x_call.c revision 370b8e8014bdd4a1e9f0e46d926e93bffcd157c6
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/systm.h>
#include <sys/archsystm.h>
#include <sys/machsystm.h>
#include <sys/cpuvar.h>
#include <sys/intreg.h>
#include <sys/x_call.h>
#include <sys/cmn_err.h>
#include <sys/membar.h>
#include <sys/disp.h>
#include <sys/debug.h>
#include <sys/privregs.h>
#include <sys/xc_impl.h>
#include <sys/ivintr.h>
#include <sys/dmv.h>
#include <sys/sysmacros.h>
#ifdef DEBUG
uint_t x_dstat[NCPU][XC_LOOP_EXIT+1];
uint_t x_rstat[NCPU][4];
#endif /* DEBUG */
static int xc_serv_inum; /* software interrupt number for xc_serv() */
static int xc_loop_inum; /* software interrupt number for xc_loop() */
kmutex_t xc_sys_mutex; /* protect xcall session and xc_mbox */
int xc_spl_enter[NCPU]; /* protect sending x-call */
static int xc_holder = -1; /* the cpu who initiates xc_attention, 0 is valid */
/*
* Mail box for handshaking and xcall request; protected by xc_sys_mutex
*/
static struct xc_mbox {
xcfunc_t *xc_func;
uint64_t xc_arg1;
uint64_t xc_arg2;
cpuset_t xc_cpuset;
volatile uint_t xc_state;
} xc_mbox[NCPU];
uint64_t xc_tick_limit; /* send_mondo() tick limit value */
uint64_t xc_tick_limit_scale = 1; /* scale used to increase the limit */
uint64_t xc_tick_jump_limit; /* send_mondo() irregular tick jump limit */
/* timeout value for xcalls to be received by the target CPU */
uint64_t xc_mondo_time_limit;
/* timeout value for xcall functions to be executed on the target CPU */
uint64_t xc_func_time_limit;
uint64_t xc_scale = 1; /* scale used to calculate timeout limits */
uint64_t xc_mondo_multiplier = 10;
uint_t sendmondo_in_recover;
/*
* sending x-calls
*/
void init_mondo(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
void send_one_mondo(int cpuid);
void send_mondo_set(cpuset_t set);
/*
* Adjust xc_attention timeout if a faster cpu is dynamically added.
* Ignore the dynamic removal of a cpu that would lower these timeout
* values.
*/
static int
xc_func_timeout_adj(cpu_setup_t what, int cpuid) {
uint64_t freq = cpunodes[cpuid].clock_freq;
switch (what) {
case CPU_ON:
case CPU_INIT:
case CPU_CONFIG:
case CPU_CPUPART_IN:
if (freq * xc_scale > xc_mondo_time_limit) {
xc_mondo_time_limit = freq * xc_scale;
xc_func_time_limit = xc_mondo_time_limit *
xc_mondo_multiplier;
}
break;
case CPU_OFF:
case CPU_UNCONFIG:
case CPU_CPUPART_OUT:
default:
break;
}
return (0);
}
/*
* xc_init - initialize x-call related locks
*/
void
xc_init(void)
{
int pix;
uint64_t maxfreq = 0;
mutex_init(&xc_sys_mutex, NULL, MUTEX_SPIN,
(void *)ipltospl(XCALL_PIL));
#ifdef DEBUG
/* Initialize for all possible CPUs. */
for (pix = 0; pix < NCPU; pix++) {
XC_STAT_INIT(pix);
}
#endif /* DEBUG */
xc_serv_inum = add_softintr(XCALL_PIL, (softintrfunc)xc_serv, 0);
xc_loop_inum = add_softintr(XCALL_PIL, (softintrfunc)xc_loop, 0);
/*
* Initialize the calibrated tick limit for send_mondo.
* The value represents the maximum tick count to wait.
