opl_olympus.c revision 25cf1a301a396c38e8adf52c15f537b80d2483f7
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/ddi.h>
#include <sys/sysmacros.h>
#include <sys/archsystm.h>
#include <sys/vmsystm.h>
#include <sys/machparam.h>
#include <sys/machsystm.h>
#include <sys/machthread.h>
#include <sys/cpu.h>
#include <sys/cmp.h>
#include <sys/elf_SPARC.h>
#include <vm/vm_dep.h>
#include <vm/hat_sfmmu.h>
#include <vm/seg_kpm.h>
#include <sys/cpuvar.h>
#include <sys/opl_olympus_regs.h>
#include <sys/opl_module.h>
#include <sys/async.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/dditypes.h>
#include <sys/cpu_module.h>
#include <sys/sysmacros.h>
#include <sys/intreg.h>
#include <sys/clock.h>
#include <sys/platform_module.h>
#include <sys/ontrap.h>
#include <sys/panic.h>
#include <sys/memlist.h>
#include <sys/ndifm.h>
#include <sys/ddifm.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/fm/cpu/SPARC64-VI.h>
#include <sys/dtrace.h>
#include <sys/watchpoint.h>
#include <sys/promif.h>
/*
* Internal functions.
*/
static int cpu_sync_log_err(void *flt);
static void cpu_payload_add_aflt(struct async_flt *, nvlist_t *, nvlist_t *);
static void opl_cpu_sync_error(struct regs *, ulong_t, ulong_t, uint_t, uint_t);
static int cpu_flt_in_memory(opl_async_flt_t *, uint64_t);
/*
* Error counters resetting interval.
*/
static int opl_async_check_interval = 60; /* 1 min */
/*
* Maximum number of contexts for Olympus-C.
*/
#define MAX_NCTXS (1 << 13)
/* Will be set !NULL for SPARC64-VI and derivatives. */
static uchar_t ctx_pgsz_arr[MAX_NCTXS];
uchar_t *ctx_pgsz_array = ctx_pgsz_arr;
/*
* PA[22:0] represent Displacement in Jupiter
* configuration space.
*/
uint_t root_phys_addr_lo_mask = 0x7fffffu;
/*
* set in /etc/system to control logging of user BERR/TO's
*/
int cpu_berr_to_verbose = 0;
static int min_ecache_size;
static uint_t priv_hcl_1;
static uint_t priv_hcl_2;
static uint_t priv_hcl_4;
static uint_t priv_hcl_8;
/*
* Olympus error log
*/
static opl_errlog_t *opl_err_log;
/*
* UE is classified into four classes (MEM, CHANNEL, CPU, PATH).
* No any other ecc_type_info insertion is allowed in between the following
* four UE classess.
*/
ecc_type_to_info_t ecc_type_to_info[] = {
SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
"Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_UE_MEM,
SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
"Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_UE_CHANNEL,
SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
"Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_UE_CPU,
SFSR_UE, "UE ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_UE,
"Uncorrectable ECC", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_UE_PATH,
SFSR_BERR, "BERR ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
"Bus Error", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_BERR,
SFSR_TO, "TO ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
"Bus Timeout", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_BTO,
SFSR_TLB_MUL, "TLB_MUL ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
"TLB MultiHit", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_MTLB,
SFSR_TLB_PRT, "TLB_PRT ", (OPL_ECC_SYNC_TRAP), OPL_CPU_SYNC_OTHERS,
"TLB Parity", FM_EREPORT_PAYLOAD_SYNC,
FM_EREPORT_CPU_TLBP,
UGESR_IAUG_CRE, "IAUG_CRE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IAUG CRE", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_CRE,
UGESR_IAUG_TSBCTXT, "IAUG_TSBCTXT",
OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IAUG TSBCTXT", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_TSBCTX,
UGESR_IUG_TSBP, "IUG_TSBP", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG TSBP", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_TSBP,
UGESR_IUG_PSTATE, "IUG_PSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG PSTATE", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_PSTATE,
UGESR_IUG_TSTATE, "IUG_TSTATE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG TSTATE", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_TSTATE,
UGESR_IUG_F, "IUG_F", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG FREG", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_IUG_F,
UGESR_IUG_R, "IUG_R", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG RREG", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_IUG_R,
UGESR_AUG_SDC, "AUG_SDC", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"AUG SDC", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_SDC,
UGESR_IUG_WDT, "IUG_WDT", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG WDT", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_WDT,
UGESR_IUG_DTLB, "IUG_DTLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG DTLB", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_DTLB,
UGESR_IUG_ITLB, "IUG_ITLB", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG ITLB", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_ITLB,
UGESR_IUG_COREERR, "IUG_COREERR",
OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"IUG COREERR", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_CORE,
UGESR_MULTI_DAE, "MULTI_DAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"MULTI DAE", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_DAE,
UGESR_MULTI_IAE, "MULTI_IAE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"MULTI IAE", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_IAE,
UGESR_MULTI_UGE, "MULTI_UGE", OPL_ECC_URGENT_TRAP, OPL_CPU_URGENT,
"MULTI UGE", FM_EREPORT_PAYLOAD_URGENT,
FM_EREPORT_CPU_UGE,
0, NULL, 0, 0,
NULL, 0, 0,
};
int (*p2get_mem_info)(int synd_code, uint64_t paddr,
uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
int *segsp, int *banksp, int *mcidp);
/*
* Setup trap handlers for 0xA, 0x32, 0x40 trap types.
*/
void
cpu_init_trap(void)
{
OPL_SET_TRAP(tt0_iae, opl_serr_instr);
OPL_SET_TRAP(tt1_iae, opl_serr_instr);
OPL_SET_TRAP(tt0_dae, opl_serr_instr);
OPL_SET_TRAP(tt1_dae, opl_serr_instr);
OPL_SET_TRAP(tt0_asdat, opl_ugerr_instr);
OPL_SET_TRAP(tt1_asdat, opl_ugerr_instr);
}
static int
getintprop(pnode_t node, char *name, int deflt)
{
int value;
switch (prom_getproplen(node, name)) {
case sizeof (int):
(void) prom_getprop(node, name, (caddr_t)&value);
break;
default:
value = deflt;
break;
}
return (value);
}
/*
* Set the magic constants of the implementation.
*/
/*ARGSUSED*/
void
cpu_fiximp(pnode_t dnode)
{
int i, a;
extern int vac_size, vac_shift;
extern uint_t vac_mask;
static struct {
char *name;
int *var;
int defval;
} prop[] = {
"l1-dcache-size", &dcache_size, OPL_DCACHE_SIZE,
"l1-dcache-line-size", &dcache_linesize, OPL_DCACHE_LSIZE,
"l1-icache-size", &icache_size, OPL_ICACHE_SIZE,
"l1-icache-line-size", &icache_linesize, OPL_ICACHE_LSIZE,
"l2-cache-size", &ecache_size, OPL_ECACHE_SIZE,
"l2-cache-line-size", &ecache_alignsize, OPL_ECACHE_LSIZE,
"l2-cache-associativity", &ecache_associativity, OPL_ECACHE_NWAY
};
for (i = 0; i < sizeof (prop) / sizeof (prop[0]); i++)
*prop[i].var = getintprop(dnode, prop[i].name, prop[i].defval);
ecache_setsize = ecache_size / ecache_associativity;
vac_size = OPL_VAC_SIZE;
vac_mask = MMU_PAGEMASK & (vac_size - 1);
i = 0; a = vac_size;
while (a >>= 1)
++i;
vac_shift = i;
shm_alignment = vac_size;
vac = 1;
}
void
send_mondo_set(cpuset_t set)
{
int lo, busy, nack, shipped = 0;
uint16_t i, cpuids[IDSR_BN_SETS];
uint64_t idsr, nackmask = 0, busymask, curnack, curbusy;
uint64_t starttick, endtick, tick, lasttick;
#if (NCPU > IDSR_BN_SETS)
int index = 0;
int ncpuids = 0;
#endif
#ifdef OLYMPUS_ERRATA_XCALL
int bn_sets = IDSR_BN_SETS;
uint64_t ver;
ASSERT(NCPU > bn_sets);
#endif
ASSERT(!CPUSET_ISNULL(set));
starttick = lasttick = gettick();
#ifdef OLYMPUS_ERRATA_XCALL
ver = ultra_getver();
if (((ULTRA_VER_IMPL(ver)) == OLYMPUS_C_IMPL) &&
((OLYMPUS_REV_MASK(ver)) == OLYMPUS_C_A))
bn_sets = 1;
#endif
#if (NCPU <= IDSR_BN_SETS)
for (i = 0; i < NCPU; i++)
if (CPU_IN_SET(set, i)) {
shipit(i, shipped);
nackmask |= IDSR_NACK_BIT(shipped);
cpuids[shipped++] = i;
CPUSET_DEL(set, i);
if (CPUSET_ISNULL(set))
break;
}
CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
#else
for (i = 0; i < NCPU; i++)
if (CPU_IN_SET(set, i)) {
ncpuids++;
/*
* Ship only to the first (IDSR_BN_SETS) CPUs. If we
* find we have shipped to more than (IDSR_BN_SETS)
* CPUs, set "index" to the highest numbered CPU in
* the set so we can ship to other CPUs a bit later on.
