vm_dep.h revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* UNIX machine dependent virtual memory support.
*/
#ifndef _VM_DEP_H
#define _VM_DEP_H
#pragma ident "%Z%%M% %I% %E% SMI"
#ifdef __cplusplus
extern "C" {
#endif
#include <vm/hat_sfmmu.h>
#include <sys/archsystm.h>
#include <sys/memnode.h>
#define GETTICK() gettick()
/*
* Per page size free lists. Allocated dynamically.
*/
#define MAX_MEM_TYPES 2 /* 0 = reloc, 1 = noreloc */
#define MTYPE_RELOC 0
#define MTYPE_NORELOC 1
#define PP_2_MTYPE(pp) (PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC)
#define MTYPE_INIT(mtype, vp, vaddr, flags) \
mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;
/*
* macros to loop through the mtype range - noops for sparc
*/
#define MTYPE_START(mnode, mtype, flags)
#define MTYPE_NEXT(mnode, mtype, flags) (-1)
/* mtype init for page_get_replacement_page */
#define MTYPE_PGR_INIT(mtype, flags, pp, mnode) \
mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;
#define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \
ASSERT(mtype != MTYPE_NORELOC); \
pfnlo = mem_node_config[mnode].physbase; \
pfnhi = mem_node_config[mnode].physmax;
/*
* Internal PG_ flags.
*/
#define PGI_RELOCONLY 0x10000 /* acts in the opposite sense to PG_NORELOC */
#define PGI_NOCAGE 0x20000 /* indicates Cage is disabled */
#define PGI_PGCPHIPRI 0x40000 /* page_get_contig_page priority allocation */
#define PGI_PGCPSZC0 0x80000 /* relocate base pagesize page */
/*
* PGI mtype flags - should not overlap PGI flags
*/
#define PGI_MT_RANGE 0x1000000 /* mtype range */
#define PGI_MT_NEXT 0x2000000 /* get next mtype */
extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES];
extern page_t ***page_cachelists[MAX_MEM_TYPES];
#define PAGE_FREELISTS(mnode, szc, color, mtype) \
(*(page_freelists[szc][mtype][mnode] + (color)))
#define PAGE_CACHELISTS(mnode, color, mtype) \
(*(page_cachelists[mtype][mnode] + (color)))
/*
* There are 'page_colors' colors/bins. Spread them out under a
* couple of locks. There are mutexes for both the page freelist
* and the page cachelist. We want enough locks to make contention
* reasonable, but not too many -- otherwise page_freelist_lock() gets
* so expensive that it becomes the bottleneck!
*/
#define NPC_MUTEX 16
extern kmutex_t *fpc_mutex[NPC_MUTEX];
extern kmutex_t *cpc_mutex[NPC_MUTEX];
/* Find the bin for the given page if it was of size szc */
#define PP_2_BIN_SZC(pp, szc) \
(((pp->p_pagenum) & page_colors_mask) >> \
(hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift))
#define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc))
#define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum))
#define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \
&fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \
&cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode])
#define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode])
#define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode])
#define PFN_BASE(pfnum, szc) (pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1))
typedef char hpmctr_t;
#ifdef DEBUG
#define CHK_LPG(pp, szc) chk_lpg(pp, szc)
extern void chk_lpg(page_t *, uchar_t);
#else
#define CHK_LPG(pp, szc)
#endif
#ifdef DEBUG
/* page list count */
typedef struct {
pgcnt_t plc_m_pgmax;
pgcnt_t plc_m_pgcnt;
pgcnt_t plc_m_clpgcnt; /* cache list cnt */
struct {
pgcnt_t plc_mt_pgmax;
pgcnt_t plc_mt_pgcnt;
struct {
pgcnt_t plc_mts_pgcnt;
int plc_mts_colors;
pgcnt_t *plc_mtsc_pgcnt;