*/
xc_tick_limit =
((uint64_t)sys_tick_freq * XC_SEND_MONDO_MSEC) / 1000;
xc_tick_jump_limit = xc_tick_limit / 32;
xc_tick_limit *= xc_tick_limit_scale;
/*
* Maximum number of loops to wait before timing out in xc_attention.
*/
for (pix = 0; pix < NCPU; pix++) {
maxfreq = MAX(cpunodes[pix].clock_freq, maxfreq);
}
xc_mondo_time_limit = maxfreq * xc_scale;
register_cpu_setup_func((cpu_setup_func_t *)xc_func_timeout_adj, NULL);
/*
* Maximum number of loops to wait for a xcall function to be
* executed on the target CPU.
*/
xc_func_time_limit = xc_mondo_time_limit * xc_mondo_multiplier;
}
/*
* The following routines basically provide callers with two kinds of
* inter-processor interrupt services:
* 1. cross calls (x-calls) - requests are handled at target cpu's TL=0
* 2. cross traps (c-traps) - requests are handled at target cpu's TL>0
*
* Although these routines protect the services from migrating to other cpus
* "after" they are called, it is the caller's choice or responsibility to
* prevent the cpu migration "before" calling them.
*
* X-call routines:
*
* xc_one() - send a request to one processor
* xc_some() - send a request to some processors
* xc_all() - send a request to all processors
*
* Their common parameters:
* func - a TL=0 handler address
* arg1 and arg2 - optional
*
* The services provided by x-call routines allow callers
* to send a request to target cpus to execute a TL=0
* handler.
* The interface of the registers of the TL=0 handler:
* %o0: arg1
* %o1: arg2
*
* X-trap routines:
*
* xt_one() - send a request to one processor
* xt_some() - send a request to some processors
* xt_all() - send a request to all processors
*
* Their common parameters:
* func - a TL>0 handler address or an interrupt number
* arg1, arg2
* optional when "func" is an address;
* 0 when "func" is an interrupt number
*
* If the request of "func" is a kernel address, then
* the target cpu will execute the request of "func" with
* args at "TL>0" level.
* The interface of the registers of the TL>0 handler:
* %g1: arg1
* %g2: arg2
*
* If the request of "func" is not a kernel address, then it has
* to be an assigned interrupt number through add_softintr().
* An interrupt number is an index to the interrupt vector table,
* which entry contains an interrupt handler address with its
* corresponding interrupt level and argument.
* The target cpu will arrange the request to be serviced according
* to its pre-registered information.
* args are assumed to be zeros in this case.
*
* In addition, callers are allowed to capture and release cpus by
* calling the routines: xc_attention() and xc_dismissed().
*/
/*
* xt_one - send a "x-trap" to a cpu
*/
void
xt_one(int cix, xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
if (!CPU_IN_SET(cpu_ready_set, cix)) {
return;
}
xt_one_unchecked(cix, func, arg1, arg2);
}
/*
* xt_one_unchecked - send a "x-trap" to a cpu without checking for its
* existance in cpu_ready_set
*/
void
xt_one_unchecked(int cix, xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
int lcx;
int opl;
cpuset_t tset;
/*
* Make sure the function address will not be interpreted as a
* dmv interrupt
*/
ASSERT(!DMV_IS_DMV(func));
/*
* It's illegal to send software inums through the cross-trap
* interface.
*/
ASSERT((uintptr_t)func >= KERNELBASE);
CPUSET_ZERO(tset);
XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */
CPUSET_ADD(tset, cix);
if (cix == lcx) {
/*
* same cpu - use software fast trap
*/
send_self_xcall(CPU, arg1, arg2, func);
XC_STAT_INC(x_dstat[lcx][XT_ONE_SELF]);
XC_TRACE(XT_ONE_SELF, &tset, func, arg1, arg2);
} else { /* other cpu - send a mondo to the target cpu */
/*
* other cpu - send a mondo to the target cpu
*/
XC_TRACE(XT_ONE_OTHER, &tset, func, arg1, arg2);
init_mondo(func, arg1, arg2);
send_one_mondo(cix);
XC_STAT_INC(x_dstat[lcx][XT_ONE_OTHER]);
}
XC_SPL_EXIT(lcx, opl);
}
/*
* xt_some - send a "x-trap" to some cpus
*/
void
xt_some(cpuset_t cpuset, xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
int lcx;
int opl;
cpuset_t xc_cpuset, tset;
/*
* Make sure the function address will not be interpreted as a
* dmv interrupt
*/
ASSERT(!DMV_IS_DMV(func));
/*
* It's illegal to send software inums through the cross-trap
* interface.
