px_intr.c revision c17ca212a164f33e059475e39740f789fe154b5b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* PX nexus interrupt handling:
* PX device interrupt handler wrapper
* PIL lookup routine
* PX device interrupt related initchild code
*/
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/async.h>
#include <sys/spl.h>
#include <sys/sunddi.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/machsystm.h> /* e_ddi_nodeid_to_dip() */
#include <sys/ddi_impldefs.h>
#include <sys/sdt.h>
#include <sys/atomic.h>
#include "px_obj.h"
#include <sys/ontrap.h>
#include <sys/membar.h>
#include <sys/clock.h>
/*
* interrupt jabber:
*
* When an interrupt line is jabbering, every time the state machine for the
* associated ino is idled, a new mondo will be sent and the ino will go into
* the pending state again. The mondo will cause a new call to
* px_intr_wrapper() which normally idles the ino's state machine which would
* precipitate another trip round the loop.
*
* The loop can be broken by preventing the ino's state machine from being
* idled when an interrupt line is jabbering. See the comment at the
* beginning of px_intr_wrapper() explaining how the 'interrupt jabber
* protection' code does this.
*/
/*LINTLIBRARY*/
/*
* If the unclaimed interrupt count has reached the limit set by
* pci_unclaimed_intr_max within the time limit, then all interrupts
* on this ino is blocked by not idling the interrupt state machine.
*/
static int
px_spurintr(px_ino_pil_t *ipil_p)
{
px_ino_t *ino_p = ipil_p->ipil_ino_p;
px_ih_t *ih_p;
px_t *px_p = ino_p->ino_ib_p->ib_px_p;
char *err_fmt_str;
boolean_t blocked = B_FALSE;
int i;
if (ino_p->ino_unclaimed_intrs > px_unclaimed_intr_max)
return (DDI_INTR_CLAIMED);
if (!ino_p->ino_unclaimed_intrs)
ino_p->ino_spurintr_begin = ddi_get_lbolt();
ino_p->ino_unclaimed_intrs++;
if (ino_p->ino_unclaimed_intrs <= px_unclaimed_intr_max)
goto clear;
if (drv_hztousec(ddi_get_lbolt() - ino_p->ino_spurintr_begin)
> px_spurintr_duration) {
ino_p->ino_unclaimed_intrs = 0;
goto clear;
}
err_fmt_str = "%s%d: ino 0x%x blocked";
blocked = B_TRUE;
goto warn;
clear:
err_fmt_str = "!%s%d: spurious interrupt from ino 0x%x";
warn:
cmn_err(CE_WARN, err_fmt_str, NAMEINST(px_p->px_dip), ino_p->ino_ino);
for (ipil_p = ino_p->ino_ipil_p; ipil_p;
ipil_p = ipil_p->ipil_next_p) {
for (i = 0, ih_p = ipil_p->ipil_ih_start;
i < ipil_p->ipil_ih_size; i++, ih_p = ih_p->ih_next)
cmn_err(CE_CONT, "!%s-%d#%x ", NAMEINST(ih_p->ih_dip),
ih_p->ih_inum);
}
cmn_err(CE_CONT, "!\n");
/* Clear the pending state */
if (blocked == B_FALSE) {
if (px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino,
INTR_IDLE_STATE) != DDI_SUCCESS)
return (DDI_INTR_UNCLAIMED);
}
return (DDI_INTR_CLAIMED);
}
extern uint64_t intr_get_time(void);
/*
* px_intx_intr (INTx or legacy interrupt handler)
*
* This routine is used as wrapper around interrupt handlers installed by child
* device drivers. This routine invokes the driver interrupt handlers and
* examines the return codes.
*
* There is a count of unclaimed interrupts kept on a per-ino basis. If at
* least one handler claims the interrupt then the counter is halved and the
* interrupt state machine is idled. If no handler claims the interrupt then
* the counter is incremented by one and the state machine is idled.
* If the count ever reaches the limit value set by pci_unclaimed_intr_max
* then the interrupt state machine is not idled thus preventing any further
* interrupts on that ino. The state machine will only be idled again if a
* handler is subsequently added or removed.
*
* return value: DDI_INTR_CLAIMED if any handlers claimed the interrupt,
* DDI_INTR_UNCLAIMED otherwise.
*/
uint_t
px_intx_intr(caddr_t arg)
{
px_ino_pil_t *ipil_p = (px_ino_pil_t *)arg;
px_ino_t *ino_p = ipil_p->ipil_ino_p;
px_t *px_p = ino_p->ino_ib_p->ib_px_p;
px_ih_t *ih_p = ipil_p->ipil_ih_start;
ushort_t pil = ipil_p->ipil_pil;
uint_t result = 0, r = DDI_INTR_UNCLAIMED;
int i;
DBG(DBG_INTX_INTR, px_p->px_dip, "px_intx_intr:"
"ino=%x sysino=%llx pil=%x ih_size=%x ih_lst=%x\n",
ino_p->ino_ino, ino_p->ino_sysino, ipil_p->ipil_pil,
ipil_p->ipil_ih_size, ipil_p->ipil_ih_head);
for (i = 0; i < ipil_p->ipil_ih_size; i++, ih_p = ih_p->ih_next) {
dev_info_t *dip = ih_p->ih_dip;
uint_t (*handler)() = ih_p->ih_handler;
caddr_t arg1 = ih_p->ih_handler_arg1;
caddr_t arg2 = ih_p->ih_handler_arg2;
if (ih_p->ih_intr_state == PX_INTR_STATE_DISABLE) {
DBG(DBG_INTX_INTR, px_p->px_dip,
"px_intx_intr: %s%d interrupt %d is disabled\n",
ddi_driver_name(dip), ddi_get_instance(dip),
ino_p->ino_ino);
continue;
}
DBG(DBG_INTX_INTR, px_p->px_dip, "px_intx_intr:"
"ino=%x handler=%p arg1 =%p arg2 = %p\n",
ino_p->ino_ino, handler, arg1, arg2);
DTRACE_PROBE4(interrupt__start, dev_info_t, dip,
void *, handler, caddr_t, arg1, caddr_t, arg2);
r = (*handler)(arg1, arg2);
/*
* Account for time used by this interrupt. Protect against
* conflicting writes to ih_ticks from ib_intr_dist_all() by
* using atomic ops.