*/
#ifdef OLYMPUS_ERRATA_XCALL
if (shipped < bn_sets) {
#else
if (shipped < IDSR_BN_SETS) {
#endif
shipit(i, shipped);
nackmask |= IDSR_NACK_BIT(shipped);
cpuids[shipped++] = i;
CPUSET_DEL(set, i);
if (CPUSET_ISNULL(set))
break;
} else
index = (int)i;
}
CPU_STATS_ADDQ(CPU, sys, xcalls, ncpuids);
#endif
busymask = IDSR_NACK_TO_BUSY(nackmask);
busy = nack = 0;
endtick = starttick + xc_tick_limit;
for (;;) {
idsr = getidsr();
#if (NCPU <= IDSR_BN_SETS)
if (idsr == 0)
break;
#else
if (idsr == 0 && shipped == ncpuids)
break;
#endif
tick = gettick();
/*
* If there is a big jump between the current tick
* count and lasttick, we have probably hit a break
* point. Adjust endtick accordingly to avoid panic.
*/
if (tick > (lasttick + xc_tick_jump_limit))
endtick += (tick - lasttick);
lasttick = tick;
if (tick > endtick) {
if (panic_quiesce)
return;
cmn_err(CE_CONT, "send mondo timeout "
"[%d NACK %d BUSY]\nIDSR 0x%"
"" PRIx64 " cpuids:", nack, busy, idsr);
#ifdef OLYMPUS_ERRATA_XCALL
for (i = 0; i < bn_sets; i++) {
#else
for (i = 0; i < IDSR_BN_SETS; i++) {
#endif
if (idsr & (IDSR_NACK_BIT(i) |
IDSR_BUSY_BIT(i))) {
cmn_err(CE_CONT, " 0x%x",
cpuids[i]);
}
}
cmn_err(CE_CONT, "\n");
cmn_err(CE_PANIC, "send_mondo_set: timeout");
}
curnack = idsr & nackmask;
curbusy = idsr & busymask;
#if (NCPU > IDSR_BN_SETS)
if (shipped < ncpuids) {
uint64_t cpus_left;
uint16_t next = (uint16_t)index;
cpus_left = ~(IDSR_NACK_TO_BUSY(curnack) | curbusy) &
busymask;
if (cpus_left) {
do {
/*
* Sequence through and ship to the
* remainder of the CPUs in the system
* (e.g. other than the first
* (IDSR_BN_SETS)) in reverse order.
*/
lo = lowbit(cpus_left) - 1;
i = IDSR_BUSY_IDX(lo);
shipit(next, i);
shipped++;
cpuids[i] = next;
/*
* If we've processed all the CPUs,
* exit the loop now and save
* instructions.
*/
if (shipped == ncpuids)
break;
for ((index = ((int)next - 1));
index >= 0; index--)
if (CPU_IN_SET(set, index)) {
next = (uint16_t)index;
break;
}
cpus_left &= ~(1ull << lo);
} while (cpus_left);
continue;
}
}
#endif
if (curbusy) {
busy++;
continue;
}
#ifdef SEND_MONDO_STATS
{
int n = gettick() - starttick;
if (n < 8192)
x_nack_stimes[n >> 7]++;
}
#endif
while (gettick() < (tick + sys_clock_mhz))
;
do {
lo = lowbit(curnack) - 1;
i = IDSR_NACK_IDX(lo);
shipit(cpuids[i], i);
curnack &= ~(1ull << lo);
} while (curnack);
nack++;
busy = 0;
}
#ifdef SEND_MONDO_STATS
{
int n = gettick() - starttick;
if (n < 8192)
x_set_stimes[n >> 7]++;
else
x_set_ltimes[(n >> 13) & 0xf]++;
}
x_set_cpus[shipped]++;
#endif
}
/*
* Cpu private initialization.
*/
void
cpu_init_private(struct cpu *cp)
{
if (!(IS_OLYMPUS_C(cpunodes[cp->cpu_id].implementation))) {
cmn_err(CE_PANIC, "CPU%d Impl %d: Only SPARC64-VI is supported",
cp->cpu_id, cpunodes[cp->cpu_id].implementation);
}
adjust_hw_copy_limits(cpunodes[cp->cpu_id].ecache_size);
}
void
cpu_setup(void)
{
extern int at_flags;
extern int disable_delay_tlb_flush, delay_tlb_flush;
extern int cpc_has_overflow_intr;
extern int disable_text_largepages;
extern int use_text_pgsz4m;
uint64_t cpu0_log;
extern uint64_t opl_cpu0_err_log;
/*
* Initialize Error log Scratch register for error handling.
*/
cpu0_log = va_to_pa(&opl_cpu0_err_log);
opl_error_setup(cpu0_log);
/*
* Enable MMU translating multiple page sizes for
* sITLB and sDTLB.
*/
opl_mpg_enable();
/*
* Setup chip-specific trap handlers.
*/
cpu_init_trap();
cache |= (CACHE_VAC | CACHE_PTAG | CACHE_IOCOHERENT);
at_flags = EF_SPARC_32PLUS | EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3;
/*
* Use the maximum number of contexts available for SPARC64-VI
* unless it has been tuned for debugging.
* We are checking against 0 here since this value can be patched
* while booting. It can not be patched via /etc/system since it
* will be patched too late and thus cause the system to panic.
*/
if (nctxs == 0)
nctxs = MAX_NCTXS;
/*
* Due to the number of entries in the fully-associative tlb
* this may have to be tuned lower than in spitfire.
*/
pp_slots = MIN(8, MAXPP_SLOTS);
/*
* Block stores do not invalidate all pages of the d$, pagecopy
* et. al. need virtual translations with virtual coloring taken
* into consideration. prefetch/ldd will pollute the d$ on the
* load side.
*/
pp_consistent_coloring = PPAGE_STORE_VCOLORING | PPAGE_LOADS_POLLUTE;
if (use_page_coloring) {
do_pg_coloring = 1;
if (use_virtual_coloring)
do_virtual_coloring = 1;
}
isa_list =
"sparcv9+vis2 sparcv9+vis sparcv9 "
"sparcv8plus+vis2 sparcv8plus+vis sparcv8plus "
"sparcv8 sparcv8-fsmuld sparcv7 sparc";
cpu_hwcap_flags = AV_SPARC_VIS | AV_SPARC_VIS2;
/*
* On SPARC64-VI, there's no hole in the virtual address space
*/
hole_start = hole_end = 0;
/*
* The kpm mapping window.
* kpm_size:
* The size of a single kpm range.
* The overall size will be: kpm_size * vac_colors.
* kpm_vbase:
* The virtual start address of the kpm range within the kernel
* virtual address space. kpm_vbase has to be kpm_size aligned.
*/
kpm_size = (size_t)(128ull * 1024 * 1024 * 1024 * 1024); /* 128TB */
kpm_size_shift = 47;
kpm_vbase = (caddr_t)0x8000000000000000ull; /* 8EB */
kpm_smallpages = 1;
/*
* The traptrace code uses either %tick or %stick for
* timestamping. We have %stick so we can use it.
*/
traptrace_use_stick = 1;
/*
* SPARC64-VI has a performance counter overflow interrupt
*/
cpc_has_overflow_intr = 1;
/*
* Use SPARC64-VI flush-all support
*/
if (!disable_delay_tlb_flush)
delay_tlb_flush = 1;
/*
* Declare that this architecture/cpu combination does not support
* fpRAS.
*/
fpras_implemented = 0;
/*
* Enable 4M pages to be used for mapping user text by default. Don't
* use large pages for initialized data segments since we may not know
* at exec() time what should be the preferred large page size for DTLB
* programming.
*/
use_text_pgsz4m = 1;
disable_text_largepages = (1 << TTE64K) | (1 << TTE512K) |
(1 << TTE32M) | (1 << TTE256M);
}
/*
* Called by setcpudelay
*/
void
cpu_init_tick_freq(void)
{
/*
* For SPARC64-VI we want to use the system clock rate as
* the basis for low level timing, due to support of mixed
* speed CPUs and power managment.