*/
ASSERT((uintptr_t)func >= KERNELBASE);
CPUSET_ZERO(tset);
XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */
CPUSET_ADD(tset, lcx);
/*
* only send to the CPU_READY ones
*/
xc_cpuset = cpu_ready_set;
CPUSET_AND(xc_cpuset, cpuset);
/*
* send to nobody; just return
*/
if (CPUSET_ISNULL(xc_cpuset)) {
XC_SPL_EXIT(lcx, opl);
return;
}
/*
* don't send mondo to self
*/
if (CPU_IN_SET(xc_cpuset, lcx)) {
/*
* same cpu - use software fast trap
*/
send_self_xcall(CPU, arg1, arg2, func);
XC_STAT_INC(x_dstat[lcx][XT_SOME_SELF]);
XC_TRACE(XT_SOME_SELF, &tset, func, arg1, arg2);
CPUSET_DEL(xc_cpuset, lcx);
if (CPUSET_ISNULL(xc_cpuset)) {
XC_SPL_EXIT(lcx, opl);
return;
}
}
XC_TRACE(XT_SOME_OTHER, &xc_cpuset, func, arg1, arg2);
init_mondo(func, arg1, arg2);
send_mondo_set(xc_cpuset);
XC_STAT_INC(x_dstat[lcx][XT_SOME_OTHER]);
XC_SPL_EXIT(lcx, opl);
}
/*
* xt_all - send a "x-trap" to all cpus
*/
void
xt_all(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
int lcx;
int opl;
cpuset_t xc_cpuset, tset;
/*
* Make sure the function address will not be interpreted as a
* dmv interrupt
*/
ASSERT(!DMV_IS_DMV(func));
/*
* It's illegal to send software inums through the cross-trap
* interface.
*/
ASSERT((uintptr_t)func >= KERNELBASE);
CPUSET_ZERO(tset);
XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */
CPUSET_ADD(tset, lcx);
/*
* same cpu - use software fast trap
*/
if (CPU_IN_SET(cpu_ready_set, lcx))
send_self_xcall(CPU, arg1, arg2, func);
XC_TRACE(XT_ALL_OTHER, &cpu_ready_set, func, arg1, arg2);
/*
* don't send mondo to self
*/
xc_cpuset = cpu_ready_set;
CPUSET_DEL(xc_cpuset, lcx);
if (CPUSET_ISNULL(xc_cpuset)) {
XC_STAT_INC(x_dstat[lcx][XT_ALL_SELF]);
XC_TRACE(XT_ALL_SELF, &tset, func, arg1, arg2);
XC_SPL_EXIT(lcx, opl);
return;
}
init_mondo(func, arg1, arg2);
send_mondo_set(xc_cpuset);
XC_STAT_INC(x_dstat[lcx][XT_ALL_OTHER]);
XC_SPL_EXIT(lcx, opl);
}
/*
* xc_one - send a "x-call" to a cpu
*/
void
xc_one(int cix, xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
int lcx;
int opl;
uint64_t loop_cnt = 0;
cpuset_t tset;
int first_time = 1;
/*
* send to nobody; just return
*/
if (!CPU_IN_SET(cpu_ready_set, cix))
return;
ASSERT((uintptr_t)func > KERNELBASE);
ASSERT(((uintptr_t)func % PC_ALIGN) == 0);
CPUSET_ZERO(tset);
kpreempt_disable();
XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */
CPUSET_ADD(tset, cix);
if (cix == lcx) { /* same cpu just do it */
XC_TRACE(XC_ONE_SELF, &tset, func, arg1, arg2);
(*func)(arg1, arg2);
XC_STAT_INC(x_dstat[lcx][XC_ONE_SELF]);
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
if (xc_holder == lcx) { /* got the xc_sys_mutex already */