*/
if (pil <= LOCK_LEVEL)
atomic_add_64(&ih_p->ih_ticks, intr_get_time());
DTRACE_PROBE4(interrupt__complete, dev_info_t, dip,
void *, handler, caddr_t, arg1, int, r);
result += r;
if (px_check_all_handlers)
continue;
if (result)
break;
}
if (result)
ino_p->ino_claimed |= (1 << pil);
/* Interrupt can only be cleared after all pil levels are handled */
if (pil != ino_p->ino_lopil)
return (DDI_INTR_CLAIMED);
if (!ino_p->ino_claimed) {
if (px_unclaimed_intr_block)
return (px_spurintr(ipil_p));
}
ino_p->ino_unclaimed_intrs = 0;
ino_p->ino_claimed = 0;
/* Clear the pending state */
if (px_lib_intr_setstate(px_p->px_dip,
ino_p->ino_sysino, INTR_IDLE_STATE) != DDI_SUCCESS)
return (DDI_INTR_UNCLAIMED);
return (DDI_INTR_CLAIMED);
}
/*
* px_msiq_intr (MSI/X or PCIe MSG interrupt handler)
*
* This routine is used as wrapper around interrupt handlers installed by child
* device drivers. This routine invokes the driver interrupt handlers and
* examines the return codes.
*
* There is a count of unclaimed interrupts kept on a per-ino basis. If at
* least one handler claims the interrupt then the counter is halved and the
* interrupt state machine is idled. If no handler claims the interrupt then
* the counter is incremented by one and the state machine is idled.
* If the count ever reaches the limit value set by pci_unclaimed_intr_max
* then the interrupt state machine is not idled thus preventing any further
* interrupts on that ino. The state machine will only be idled again if a
* handler is subsequently added or removed.
*
* return value: DDI_INTR_CLAIMED if any handlers claimed the interrupt,
* DDI_INTR_UNCLAIMED otherwise.
*/
uint_t
px_msiq_intr(caddr_t arg)
{
px_ino_pil_t *ipil_p = (px_ino_pil_t *)arg;
px_ino_t *ino_p = ipil_p->ipil_ino_p;
px_t *px_p = ino_p->ino_ib_p->ib_px_p;
px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state;
px_msiq_t *msiq_p = ino_p->ino_msiq_p;
dev_info_t *dip = px_p->px_dip;
ushort_t pil = ipil_p->ipil_pil;
msiq_rec_t msiq_rec, *msiq_rec_p = &msiq_rec;
msiqhead_t *curr_head_p;
msiqtail_t curr_tail_index;
msgcode_t msg_code;
px_ih_t *ih_p;
uint_t ret = DDI_INTR_UNCLAIMED;
int i, j;
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: msiq_id =%x ino=%x pil=%x "
"ih_size=%x ih_lst=%x\n", msiq_p->msiq_id, ino_p->ino_ino,
ipil_p->ipil_pil, ipil_p->ipil_ih_size, ipil_p->ipil_ih_head);
/*
* The px_msiq_intr() handles multiple interrupt priorities and it
* will set msiq->msiq_rec2process to the number of MSIQ records to
* process while handling the highest priority interrupt. Subsequent
* lower priority interrupts will just process any unprocessed MSIQ
* records or will just return immediately.
*/
if (msiq_p->msiq_recs2process == 0) {
ASSERT(ino_p->ino_ipil_cntr == 0);
ino_p->ino_ipil_cntr = ino_p->ino_ipil_size;
/* Read current MSIQ tail index */
px_lib_msiq_gettail(dip, msiq_p->msiq_id, &curr_tail_index);
msiq_p->msiq_new_head_index = msiq_p->msiq_curr_head_index;
if (curr_tail_index < msiq_p->msiq_curr_head_index)
curr_tail_index += msiq_state_p->msiq_rec_cnt;
msiq_p->msiq_recs2process = curr_tail_index -
msiq_p->msiq_curr_head_index;
}
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: curr_head %x new_head %x "
"rec2process %x\n", msiq_p->msiq_curr_head_index,
msiq_p->msiq_new_head_index, msiq_p->msiq_recs2process);
/* If all MSIQ records are already processed, just return immediately */
if ((msiq_p->msiq_new_head_index - msiq_p->msiq_curr_head_index)
== msiq_p->msiq_recs2process)
goto intr_done;
curr_head_p = (msiqhead_t *)((caddr_t)msiq_p->msiq_base_p +
(msiq_p->msiq_curr_head_index * sizeof (msiq_rec_t)));
/*
* Calculate the number of recs to process by taking the difference
* between the head and tail pointers. For all records we always
* verify that we have a valid record type before we do any processing.
* If triggered, we should always have at least one valid record.
*/
for (i = 0; i < msiq_p->msiq_recs2process; i++) {
msiq_rec_type_t rec_type;
/* Read next MSIQ record */
px_lib_get_msiq_rec(dip, curr_head_p, msiq_rec_p);
rec_type = msiq_rec_p->msiq_rec_type;
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: MSIQ RECORD, "
"msiq_rec_type 0x%llx msiq_rec_rid 0x%llx\n",
rec_type, msiq_rec_p->msiq_rec_rid);
if (!rec_type)
goto next_rec;
/* Check MSIQ record type */
switch (rec_type) {
case MSG_REC:
msg_code = msiq_rec_p->msiq_rec_data.msg.msg_code;
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: PCIE MSG "
"record, msg type 0x%x\n", msg_code);
break;
case MSI32_REC:
case MSI64_REC:
msg_code = msiq_rec_p->msiq_rec_data.msi.msi_data;
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: MSI record, "
"msi 0x%x\n", msg_code);
break;
default:
msg_code = 0;
cmn_err(CE_WARN, "%s%d: px_msiq_intr: 0x%x MSIQ "
"record type is not supported",
ddi_driver_name(dip), ddi_get_instance(dip),
rec_type);
goto next_rec;
}
/*
* Scan through px_ih_t linked list, searching for the
* right px_ih_t, matching MSIQ record data.
