_RUE,
C_AFSR_UE, "UE ", ECC_ASYNC_TRAPS, CPU_UE,
"Uncorrectable memory (UE)",
FM_EREPORT_PAYLOAD_MEMORY,
FM_EREPORT_CPU_USIII_UE,
C_AFSR_EDU, "EDU ", ECC_C_TRAP, CPU_UE_ECACHE_RETIRE,
"EDU:ST",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_EDUST,
C_AFSR_EDU, "EDU ", ECC_D_TRAP, CPU_UE_ECACHE_RETIRE,
"EDU:BLD",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_EDUBL,
C_AFSR_WDU, "WDU ", ECC_C_TRAP, CPU_UE_ECACHE_RETIRE,
"WDU",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_WDU,
C_AFSR_CPU, "CPU ", ECC_C_TRAP, CPU_UE_ECACHE,
"CPU",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_CPU,
C_AFSR_WBP, "WBP ", ECC_C_TRAP, CPU_BPAR,
"JBUS parity error on writeback or block store (WBP)",
FM_EREPORT_PAYLOAD_SYSTEM3,
FM_EREPORT_CPU_USIII_WBP,
C_AFSR_BP, "BP ", ECC_ASYNC_TRAPS, CPU_BPAR,
"JBUS parity error on returned read data (BP)",
FM_EREPORT_PAYLOAD_SYSTEM3,
FM_EREPORT_CPU_USIII_BP,
/* RCE, CE, EDC, WDC, CPC */
C_AFSR_RCE, "RCE ", ECC_C_TRAP, CPU_RCE,
"Corrected remote memory/cache (RCE)",
FM_EREPORT_PAYLOAD_MEMORY,
FM_EREPORT_CPU_USIII_RCE,
C_AFSR_CE, "CE ", ECC_C_TRAP, CPU_CE,
"Corrected memory (CE)",
FM_EREPORT_PAYLOAD_MEMORY,
FM_EREPORT_CPU_USIII_CE,
C_AFSR_EDC, "EDC ", ECC_C_TRAP, CPU_CE_ECACHE,
"EDC",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_EDC,
C_AFSR_WDC, "WDC ", ECC_C_TRAP, CPU_CE_ECACHE,
"WDC",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_WDC,
C_AFSR_CPC, "CPC ", ECC_C_TRAP, CPU_CE_ECACHE,
"CPC",
FM_EREPORT_PAYLOAD_L2_DATA,
FM_EREPORT_CPU_USIII_CPC,
#if defined(SERRANO)
/* ETI, ETC */
C_AFSR_ETI, "ETI", ECC_F_TRAP | ECC_C_TRAP, CPU_CE_ECACHE,
"ETI",
FM_EREPORT_PAYLOAD_L2_TAG_ECC,
FM_EREPORT_CPU_USIII_ETI,
C_AFSR_ETC, "ETC", ECC_F_TRAP | ECC_C_TRAP, CPU_CE_ECACHE,
"ETC",
FM_EREPORT_PAYLOAD_L2_TAG_ECC,
FM_EREPORT_CPU_USIII_ETC,
#endif /* SERRANO */
/* TO, BERR */
C_AFSR_TO, "TO ", ECC_ASYNC_TRAPS, CPU_TO,
"Timeout (TO)",
FM_EREPORT_PAYLOAD_IO,
FM_EREPORT_CPU_USIII_TO,
C_AFSR_BERR, "BERR ", ECC_ASYNC_TRAPS, CPU_BERR,
"Bus Error (BERR)",
FM_EREPORT_PAYLOAD_IO,
FM_EREPORT_CPU_USIII_BERR,
/* UMS, OM */
C_AFSR_UMS, "UMS ", ECC_C_TRAP, CPU_UMS,
"Unsupported store (UMS)",
FM_EREPORT_PAYLOAD_IO,
FM_EREPORT_CPU_USIII_UMS,
C_AFSR_OM, "OM ", ECC_ASYNC_TRAPS, CPU_BERR,
"Out of range memory (OM)",
FM_EREPORT_PAYLOAD_IO,
FM_EREPORT_CPU_USIII_OM,
/* FRC, FRU */
C_AFSR_FRC, "FRC ", ECC_C_TRAP, CPU_FRC,
"Corrected memory (FRC)",
FM_EREPORT_PAYLOAD_MEMORY,
FM_EREPORT_CPU_USIII_FRC,
C_AFSR_FRU, "FRU ", ECC_C_TRAP, CPU_FRU,
"Uncorrectable memory (FRU)",