*/
if (system_clock_freq == 0)
cmn_err(CE_PANIC, "setcpudelay: invalid system_clock_freq");
sys_tick_freq = system_clock_freq;
}
#ifdef SEND_MONDO_STATS
uint32_t x_one_stimes[64];
uint32_t x_one_ltimes[16];
uint32_t x_set_stimes[64];
uint32_t x_set_ltimes[16];
uint32_t x_set_cpus[NCPU];
uint32_t x_nack_stimes[64];
#endif
/*
* Note: A version of this function is used by the debugger via the KDI,
* and must be kept in sync with this version. Any changes made to this
* function to support new chips or to accomodate errata must also be included
* in the KDI-specific version. See us3_kdi.c.
*/
void
send_one_mondo(int cpuid)
{
int busy, nack;
uint64_t idsr, starttick, endtick, tick, lasttick;
uint64_t busymask;
CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
starttick = lasttick = gettick();
shipit(cpuid, 0);
endtick = starttick + xc_tick_limit;
busy = nack = 0;
busymask = IDSR_BUSY;
for (;;) {
idsr = getidsr();
if (idsr == 0)
break;
tick = gettick();
/*
* If there is a big jump between the current tick
* count and lasttick, we have probably hit a break
* point. Adjust endtick accordingly to avoid panic.
*/
if (tick > (lasttick + xc_tick_jump_limit))
endtick += (tick - lasttick);
lasttick = tick;
if (tick > endtick) {
if (panic_quiesce)
return;
cmn_err(CE_PANIC, "send mondo timeout "
"(target 0x%x) [%d NACK %d BUSY]",
cpuid, nack, busy);
}
if (idsr & busymask) {
busy++;
continue;
}
drv_usecwait(1);
shipit(cpuid, 0);
nack++;
busy = 0;
}
#ifdef SEND_MONDO_STATS
{
int n = gettick() - starttick;
if (n < 8192)
x_one_stimes[n >> 7]++;
else
x_one_ltimes[(n >> 13) & 0xf]++;
}
#endif
}
/*
* init_mmu_page_sizes is set to one after the bootup time initialization
* via mmu_init_mmu_page_sizes, to indicate that mmu_page_sizes has a
* valid value.
*
* mmu_disable_ism_large_pages and mmu_disable_large_pages are the mmu-specific
* versions of disable_ism_large_pages and disable_large_pages, and feed back
* into those two hat variables at hat initialization time.
*
*/
int init_mmu_page_sizes = 0;
static int mmu_disable_ism_large_pages = ((1 << TTE64K) |
(1 << TTE512K) | (1 << TTE256M));
static int mmu_disable_large_pages = 0;
/*
* Re-initialize mmu_page_sizes and friends, for SPARC64-VI mmu support.
* Called during very early bootup from check_cpus_set().
* Can be called to verify that mmu_page_sizes are set up correctly.
*
* Set Olympus defaults. We do not use the function parameter.
*/
/*ARGSUSED*/
int
mmu_init_mmu_page_sizes(int32_t not_used)
{
if (!init_mmu_page_sizes) {
mmu_page_sizes = MMU_PAGE_SIZES;
mmu_hashcnt = MAX_HASHCNT;
mmu_ism_pagesize = MMU_PAGESIZE32M;
mmu_exported_pagesize_mask = (1 << TTE8K) |
(1 << TTE64K) | (1 << TTE512K) | (1 << TTE4M) |
(1 << TTE32M) | (1 << TTE256M);
init_mmu_page_sizes = 1;
return (0);
}
return (1);
}
/* SPARC64-VI worst case DTLB parameters */
#ifndef LOCKED_DTLB_ENTRIES
#define LOCKED_DTLB_ENTRIES 5 /* 2 user TSBs, 2 nucleus, + OBP */
#endif
#define TOTAL_DTLB_ENTRIES 32
#define AVAIL_32M_ENTRIES 0
#define AVAIL_256M_ENTRIES 0
#define AVAIL_DTLB_ENTRIES (TOTAL_DTLB_ENTRIES - LOCKED_DTLB_ENTRIES)
static uint64_t ttecnt_threshold[MMU_PAGE_SIZES] = {
AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES,
AVAIL_DTLB_ENTRIES, AVAIL_DTLB_ENTRIES};
size_t
mmu_map_pgsz(size_t pgsize)
{
struct proc *p = curproc;
struct as *as = p->p_as;
struct hat *hat = as->a_hat;
uint_t pgsz0, pgsz1;
size_t size0, size1;
ASSERT(mmu_page_sizes == max_mmu_page_sizes);
pgsz0 = hat->sfmmu_pgsz[0];
pgsz1 = hat->sfmmu_pgsz[1];
size0 = hw_page_array[pgsz0].hp_size;
size1 = hw_page_array[pgsz1].hp_size;
/* Allow use of a larger pagesize if neither TLB is reprogrammed. */
if ((pgsz0 == TTE8K) && (pgsz1 == TTE8K)) {
return (pgsize);
/* Allow use of requested pagesize if TLB is reprogrammed to it. */
} else if ((pgsize == size0) || (pgsize == size1)) {
return (pgsize);
/* Use larger reprogrammed TLB size if pgsize is atleast that big. */
} else if (pgsz1 > pgsz0) {
if (pgsize >= size1)
return (size1);
/* Use smaller reprogrammed TLB size if pgsize is atleast that big. */
} else {
if (pgsize >= size0)
return (size0);
}
return (pgsize);
}
/*
* The function returns the mmu-specific values for the
* hat's disable_large_pages and disable_ism_large_pages variables.
*/
int
mmu_large_pages_disabled(uint_t flag)
{
int pages_disable = 0;
if (flag == HAT_LOAD) {
pages_disable = mmu_disable_large_pages;
} else if (flag == HAT_LOAD_SHARE) {
pages_disable = mmu_disable_ism_large_pages;
}
return (pages_disable);
}
/*
* mmu_init_large_pages is called with the desired ism_pagesize parameter.
* It may be called from set_platform_defaults, if some value other than 32M
* is desired. mmu_ism_pagesize is the tunable. If it has a bad value,
* then only warn, since it would be bad form to panic due to a user typo.
*
* The function re-initializes the mmu_disable_ism_large_pages variable.
*/
void
mmu_init_large_pages(size_t ism_pagesize)
{
switch (ism_pagesize) {
case MMU_PAGESIZE4M:
mmu_disable_ism_large_pages = ((1 << TTE64K) |
(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M));
break;
case MMU_PAGESIZE32M:
mmu_disable_ism_large_pages = ((1 << TTE64K) |
(1 << TTE512K) | (1 << TTE256M));
break;
case MMU_PAGESIZE256M:
mmu_disable_ism_large_pages = ((1 << TTE64K) |
(1 << TTE512K) | (1 << TTE32M));
break;
default:
cmn_err(CE_WARN, "Unrecognized mmu_ism_pagesize value 0x%lx",
ism_pagesize);
break;
}
}
/*ARGSUSED*/
uint_t
mmu_preferred_pgsz(struct hat *hat, caddr_t addr, size_t len)
{
sfmmu_t *sfmmup = (sfmmu_t *)hat;
uint_t pgsz0, pgsz1;
uint_t szc, maxszc = mmu_page_sizes - 1;
size_t pgsz;
extern int disable_large_pages;
pgsz0 = (uint_t)sfmmup->sfmmu_pgsz[0];
pgsz1 = (uint_t)sfmmup->sfmmu_pgsz[1];
/*
* If either of the TLBs are reprogrammed, choose
* the largest mapping size as the preferred size,
* if it fits the size and alignment constraints.
* Else return the largest mapping size that fits,
* if neither TLB is reprogrammed.
*/
if (pgsz0 > TTE8K || pgsz1 > TTE8K) {
if (pgsz1 > pgsz0) { /* First try pgsz1 */
pgsz = hw_page_array[pgsz1].hp_size;
if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
return (pgsz1);
}
if (pgsz0 > TTE8K) { /* Then try pgsz0, if !TTE8K */
pgsz = hw_page_array[pgsz0].hp_size;
if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
return (pgsz0);
}
} else { /* Otherwise pick best fit if neither TLB is reprogrammed. */
for (szc = maxszc; szc > TTE8K; szc--) {
if (disable_large_pages & (1 << szc))
continue;
pgsz = hw_page_array[szc].hp_size;
if ((len >= pgsz) && IS_P2ALIGNED(addr, pgsz))
return (szc);
}
}
return (TTE8K);
}
/*
* Function to reprogram the TLBs when page sizes used
* by a process change significantly.