*/
for (j = 0, ih_p = ipil_p->ipil_ih_start;
ih_p && (j < ipil_p->ipil_ih_size) &&
((ih_p->ih_msg_code != msg_code) ||
(ih_p->ih_rec_type != rec_type));
ih_p = ih_p->ih_next, j++)
;
if ((ih_p->ih_msg_code == msg_code) &&
(ih_p->ih_rec_type == rec_type)) {
dev_info_t *ih_dip = ih_p->ih_dip;
uint_t (*handler)() = ih_p->ih_handler;
caddr_t arg1 = ih_p->ih_handler_arg1;
caddr_t arg2 = ih_p->ih_handler_arg2;
DBG(DBG_MSIQ_INTR, ih_dip, "px_msiq_intr: ino=%x "
"data=%x handler=%p arg1 =%p arg2=%p\n",
ino_p->ino_ino, msg_code, handler, arg1, arg2);
DTRACE_PROBE4(interrupt__start, dev_info_t, ih_dip,
void *, handler, caddr_t, arg1, caddr_t, arg2);
ih_p->ih_intr_flags = PX_INTR_PENDING;
/*
* Special case for PCIE Error Messages.
* The current frame work doesn't fit PCIE Err Msgs
* This should be fixed when PCIE MESSAGES as a whole
* is architected correctly.
*/
if ((rec_type == MSG_REC) &&
((msg_code == PCIE_MSG_CODE_ERR_COR) ||
(msg_code == PCIE_MSG_CODE_ERR_NONFATAL) ||
(msg_code == PCIE_MSG_CODE_ERR_FATAL))) {
ret = px_err_fabric_intr(px_p, msg_code,
msiq_rec_p->msiq_rec_rid);
} else {
/* Clear MSI state */
px_lib_msi_setstate(dip, (msinum_t)msg_code,
PCI_MSI_STATE_IDLE);
ret = (*handler)(arg1, arg2);
}
/*
* Account for time used by this interrupt. Protect
* against conflicting writes to ih_ticks from
* ib_intr_dist_all() by using atomic ops.
*/
if (pil <= LOCK_LEVEL)
atomic_add_64(&ih_p->ih_ticks, intr_get_time());
DTRACE_PROBE4(interrupt__complete, dev_info_t, ih_dip,
void *, handler, caddr_t, arg1, int, ret);
/* clear handler status flags */
ih_p->ih_intr_flags = PX_INTR_IDLE;
msiq_p->msiq_new_head_index++;
px_lib_clr_msiq_rec(ih_dip, curr_head_p);
} else {
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: "
"No matching MSIQ record found\n");
}
next_rec:
/* Get the pointer next EQ record */
curr_head_p = (msiqhead_t *)
((caddr_t)curr_head_p + sizeof (msiq_rec_t));
/* Check for overflow condition */
if (curr_head_p >= (msiqhead_t *)((caddr_t)msiq_p->msiq_base_p
+ (msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t))))
curr_head_p = (msiqhead_t *)msiq_p->msiq_base_p;
}
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: No of MSIQ recs processed %x\n",
(msiq_p->msiq_new_head_index - msiq_p->msiq_curr_head_index));
DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: curr_head %x new_head %x "
"rec2process %x\n", msiq_p->msiq_curr_head_index,
msiq_p->msiq_new_head_index, msiq_p->msiq_recs2process);
/* ino_claimed used just for debugging purpose */
if (ret)
ino_p->ino_claimed |= (1 << pil);
intr_done:
/* Interrupt can only be cleared after all pil levels are handled */
if (--ino_p->ino_ipil_cntr != 0)
return (DDI_INTR_CLAIMED);
if (msiq_p->msiq_new_head_index <= msiq_p->msiq_curr_head_index) {
if (px_unclaimed_intr_block)
return (px_spurintr(ipil_p));
}
/* Update MSIQ head index with no of MSIQ records processed */
if (msiq_p->msiq_new_head_index >= msiq_state_p->msiq_rec_cnt)
msiq_p->msiq_new_head_index -= msiq_state_p->msiq_rec_cnt;
msiq_p->msiq_curr_head_index = msiq_p->msiq_new_head_index;
px_lib_msiq_sethead(dip, msiq_p->msiq_id, msiq_p->msiq_new_head_index);
msiq_p->msiq_new_head_index = 0;
msiq_p->msiq_recs2process = 0;
ino_p->ino_claimed = 0;
/* Clear the pending state */
if (px_lib_intr_setstate(dip, ino_p->ino_sysino,
INTR_IDLE_STATE) != DDI_SUCCESS)
return (DDI_INTR_UNCLAIMED);
return (DDI_INTR_CLAIMED);
}
dev_info_t *
px_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip)
{
dev_info_t *cdip = rdip;
for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip))
;
return (cdip);
}
/* ARGSUSED */
int
px_intx_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
ddi_intr_handle_impl_t *hdlp, void *result)
{
px_t *px_p = DIP_TO_STATE(dip);
int ret = DDI_SUCCESS;
DBG(DBG_INTROPS, dip, "px_intx_ops: dip=%x rdip=%x intr_op=%x "
"handle=%p\n", dip, rdip, intr_op, hdlp);
switch (intr_op) {
case DDI_INTROP_GETCAP:
ret = pci_intx_get_cap(rdip, (int *)result);
break;
case DDI_INTROP_SETCAP:
DBG(DBG_INTROPS, dip, "px_intx_ops: SetCap is not supported\n");
ret = DDI_ENOTSUP;
break;
case DDI_INTROP_ALLOC:
*(int *)result = hdlp->ih_scratch1;
break;
case DDI_INTROP_FREE:
break;
case DDI_INTROP_GETPRI:
*(int *)result = hdlp->ih_pri ?