FM_EREPORT_PAYLOAD_MEMORY,
FM_EREPORT_CPU_USIII_FRU,
/* IVPE */
C_AFSR_IVPE, "IVPE ", ECC_C_TRAP, CPU_IV,
"IVPE",
FM_EREPORT_PAYLOAD_SYSTEM1,
FM_EREPORT_CPU_USIII_IVPE,
0, NULL, 0, 0,
NULL,
FM_EREPORT_PAYLOAD_UNKNOWN,
FM_EREPORT_CPU_USIII_UNKNOWN,
};
/*
* J_REQ overwrite policy (see UltraSPARC-IIIi PRM)
*
* Class 4: RUE, BP, WBP
* Class 3: RCE
* Class 2: TO, BERR
* Class 1: UMS
*/
uint64_t jreq_overwrite[] = {
C_AFSR_RUE | C_AFSR_BP | C_AFSR_WBP,
C_AFSR_RCE,
C_AFSR_TO | C_AFSR_BERR,
C_AFSR_UMS,
0
};
/*
* AGENT ID overwrite policy (see UltraSPARC-IIIi PRM)
*
* Class 2: CPU, FRU
* Class 1: CPC, FRC
*/
uint64_t jbus_aid_overwrite[] = {
C_AFSR_CPU | C_AFSR_FRU,
C_AFSR_CPC | C_AFSR_FRC,
0
};
int
afsr_to_jaid_status(uint64_t afsr, uint64_t afsr_bit)
{
return (afsr_to_overw_status(afsr, afsr_bit, jbus_aid_overwrite));
}
/*
* See UltraSPARC-IIIi+ PRM
* Class 5: ETS, ETU, EFES
* Class 4: UCC, UCU
* Class 3: UE, RUE, BP, WBP, EDU, WDU, CPU
* Class 2: CE, RCE, EDC, WDC, CPC, ETI, ETC
* Class 1: TO, BERR
* Class 0: UMS, OM
*
* See UltraSPARC-IIIi PRM
* Class 5: ETP
* Class 4: UCC, UCU
* Class 3: UE, RUE, BP, WBP, EDU, WDU
* Class 2: CE, RCE, EDC, WDC
* Class 1: TO, BERR
* Class 0: UMS, OM
*/
uint64_t afar_overwrite[] = {
#if defined(JALAPENO)
C_AFSR_ETP,
#elif defined(SERRANO)
C_AFSR_ETS | C_AFSR_ETU | C_AFSR_EFES,
#endif /* SERRANO */
C_AFSR_UCC | C_AFSR_UCU,
C_AFSR_UE | C_AFSR_RUE | C_AFSR_BP | C_AFSR_WBP | C_AFSR_EDU |
C_AFSR_WDU | C_AFSR_CPU,
#if defined(SERRANO)
C_AFSR_ETI | C_AFSR_ETC |
#endif /* SERRANO */
C_AFSR_CE | C_AFSR_RCE | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_CPC,
C_AFSR_TO | C_AFSR_BERR,
C_AFSR_UMS | C_AFSR_OM,
0
};
#if defined(SERRANO)
/*
* Serrano has a second AFAR that captures the physical address on
* FRC/FRU errors (which Jalapeno does not). This register also
* captures the address for UE and CE errors.
*
* See UltraSPARC-IIIi+ PRM
* Class 3: UE
* Class 2: FRU
* Class 1: CE
* Class 0: FRC
*/
uint64_t afar2_overwrite[] = {
C_AFSR_UE,
C_AFSR_FRU,
C_AFSR_CE,
C_AFSR_FRC,
0
};
#endif /* SERRANO */
/*
* See UltraSPARC-IIIi PRM
* Class 2: UE, FRU, EDU, WDU, UCU, CPU
* Class 1: CE, FRC, EDC, WDC, UCC, CPC
*/
uint64_t esynd_overwrite[] = {
#if defined(SERRANO)
C_AFSR_ETS | C_AFSR_ETU |
#endif /* SERRANO */
C_AFSR_UE | C_AFSR_FRU | C_AFSR_EDU | C_AFSR_WDU | C_AFSR_UCU |
C_AFSR_CPU,
C_AFSR_CE | C_AFSR_FRC | C_AFSR_EDC | C_AFSR_WDC | C_AFSR_UCC |
C_AFSR_CPC,
0
};
/*
* Prioritized list of Error bits for BSYND (referred to as
* MSYND to share code with CHEETAH & CHEETAH_PLUS) overwrite.