ASSERT(MUTEX_HELD(&xc_sys_mutex));
ASSERT(CPU_IN_SET(xc_mbox[lcx].xc_cpuset, lcx));
ASSERT(CPU_IN_SET(xc_mbox[cix].xc_cpuset, cix));
ASSERT(xc_mbox[cix].xc_state == XC_WAIT);
XC_TRACE(XC_ONE_OTHER_H, &tset, func, arg1, arg2);
/*
* target processor's xc_loop should be waiting
* for the work to do; just set up the xc_mbox
*/
XC_SETUP(cix, func, arg1, arg2);
membar_stld();
while (xc_mbox[cix].xc_state != XC_WAIT) {
if (loop_cnt++ > xc_func_time_limit) {
if (sendmondo_in_recover) {
drv_usecwait(1);
loop_cnt = 0;
continue;
}
cmn_err(CE_PANIC, "xc_one() timeout, "
"xc_state[%d] != XC_WAIT", cix);
}
}
XC_STAT_INC(x_dstat[lcx][XC_ONE_OTHER_H]);
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
/*
* Avoid dead lock if someone has sent us a xc_loop request while
* we are trying to grab xc_sys_mutex.
*/
XC_SPL_EXIT(lcx, opl);
/*
* At this point, since we don't own xc_sys_mutex,
* our pil shouldn't run at or above the XCALL_PIL.
*/
ASSERT(getpil() < XCALL_PIL);
/*
* Since xc_holder is not owned by us, it could be that
* no one owns it, or we are not informed to enter into
* xc_loop(). In either case, we need to grab the
* xc_sys_mutex before we write to the xc_mbox, and
* we shouldn't release it until the request is finished.
*/
mutex_enter(&xc_sys_mutex);
xc_spl_enter[lcx] = 1;
/*
* Since we own xc_sys_mutex now, we are safe to
* write to the xc_mobx.
*/
ASSERT(xc_mbox[cix].xc_state == XC_IDLE);
XC_TRACE(XC_ONE_OTHER, &tset, func, arg1, arg2);
XC_SETUP(cix, func, arg1, arg2);
init_mondo(setsoftint_tl1, xc_serv_inum, 0);
send_one_mondo(cix);
/* xc_serv does membar_stld */
while (xc_mbox[cix].xc_state != XC_IDLE) {
if (loop_cnt++ > xc_func_time_limit) {
if (sendmondo_in_recover) {
drv_usecwait(1);
loop_cnt = 0;
continue;
}
if (first_time) {
XT_SYNC_ONE(cix);
first_time = 0;
loop_cnt = 0;
continue;
}
cmn_err(CE_PANIC, "xc_one() timeout, "
"xc_state[%d] != XC_IDLE", cix);
}
}
xc_spl_enter[lcx] = 0;
XC_STAT_INC(x_dstat[lcx][XC_ONE_OTHER]);
mutex_exit(&xc_sys_mutex);
kpreempt_enable();
}
/*
* xc_some - send a "x-call" to some cpus; sending to self is excluded
*/
void
xc_some(cpuset_t cpuset, xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
int lcx;
int opl;
cpuset_t xc_cpuset, tset;
ASSERT((uintptr_t)func > KERNELBASE);
ASSERT(((uintptr_t)func % PC_ALIGN) == 0);
CPUSET_ZERO(tset);
kpreempt_disable();
XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */
CPUSET_ADD(tset, lcx);
/*
* only send to the CPU_READY ones
*/
xc_cpuset = cpu_ready_set;
CPUSET_AND(xc_cpuset, cpuset);
/*
* send to nobody; just return
*/
if (CPUSET_ISNULL(xc_cpuset)) {
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