} plc_mts[MMU_PAGE_SIZES];
} plc_mt[MAX_MEM_TYPES];
} plcnt_t[MAX_MEM_NODES];
extern plcnt_t plcnt;
#define PLCNT_SZ(ctrs_sz) { \
int szc; \
for (szc = 0; szc <= mmu_page_sizes; szc++) { \
int colors = page_get_pagecolors(szc); \
ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES * \
colors * sizeof (pgcnt_t)); \
} \
}
#define PLCNT_INIT(base) { \
int mn, mt, szc, colors; \
for (szc = 0; szc < mmu_page_sizes; szc++) { \
colors = page_get_pagecolors(szc); \
for (mn = 0; mn < max_mem_nodes; mn++) { \
for (mt = 0; mt < MAX_MEM_TYPES; mt++) { \
plcnt[mn].plc_mt[mt].plc_mts[szc]. \
plc_mts_colors = colors; \
plcnt[mn].plc_mt[mt].plc_mts[szc]. \
plc_mtsc_pgcnt = (pgcnt_t *)base; \
base += (colors * sizeof (pgcnt_t)); \
} \
} \
} \
}
#define PLCNT_DO(pp, mn, szc, cnt, flags) { \
int mtype = PP_2_MTYPE(pp); \
int bin = PP_2_BIN(pp); \
if (flags & (PG_LIST_ISINIT | PG_LIST_ISCAGE)) \
atomic_add_long(&plcnt[mn].plc_mt[mtype].plc_mt_pgmax, \
cnt); \
atomic_add_long(&mem_node_config[mn].cursize, cnt); \
if (flags & PG_CACHE_LIST) \
atomic_add_long(&plcnt[mn].plc_m_clpgcnt, cnt); \
atomic_add_long(&plcnt[mn].plc_m_pgcnt, cnt); \
atomic_add_long(&plcnt[mn].plc_mt[mtype].plc_mt_pgcnt, cnt); \
atomic_add_long(&plcnt[mn].plc_mt[mtype].plc_mts[szc]. \
plc_mts_pgcnt, cnt); \
atomic_add_long(&plcnt[mn].plc_mt[mtype].plc_mts[szc]. \
plc_mtsc_pgcnt[bin], cnt); \
}
#define PLCNT_INCR(pp, mn, szc, flags) { \
long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \
if (flags & PG_LIST_ISINIT) \
plcnt[mn].plc_m_pgmax += cnt; \
PLCNT_DO(pp, mn, szc, cnt, flags); \
}
#define PLCNT_DECR(pp, mn, szc, flags) { \
long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \
PLCNT_DO(pp, mn, szc, cnt, flags); \
}
#else
#define PLCNT_SZ(ctrs_sz)
#define PLCNT_INIT(base)
#define PLCNT_INCR(pp, mnode, szc, flags) { \
long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \
atomic_add_long(&mem_node_config[mnode].cursize, cnt); \
}
#define PLCNT_DECR(pp, mnode, szc, flags) { \
long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \
atomic_add_long(&mem_node_config[mnode].cursize, cnt); \
}
#endif
/*
* get the ecache setsize for the current cpu.
*/
#define CPUSETSIZE() (cpunodes[CPU->cpu_id].ecache_setsize)
#define PAGE_BSZS_SHIFT(szc) TTE_BSZS_SHIFT(szc)
/*
* For sfmmu each larger page is 8 times the size of the previous
* size page.
*/
#define FULL_REGION_CNT(rg_szc) (8)
/*
* The counter base must be per page_counter element to prevent
* races when re-indexing, and the base page size element should
* be aligned on a boundary of the given region size.
*
* We also round up the number of pages spanned by the counters
* for a given region to PC_BASE_ALIGN in certain situations to simplify
* the coding for some non-performance critical routines.
*/
#define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1))
#define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1)
extern int ecache_alignsize;
#define L2CACHE_ALIGN ecache_alignsize
extern int consistent_coloring;
extern uint_t vac_colors_mask;
extern int vac_size;
extern int vac_shift;
/*
* Auto large page selection support variables. Some CPU
* implementations may differ from the defaults and will need
* to change these.
*/
extern int auto_lpg_tlb_threshold;
extern int auto_lpg_minszc;
extern int auto_lpg_maxszc;
extern size_t auto_lpg_heap_default;
extern size_t auto_lpg_stack_default;
extern size_t auto_lpg_va_default;
extern size_t auto_lpg_remap_threshold;
/*
* AS_2_BIN macro controls the page coloring policy.