hdlp->ih_pri : pci_class_to_pil(rdip);
break;
case DDI_INTROP_SETPRI:
break;
case DDI_INTROP_ADDISR:
ret = px_add_intx_intr(dip, rdip, hdlp);
break;
case DDI_INTROP_REMISR:
ret = px_rem_intx_intr(dip, rdip, hdlp);
break;
case DDI_INTROP_GETTARGET:
ret = px_ib_get_intr_target(px_p, hdlp->ih_vector,
(cpuid_t *)result);
break;
case DDI_INTROP_SETTARGET:
ret = DDI_ENOTSUP;
break;
case DDI_INTROP_ENABLE:
ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum,
hdlp->ih_vector, hdlp->ih_pri, PX_INTR_STATE_ENABLE, 0, 0);
break;
case DDI_INTROP_DISABLE:
ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum,
hdlp->ih_vector, hdlp->ih_pri, PX_INTR_STATE_DISABLE, 0, 0);
break;
case DDI_INTROP_SETMASK:
ret = pci_intx_set_mask(rdip);
break;
case DDI_INTROP_CLRMASK:
ret = pci_intx_clr_mask(rdip);
break;
case DDI_INTROP_GETPENDING:
ret = pci_intx_get_pending(rdip, (int *)result);
break;
case DDI_INTROP_NINTRS:
case DDI_INTROP_NAVAIL:
*(int *)result = i_ddi_get_intx_nintrs(rdip);
break;
default:
ret = DDI_ENOTSUP;
break;
}
return (ret);
}
/* ARGSUSED */
int
px_msix_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op,
ddi_intr_handle_impl_t *hdlp, void *result)
{
px_t *px_p = DIP_TO_STATE(dip);
px_msi_state_t *msi_state_p = &px_p->px_ib_p->ib_msi_state;
msiq_rec_type_t msiq_rec_type;
msi_type_t msi_type;
uint64_t msi_addr;
msinum_t msi_num;
msiqid_t msiq_id;
uint_t nintrs;
int ret = DDI_SUCCESS;
DBG(DBG_INTROPS, dip, "px_msix_ops: dip=%x rdip=%x intr_op=%x "
"handle=%p\n", dip, rdip, intr_op, hdlp);
/* Check for MSI64 support */
if ((hdlp->ih_cap & DDI_INTR_FLAG_MSI64) && msi_state_p->msi_addr64) {
msiq_rec_type = MSI64_REC;
msi_type = MSI64_TYPE;
msi_addr = msi_state_p->msi_addr64;
} else {
msiq_rec_type = MSI32_REC;
msi_type = MSI32_TYPE;
msi_addr = msi_state_p->msi_addr32;
}
(void) px_msi_get_msinum(px_p, hdlp->ih_dip,
(hdlp->ih_flags & DDI_INTR_MSIX_DUP) ? hdlp->ih_main->ih_inum :
hdlp->ih_inum, &msi_num);
switch (intr_op) {
case DDI_INTROP_GETCAP:
ret = pci_msi_get_cap(rdip, hdlp->ih_type, (int *)result);
break;
case DDI_INTROP_SETCAP:
DBG(DBG_INTROPS, dip, "px_msix_ops: SetCap is not supported\n");
ret = DDI_ENOTSUP;
break;
case DDI_INTROP_ALLOC:
/*
* We need to restrict this allocation in future
* based on Resource Management policies.
*/
if ((ret = px_msi_alloc(px_p, rdip, hdlp->ih_type,
hdlp->ih_inum, hdlp->ih_scratch1,
(uintptr_t)hdlp->ih_scratch2,
(int *)result)) != DDI_SUCCESS) {
DBG(DBG_INTROPS, dip, "px_msix_ops: allocation "
"failed, rdip 0x%p type 0x%d inum 0x%x "
"count 0x%x\n", rdip, hdlp->ih_type, hdlp->ih_inum,
hdlp->ih_scratch1);
return (ret);
}
if ((hdlp->ih_type == DDI_INTR_TYPE_MSIX) &&
(i_ddi_get_msix(rdip) == NULL)) {
ddi_intr_msix_t *msix_p;
if (msix_p = pci_msix_init(rdip)) {
i_ddi_set_msix(rdip, msix_p);
break;
}
DBG(DBG_INTROPS, dip, "px_msix_ops: MSI-X allocation "
"failed, rdip 0x%p inum 0x%x\n", rdip,
hdlp->ih_inum);
(void) px_msi_free(px_p, rdip, hdlp->ih_inum,
hdlp->ih_scratch1);
return (DDI_FAILURE);
}
break;
case DDI_INTROP_FREE:
(void) pci_msi_unconfigure(rdip, hdlp->ih_type, hdlp->ih_inum);
if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
goto msi_free;
if (hdlp->ih_flags & DDI_INTR_MSIX_DUP)
break;
if (((i_ddi_intr_get_current_nintrs(hdlp->ih_dip) - 1) == 0) &&
(i_ddi_get_msix(rdip))) {
pci_msix_fini(i_ddi_get_msix(rdip));
i_ddi_set_msix(rdip, NULL);
}
msi_free:
(void) px_msi_free(px_p, rdip, hdlp->ih_inum,
hdlp->ih_scratch1);
break;
case DDI_INTROP_GETPRI:
*(int *)result = hdlp->ih_pri ?
hdlp->ih_pri : pci_class_to_pil(rdip);
break;
case DDI_INTROP_SETPRI:
break;
case DDI_INTROP_ADDISR:
if ((ret = px_add_msiq_intr(dip, rdip, hdlp,
msiq_rec_type, msi_num, -1, &msiq_id)) != DDI_SUCCESS) {
DBG(DBG_INTROPS, dip, "px_msix_ops: Add MSI handler "
"failed, rdip 0x%p msi 0x%x\n", rdip, msi_num);
return (ret);
}
DBG(DBG_INTROPS, dip, "px_msix_ops: msiq used 0x%x\n", msiq_id);
if ((ret = px_lib_msi_setmsiq(dip, msi_num,
msiq_id, msi_type)) != DDI_SUCCESS) {
(void) px_rem_msiq_intr(dip, rdip,
hdlp, msiq_rec_type, msi_num, msiq_id);
return (ret);
}
if ((ret = px_lib_msi_setstate(dip, msi_num,
PCI_MSI_STATE_IDLE)) != DDI_SUCCESS) {
(void) px_rem_msiq_intr(dip, rdip,
hdlp, msiq_rec_type, msi_num, msiq_id);
return (ret);
}
if ((ret = px_lib_msi_setvalid(dip, msi_num,
PCI_MSI_VALID)) != DDI_SUCCESS)
return (ret);
ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum,
px_msiqid_to_devino(px_p, msiq_id), hdlp->ih_pri,
PX_INTR_STATE_ENABLE, msiq_rec_type, msi_num);
break;
case DDI_INTROP_DUPVEC:
DBG(DBG_INTROPS, dip, "px_msix_ops: dupisr - inum: %x, "
"new_vector: %x\n", hdlp->ih_inum, hdlp->ih_scratch1);
ret = pci_msix_dup(hdlp->ih_dip, hdlp->ih_inum,
hdlp->ih_scratch1);
break;
case DDI_INTROP_REMISR:
if ((ret = px_lib_msi_getmsiq(dip, msi_num,
&msiq_id)) != DDI_SUCCESS)
return (ret);
if ((ret = px_ib_update_intr_state(px_p, rdip,
hdlp->ih_inum, px_msiqid_to_devino(px_p, msiq_id),
hdlp->ih_pri, PX_INTR_STATE_DISABLE, msiq_rec_type,
msi_num)) != DDI_SUCCESS)
return (ret);
if ((ret = px_lib_msi_setvalid(dip, msi_num,
PCI_MSI_INVALID)) != DDI_SUCCESS)
return (ret);
if ((ret = px_lib_msi_setstate(dip, msi_num,
PCI_MSI_STATE_IDLE)) != DDI_SUCCESS)
return (ret);
ret = px_rem_msiq_intr(dip, rdip,
hdlp, msiq_rec_type, msi_num, msiq_id);
break;
case DDI_INTROP_GETTARGET:
if ((ret = px_lib_msi_getmsiq(dip, msi_num,
&msiq_id)) != DDI_SUCCESS)
return (ret);
ret = px_ib_get_intr_target(px_p,
px_msiqid_to_devino(px_p, msiq_id), (cpuid_t *)result);
break;
case DDI_INTROP_SETTARGET:
ret = px_ib_set_msix_target(px_p, hdlp, msi_num,
*(cpuid_t *)result);
break;
case DDI_INTROP_ENABLE:
/*
* For MSI, just clear the mask bit and return if curr_nenables
* is > 1. For MSI-X, program MSI address and data for every
* MSI-X vector including dup vectors irrespective of current
* curr_nenables value.