if (CPU_IN_SET(xc_cpuset, lcx)) {
/*
* same cpu just do it
*/
(*func)(arg1, arg2);
CPUSET_DEL(xc_cpuset, lcx);
if (CPUSET_ISNULL(xc_cpuset)) {
XC_STAT_INC(x_dstat[lcx][XC_SOME_SELF]);
XC_TRACE(XC_SOME_SELF, &tset, func, arg1, arg2);
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
}
if (xc_holder == lcx) { /* got the xc_sys_mutex already */
cpuset_t mset = xc_mbox[lcx].xc_cpuset;
CPUSET_AND(mset, cpuset);
ASSERT(MUTEX_HELD(&xc_sys_mutex));
ASSERT(CPUSET_ISEQUAL(mset, cpuset));
SEND_MBOX_ONLY(xc_cpuset, func, arg1, arg2, lcx, XC_WAIT);
WAIT_MBOX_DONE(xc_cpuset, lcx, XC_WAIT, 0);
XC_STAT_INC(x_dstat[lcx][XC_SOME_OTHER_H]);
XC_TRACE(XC_SOME_OTHER_H, &xc_cpuset, func, arg1, arg2);
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
/*
* Avoid dead lock if someone has sent us a xc_loop request while
* we are trying to grab xc_sys_mutex.
*/
XC_SPL_EXIT(lcx, opl);
/*
* At this point, since we don't own xc_sys_mutex,
* our pil shouldn't run at or above the XCALL_PIL.
*/
ASSERT(getpil() < XCALL_PIL);
/*
* grab xc_sys_mutex before writing to the xc_mbox
*/
mutex_enter(&xc_sys_mutex);
xc_spl_enter[lcx] = 1;
XC_TRACE(XC_SOME_OTHER, &xc_cpuset, func, arg1, arg2);
init_mondo(setsoftint_tl1, xc_serv_inum, 0);
SEND_MBOX_MONDO(xc_cpuset, func, arg1, arg2, XC_IDLE);
WAIT_MBOX_DONE(xc_cpuset, lcx, XC_IDLE, 1);
xc_spl_enter[lcx] = 0;
XC_STAT_INC(x_dstat[lcx][XC_SOME_OTHER]);
mutex_exit(&xc_sys_mutex);
kpreempt_enable();
}
/*
* xc_all - send a "x-call" to all cpus
*/
void
xc_all(xcfunc_t *func, uint64_t arg1, uint64_t arg2)
{
int lcx;
int opl;
cpuset_t xc_cpuset, tset;
ASSERT((uintptr_t)func > KERNELBASE);
ASSERT(((uintptr_t)func % PC_ALIGN) == 0);
CPUSET_ZERO(tset);
kpreempt_disable();
XC_SPL_ENTER(lcx, opl); /* lcx set by the macro */
CPUSET_ADD(tset, lcx);
/*
* same cpu just do it
*/
(*func)(arg1, arg2);
xc_cpuset = cpu_ready_set;
CPUSET_DEL(xc_cpuset, lcx);
if (CPUSET_ISNULL(xc_cpuset)) {
XC_STAT_INC(x_dstat[lcx][XC_ALL_SELF]);
XC_TRACE(XC_ALL_SELF, &tset, func, arg1, arg2);
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
if (xc_holder == lcx) { /* got the xc_sys_mutex already */
cpuset_t mset = xc_mbox[lcx].xc_cpuset;
CPUSET_AND(mset, xc_cpuset);
ASSERT(MUTEX_HELD(&xc_sys_mutex));
ASSERT(CPUSET_ISEQUAL(mset, xc_cpuset));
XC_TRACE(XC_ALL_OTHER_H, &xc_cpuset, func, arg1, arg2);
SEND_MBOX_ONLY(xc_cpuset, func, arg1, arg2, lcx, XC_WAIT);
WAIT_MBOX_DONE(xc_cpuset, lcx, XC_WAIT, 0);
XC_STAT_INC(x_dstat[lcx][XC_ALL_OTHER_H]);
XC_SPL_EXIT(lcx, opl);
kpreempt_enable();
return;
}
/*
* Avoid dead lock if someone has sent us a xc_loop request while
* we are trying to grab xc_sys_mutex.