* See UltraSPARC-IIIi PRM
* Class 3: ISAP
* Class 2: BP
* Class 1: WBP, IVPE
*/
uint64_t msynd_overwrite[] = {
C_AFSR_ISAP,
C_AFSR_BP,
C_AFSR_WBP | C_AFSR_IVPE,
0
};
/*
* change cpu speed bits -- new speed will be normal-speed/divisor.
*
* The Jalapeno memory controllers are required to drain outstanding
* memory transactions within 32 JBus clocks in order to be ready
* to enter Estar mode. In some corner cases however, that time
* fell short.
*
* A safe software solution is to force MCU to act like in Estar mode,
* then delay 1us (in ppm code) prior to assert J_CHNG_L signal.
* To reverse the effect, upon exiting Estar, software restores the
* MCU to its original state.
*/
/* ARGSUSED1 */
void
cpu_change_speed(uint64_t divisor, uint64_t arg2)
{
bus_config_eclk_t *bceclk;
uint64_t reg;
uint64_t oldreg;
uint64_t mreg;
uint64_t val64;
int id = (CPU)->cpu_id;
processor_info_t *pi = &(CPU->cpu_type_info);
#if defined(JALAPENO) && defined(JALAPENO_ERRATA_85)
/*
* ASI Ecache flush in 1/2 or 1/32 speed mode can result
* in CPU fatal reset (JETO or IERR/TO on MP). A workaround
* is to force the CPU to full speed mode prior to using
* ASI Ecache flush opeartion to flush E$. Since we can't
* always use cross calls at the time of flushing E$, we
* cannot change other CPU speed. Hence, this workaround
* is applicable to uniprocessor configuration only and
* can't be used in multiprocessor configuration.
*
* Note that this workaround is activated only when the CPU
* has been fully initialized and its speed is lowered by the
* ppm for the first time. It can be disabled via /etc/system
* by setting jp_errata_85_enable to 0 and rebooting the
* system.
*/
if ((jp_errata_85_active == -1) &&
jp_errata_85_enable &&
(divisor != JBUS_CONFIG_ECLK_1_DIV)) {
if (ncpus == 1)
jp_errata_85_active = 1;
else
jp_errata_85_active = 0;
}
if ((!jp_errata_85_allow_slow_scrub) && (CPU_PRIVATE(CPU) != NULL)) {
int i;
ch_scrub_misc_t *chpr_scrubp =
CPU_PRIVATE_PTR(CPU, chpr_scrub_misc);
/* We're only allowed to run the scrubbers at full speed */
for (i = 0; i < CACHE_SCRUBBER_COUNT; i++) {
chpr_scrubp->chsm_enable[i] =
(divisor == JBUS_CONFIG_ECLK_1_DIV);
}
}
#endif /* JALAPENO && JALAPENO_ERRATA_85 */
/*
* We're only interested in mcu_ctl_reg1 bit 26 and 25, of which
* the value will be stored in the lower half of a byte. The
* top bit of this byte is designated as a valid bit - 0 means
* invalid, 1 means valid.
*/
if (!mcu_fsm_init_state[id].valid) {
val64 = get_mcu_ctl_reg1() & JP_MCU_FSM_MASK;
mcu_fsm_init_state[id].state = val64 >> JP_MCU_FSM_SHIFT;
mcu_fsm_init_state[id].valid = 1;
}
for (bceclk = bus_config_eclk; bceclk->divisor; bceclk++) {
if (bceclk->divisor != divisor)
continue;
reg = get_jbus_config();
oldreg = reg;
reg &= ~JBUS_CONFIG_ECLK_MASK;
reg |= bceclk->mask;
set_jbus_config(reg);
(void) get_jbus_config();
/*
* MCU workaround, refer to Jalapeno spec, EnergyStar section
* for detail.