*/
void
mmu_setup_page_sizes(struct hat *hat, uint64_t *ttecnt)
{
extern int page_szc(size_t);
uint8_t pgsz0, pgsz1;
/*
* Don't program 2nd dtlb for kernel and ism hat
*/
if (hat->sfmmu_ismhat || hat == ksfmmup)
return;
/*
* hat->sfmmu_pgsz[] is an array whose elements
* contain a sorted order of page sizes. Element
* 0 is the most commonly used page size, followed
* by element 1, and so on.
*
* ttecnt[] is an array of per-page-size page counts
* mapped into the process.
*
* If the HAT's choice for page sizes is unsuitable,
* we can override it here. The new values written
* to the array will be handed back to us later to
* do the actual programming of the TLB hardware.
*
*/
pgsz0 = (uint8_t)MIN(hat->sfmmu_pgsz[0], hat->sfmmu_pgsz[1]);
pgsz1 = (uint8_t)MAX(hat->sfmmu_pgsz[0], hat->sfmmu_pgsz[1]);
/*
* This implements PAGESIZE programming of the sTLB
* if large TTE counts don't exceed the thresholds.
*/
if (ttecnt[pgsz0] < ttecnt_threshold[pgsz0])
pgsz0 = page_szc(MMU_PAGESIZE);
if (ttecnt[pgsz1] < ttecnt_threshold[pgsz1])
pgsz1 = page_szc(MMU_PAGESIZE);
hat->sfmmu_pgsz[0] = pgsz0;
hat->sfmmu_pgsz[1] = pgsz1;
/* otherwise, accept what the HAT chose for us */
}
/*
* The HAT calls this function when an MMU context is allocated so that we
* can reprogram the large TLBs appropriately for the new process using
* the context.
*
* The caller must hold the HAT lock.
*/
void
mmu_set_ctx_page_sizes(struct hat *hat)
{
uint8_t pgsz0, pgsz1;
uint8_t new_cext;
ASSERT(sfmmu_hat_lock_held(hat));
/*
* Don't program 2nd dtlb for kernel and ism hat
*/
if (hat->sfmmu_ismhat || hat == ksfmmup)
return;
/*
* If supported, reprogram the TLBs to a larger pagesize.
*/
pgsz0 = hat->sfmmu_pgsz[0];
pgsz1 = hat->sfmmu_pgsz[1];
ASSERT(pgsz0 < mmu_page_sizes);
ASSERT(pgsz1 < mmu_page_sizes);
new_cext = TAGACCEXT_MKSZPAIR(pgsz1, pgsz0);
if (hat->sfmmu_cext != new_cext) {
hat->sfmmu_cext = new_cext;
}
ctx_pgsz_array[hat->sfmmu_cnum] = hat->sfmmu_cext;
/*
* sfmmu_setctx_sec() will take care of the
* rest of the dirty work for us.
*/
}
/*
* Return processor specific async error structure
* size used.
*/
int
cpu_aflt_size(void)
{
return (sizeof (opl_async_flt_t));
}
/*
* The cpu_sync_log_err() function is called via the [uc]e_drain() function to
* post-process CPU events that are dequeued. As such, it can be invoked
* from softint context, from AST processing in the trap() flow, or from the
* panic flow. We decode the CPU-specific data, and take appropriate actions.
* Historically this entry point was used to log the actual cmn_err(9F) text;
* now with FMA it is used to prepare 'flt' to be converted into an ereport.
* With FMA this function now also returns a flag which indicates to the
* caller whether the ereport should be posted (1) or suppressed (0).
*/
/*ARGSUSED*/
static int
cpu_sync_log_err(void *flt)
{
opl_async_flt_t *opl_flt = (opl_async_flt_t *)flt;
struct async_flt *aflt = (struct async_flt *)flt;
/*
* No extra processing of urgent error events.
* Always generate ereports for these events.
*/
if (aflt->flt_status == OPL_ECC_URGENT_TRAP)
return (1);
/*
* Additional processing for synchronous errors.
*/
switch (opl_flt->flt_type) {
case OPL_CPU_INV_SFSR:
return (1);
case OPL_CPU_SYNC_UE:
/*
* The validity: SFSR_MK_UE bit has been checked
* in opl_cpu_sync_error()
* No more check is required.
*
* opl_flt->flt_eid_mod and flt_eid_sid have been set by H/W,
* and they have been retrieved in cpu_queue_events()
*/
if (opl_flt->flt_eid_mod == OPL_ERRID_MEM) {
ASSERT(aflt->flt_in_memory);
/*
* We want to skip logging only if ALL the following
* conditions are true:
*
* 1. We are not panicing already.
* 2. The error is a memory error.
* 3. There is only one error.
* 4. The error is on a retired page.
* 5. The error occurred under on_trap
* protection AFLT_PROT_EC
*/
if (!panicstr && aflt->flt_prot == AFLT_PROT_EC &&
page_retire_check(aflt->flt_addr, NULL) == 0) {
/*
* Do not log an error from
* the retired page
*/
softcall(ecc_page_zero, (void *)aflt->flt_addr);
return (0);
}
if (!panicstr)
cpu_page_retire(opl_flt);
}
return (1);
case OPL_CPU_SYNC_OTHERS:
/*
* For the following error cases, the processor HW does
* not set the flt_eid_mod/flt_eid_sid. Instead, SW will attempt
* to assign appropriate values here to reflect what we
* think is the most likely cause of the problem w.r.t to
* the particular error event. For Buserr and timeout
* error event, we will assign OPL_ERRID_CHANNEL as the
* most likely reason. For TLB parity or multiple hit
* error events, we will assign the reason as
* OPL_ERRID_CPU (cpu related problem) and set the
* flt_eid_sid to point to the cpuid.
*/
if (opl_flt->flt_bit & (SFSR_BERR|SFSR_TO)) {
/*
* flt_eid_sid will not be used for this case.
*/
opl_flt->flt_eid_mod = OPL_ERRID_CHANNEL;
}
if (opl_flt->flt_bit & (SFSR_TLB_MUL|SFSR_TLB_PRT)) {
opl_flt->flt_eid_mod = OPL_ERRID_CPU;
opl_flt->flt_eid_sid = aflt->flt_inst;
}
/*
* In case of no effective error bit
*/
if ((opl_flt->flt_bit & SFSR_ERRS) == 0) {
opl_flt->flt_eid_mod = OPL_ERRID_CPU;
opl_flt->flt_eid_sid = aflt->flt_inst;
}
break;
default:
return (1);
}
return (1);
}
/*
* Retire the bad page that may contain the flushed error.
*/
void
cpu_page_retire(opl_async_flt_t *opl_flt)
{
struct async_flt *aflt = (struct async_flt *)opl_flt;
(void) page_retire(aflt->flt_addr, PR_UE);
}
/*
* Invoked by error_init() early in startup and therefore before
* startup_errorq() is called to drain any error Q -
*
* startup()
* startup_end()
* error_init()
* cpu_error_init()
* errorq_init()
* errorq_drain()
* start_other_cpus()
*
* The purpose of this routine is to create error-related taskqs. Taskqs
* are used for this purpose because cpu_lock can't be grabbed from interrupt
* context.
*
*/
/*ARGSUSED*/
void
cpu_error_init(int items)
{
opl_err_log = (opl_errlog_t *)
kmem_alloc(ERRLOG_ALLOC_SZ, KM_SLEEP);
if ((uint64_t)opl_err_log & MMU_PAGEOFFSET)
cmn_err(CE_PANIC, "The base address of the error log "
"is not page aligned");
}
/*
* We route all errors through a single switch statement.
*/
void
cpu_ue_log_err(struct async_flt *aflt)
{
switch (aflt->flt_class) {
case CPU_FAULT:
if (cpu_sync_log_err(aflt))
cpu_ereport_post(aflt);
break;
case BUS_FAULT:
bus_async_log_err(aflt);
break;
default:
cmn_err(CE_WARN, "discarding async error %p with invalid "
"fault class (0x%x)", (void *)aflt, aflt->flt_class);
return;
}
}
/*
* Routine for panic hook callback from panic_idle().
*
* Nothing to do here.
*/
void
cpu_async_panic_callb(void)
{
}
/*
* Routine to return a string identifying the physical name
* associated with a memory/cache error.