* 0 (default) uses various vaddr bits
* 1 virtual=paddr
* 2 bin hopping
*/
#define AS_2_BIN(as, seg, vp, addr, bin) \
switch (consistent_coloring) { \
default: \
cmn_err(CE_WARN, \
"AS_2_BIN: bad consistent coloring value"); \
/* assume default algorithm -> continue */ \
case 0: { \
uint32_t ndx, new; \
int slew = 0; \
\
if (vp != NULL && IS_SWAPVP(vp) && \
seg->s_ops == &segvn_ops) \
slew = as_color_bin(as); \
\
bin = (((uintptr_t)addr >> MMU_PAGESHIFT) + \
(((uintptr_t)addr >> page_coloring_shift) << \
(vac_shift - MMU_PAGESHIFT)) + slew) & \
page_colors_mask; \
\
break; \
} \
case 1: \
bin = ((uintptr_t)addr >> MMU_PAGESHIFT) & \
page_colors_mask; \
break; \
case 2: { \
int cnt = as_color_bin(as); \
/* make sure physical color aligns with vac color */ \
while ((cnt & vac_colors_mask) != \
addr_to_vcolor(addr)) { \
cnt++; \
} \
bin = cnt = cnt & page_colors_mask; \
/* update per as page coloring fields */ \
cnt = (cnt + 1) & page_colors_mask; \
if (cnt == (as_color_start(as) & page_colors_mask)) { \
cnt = as_color_start(as) = as_color_start(as) + \
PGCLR_LOOPFACTOR; \
} \
as_color_bin(as) = cnt & page_colors_mask; \
break; \
} \
} \
ASSERT(bin <= page_colors_mask);
/*
* Function to get an ecache color bin: F(as, cnt, vcolor).
* the goal of this function is to:
* - to spread a processes' physical pages across the entire ecache to
* maximize its use.
* - to minimize vac flushes caused when we reuse a physical page on a
* different vac color than it was previously used.
* - to prevent all processes to use the same exact colors and trash each
* other.
*
* cnt is a bin ptr kept on a per as basis. As we page_create we increment
* the ptr so we spread out the physical pages to cover the entire ecache.
* The virtual color is made a subset of the physical color in order to
* in minimize virtual cache flushing.
* We add in the as to spread out different as. This happens when we
* initialize the start count value.
* sizeof(struct as) is 60 so we shift by 3 to get into the bit range
* that will tend to change. For example, on spitfire based machines
* (vcshft == 1) contigous as are spread bu ~6 bins.
* vcshft provides for proper virtual color alignment.
* In theory cnt should be updated using cas only but if we are off by one
* or 2 it is no big deal.
* We also keep a start value which is used to randomize on what bin we
* start counting when it is time to start another loop. This avoids
* contigous allocations of ecache size to point to the same bin.
* Why 3? Seems work ok. Better than 7 or anything larger.
*/
#define PGCLR_LOOPFACTOR 3
/*
* When a bin is empty, and we can't satisfy a color request correctly,
* we scan. If we assume that the programs have reasonable spatial
* behavior, then it will not be a good idea to use the adjacent color.
* Using the adjacent color would result in virtually adjacent addresses
* mapping into the same spot in the cache. So, if we stumble across
* an empty bin, skip a bunch before looking. After the first skip,
* then just look one bin at a time so we don't miss our cache on
* every look. Be sure to check every bin. Page_create() will panic
* if we miss a page.
*
* This also explains the `<=' in the for loops in both page_get_freelist()
* and page_get_cachelist(). Since we checked the target bin, skipped
* a bunch, then continued one a time, we wind up checking the target bin
* twice to make sure we get all of them bins.