*/
if ((pci_is_msi_enabled(rdip, hdlp->ih_type) != DDI_SUCCESS) ||
(hdlp->ih_type == DDI_INTR_TYPE_MSIX)) {
nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip);
if ((ret = pci_msi_configure(rdip, hdlp->ih_type,
nintrs, hdlp->ih_inum, msi_addr,
hdlp->ih_type == DDI_INTR_TYPE_MSIX ?
msi_num : msi_num & ~(nintrs - 1))) != DDI_SUCCESS)
return (ret);
if (i_ddi_intr_get_current_nenables(rdip) < 1) {
if ((ret = pci_msi_enable_mode(rdip,
hdlp->ih_type)) != DDI_SUCCESS)
return (ret);
}
}
if ((ret = pci_msi_clr_mask(rdip, hdlp->ih_type,
hdlp->ih_inum)) != DDI_SUCCESS)
return (ret);
break;
case DDI_INTROP_DISABLE:
if ((ret = pci_msi_set_mask(rdip, hdlp->ih_type,
hdlp->ih_inum)) != DDI_SUCCESS)
return (ret);
/*
* curr_nenables will be greater than 1 if rdip is using
* MSI-X and also, if it is using DUP interface. If this
* curr_enables is > 1, return after setting the mask bit.
*/
if (i_ddi_intr_get_current_nenables(rdip) > 1)
return (DDI_SUCCESS);
if ((ret = pci_msi_disable_mode(rdip, hdlp->ih_type))
!= DDI_SUCCESS)
return (ret);
break;
case DDI_INTROP_BLOCKENABLE:
nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip);
if ((ret = pci_msi_configure(rdip, hdlp->ih_type,
nintrs, hdlp->ih_inum, msi_addr,
msi_num & ~(nintrs - 1))) != DDI_SUCCESS)
return (ret);
ret = pci_msi_enable_mode(rdip, hdlp->ih_type);
break;
case DDI_INTROP_BLOCKDISABLE:
ret = pci_msi_disable_mode(rdip, hdlp->ih_type);
break;
case DDI_INTROP_SETMASK:
ret = pci_msi_set_mask(rdip, hdlp->ih_type, hdlp->ih_inum);
break;
case DDI_INTROP_CLRMASK:
ret = pci_msi_clr_mask(rdip, hdlp->ih_type, hdlp->ih_inum);
break;
case DDI_INTROP_GETPENDING:
ret = pci_msi_get_pending(rdip, hdlp->ih_type,
hdlp->ih_inum, (int *)result);
break;
case DDI_INTROP_NINTRS:
ret = pci_msi_get_nintrs(rdip, hdlp->ih_type, (int *)result);
break;
case DDI_INTROP_NAVAIL:
/* XXX - a new interface may be needed */
ret = pci_msi_get_nintrs(rdip, hdlp->ih_type, (int *)result);
break;
case DDI_INTROP_GETPOOL:
if (msi_state_p->msi_pool_p == NULL) {
*(ddi_irm_pool_t **)result = NULL;
return (DDI_ENOTSUP);
}
*(ddi_irm_pool_t **)result = msi_state_p->msi_pool_p;
ret = DDI_SUCCESS;
break;
default:
ret = DDI_ENOTSUP;
break;
}
return (ret);
}
static struct {
kstat_named_t pxintr_ks_name;
kstat_named_t pxintr_ks_type;
kstat_named_t pxintr_ks_cpu;
kstat_named_t pxintr_ks_pil;
kstat_named_t pxintr_ks_time;
kstat_named_t pxintr_ks_ino;
kstat_named_t pxintr_ks_cookie;
kstat_named_t pxintr_ks_devpath;
kstat_named_t pxintr_ks_buspath;
} pxintr_ks_template = {
{ "name", KSTAT_DATA_CHAR },
{ "type", KSTAT_DATA_CHAR },
{ "cpu", KSTAT_DATA_UINT64 },
{ "pil", KSTAT_DATA_UINT64 },
{ "time", KSTAT_DATA_UINT64 },
{ "ino", KSTAT_DATA_UINT64 },
{ "cookie", KSTAT_DATA_UINT64 },
{ "devpath", KSTAT_DATA_STRING },
{ "buspath", KSTAT_DATA_STRING },
};
static uint32_t pxintr_ks_instance;
static char ih_devpath[MAXPATHLEN];
static char ih_buspath[MAXPATHLEN];
kmutex_t pxintr_ks_template_lock;
int
px_ks_update(kstat_t *ksp, int rw)
{
px_ih_t *ih_p = ksp->ks_private;
int maxlen = sizeof (pxintr_ks_template.pxintr_ks_name.value.c);
px_ino_pil_t *ipil_p = ih_p->ih_ipil_p;
px_ino_t *ino_p = ipil_p->ipil_ino_p;
px_t *px_p = ino_p->ino_ib_p->ib_px_p;
devino_t ino;
sysino_t sysino;
ino = ino_p->ino_ino;
if (px_lib_intr_devino_to_sysino(px_p->px_dip, ino, &sysino) !=
DDI_SUCCESS) {
cmn_err(CE_WARN, "px_ks_update: px_lib_intr_devino_to_sysino "
"failed");
}
(void) snprintf(pxintr_ks_template.pxintr_ks_name.value.c, maxlen,
"%s%d", ddi_driver_name(ih_p->ih_dip),
ddi_get_instance(ih_p->ih_dip));
(void) ddi_pathname(ih_p->ih_dip, ih_devpath);
(void) ddi_pathname(px_p->px_dip, ih_buspath);
kstat_named_setstr(&pxintr_ks_template.pxintr_ks_devpath, ih_devpath);
kstat_named_setstr(&pxintr_ks_template.pxintr_ks_buspath, ih_buspath);
if (ih_p->ih_intr_state == PX_INTR_STATE_ENABLE) {
switch (i_ddi_intr_get_current_type(ih_p->ih_dip)) {
case DDI_INTR_TYPE_MSI:
(void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c,
"msi");
break;
case DDI_INTR_TYPE_MSIX:
(void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c,
"msix");
break;
default:
