pcicfg.c revision 6fb87a99fb662e7d25003aeb3817ceb2a41eb2fa
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* PCI configurator (pcicfg)
*/
#include <sys/isa_defs.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/modctl.h>
#include <sys/autoconf.h>
#include <sys/hwconf.h>
#include <sys/ddi_impldefs.h>
#include <sys/fcode.h>
#include <sys/pci.h>
#include <sys/pcie.h>
#include <sys/pcie_impl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/pci_cap.h>
#include <sys/hotplug/pci/pcicfg.h>
#include <sys/ndi_impldefs.h>
#include <sys/pci_cfgacc.h>
#define PCICFG_DEVICE_TYPE_PCI 1
#define PCICFG_DEVICE_TYPE_PCIE 2
#define EFCODE21554 /* changes for supporting 21554 */
static int pcicfg_alloc_resource(dev_info_t *, pci_regspec_t);
static int pcicfg_free_resource(dev_info_t *, pci_regspec_t, pcicfg_flags_t);
static int pcicfg_remove_assigned_prop(dev_info_t *, pci_regspec_t *);
#ifdef PCICFG_INTERPRET_FCODE
static int pcicfg_fcode_assign_bars(ddi_acc_handle_t, dev_info_t *,
uint_t, uint_t, uint_t, int32_t, pci_regspec_t *);
#endif /* PCICFG_INTERPRET_FCODE */
/*
* ************************************************************************
* *** Implementation specific local data structures/definitions. ***
* ************************************************************************
*/
static int pcicfg_start_devno = 0; /* for Debug only */
#define PCICFG_MAX_DEVICE 32
#define PCICFG_MAX_FUNCTION 8
#define PCICFG_MAX_ARI_FUNCTION 256
#define PCICFG_MAX_REGISTER 64
#define PCICFG_MAX_BUS_DEPTH 255
#define PCICFG_NODEVICE 42
#define PCICFG_NOMEMORY 43
#define PCICFG_NOMULTI 44
#define PCICFG_HIADDR(n) ((uint32_t)(((uint64_t)(n) & 0xFFFFFFFF00000000)>> 32))
#define PCICFG_LOADDR(n) ((uint32_t)((uint64_t)(n) & 0x00000000FFFFFFFF))
#define PCICFG_LADDR(lo, hi) (((uint64_t)(hi) << 32) | (uint32_t)(lo))
#define PCICFG_HIWORD(n) ((uint16_t)(((uint32_t)(n) & 0xFFFF0000)>> 16))
#define PCICFG_LOWORD(n) ((uint16_t)((uint32_t)(n) & 0x0000FFFF))
#define PCICFG_HIBYTE(n) ((uint8_t)(((uint16_t)(n) & 0xFF00)>> 8))
#define PCICFG_LOBYTE(n) ((uint8_t)((uint16_t)(n) & 0x00FF))
#define PCICFG_ROUND_UP(addr, gran) ((uintptr_t)((gran+addr-1)&(~(gran-1))))
#define PCICFG_ROUND_DOWN(addr, gran) ((uintptr_t)((addr) & ~(gran-1)))
#define PCICFG_MEMGRAN 0x100000
#define PCICFG_IOGRAN 0x1000
#define PCICFG_4GIG_LIMIT 0xFFFFFFFFUL
#define PCICFG_MEM_MULT 4
#define PCICFG_IO_MULT 4
#define PCICFG_RANGE_LEN 2 /* Number of range entries */
static int pcicfg_slot_busnums = 8;
static int pcicfg_slot_memsize = 32 * PCICFG_MEMGRAN; /* 32MB per slot */
static int pcicfg_slot_iosize = 16 * PCICFG_IOGRAN; /* 64K per slot */
static int pcicfg_chassis_per_tree = 1;
static int pcicfg_sec_reset_delay = 1000000;
/*
* The following typedef is used to represent a
* 1275 "bus-range" property of a PCI Bus node.
* DAF - should be in generic include file...