*/
#define BIN_STEP 20
#ifdef VM_STATS
struct vmm_vmstats_str {
ulong_t pc_list_add_pages[MMU_PAGE_SIZES];
ulong_t pc_list_sub_pages1[MMU_PAGE_SIZES];
ulong_t pc_list_sub_pages2[MMU_PAGE_SIZES];
ulong_t pc_list_sub_pages3[MMU_PAGE_SIZES];
ulong_t pgf_alloc[MMU_PAGE_SIZES];
ulong_t pgf_allocok[MMU_PAGE_SIZES];
ulong_t pgf_allocokrem[MMU_PAGE_SIZES];
ulong_t pgf_allocfailed[MMU_PAGE_SIZES];
ulong_t pgf_allocdeferred;
ulong_t pgf_allocretry[MMU_PAGE_SIZES];
ulong_t pgc_alloc;
ulong_t pgc_allocok;
ulong_t pgc_allocokrem;
ulong_t pgc_allocokdeferred;
ulong_t pgc_allocfailed;
ulong_t pgcp_alloc[MMU_PAGE_SIZES];
ulong_t pgcp_allocfailed[MMU_PAGE_SIZES];
ulong_t pgcp_allocempty[MMU_PAGE_SIZES];
ulong_t pgcp_allocok[MMU_PAGE_SIZES];
ulong_t ptcp[MMU_PAGE_SIZES];
ulong_t ptcpfreethresh[MMU_PAGE_SIZES];
ulong_t ptcpfailexcl[MMU_PAGE_SIZES];
ulong_t ptcpfailszc[MMU_PAGE_SIZES];
ulong_t ptcpfailcage[MMU_PAGE_SIZES];
ulong_t ptcpok[MMU_PAGE_SIZES];
ulong_t pgmf_alloc[MMU_PAGE_SIZES];
ulong_t pgmf_allocfailed[MMU_PAGE_SIZES];
ulong_t pgmf_allocempty[MMU_PAGE_SIZES];
ulong_t pgmf_allocok[MMU_PAGE_SIZES];
ulong_t pgmc_alloc;
ulong_t pgmc_allocfailed;
ulong_t pgmc_allocempty;
ulong_t pgmc_allocok;
ulong_t ppr_reloc[MMU_PAGE_SIZES];
ulong_t ppr_relocok[MMU_PAGE_SIZES];
ulong_t ppr_relocnoroot[MMU_PAGE_SIZES];
ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES];
ulong_t ppr_relocnolock[MMU_PAGE_SIZES];
ulong_t ppr_relocnomem[MMU_PAGE_SIZES];
ulong_t ppr_krelocfail[MMU_PAGE_SIZES];
ulong_t page_ctrs_coalesce; /* page coalesce counter */
ulong_t page_ctrs_cands_skip; /* candidates useful */
ulong_t page_ctrs_changed; /* ctrs changed after locking */
ulong_t page_ctrs_failed; /* page_freelist_coalesce failed */
ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */
ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */
};
extern struct vmm_vmstats_str vmm_vmstats;
#endif /* VM_STATS */
/*
* Used to hold off page relocations into the cage until OBP has completed
* its boot-time handoff of its resources to the kernel.
*/
extern int page_relocate_ready;
/*
* cpu/mmu-dependent vm variables may be reset at bootup.
*/
extern uint_t mmu_page_sizes;
extern uint_t max_mmu_page_sizes;
extern uint_t mmu_hashcnt;
extern uint_t max_mmu_hashcnt;
extern size_t mmu_ism_pagesize;
extern int mmu_exported_pagesize_mask;
extern uint_t mmu_exported_page_sizes;
extern uint_t szc_2_userszc[];
extern uint_t userszc_2_szc[];
#define USERSZC_2_SZC(userszc) (userszc_2_szc[userszc])
#define SZC_2_USERSZC(szc) (szc_2_userszc[szc])
/*
* Platform specific map_pgsz large page hook routines.
*/
extern size_t map_pgszva(struct proc *p, caddr_t addr, size_t len);
extern size_t map_pgszheap(struct proc *p, caddr_t addr, size_t len);
extern size_t map_pgszstk(struct proc *p, caddr_t addr, size_t len);
/*
* Platform specific page routines
*/
extern void mach_page_add(page_t **, page_t *);
extern void mach_page_sub(page_t **, page_t *);
extern uint_t page_get_pagecolors(uint_t);
extern void ppcopy_kernel__relocatable(page_t *, page_t *);
#define ppcopy_kernel(p1, p2) ppcopy_kernel__relocatable(p1, p2)
/*
* platform specific large pages for kernel heap support
*/
extern size_t get_segkmem_lpsize(size_t lpsize);
extern size_t mmu_get_kernel_lpsize(size_t lpsize);
extern void mmu_init_kernel_pgsz(struct hat *hat);
extern void mmu_init_kcontext();
extern uint64_t kcontextreg;
#ifdef __cplusplus
}
#endif
#endif /* _VM_DEP_H */