*/
/*ARGSUSED*/
int
cpu_get_mem_unum(int synd_status, ushort_t flt_synd, uint64_t flt_stat,
uint64_t flt_addr, int flt_bus_id, int flt_in_memory,
ushort_t flt_status, char *buf, int buflen, int *lenp)
{
int synd_code;
int ret;
/*
* An AFSR of -1 defaults to a memory syndrome.
*/
synd_code = (int)flt_synd;
if (&plat_get_mem_unum) {
if ((ret = plat_get_mem_unum(synd_code, flt_addr, flt_bus_id,
flt_in_memory, flt_status, buf, buflen, lenp)) != 0) {
buf[0] = '\0';
*lenp = 0;
}
return (ret);
}
buf[0] = '\0';
*lenp = 0;
return (ENOTSUP);
}
/*
* Wrapper for cpu_get_mem_unum() routine that takes an
* async_flt struct rather than explicit arguments.
*/
int
cpu_get_mem_unum_aflt(int synd_status, struct async_flt *aflt,
char *buf, int buflen, int *lenp)
{
/*
* We always pass -1 so that cpu_get_mem_unum will interpret this as a
* memory error.
*/
return (cpu_get_mem_unum(synd_status, aflt->flt_synd,
(uint64_t)-1,
aflt->flt_addr, aflt->flt_bus_id, aflt->flt_in_memory,
aflt->flt_status, buf, buflen, lenp));
}
/*
* This routine is a more generic interface to cpu_get_mem_unum()
* that may be used by other modules (e.g. mm).
*/
/*ARGSUSED*/
int
cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
char *buf, int buflen, int *lenp)
{
int synd_status, flt_in_memory, ret;
ushort_t flt_status = 0;
char unum[UNUM_NAMLEN];
/*
* Check for an invalid address.
*/
if (afar == (uint64_t)-1)
return (ENXIO);
if (synd == (uint64_t)-1)
synd_status = AFLT_STAT_INVALID;
else
synd_status = AFLT_STAT_VALID;
flt_in_memory = (*afsr & SFSR_MEMORY) &&
pf_is_memory(afar >> MMU_PAGESHIFT);
ret = cpu_get_mem_unum(synd_status, (ushort_t)synd, *afsr, afar,
CPU->cpu_id, flt_in_memory, flt_status, unum,
UNUM_NAMLEN, lenp);
if (ret != 0)
return (ret);
if (*lenp >= buflen)
return (ENAMETOOLONG);
(void) strncpy(buf, unum, buflen);
return (0);
}
/*
* Routine to return memory information associated
* with a physical address and syndrome.
*/
/*ARGSUSED*/
int
cpu_get_mem_info(uint64_t synd, uint64_t afar,
uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
int *segsp, int *banksp, int *mcidp)
{
int synd_code = (int)synd;
if (afar == (uint64_t)-1)
return (ENXIO);
if (p2get_mem_info != NULL)
return ((p2get_mem_info)(synd_code, afar,
mem_sizep, seg_sizep, bank_sizep,
segsp, banksp, mcidp));
else
return (ENOTSUP);
}
/*
* Routine to return a string identifying the physical
* name associated with a cpuid.
*/
int
cpu_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
{
int ret;
char unum[UNUM_NAMLEN];
if (&plat_get_cpu_unum) {
if ((ret = plat_get_cpu_unum(cpuid, unum, UNUM_NAMLEN, lenp))
!= 0)
return (ret);
} else {
return (ENOTSUP);
}
if (*lenp >= buflen)
return (ENAMETOOLONG);
(void) strncpy(buf, unum, *lenp);
return (0);
}
/*
* This routine exports the name buffer size.
*/
size_t
cpu_get_name_bufsize()
{
return (UNUM_NAMLEN);
}
/*
* Flush the entire ecache by ASI_L2_CNTL.U2_FLUSH
*/
void
cpu_flush_ecache(void)
{
flush_ecache(ecache_flushaddr, cpunodes[CPU->cpu_id].ecache_size,
cpunodes[CPU->cpu_id].ecache_linesize);
}
static uint8_t
flt_to_trap_type(struct async_flt *aflt)
{
if (aflt->flt_status & OPL_ECC_ISYNC_TRAP)
return (TRAP_TYPE_ECC_I);
if (aflt->flt_status & OPL_ECC_DSYNC_TRAP)
return (TRAP_TYPE_ECC_D);
if (aflt->flt_status & OPL_ECC_URGENT_TRAP)
return (TRAP_TYPE_URGENT);
return (-1);
}
/*
* Encode the data saved in the opl_async_flt_t struct into
* the FM ereport payload.
*/
/* ARGSUSED */
static void
cpu_payload_add_aflt(struct async_flt *aflt, nvlist_t *payload,
nvlist_t *resource)
{
opl_async_flt_t *opl_flt = (opl_async_flt_t *)aflt;
char unum[UNUM_NAMLEN];
char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
int len;
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFSR) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFSR,
DATA_TYPE_UINT64, aflt->flt_stat, NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_SFAR) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SFAR,
DATA_TYPE_UINT64, aflt->flt_addr, NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_UGESR) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_UGESR,
DATA_TYPE_UINT64, aflt->flt_stat, NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PC) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PC,
DATA_TYPE_UINT64, (uint64_t)aflt->flt_pc, NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TL) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TL,
DATA_TYPE_UINT8, (uint8_t)aflt->flt_tl, NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_TT) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_TT,
DATA_TYPE_UINT8, flt_to_trap_type(aflt), NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_PRIV) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV,
DATA_TYPE_BOOLEAN_VALUE,
(aflt->flt_priv ? B_TRUE : B_FALSE), NULL);
}
if (aflt->flt_payload & FM_EREPORT_PAYLOAD_FLAG_FLT_STATUS) {
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_FLT_STATUS,
DATA_TYPE_UINT64, (uint64_t)aflt->flt_status, NULL);
}
switch (opl_flt->flt_eid_mod) {
case OPL_ERRID_CPU:
(void) snprintf(sbuf, sizeof (sbuf), "%llX",
(u_longlong_t)cpunodes[opl_flt->flt_eid_sid].device_id);
(void) fm_fmri_cpu_set(resource, FM_CPU_SCHEME_VERSION,
NULL, opl_flt->flt_eid_sid,
(uint8_t *)&cpunodes[opl_flt->flt_eid_sid].version,
sbuf);
fm_payload_set(payload,
FM_EREPORT_PAYLOAD_NAME_RESOURCE,
DATA_TYPE_NVLIST, resource, NULL);
break;
case OPL_ERRID_CHANNEL:
/*
* No resource is created but the cpumem DE will find
* the defective path by retreiving EID from SFSR which is
* included in the payload.
*/
break;
case OPL_ERRID_MEM:
(void) cpu_get_mem_unum_aflt(0, aflt, unum, UNUM_NAMLEN, &len);
(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
NULL, unum, NULL, (uint64_t)-1);
fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
DATA_TYPE_NVLIST, resource, NULL);
break;
case OPL_ERRID_PATH:
/*
* No resource is created but the cpumem DE will find
* the defective path by retreiving EID from SFSR which is
* included in the payload.
*/
break;
}
}
/*
* Returns whether fault address is valid for this error bit and
* whether the address is "in memory" (i.e. pf_is_memory returns 1).
*/
/*ARGSUSED*/
static int
cpu_flt_in_memory(opl_async_flt_t *opl_flt, uint64_t t_afsr_bit)
{
struct async_flt *aflt = (struct async_flt *)opl_flt;
if (aflt->flt_status & (OPL_ECC_SYNC_TRAP)) {
return ((t_afsr_bit & SFSR_MEMORY) &&
pf_is_memory(aflt->flt_addr >> MMU_PAGESHIFT));
}
return (0);
}
/*
* In OPL SCF does the stick synchronization.
*/
void
sticksync_slave(void)
{
}
/*
* In OPL SCF does the stick synchronization.
*/
void
sticksync_master(void)
{
}
/*
* Cpu private unitialization. OPL cpus do not use the private area.
*/
void
cpu_uninit_private(struct cpu *cp)
{
cmp_delete_cpu(cp->cpu_id);
}
/*
* Always flush an entire cache.
*/
void
cpu_error_ecache_flush(void)
{
cpu_flush_ecache();
}
void
cpu_ereport_post(struct async_flt *aflt)
{
char *cpu_type, buf[FM_MAX_CLASS];
nv_alloc_t *nva = NULL;
nvlist_t *ereport, *detector, *resource;
errorq_elem_t *eqep;
char sbuf[21]; /* sizeof (UINT64_MAX) + '\0' */
if (aflt->flt_panic || panicstr) {
eqep = errorq_reserve(ereport_errorq);
if (eqep == NULL)
return;
ereport = errorq_elem_nvl(ereport_errorq, eqep);
nva = errorq_elem_nva(ereport_errorq, eqep);
} else {
ereport = fm_nvlist_create(nva);
}
/*
* Create the scheme "cpu" FMRI.