*/
typedef struct pcicfg_bus_range {
uint32_t lo;
uint32_t hi;
} pcicfg_bus_range_t;
typedef struct pcicfg_range {
uint32_t child_hi;
uint32_t child_mid;
uint32_t child_lo;
uint32_t parent_hi;
uint32_t parent_mid;
uint32_t parent_lo;
uint32_t size_hi;
uint32_t size_lo;
} pcicfg_range_t;
typedef struct hole hole_t;
struct hole {
uint64_t start;
uint64_t len;
hole_t *next;
};
typedef struct pcicfg_phdl pcicfg_phdl_t;
struct pcicfg_phdl {
dev_info_t *dip; /* Associated with the attach point */
pcicfg_phdl_t *next;
uint64_t memory_base; /* Memory base for this attach point */
uint64_t memory_last;
uint64_t memory_len;
uint32_t io_base; /* I/O base for this attach point */
uint32_t io_last;
uint32_t io_len;
int error;
uint_t highest_bus; /* Highest bus seen on the probe */
hole_t mem_hole; /* Memory hole linked list. */
hole_t io_hole; /* IO hole linked list */
ndi_ra_request_t mem_req; /* allocator request for memory */
ndi_ra_request_t io_req; /* allocator request for I/O */
};
struct pcicfg_standard_prop_entry {
uchar_t *name;
uint_t config_offset;
uint_t size;
};
struct pcicfg_name_entry {
uint32_t class_code;
char *name;
};
struct pcicfg_find_ctrl {
uint_t device;
uint_t function;
dev_info_t *dip;
};
typedef struct pcicfg_err_regs {
uint16_t cmd;
uint16_t bcntl;
uint16_t pcie_dev;
uint16_t devctl;
uint16_t pcie_cap_off;
} pcicfg_err_regs_t;
/*
* List of Indirect Config Map Devices. At least the intent of the
* design is to look for a device in this list during the configure
* operation, and if the device is listed here, then it is a nontransparent
* bridge, hence load the driver and avail the config map services from
* the driver. Class and Subclass should be as defined in the PCI specs
* ie. class is 0x6, and subclass is 0x9.
*/
static struct {
uint8_t mem_range_bar_offset;
uint8_t io_range_bar_offset;
uint8_t prefetch_mem_range_bar_offset;
} pcicfg_indirect_map_devs[] = {
PCI_CONF_BASE3, PCI_CONF_BASE2, PCI_CONF_BASE3,
0, 0, 0,
};
#define PCICFG_MAKE_REG_HIGH(busnum, devnum, funcnum, register)\
(\
((ulong_t)(busnum & 0xff) << 16) |\
((ulong_t)(devnum & 0x1f) << 11) |\
((ulong_t)(funcnum & 0x7) << 8) |\
((ulong_t)(register & 0x3f)))
/*
* debug macros:
*/
#if defined(DEBUG)
extern void prom_printf(const char *, ...);
/*
* Following values are defined for this debug flag.
*
* 1 = dump configuration header only.
* 2 = dump generic debug data only (no config header dumped)
* 3 = dump everything (both 1 and 2)
*/
int pcicfg_debug = 0;
int pcicfg_dump_fcode = 0;
static void debug(char *, uintptr_t, uintptr_t,
uintptr_t, uintptr_t, uintptr_t);
#define DEBUG0(fmt)\
debug(fmt, 0, 0, 0, 0, 0);
#define DEBUG1(fmt, a1)\
debug(fmt, (uintptr_t)(a1), 0, 0, 0, 0);
#define DEBUG2(fmt, a1, a2)\
debug(fmt, (uintptr_t)(a1), (uintptr_t)(a2), 0, 0, 0);
#define DEBUG3(fmt, a1, a2, a3)\
debug(fmt, (uintptr_t)(a1), (uintptr_t)(a2),\
(uintptr_t)(a3), 0, 0);
#define DEBUG4(fmt, a1, a2, a3, a4)\
debug(fmt, (uintptr_t)(a1), (uintptr_t)(a2),\
(uintptr_t)(a3), (uintptr_t)(a4), 0);
#else
#define DEBUG0(fmt)
#define DEBUG1(fmt, a1)
#define DEBUG2(fmt, a1, a2)
#define DEBUG3(fmt, a1, a2, a3)
#define DEBUG4(fmt, a1, a2, a3, a4)
#endif
#ifdef PCICFG_INTERPRET_FCODE
int pcicfg_dont_interpret = 0;
#else
int pcicfg_dont_interpret = 1;
#endif
/*
* forward declarations for routines defined in this module (called here)
*/
static int pcicfg_add_config_reg(dev_info_t *,
uint_t, uint_t, uint_t);
static int pcicfg_probe_children(dev_info_t *, uint_t, uint_t, uint_t,
uint_t *, pcicfg_flags_t, boolean_t);
#ifdef PCICFG_INTERPRET_FCODE
static int pcicfg_load_fcode(dev_info_t *, uint_t, uint_t, uint_t,