*/
XC_SPL_EXIT(lcx, opl);
/*
* At this point, since we don't own xc_sys_mutex,
* our pil shouldn't run at or above the XCALL_PIL.
*/
ASSERT(getpil() < XCALL_PIL);
/*
* grab xc_sys_mutex before writing to the xc_mbox
*/
mutex_enter(&xc_sys_mutex);
xc_spl_enter[lcx] = 1;
XC_TRACE(XC_ALL_OTHER, &xc_cpuset, func, arg1, arg2);
init_mondo(setsoftint_tl1, xc_serv_inum, 0);
SEND_MBOX_MONDO(xc_cpuset, func, arg1, arg2, XC_IDLE);
WAIT_MBOX_DONE(xc_cpuset, lcx, XC_IDLE, 1);
xc_spl_enter[lcx] = 0;
XC_STAT_INC(x_dstat[lcx][XC_ALL_OTHER]);
mutex_exit(&xc_sys_mutex);
kpreempt_enable();
}
/*
* xc_attention - paired with xc_dismissed()
*
* xt_attention() holds the xc_sys_mutex and xc_dismissed() releases it
* called when an initiator wants to capture some/all cpus for a critical
* session.
*/
void
xc_attention(cpuset_t cpuset)
{
int pix, lcx;
cpuset_t xc_cpuset, tmpset;
cpuset_t recv_cpuset;
uint64_t loop_cnt = 0;
int first_time = 1;
CPUSET_ZERO(recv_cpuset);
/*
* don't migrate the cpu until xc_dismissed() is finished
*/
ASSERT(getpil() < XCALL_PIL);
mutex_enter(&xc_sys_mutex);
lcx = (int)(CPU->cpu_id);
ASSERT(x_dstat[lcx][XC_ATTENTION] ==
x_dstat[lcx][XC_DISMISSED]);
ASSERT(xc_holder == -1);
xc_mbox[lcx].xc_cpuset = cpuset;
xc_holder = lcx; /* no membar; only current cpu needs the right lcx */
/*
* only send to the CPU_READY ones
*/
xc_cpuset = cpu_ready_set;
CPUSET_AND(xc_cpuset, cpuset);
/*
* don't send mondo to self
*/
CPUSET_DEL(xc_cpuset, lcx);
XC_STAT_INC(x_dstat[lcx][XC_ATTENTION]);
XC_TRACE(XC_ATTENTION, &xc_cpuset, NULL, NULL, NULL);
if (CPUSET_ISNULL(xc_cpuset))
return;
xc_spl_enter[lcx] = 1;
/*
* inform the target processors to enter into xc_loop()
*/
tmpset = xc_cpuset;
init_mondo(setsoftint_tl1, xc_loop_inum, 0);
for (pix = 0; pix < NCPU; pix++) {
if (CPU_IN_SET(tmpset, pix)) {
ASSERT(xc_mbox[pix].xc_state == XC_IDLE);
xc_mbox[pix].xc_state = XC_ENTER;
send_one_mondo(pix);
CPUSET_DEL(tmpset, pix);
if (CPUSET_ISNULL(tmpset)) {
break;
}
}
}
xc_spl_enter[lcx] = 0;
/*
* make sure target processors have entered into xc_loop()
*/
while (!CPUSET_ISEQUAL(recv_cpuset, xc_cpuset)) {
tmpset = xc_cpuset;
for (pix = 0; pix < NCPU; pix++) {
if (CPU_IN_SET(tmpset, pix)) {
/*
* membar_stld() is done in xc_loop
*/
if (xc_mbox[pix].xc_state == XC_WAIT) {
CPUSET_ADD(recv_cpuset, pix);
}
CPUSET_DEL(tmpset, pix);
if (CPUSET_ISNULL(tmpset)) {
break;
}
}
}
if (loop_cnt++ > xc_mondo_time_limit) {
if (sendmondo_in_recover) {
drv_usecwait(1);
loop_cnt = 0;
continue;
}
if (first_time) {
XT_SYNC_SOME(xc_cpuset);
first_time = 0;
loop_cnt = 0;
continue;
}
cmn_err(CE_PANIC, "xc_attention() timeout");
}
}
/*
* xc_sys_mutex remains held until xc_dismissed() is finished
*/
}
/*
* xc_dismissed - paired with xc_attention()
*
* Called after the critical session is finished.