*/
detector = fm_nvlist_create(nva);
resource = fm_nvlist_create(nva);
switch (cpunodes[aflt->flt_inst].implementation) {
case OLYMPUS_C_IMPL:
cpu_type = FM_EREPORT_CPU_SPARC64_VI;
break;
default:
cpu_type = FM_EREPORT_CPU_UNSUPPORTED;
break;
}
(void) snprintf(sbuf, sizeof (sbuf), "%llX",
(u_longlong_t)cpunodes[aflt->flt_inst].device_id);
(void) fm_fmri_cpu_set(detector, FM_CPU_SCHEME_VERSION, NULL,
aflt->flt_inst, (uint8_t *)&cpunodes[aflt->flt_inst].version,
sbuf);
/*
* Encode all the common data into the ereport.
*/
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s",
FM_ERROR_CPU, cpu_type, aflt->flt_erpt_class);
fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
fm_ena_generate(aflt->flt_id, FM_ENA_FMT1), detector, NULL);
/*
* Encode the error specific data that was saved in
* the async_flt structure into the ereport.
*/
cpu_payload_add_aflt(aflt, ereport, resource);
if (aflt->flt_panic || panicstr) {
errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
} else {
(void) fm_ereport_post(ereport, EVCH_TRYHARD);
fm_nvlist_destroy(ereport, FM_NVA_FREE);
fm_nvlist_destroy(detector, FM_NVA_FREE);
fm_nvlist_destroy(resource, FM_NVA_FREE);
}
}
void
cpu_run_bus_error_handlers(struct async_flt *aflt, int expected)
{
int status;
ddi_fm_error_t de;
bzero(&de, sizeof (ddi_fm_error_t));
de.fme_version = DDI_FME_VERSION;
de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1);
de.fme_flag = expected;
de.fme_bus_specific = (void *)aflt->flt_addr;
status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de);
if ((aflt->flt_prot == AFLT_PROT_NONE) && (status == DDI_FM_FATAL))
aflt->flt_panic = 1;
}
void
cpu_errorq_dispatch(char *error_class, void *payload, size_t payload_sz,
errorq_t *eqp, uint_t flag)
{
struct async_flt *aflt = (struct async_flt *)payload;
aflt->flt_erpt_class = error_class;
errorq_dispatch(eqp, payload, payload_sz, flag);
}
void
adjust_hw_copy_limits(int ecache_size)
{
/*
* Set hw copy limits.
*
* /etc/system will be parsed later and can override one or more
* of these settings.
*
* At this time, ecache size seems only mildly relevant.
* We seem to run into issues with the d-cache and stalls
* we see on misses.
*
* Cycle measurement indicates that 2 byte aligned copies fare
* little better than doing things with VIS at around 512 bytes.
* 4 byte aligned shows promise until around 1024 bytes. 8 Byte
* aligned is faster whenever the source and destination data
* in cache and the total size is less than 2 Kbytes. The 2K
* limit seems to be driven by the 2K write cache.
* When more than 2K of copies are done in non-VIS mode, stores
* backup in the write cache. In VIS mode, the write cache is
* bypassed, allowing faster cache-line writes aligned on cache
* boundaries.
*
* In addition, in non-VIS mode, there is no prefetching, so
* for larger copies, the advantage of prefetching to avoid even
* occasional cache misses is enough to justify using the VIS code.
*
* During testing, it was discovered that netbench ran 3% slower
* when hw_copy_limit_8 was 2K or larger. Apparently for server
* applications, data is only used once (copied to the output
* buffer, then copied by the network device off the system). Using
* the VIS copy saves more L2 cache state. Network copies are
* around 1.3K to 1.5K in size for historical reasons.
*
* Therefore, a limit of 1K bytes will be used for the 8 byte
* aligned copy even for large caches and 8 MB ecache. The
* infrastructure to allow different limits for different sized
* caches is kept to allow further tuning in later releases.
*/
if (min_ecache_size == 0 && use_hw_bcopy) {
/*
* First time through - should be before /etc/system
* is read.
* Could skip the checks for zero but this lets us
* preserve any debugger rewrites.
*/
if (hw_copy_limit_1 == 0) {
hw_copy_limit_1 = VIS_COPY_THRESHOLD;
priv_hcl_1 = hw_copy_limit_1;
}
if (hw_copy_limit_2 == 0) {
hw_copy_limit_2 = 2 * VIS_COPY_THRESHOLD;
priv_hcl_2 = hw_copy_limit_2;
}
if (hw_copy_limit_4 == 0) {
hw_copy_limit_4 = 4 * VIS_COPY_THRESHOLD;
priv_hcl_4 = hw_copy_limit_4;
}
if (hw_copy_limit_8 == 0) {
hw_copy_limit_8 = 4 * VIS_COPY_THRESHOLD;
priv_hcl_8 = hw_copy_limit_8;
}
min_ecache_size = ecache_size;
} else {
/*
* MP initialization. Called *after* /etc/system has
* been parsed. One CPU has already been initialized.
* Need to cater for /etc/system having scragged one
* of our values.
*/
if (ecache_size == min_ecache_size) {
/*
* Same size ecache. We do nothing unless we
* have a pessimistic ecache setting. In that
* case we become more optimistic (if the cache is
* large enough).
*/
if (hw_copy_limit_8 == 4 * VIS_COPY_THRESHOLD) {
/*
* Need to adjust hw_copy_limit* from our
* pessimistic uniprocessor value to a more
* optimistic UP value *iff* it hasn't been
* reset.
*/
if ((ecache_size > 1048576) &&
(priv_hcl_8 == hw_copy_limit_8)) {
if (ecache_size <= 2097152)
hw_copy_limit_8 = 4 *
VIS_COPY_THRESHOLD;
else if (ecache_size <= 4194304)
hw_copy_limit_8 = 4 *
VIS_COPY_THRESHOLD;
else
hw_copy_limit_8 = 4 *
VIS_COPY_THRESHOLD;
priv_hcl_8 = hw_copy_limit_8;
}
}
} else if (ecache_size < min_ecache_size) {
/*
* A different ecache size. Can this even happen?
*/
if (priv_hcl_8 == hw_copy_limit_8) {
/*
* The previous value that we set
* is unchanged (i.e., it hasn't been
* scragged by /etc/system). Rewrite it.
*/
if (ecache_size <= 1048576)
hw_copy_limit_8 = 8 *
VIS_COPY_THRESHOLD;
else if (ecache_size <= 2097152)
hw_copy_limit_8 = 8 *
VIS_COPY_THRESHOLD;
else if (ecache_size <= 4194304)
hw_copy_limit_8 = 8 *
VIS_COPY_THRESHOLD;
else
hw_copy_limit_8 = 10 *
VIS_COPY_THRESHOLD;
priv_hcl_8 = hw_copy_limit_8;
min_ecache_size = ecache_size;
}
}
}
}
#define VIS_BLOCKSIZE 64
int
dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
{
int ret, watched;
watched = watch_disable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
ret = dtrace_blksuword32(addr, data, 0);
if (watched)
watch_enable_addr((void *)addr, VIS_BLOCKSIZE, S_WRITE);
return (ret);
}
void
opl_cpu_reg_init()
{
uint64_t this_cpu_log;
/*
* We do not need to re-initialize cpu0 registers.
*/
if (cpu[getprocessorid()] == &cpu0)
return;
/*
* Initialize Error log Scratch register for error handling.
*/
this_cpu_log = va_to_pa((void*)(((uint64_t)opl_err_log) +
ERRLOG_BUFSZ * (getprocessorid())));
opl_error_setup(this_cpu_log);
/*
* Enable MMU translating multiple page sizes for
* sITLB and sDTLB.
*/
opl_mpg_enable();
}
/*
* Queue one event in ue_queue based on ecc_type_to_info entry.
*/
static void
cpu_queue_one_event(opl_async_flt_t *opl_flt, char *reason,
ecc_type_to_info_t *eccp)
{
struct async_flt *aflt = (struct async_flt *)opl_flt;
if (reason &&
strlen(reason) + strlen(eccp->ec_reason) < MAX_REASON_STRING) {
(void) strcat(reason, eccp->ec_reason);
}
opl_flt->flt_bit = eccp->ec_afsr_bit;
opl_flt->flt_type = eccp->ec_flt_type;
aflt->flt_in_memory = cpu_flt_in_memory(opl_flt, opl_flt->flt_bit);
aflt->flt_payload = eccp->ec_err_payload;
ASSERT(aflt->flt_status & (OPL_ECC_SYNC_TRAP|OPL_ECC_URGENT_TRAP));
cpu_errorq_dispatch(eccp->ec_err_class,
(void *)opl_flt, sizeof (opl_async_flt_t),
ue_queue,
aflt->flt_panic);
}
/*
* Queue events on async event queue one event per error bit.