*/
/* Upon entering engery star mode, turn off extra MCU FSMs */
if (((oldreg & JBUS_CONFIG_ECLK_MASK) == JBUS_CONFIG_ECLK_1) &&
((divisor == JBUS_CONFIG_ECLK_2_DIV) ||
(divisor == JBUS_CONFIG_ECLK_32_DIV))) {
mreg = get_mcu_ctl_reg1();
if ((mreg & JP_MCU_FSM_MASK) != 0) {
mreg &= ~JP_MCU_FSM_MASK;
set_mcu_ctl_reg1(mreg);
(void) get_mcu_ctl_reg1();
}
/* Upon exiting energy star mode, restore extra MCU FSMs */
} else if (divisor == JBUS_CONFIG_ECLK_1_DIV) {
mreg = get_mcu_ctl_reg1();
val64 = mcu_fsm_init_state[id].state;
mreg |= val64 << JP_MCU_FSM_SHIFT;
set_mcu_ctl_reg1(mreg);
(void) get_mcu_ctl_reg1();
}
CPU->cpu_m.divisor = (uchar_t)divisor;
pi->pi_curr_clock =
(((uint64_t)pi->pi_clock * 1000000) / divisor);
return;
}
/*
* We will reach here only if OBP and kernel don't agree on
* the speeds supported by the CPU.
*/
cmn_err(CE_WARN, "cpu_change_speed: bad divisor %" PRIu64, divisor);
}
/*
* Cpu private initialization. This includes allocating the cpu_private
* data structure, initializing it, and initializing the scrubber for this
* cpu. This function calls cpu_init_ecache_scrub_dr to init the scrubber.
* We use kmem_cache_create for the cheetah private data structure because
* it needs to be allocated on a PAGESIZE (8192) byte boundary.
*/
void
cpu_init_private(struct cpu *cp)
{
cheetah_private_t *chprp;
int i;
ASSERT(CPU_PRIVATE(cp) == NULL);
/* LINTED: E_TRUE_LOGICAL_EXPR */
ASSERT((offsetof(cheetah_private_t, chpr_tl1_err_data) +
sizeof (ch_err_tl1_data_t) * CH_ERR_TL1_TLMAX) <= PAGESIZE);
#if defined(SERRANO)
if (!IS_SERRANO(cpunodes[cp->cpu_id].implementation)) {
cmn_err(CE_PANIC, "CPU%d: implementation 0x%x not supported"
" on UltraSPARC-IIIi+ code\n", cp->cpu_id,
cpunodes[cp->cpu_id].implementation);
}
#else /* SERRANO */
if (!IS_JALAPENO(cpunodes[cp->cpu_id].implementation)) {
cmn_err(CE_PANIC, "CPU%d: implementation 0x%x not supported"
" on UltraSPARC-IIIi code\n", cp->cpu_id,
cpunodes[cp->cpu_id].implementation);
}
#endif /* SERRANO */
/*
* If the ch_private_cache has not been created, create it.
*/
if (ch_private_cache == NULL) {
ch_private_cache = kmem_cache_create("ch_private_cache",
sizeof (cheetah_private_t), PAGESIZE, NULL, NULL,
NULL, NULL, static_arena, 0);
}
chprp = CPU_PRIVATE(cp) = kmem_cache_alloc(ch_private_cache, KM_SLEEP);
bzero(chprp, sizeof (cheetah_private_t));
chprp->chpr_fecctl0_logout.clo_data.chd_afar = LOGOUT_INVALID;
chprp->chpr_cecc_logout.clo_data.chd_afar = LOGOUT_INVALID;
chprp->chpr_async_logout.clo_data.chd_afar = LOGOUT_INVALID;
for (i = 0; i < CH_ERR_TL1_TLMAX; i++)
chprp->chpr_tl1_err_data[i].ch_err_tl1_logout.clo_data.chd_afar
= LOGOUT_INVALID;
chprp->chpr_icache_size = CH_ICACHE_SIZE;
chprp->chpr_icache_linesize = CH_ICACHE_LSIZE;
cpu_init_ecache_scrub_dr(cp);
chprp->chpr_ec_set_size = cpunodes[cp->cpu_id].ecache_size /
cpu_ecache_nway();
adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
ch_err_tl1_paddrs[cp->cpu_id] = va_to_pa(chprp);
ASSERT(ch_err_tl1_paddrs[cp->cpu_id] != -1);
}
/*
* Clear the error state registers for this CPU.
* For Jalapeno, just clear the AFSR
*/
void
set_cpu_error_state(ch_cpu_errors_t *cpu_error_regs)
{
set_asyncflt(cpu_error_regs->afsr & ~C_AFSR_FATAL_ERRS);
}
/*
* Update cpu_offline_set so the scrubber knows which cpus are offline
*/
/*ARGSUSED*/
int
cpu_scrub_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
{
switch (what) {
case CPU_ON:
case CPU_INIT:
CPUSET_DEL(cpu_offline_set, cpuid);
break;
case CPU_OFF:
CPUSET_ADD(cpu_offline_set, cpuid);
break;
default:
break;
}
return (0);
}