(void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c,
"fixed");
break;
}
pxintr_ks_template.pxintr_ks_cpu.value.ui64 = ino_p->ino_cpuid;
pxintr_ks_template.pxintr_ks_pil.value.ui64 = ipil_p->ipil_pil;
pxintr_ks_template.pxintr_ks_time.value.ui64 = ih_p->ih_nsec +
(uint64_t)tick2ns((hrtime_t)ih_p->ih_ticks,
ino_p->ino_cpuid);
pxintr_ks_template.pxintr_ks_ino.value.ui64 = ino;
pxintr_ks_template.pxintr_ks_cookie.value.ui64 = sysino;
} else {
(void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c,
"disabled");
pxintr_ks_template.pxintr_ks_cpu.value.ui64 = 0;
pxintr_ks_template.pxintr_ks_pil.value.ui64 = 0;
pxintr_ks_template.pxintr_ks_time.value.ui64 = 0;
pxintr_ks_template.pxintr_ks_ino.value.ui64 = 0;
pxintr_ks_template.pxintr_ks_cookie.value.ui64 = 0;
}
return (0);
}
void
px_create_intr_kstats(px_ih_t *ih_p)
{
msiq_rec_type_t rec_type = ih_p->ih_rec_type;
ASSERT(ih_p->ih_ksp == NULL);
/*
* Create pci_intrs::: kstats for all ih types except messages,
* which represent unusual conditions and don't need to be tracked.
*/
if (rec_type == 0 || rec_type == MSI32_REC || rec_type == MSI64_REC) {
ih_p->ih_ksp = kstat_create("pci_intrs",
atomic_inc_32_nv(&pxintr_ks_instance), "config",
"interrupts", KSTAT_TYPE_NAMED,
sizeof (pxintr_ks_template) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
}
if (ih_p->ih_ksp != NULL) {
ih_p->ih_ksp->ks_data_size += MAXPATHLEN * 2;
ih_p->ih_ksp->ks_lock = &pxintr_ks_template_lock;
ih_p->ih_ksp->ks_data = &pxintr_ks_template;
ih_p->ih_ksp->ks_private = ih_p;
ih_p->ih_ksp->ks_update = px_ks_update;
}
}
/*
* px_add_intx_intr:
*
* This function is called to register INTx and legacy hardware
* interrupt pins interrupts.
*/
int
px_add_intx_intr(dev_info_t *dip, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp)
{
px_t *px_p = INST_TO_STATE(ddi_get_instance(dip));
px_ib_t *ib_p = px_p->px_ib_p;
devino_t ino;
px_ih_t *ih_p;
px_ino_t *ino_p;
px_ino_pil_t *ipil_p, *ipil_list;
int32_t weight;
int ret = DDI_SUCCESS;
cpuid_t curr_cpu;
ino = hdlp->ih_vector;
DBG(DBG_A_INTX, dip, "px_add_intx_intr: rdip=%s%d ino=%x "
"handler=%x arg1=%x arg2=%x\n", ddi_driver_name(rdip),
ddi_get_instance(rdip), ino, hdlp->ih_cb_func,
hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
ih_p = px_ib_alloc_ih(rdip, hdlp->ih_inum,
hdlp->ih_cb_func, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, 0, 0);
mutex_enter(&ib_p->ib_ino_lst_mutex);
ino_p = px_ib_locate_ino(ib_p, ino);
ipil_list = ino_p ? ino_p->ino_ipil_p : NULL;
/* Sharing the INO using a PIL that already exists */
if (ino_p && (ipil_p = px_ib_ino_locate_ipil(ino_p, hdlp->ih_pri))) {
if (px_ib_intr_locate_ih(ipil_p, rdip, hdlp->ih_inum, 0, 0)) {
DBG(DBG_A_INTX, dip, "px_add_intx_intr: "
"dup intr #%d\n", hdlp->ih_inum);
ret = DDI_FAILURE;
goto fail1;
}
/* Save mondo value in hdlp */
hdlp->ih_vector = ino_p->ino_sysino;
if ((ret = px_ib_ino_add_intr(px_p, ipil_p,
ih_p)) != DDI_SUCCESS)
goto fail1;
goto ino_done;
}
/* Sharing the INO using a new PIL */
if (ipil_list != NULL) {
/*
* disable INO to avoid lopil race condition with
* px_intx_intr
*/
if ((ret = px_lib_intr_gettarget(dip, ino_p->ino_sysino,
&curr_cpu)) != DDI_SUCCESS) {
DBG(DBG_IB, dip,
"px_add_intx_intr px_intr_gettarget() failed\n");
goto fail1;
}
/* Wait on pending interrupt */
if ((ret = px_ib_intr_pend(dip, ino_p->ino_sysino)) !=
DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: px_add_intx_intr: "
"pending sysino 0x%lx(ino 0x%x) timeout",
ddi_driver_name(dip), ddi_get_instance(dip),
ino_p->ino_sysino, ino_p->ino_ino);
goto fail1;
}
}
if (hdlp->ih_pri == 0)
hdlp->ih_pri = pci_class_to_pil(rdip);
ipil_p = px_ib_new_ino_pil(ib_p, ino, hdlp->ih_pri, ih_p);
ino_p = ipil_p->ipil_ino_p;
/* Save mondo value in hdlp */
hdlp->ih_vector = ino_p->ino_sysino;
DBG(DBG_A_INTX, dip, "px_add_intx_intr: pil=0x%x mondo=0x%x\n",
hdlp->ih_pri, hdlp->ih_vector);
DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp,
(ddi_intr_handler_t *)px_intx_intr, (caddr_t)ipil_p, NULL);
ret = i_ddi_add_ivintr(hdlp);
/*
* Restore original interrupt handler
* and arguments in interrupt handle.