* Return number of events queued.
*/
int
cpu_queue_events(opl_async_flt_t *opl_flt, char *reason, uint64_t t_afsr_errs)
{
struct async_flt *aflt = (struct async_flt *)opl_flt;
ecc_type_to_info_t *eccp;
int nevents = 0;
/*
* Queue expected errors, error bit and fault type must must match
* in the ecc_type_to_info table.
*/
for (eccp = ecc_type_to_info; t_afsr_errs != 0 && eccp->ec_desc != NULL;
eccp++) {
if ((eccp->ec_afsr_bit & t_afsr_errs) != 0 &&
(eccp->ec_flags & aflt->flt_status) != 0) {
/*
* UE error event can be further
* classified/breakdown into finer granularity
* based on the flt_eid_mod value set by HW. We do
* special handling here so that we can report UE
* error in finer granularity as ue_mem,
* ue_channel, ue_cpu or ue_path.
*/
if (eccp->ec_flt_type == OPL_CPU_SYNC_UE) {
opl_flt->flt_eid_mod =
(aflt->flt_stat & SFSR_EID_MOD)
>> SFSR_EID_MOD_SHIFT;
opl_flt->flt_eid_sid =
(aflt->flt_stat & SFSR_EID_SID)
>> SFSR_EID_SID_SHIFT;
/*
* Need to advance eccp pointer by flt_eid_mod
* so that we get an appropriate ecc pointer
*
* EID # of advances
* ----------------------------------
* OPL_ERRID_MEM 0
* OPL_ERRID_CHANNEL 1
* OPL_ERRID_CPU 2
* OPL_ERRID_PATH 3
*/
eccp += opl_flt->flt_eid_mod;
}
cpu_queue_one_event(opl_flt, reason, eccp);
t_afsr_errs &= ~eccp->ec_afsr_bit;
nevents++;
}
}
return (nevents);
}
/*
* Sync. error wrapper functions.
* We use these functions in order to transfer here from the
* nucleus trap handler information about trap type (data or
* instruction) and trap level (0 or above 0). This way we
* get rid of using SFSR's reserved bits.
*/
#define OPL_SYNC_TL0 0
#define OPL_SYNC_TL1 1
#define OPL_ISYNC_ERR 0
#define OPL_DSYNC_ERR 1
void
opl_cpu_isync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
{
uint64_t t_sfar = p_sfar;
uint64_t t_sfsr = p_sfsr;
opl_cpu_sync_error(rp, t_sfar, t_sfsr,
OPL_SYNC_TL0, OPL_ISYNC_ERR);
}
void
opl_cpu_isync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
{
uint64_t t_sfar = p_sfar;
uint64_t t_sfsr = p_sfsr;
opl_cpu_sync_error(rp, t_sfar, t_sfsr,
OPL_SYNC_TL1, OPL_ISYNC_ERR);
}
void
opl_cpu_dsync_tl0_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
{
uint64_t t_sfar = p_sfar;
uint64_t t_sfsr = p_sfsr;
opl_cpu_sync_error(rp, t_sfar, t_sfsr,
OPL_SYNC_TL0, OPL_DSYNC_ERR);
}
void
opl_cpu_dsync_tl1_error(struct regs *rp, ulong_t p_sfar, ulong_t p_sfsr)
{
uint64_t t_sfar = p_sfar;
uint64_t t_sfsr = p_sfsr;
opl_cpu_sync_error(rp, t_sfar, t_sfsr,
OPL_SYNC_TL1, OPL_DSYNC_ERR);
}
/*
* The fj sync err handler transfers control here for UE, BERR, TO, TLB_MUL
* and TLB_PRT.
* This function is designed based on cpu_deferred_error().
*/
static void
opl_cpu_sync_error(struct regs *rp, ulong_t t_sfar, ulong_t t_sfsr,
uint_t tl, uint_t derr)
{
opl_async_flt_t opl_flt;
struct async_flt *aflt;
int trampolined = 0;
char pr_reason[MAX_REASON_STRING];
uint64_t log_sfsr;
int expected = DDI_FM_ERR_UNEXPECTED;
ddi_acc_hdl_t *hp;
/*
* We need to look at p_flag to determine if the thread detected an
* error while dumping core. We can't grab p_lock here, but it's ok
* because we just need a consistent snapshot and we know that everyone
* else will store a consistent set of bits while holding p_lock. We
* don't have to worry about a race because SDOCORE is set once prior
* to doing i/o from the process's address space and is never cleared.
*/
uint_t pflag = ttoproc(curthread)->p_flag;
pr_reason[0] = '\0';
/*
* handle the specific error
*/
bzero(&opl_flt, sizeof (opl_async_flt_t));
aflt = (struct async_flt *)&opl_flt;
aflt->flt_id = gethrtime_waitfree();
aflt->flt_bus_id = getprocessorid();
aflt->flt_inst = CPU->cpu_id;
aflt->flt_stat = t_sfsr;
aflt->flt_addr = t_sfar;
aflt->flt_pc = (caddr_t)rp->r_pc;
aflt->flt_prot = (uchar_t)AFLT_PROT_NONE;
aflt->flt_class = (uchar_t)CPU_FAULT;
aflt->flt_priv = (uchar_t)
(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ? 1 : 0));
aflt->flt_tl = (uchar_t)tl;
aflt->flt_panic = (uchar_t)(tl != 0 || aft_testfatal != 0 ||
(t_sfsr & (SFSR_TLB_MUL|SFSR_TLB_PRT)) != 0);
aflt->flt_core = (pflag & SDOCORE) ? 1 : 0;
aflt->flt_status = (derr) ? OPL_ECC_DSYNC_TRAP : OPL_ECC_ISYNC_TRAP;
/*
* If SFSR.FV is not set, both SFSR and SFAR/SFPAR values are uncertain.
* So, clear all error bits to avoid mis-handling and force the system
* panicked.
* We skip all the procedures below down to the panic message call.
*/
if (!(t_sfsr & SFSR_FV)) {
opl_flt.flt_type = OPL_CPU_INV_SFSR;
aflt->flt_panic = 1;
aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR,
(void *)&opl_flt, sizeof (opl_async_flt_t), ue_queue,
aflt->flt_panic);
fm_panic("%sErrors(s)", "invalid SFSR");
}
/*
* If either UE and MK bit is off, this is not valid UE error.
* If it is not valid UE error, clear UE & MK_UE bits to prevent
* mis-handling below.
* aflt->flt_stat keeps the original bits as a reference.
*/
if ((t_sfsr & (SFSR_MK_UE|SFSR_UE)) !=
(SFSR_MK_UE|SFSR_UE)) {
t_sfsr &= ~(SFSR_MK_UE|SFSR_UE);
}
/*
* If the trap occurred in privileged mode at TL=0, we need to check to
* see if we were executing in the kernel under on_trap() or t_lofault
* protection. If so, modify the saved registers so that we return
* from the trap to the appropriate trampoline routine.
*/
if (!aflt->flt_panic && aflt->flt_priv && tl == 0) {
if (curthread->t_ontrap != NULL) {
on_trap_data_t *otp = curthread->t_ontrap;
if (otp->ot_prot & OT_DATA_EC) {
aflt->flt_prot = (uchar_t)AFLT_PROT_EC;
otp->ot_trap |= (ushort_t)OT_DATA_EC;
rp->r_pc = otp->ot_trampoline;
rp->r_npc = rp->r_pc + 4;
trampolined = 1;
}
if ((t_sfsr & (SFSR_TO | SFSR_BERR)) &&
(otp->ot_prot & OT_DATA_ACCESS)) {
aflt->flt_prot = (uchar_t)AFLT_PROT_ACCESS;
otp->ot_trap |= (ushort_t)OT_DATA_ACCESS;
rp->r_pc = otp->ot_trampoline;
rp->r_npc = rp->r_pc + 4;
trampolined = 1;
/*
* for peeks and caut_gets errors are expected
*/
hp = (ddi_acc_hdl_t *)otp->ot_handle;
if (!hp)
expected = DDI_FM_ERR_PEEK;
else if (hp->ah_acc.devacc_attr_access ==
DDI_CAUTIOUS_ACC)
expected = DDI_FM_ERR_EXPECTED;
}
} else if (curthread->t_lofault) {
aflt->flt_prot = AFLT_PROT_COPY;
rp->r_g1 = EFAULT;
rp->r_pc = curthread->t_lofault;
rp->r_npc = rp->r_pc + 4;
trampolined = 1;
}
}
/*
* If we're in user mode or we're doing a protected copy, we either
* want the ASTON code below to send a signal to the user process
* or we want to panic if aft_panic is set.