*/
void
xc_dismissed(cpuset_t cpuset)
{
int pix;
int lcx = (int)(CPU->cpu_id);
cpuset_t xc_cpuset, tmpset;
cpuset_t recv_cpuset;
uint64_t loop_cnt = 0;
ASSERT(lcx == xc_holder);
ASSERT(CPUSET_ISEQUAL(xc_mbox[lcx].xc_cpuset, cpuset));
ASSERT(getpil() >= XCALL_PIL);
CPUSET_ZERO(xc_mbox[lcx].xc_cpuset);
CPUSET_ZERO(recv_cpuset);
membar_stld();
XC_STAT_INC(x_dstat[lcx][XC_DISMISSED]);
ASSERT(x_dstat[lcx][XC_DISMISSED] == x_dstat[lcx][XC_ATTENTION]);
/*
* only send to the CPU_READY ones
*/
xc_cpuset = cpu_ready_set;
CPUSET_AND(xc_cpuset, cpuset);
/*
* exclude itself
*/
CPUSET_DEL(xc_cpuset, lcx);
XC_TRACE(XC_DISMISSED, &xc_cpuset, NULL, NULL, NULL);
if (CPUSET_ISNULL(xc_cpuset)) {
xc_holder = -1;
mutex_exit(&xc_sys_mutex);
return;
}
/*
* inform other processors to get out of xc_loop()
*/
tmpset = xc_cpuset;
for (pix = 0; pix < NCPU; pix++) {
if (CPU_IN_SET(tmpset, pix)) {
xc_mbox[pix].xc_state = XC_EXIT;
membar_stld();
CPUSET_DEL(tmpset, pix);
if (CPUSET_ISNULL(tmpset)) {
break;
}
}
}
/*
* make sure target processors have exited from xc_loop()
*/
while (!CPUSET_ISEQUAL(recv_cpuset, xc_cpuset)) {
tmpset = xc_cpuset;
for (pix = 0; pix < NCPU; pix++) {
if (CPU_IN_SET(tmpset, pix)) {
/*
* membar_stld() is done in xc_loop
*/
if (xc_mbox[pix].xc_state == XC_IDLE) {
CPUSET_ADD(recv_cpuset, pix);
}
CPUSET_DEL(tmpset, pix);
if (CPUSET_ISNULL(tmpset)) {
break;
}
}
}
if (loop_cnt++ > xc_func_time_limit) {
if (sendmondo_in_recover) {
drv_usecwait(1);
loop_cnt = 0;
continue;
}
cmn_err(CE_PANIC, "xc_dismissed() timeout");
}
}
xc_holder = -1;
mutex_exit(&xc_sys_mutex);
}
/*
* xc_serv - "x-call" handler at TL=0; serves only one x-call request
* runs at XCALL_PIL level.