*/
DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, ih_p->ih_handler,
ih_p->ih_handler_arg1, ih_p->ih_handler_arg2);
if (ret != DDI_SUCCESS)
goto fail2;
/* Save the pil for this ino */
ipil_p->ipil_pil = hdlp->ih_pri;
/* Select cpu, saving it for sharing and removal */
if (ipil_list == NULL) {
if (ino_p->ino_cpuid == -1)
ino_p->ino_cpuid = intr_dist_cpuid();
/* Enable interrupt */
px_ib_intr_enable(px_p, ino_p->ino_cpuid, ino);
} else {
/* Re-enable interrupt */
PX_INTR_ENABLE(dip, ino_p->ino_sysino, curr_cpu);
}
ino_done:
hdlp->ih_target = ino_p->ino_cpuid;
/* Add weight to the cpu that we are already targeting */
weight = pci_class_to_intr_weight(rdip);
intr_dist_cpuid_add_device_weight(ino_p->ino_cpuid, rdip, weight);
ih_p->ih_ipil_p = ipil_p;
px_create_intr_kstats(ih_p);
if (ih_p->ih_ksp)
kstat_install(ih_p->ih_ksp);
mutex_exit(&ib_p->ib_ino_lst_mutex);
DBG(DBG_A_INTX, dip, "px_add_intx_intr: done! Interrupt 0x%x pil=%x\n",
ino_p->ino_sysino, hdlp->ih_pri);
return (ret);
fail2:
px_ib_delete_ino_pil(ib_p, ipil_p);
fail1:
if (ih_p->ih_config_handle)
pci_config_teardown(&ih_p->ih_config_handle);
mutex_exit(&ib_p->ib_ino_lst_mutex);
kmem_free(ih_p, sizeof (px_ih_t));
DBG(DBG_A_INTX, dip, "px_add_intx_intr: Failed! Interrupt 0x%x "
"pil=%x\n", ino_p->ino_sysino, hdlp->ih_pri);
return (ret);
}
/*
* px_rem_intx_intr:
*
* This function is called to unregister INTx and legacy hardware
* interrupt pins interrupts.
*/
int
px_rem_intx_intr(dev_info_t *dip, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp)
{
px_t *px_p = INST_TO_STATE(ddi_get_instance(dip));
px_ib_t *ib_p = px_p->px_ib_p;
devino_t ino;
cpuid_t curr_cpu;
px_ino_t *ino_p;
px_ino_pil_t *ipil_p;
px_ih_t *ih_p;
int ret = DDI_SUCCESS;
ino = hdlp->ih_vector;
DBG(DBG_R_INTX, dip, "px_rem_intx_intr: rdip=%s%d ino=%x\n",
ddi_driver_name(rdip), ddi_get_instance(rdip), ino);
mutex_enter(&ib_p->ib_ino_lst_mutex);
ino_p = px_ib_locate_ino(ib_p, ino);
ipil_p = px_ib_ino_locate_ipil(ino_p, hdlp->ih_pri);
ih_p = px_ib_intr_locate_ih(ipil_p, rdip, hdlp->ih_inum, 0, 0);
/* Get the current cpu */
if ((ret = px_lib_intr_gettarget(px_p->px_dip, ino_p->ino_sysino,
&curr_cpu)) != DDI_SUCCESS)
goto fail;
if ((ret = px_ib_ino_rem_intr(px_p, ipil_p, ih_p)) != DDI_SUCCESS)
goto fail;
intr_dist_cpuid_rem_device_weight(ino_p->ino_cpuid, rdip);
if (ipil_p->ipil_ih_size == 0) {
hdlp->ih_vector = ino_p->ino_sysino;
i_ddi_rem_ivintr(hdlp);
px_ib_delete_ino_pil(ib_p, ipil_p);
}
if (ino_p->ino_ipil_size == 0) {
kmem_free(ino_p, sizeof (px_ino_t));
} else {
/* Re-enable interrupt only if mapping register still shared */
PX_INTR_ENABLE(px_p->px_dip, ino_p->ino_sysino, curr_cpu);
}
fail:
mutex_exit(&ib_p->ib_ino_lst_mutex);
return (ret);
}
/*
* px_add_msiq_intr:
*
* This function is called to register MSI/Xs and PCIe message interrupts.
*/
int
px_add_msiq_intr(dev_info_t *dip, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp, msiq_rec_type_t rec_type,
msgcode_t msg_code, cpuid_t cpu_id, msiqid_t *msiq_id_p)
{
px_t *px_p = INST_TO_STATE(ddi_get_instance(dip));
px_ib_t *ib_p = px_p->px_ib_p;
px_msiq_state_t *msiq_state_p = &ib_p->ib_msiq_state;
devino_t ino;
px_ih_t *ih_p;
px_ino_t *ino_p;
px_ino_pil_t *ipil_p, *ipil_list;
int32_t weight;
int ret = DDI_SUCCESS;
DBG(DBG_MSIQ, dip, "px_add_msiq_intr: rdip=%s%d handler=0x%x "
"arg1=0x%x arg2=0x%x cpu=0x%x\n", ddi_driver_name(rdip),
ddi_get_instance(rdip), hdlp->ih_cb_func, hdlp->ih_cb_arg1,
hdlp->ih_cb_arg2, cpu_id);
ih_p = px_ib_alloc_ih(rdip, hdlp->ih_inum, hdlp->ih_cb_func,
hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, rec_type, msg_code);
mutex_enter(&ib_p->ib_ino_lst_mutex);
ret = (cpu_id == -1) ? px_msiq_alloc(px_p, rec_type, msg_code,
msiq_id_p) : px_msiq_alloc_based_on_cpuid(px_p, rec_type,
cpu_id, msiq_id_p);
if (ret != DDI_SUCCESS) {
DBG(DBG_MSIQ, dip, "px_add_msiq_intr: "
"msiq allocation failed\n");
goto fail;
}
ino = px_msiqid_to_devino(px_p, *msiq_id_p);
ino_p = px_ib_locate_ino(ib_p, ino);
ipil_list = ino_p ? ino_p->ino_ipil_p : NULL;
/* Sharing ino */
if (ino_p && (ipil_p = px_ib_ino_locate_ipil(ino_p, hdlp->ih_pri))) {
if (px_ib_intr_locate_ih(ipil_p, rdip,
hdlp->ih_inum, rec_type, msg_code)) {
DBG(DBG_MSIQ, dip, "px_add_msiq_intr: "
"dup intr #%d\n", hdlp->ih_inum);
ret = DDI_FAILURE;
goto fail1;
}
/* Save mondo value in hdlp */
hdlp->ih_vector = ino_p->ino_sysino;
if ((ret = px_ib_ino_add_intr(px_p, ipil_p,
ih_p)) != DDI_SUCCESS)
goto fail1;
goto ino_done;
}
if (hdlp->ih_pri == 0)
hdlp->ih_pri = pci_class_to_pil(rdip);
ipil_p = px_ib_new_ino_pil(ib_p, ino, hdlp->ih_pri, ih_p);
ino_p = ipil_p->ipil_ino_p;
ino_p->ino_msiq_p = msiq_state_p->msiq_p +
(*msiq_id_p - msiq_state_p->msiq_1st_msiq_id);
/* Save mondo value in hdlp */
hdlp->ih_vector = ino_p->ino_sysino;
DBG(DBG_MSIQ, dip, "px_add_msiq_intr: pil=0x%x mondo=0x%x\n",
hdlp->ih_pri, hdlp->ih_vector);
DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp,
(ddi_intr_handler_t *)px_msiq_intr, (caddr_t)ipil_p, NULL);
ret = i_ddi_add_ivintr(hdlp);
/*
* Restore original interrupt handler
* and arguments in interrupt handle.