*
* If we're in privileged mode and we're not doing a copy, then we
* need to check if we've trampolined. If we haven't trampolined,
* we should panic.
*/
if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
if (t_sfsr & (SFSR_ERRS & ~(SFSR_BERR | SFSR_TO)))
aflt->flt_panic |= aft_panic;
} else if (!trampolined) {
aflt->flt_panic = 1;
}
/*
* If we've trampolined due to a privileged TO or BERR, or if an
* unprivileged TO or BERR occurred, we don't want to enqueue an
* event for that TO or BERR. Queue all other events (if any) besides
* the TO/BERR.
*/
log_sfsr = t_sfsr;
if (trampolined) {
log_sfsr &= ~(SFSR_TO | SFSR_BERR);
} else if (!aflt->flt_priv) {
/*
* User mode, suppress messages if
* cpu_berr_to_verbose is not set.
*/
if (!cpu_berr_to_verbose)
log_sfsr &= ~(SFSR_TO | SFSR_BERR);
}
if (((log_sfsr & SFSR_ERRS) &&
(cpu_queue_events(&opl_flt, pr_reason, t_sfsr) == 0)) ||
((t_sfsr & SFSR_ERRS) == 0)) {
opl_flt.flt_type = OPL_CPU_INV_SFSR;
aflt->flt_payload = FM_EREPORT_PAYLOAD_SYNC;
cpu_errorq_dispatch(FM_EREPORT_CPU_INV_SFSR,
(void *)&opl_flt, sizeof (opl_async_flt_t), ue_queue,
aflt->flt_panic);
}
if (t_sfsr & (SFSR_UE|SFSR_TO|SFSR_BERR)) {
cpu_run_bus_error_handlers(aflt, expected);
}
/*
* Panic here if aflt->flt_panic has been set. Enqueued errors will
* be logged as part of the panic flow.
*/
if (aflt->flt_panic) {
if (pr_reason[0] == 0)
strcpy(pr_reason, "invalid SFSR ");
fm_panic("%sErrors(s)", pr_reason);
}
/*
* If we queued an error and we are going to return from the trap and
* the error was in user mode or inside of a copy routine, set AST flag
* so the queue will be drained before returning to user mode. The
* AST processing will also act on our failure policy.
*/
if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) {
int pcb_flag = 0;
if (t_sfsr & (SFSR_ERRS &
~(SFSR_BERR | SFSR_TO)))
pcb_flag |= ASYNC_HWERR;
if (t_sfsr & SFSR_BERR)
pcb_flag |= ASYNC_BERR;
if (t_sfsr & SFSR_TO)
pcb_flag |= ASYNC_BTO;
ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag;
aston(curthread);
}
}
/*ARGSUSED*/
void
opl_cpu_urgent_error(struct regs *rp, ulong_t p_ugesr, ulong_t tl)
{
opl_async_flt_t opl_flt;
struct async_flt *aflt;
char pr_reason[MAX_REASON_STRING];
/* normalize tl */
tl = (tl >= 2 ? 1 : 0);
pr_reason[0] = '\0';
bzero(&opl_flt, sizeof (opl_async_flt_t));
aflt = (struct async_flt *)&opl_flt;
aflt->flt_id = gethrtime_waitfree();
aflt->flt_bus_id = getprocessorid();
aflt->flt_inst = CPU->cpu_id;
aflt->flt_stat = p_ugesr;
aflt->flt_pc = (caddr_t)rp->r_pc;
aflt->flt_class = (uchar_t)CPU_FAULT;
aflt->flt_tl = tl;
aflt->flt_priv = (uchar_t)
(tl == 1 ? 1 : ((rp->r_tstate & TSTATE_PRIV) ? 1 : 0));
aflt->flt_status = OPL_ECC_URGENT_TRAP;
aflt->flt_panic = 1;
/*
* HW does not set mod/sid in case of urgent error.
* So we have to set it here.
*/
opl_flt.flt_eid_mod = OPL_ERRID_CPU;
opl_flt.flt_eid_sid = aflt->flt_inst;
if (cpu_queue_events(&opl_flt, pr_reason, p_ugesr) == 0) {
opl_flt.flt_type = OPL_CPU_INV_UGESR;
aflt->flt_payload = FM_EREPORT_PAYLOAD_URGENT;
cpu_errorq_dispatch(FM_EREPORT_CPU_INV_URG,
(void *)&opl_flt, sizeof (opl_async_flt_t),
ue_queue, aflt->flt_panic);
}
fm_panic("Urgent Error");
}
/*
* Initialization error counters resetting.
*/
/* ARGSUSED */
static void
opl_ras_online(void *arg, cpu_t *cp, cyc_handler_t *hdlr, cyc_time_t *when)
{
hdlr->cyh_func = (cyc_func_t)ras_cntr_reset;
hdlr->cyh_level = CY_LOW_LEVEL;
hdlr->cyh_arg = (void *)(uintptr_t)cp->cpu_id;
when->cyt_when = cp->cpu_id * (((hrtime_t)NANOSEC * 10)/ NCPU);
when->cyt_interval = (hrtime_t)NANOSEC * opl_async_check_interval;
}
void
cpu_mp_init(void)
{
cyc_omni_handler_t hdlr;
hdlr.cyo_online = opl_ras_online;
hdlr.cyo_offline = NULL;
hdlr.cyo_arg = NULL;
mutex_enter(&cpu_lock);
(void) cyclic_add_omni(&hdlr);
mutex_exit(&cpu_lock);
}
/*ARGSUSED*/
void
mmu_init_kernel_pgsz(struct hat *hat)
{
}
size_t
mmu_get_kernel_lpsize(size_t lpsize)
{
uint_t tte;
if (lpsize == 0) {
/* no setting for segkmem_lpsize in /etc/system: use default */
return (MMU_PAGESIZE4M);
}
for (tte = TTE8K; tte <= TTE4M; tte++) {
if (lpsize == TTEBYTES(tte))
return (lpsize);
}
return (TTEBYTES(TTE8K));
}
/*
* The following are functions that are unused in
* OPL cpu module. They are defined here to resolve
* dependencies in the "unix" module.
* Unused functions that should never be called in
* OPL are coded with ASSERT(0).
*/
void
cpu_disable_errors(void)
{}
void
cpu_enable_errors(void)
{ ASSERT(0); }
/*ARGSUSED*/
void
cpu_ce_scrub_mem_err(struct async_flt *ecc, boolean_t t)
{ ASSERT(0); }
/*ARGSUSED*/
void
cpu_faulted_enter(struct cpu *cp)
{}
/*ARGSUSED*/
void
cpu_faulted_exit(struct cpu *cp)
{}
/*ARGSUSED*/
void
cpu_check_allcpus(struct async_flt *aflt)
{}
/*ARGSUSED*/
void
cpu_ce_log_err(struct async_flt *aflt, errorq_elem_t *t)
{ ASSERT(0); }
/*ARGSUSED*/
void
cpu_check_ce(int flag, uint64_t pa, caddr_t va, uint_t psz)
{ ASSERT(0); }
/*ARGSUSED*/
void
cpu_ce_count_unum(struct async_flt *ecc, int len, char *unum)
{ ASSERT(0); }
/*ARGSUSED*/
void
cpu_busy_ecache_scrub(struct cpu *cp)
{}
/*ARGSUSED*/
void
cpu_idle_ecache_scrub(struct cpu *cp)
{}
/* ARGSUSED */
void
cpu_change_speed(uint64_t divisor, uint64_t arg2)
{ ASSERT(0); }
void
cpu_init_cache_scrub(void)
{}
/* ARGSUSED */
int
cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
{
return (ENOTSUP);
}
/* ARGSUSED */
int
cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
{
return (ENOTSUP);
}
/* ARGSUSED */
int
cpu_get_mem_offset(uint64_t flt_addr, uint64_t *offp)
{
return (ENOTSUP);
}
/*ARGSUSED*/
void
itlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
{ ASSERT(0); }
/*ARGSUSED*/
void
dtlb_rd_entry(uint_t entry, tte_t *tte, uint64_t *va_tag)
{ ASSERT(0); }