*/
uint_t
xc_serv(void)
{
int lcx = (int)(CPU->cpu_id);
struct xc_mbox *xmp;
xcfunc_t *func;
uint64_t arg1, arg2;
cpuset_t tset;
ASSERT(getpil() == XCALL_PIL);
CPUSET_ZERO(tset);
CPUSET_ADD(tset, lcx);
flush_windows();
xmp = &xc_mbox[lcx];
ASSERT(lcx != xc_holder);
ASSERT(xmp->xc_state == XC_DOIT);
func = xmp->xc_func;
XC_TRACE(XC_SERV, &tset, func, xmp->xc_arg1, xmp->xc_arg2);
if (func != NULL) {
arg1 = xmp->xc_arg1;
arg2 = xmp->xc_arg2;
(*func)(arg1, arg2);
}
XC_STAT_INC(x_rstat[lcx][XC_SERV]);
XC_TRACE(XC_SERV, &tset, func, arg1, arg2);
xmp->xc_state = XC_IDLE;
membar_stld();
return (1);
}
/*
* if == 1, an xc_loop timeout will cause a panic
* otherwise print a warning
*/
uint_t xc_loop_panic = 0;
/*
* xc_loop - "x-call" handler at TL=0; capture the cpu for a critial
* session, or serve multiple x-call requests runs at XCALL_PIL level.
*/
uint_t
xc_loop(void)
{
int lcx = (int)(CPU->cpu_id);
struct xc_mbox *xmp;
xcfunc_t *func;
uint64_t arg1, arg2;
uint64_t loop_cnt = 0;
cpuset_t tset;
ASSERT(getpil() == XCALL_PIL);
CPUSET_ZERO(tset);
flush_windows();
/*
* Some one must have owned the xc_sys_mutex;
* no further interrupt (at XCALL_PIL or below) can
* be taken by this processor until xc_loop exits.
*
* The owner of xc_sys_mutex (or xc_holder) can expect
* its xc/xt requests are handled as follows:
* xc requests use xc_mbox's handshaking for their services
* xt requests at TL>0 will be handled immediately
* xt requests at TL=0:
* if their handlers'pils are <= XCALL_PIL, then
* they will be handled after xc_loop exits
* (so, they probably should not be used)
* else they will be handled immediately
*
* For those who are not informed to enter xc_loop, if they
* send xc/xt requests to this processor at this moment,
* the requests will be handled as follows:
* xc requests will be handled after they grab xc_sys_mutex
* xt requests at TL>0 will be handled immediately
* xt requests at TL=0:
* if their handlers'pils are <= XCALL_PIL, then
* they will be handled after xc_loop exits
* else they will be handled immediately
*/
xmp = &xc_mbox[lcx];
ASSERT(lcx != xc_holder);
ASSERT(xmp->xc_state == XC_ENTER);
xmp->xc_state = XC_WAIT;
CPUSET_ADD(tset, lcx);
membar_stld();
XC_STAT_INC(x_rstat[lcx][XC_LOOP]);
XC_TRACE(XC_LOOP_ENTER, &tset, NULL, NULL, NULL);
while (xmp->xc_state != XC_EXIT) {
if (xmp->xc_state == XC_DOIT) {
func = xmp->xc_func;
arg1 = xmp->xc_arg1;
arg2 = xmp->xc_arg2;
XC_TRACE(XC_LOOP_DOIT, &tset, func, arg1, arg2);
if (func != NULL)
(*func)(arg1, arg2);
xmp->xc_state = XC_WAIT;
membar_stld();
/*
* reset the timeout counter
* since some work was done
*/
loop_cnt = 0;
} else {
/* patience is a virtue... */
loop_cnt++;
}
if (loop_cnt > xc_func_time_limit) {
if (sendmondo_in_recover) {
drv_usecwait(1);
loop_cnt = 0;
continue;
}
cmn_err(xc_loop_panic ? CE_PANIC : CE_WARN,
"xc_loop() timeout");
/*
* if the above displayed a warning,
* reset the timeout counter and be patient
*/
loop_cnt = 0;
}
}
ASSERT(xmp->xc_state == XC_EXIT);
ASSERT(xc_holder != -1);
XC_TRACE(XC_LOOP_EXIT, &tset, NULL, NULL, NULL);
xmp->xc_state = XC_IDLE;
membar_stld();
return (1);
}