*/
DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, ih_p->ih_handler,
ih_p->ih_handler_arg1, ih_p->ih_handler_arg2);
if (ret != DDI_SUCCESS)
goto fail2;
/* Save the pil for this ino */
ipil_p->ipil_pil = hdlp->ih_pri;
/* Select cpu, saving it for sharing and removal */
if (ipil_list == NULL) {
/* Enable MSIQ */
px_lib_msiq_setstate(dip, *msiq_id_p, PCI_MSIQ_STATE_IDLE);
px_lib_msiq_setvalid(dip, *msiq_id_p, PCI_MSIQ_VALID);
if (ino_p->ino_cpuid == -1)
ino_p->ino_cpuid = intr_dist_cpuid();
/* Enable interrupt */
px_ib_intr_enable(px_p, ino_p->ino_cpuid, ino);
}
ino_done:
hdlp->ih_target = ino_p->ino_cpuid;
/* Add weight to the cpu that we are already targeting */
weight = pci_class_to_intr_weight(rdip);
intr_dist_cpuid_add_device_weight(ino_p->ino_cpuid, rdip, weight);
ih_p->ih_ipil_p = ipil_p;
px_create_intr_kstats(ih_p);
if (ih_p->ih_ksp)
kstat_install(ih_p->ih_ksp);
mutex_exit(&ib_p->ib_ino_lst_mutex);
DBG(DBG_MSIQ, dip, "px_add_msiq_intr: done! Interrupt 0x%x pil=%x\n",
ino_p->ino_sysino, hdlp->ih_pri);
return (ret);
fail2:
px_ib_delete_ino_pil(ib_p, ipil_p);
fail1:
(void) px_msiq_free(px_p, *msiq_id_p);
fail:
if (ih_p->ih_config_handle)
pci_config_teardown(&ih_p->ih_config_handle);
mutex_exit(&ib_p->ib_ino_lst_mutex);
kmem_free(ih_p, sizeof (px_ih_t));
DBG(DBG_MSIQ, dip, "px_add_msiq_intr: Failed! Interrupt 0x%x pil=%x\n",
ino_p->ino_sysino, hdlp->ih_pri);
return (ret);
}
/*
* px_rem_msiq_intr:
*
* This function is called to unregister MSI/Xs and PCIe message interrupts.
*/
int
px_rem_msiq_intr(dev_info_t *dip, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp, msiq_rec_type_t rec_type,
msgcode_t msg_code, msiqid_t msiq_id)
{
px_t *px_p = INST_TO_STATE(ddi_get_instance(dip));
px_ib_t *ib_p = px_p->px_ib_p;
devino_t ino = px_msiqid_to_devino(px_p, msiq_id);
cpuid_t curr_cpu;
px_ino_t *ino_p;
px_ino_pil_t *ipil_p;
px_ih_t *ih_p;
int ret = DDI_SUCCESS;
DBG(DBG_MSIQ, dip, "px_rem_msiq_intr: rdip=%s%d msiq_id=%x ino=%x\n",
ddi_driver_name(rdip), ddi_get_instance(rdip), msiq_id, ino);
mutex_enter(&ib_p->ib_ino_lst_mutex);
ino_p = px_ib_locate_ino(ib_p, ino);
ipil_p = px_ib_ino_locate_ipil(ino_p, hdlp->ih_pri);
ih_p = px_ib_intr_locate_ih(ipil_p, rdip, hdlp->ih_inum, rec_type,
msg_code);
/* Get the current cpu */
if ((ret = px_lib_intr_gettarget(px_p->px_dip, ino_p->ino_sysino,
&curr_cpu)) != DDI_SUCCESS)
goto fail;
if ((ret = px_ib_ino_rem_intr(px_p, ipil_p, ih_p)) != DDI_SUCCESS)
goto fail;
intr_dist_cpuid_rem_device_weight(ino_p->ino_cpuid, rdip);
if (ipil_p->ipil_ih_size == 0) {
hdlp->ih_vector = ino_p->ino_sysino;
i_ddi_rem_ivintr(hdlp);
px_ib_delete_ino_pil(ib_p, ipil_p);
if (ino_p->ino_ipil_size == 0)
px_lib_msiq_setvalid(dip,
px_devino_to_msiqid(px_p, ino), PCI_MSIQ_INVALID);
}
(void) px_msiq_free(px_p, msiq_id);
if (ino_p->ino_ipil_size) {
/* Re-enable interrupt only if mapping register still shared */
PX_INTR_ENABLE(px_p->px_dip, ino_p->ino_sysino, curr_cpu);
}
fail:
mutex_exit(&ib_p->ib_ino_lst_mutex);
return (ret);
}