uint16_t, uint16_t, uchar_t **, int *, int, int);
#endif
static int pcicfg_fcode_probe(dev_info_t *, uint_t, uint_t, uint_t,
uint_t *, pcicfg_flags_t, boolean_t);
static int pcicfg_probe_bridge(dev_info_t *, ddi_acc_handle_t, uint_t,
uint_t *, boolean_t);
static int pcicfg_free_all_resources(dev_info_t *);
static int pcicfg_alloc_new_resources(dev_info_t *);
static int pcicfg_match_dev(dev_info_t *, void *);
static dev_info_t *pcicfg_devi_find(dev_info_t *, uint_t, uint_t);
static pcicfg_phdl_t *pcicfg_find_phdl(dev_info_t *);
static pcicfg_phdl_t *pcicfg_create_phdl(dev_info_t *);
static int pcicfg_destroy_phdl(dev_info_t *);
static int pcicfg_sum_resources(dev_info_t *, void *);
static int pcicfg_find_resource_end(dev_info_t *, void *);
static int pcicfg_allocate_chunk(dev_info_t *);
static int pcicfg_program_ap(dev_info_t *);
static int pcicfg_device_assign(dev_info_t *);
static int pcicfg_bridge_assign(dev_info_t *, void *);
static int pcicfg_device_assign_readonly(dev_info_t *);
static int pcicfg_free_resources(dev_info_t *, pcicfg_flags_t);
static void pcicfg_setup_bridge(pcicfg_phdl_t *, ddi_acc_handle_t,
dev_info_t *);
static void pcicfg_update_bridge(pcicfg_phdl_t *, ddi_acc_handle_t);
static void pcicfg_enable_bridge_probe_err(dev_info_t *dip,
ddi_acc_handle_t h, pcicfg_err_regs_t *regs);
static void pcicfg_disable_bridge_probe_err(dev_info_t *dip,
ddi_acc_handle_t h, pcicfg_err_regs_t *regs);
static int pcicfg_update_assigned_prop(dev_info_t *, pci_regspec_t *);
static void pcicfg_device_on(ddi_acc_handle_t);
static void pcicfg_device_off(ddi_acc_handle_t);
static int pcicfg_set_busnode_props(dev_info_t *, uint8_t, int, int);
static int pcicfg_free_bridge_resources(dev_info_t *);
static int pcicfg_free_device_resources(dev_info_t *, pcicfg_flags_t);
static int pcicfg_teardown_device(dev_info_t *, pcicfg_flags_t, boolean_t);
static int pcicfg_config_setup(dev_info_t *, ddi_acc_handle_t *);
static void pcicfg_config_teardown(ddi_acc_handle_t *);
static void pcicfg_get_mem(pcicfg_phdl_t *, uint32_t, uint64_t *);
static void pcicfg_get_io(pcicfg_phdl_t *, uint32_t, uint32_t *);
static int pcicfg_update_ranges_prop(dev_info_t *, pcicfg_range_t *);
static int pcicfg_map_phys(dev_info_t *, pci_regspec_t *, caddr_t *,
ddi_device_acc_attr_t *, ddi_acc_handle_t *);
static void pcicfg_unmap_phys(ddi_acc_handle_t *, pci_regspec_t *);
static int pcicfg_dump_assigned(dev_info_t *);
static uint_t pcicfg_configure_ntbridge(dev_info_t *, uint_t, uint_t);
static int pcicfg_indirect_map(dev_info_t *dip);
static uint_t pcicfg_get_ntbridge_child_range(dev_info_t *, uint64_t *,
uint64_t *, uint_t);
static int pcicfg_is_ntbridge(dev_info_t *);
static int pcicfg_ntbridge_allocate_resources(dev_info_t *);
static int pcicfg_ntbridge_configure_done(dev_info_t *);
static int pcicfg_ntbridge_unconfigure(dev_info_t *);
static int pcicfg_ntbridge_unconfigure_child(dev_info_t *, uint_t);
static void pcicfg_free_hole(hole_t *);
static uint64_t pcicfg_alloc_hole(hole_t *, uint64_t *, uint32_t);
static int pcicfg_update_available_prop(dev_info_t *, pci_regspec_t *);
static int pcicfg_ari_configure(dev_info_t *);
static int pcicfg_populate_reg_props(dev_info_t *, ddi_acc_handle_t);
static int pcicfg_populate_props_from_bar(dev_info_t *, ddi_acc_handle_t);
static int pcicfg_update_assigned_prop_value(dev_info_t *, uint32_t,
uint32_t, uint32_t, uint_t);
static boolean_t is_pcie_fabric(dev_info_t *dip);
#ifdef DEBUG
static void pcicfg_dump_common_config(ddi_acc_handle_t config_handle);
static void pcicfg_dump_device_config(ddi_acc_handle_t);
static void pcicfg_dump_bridge_config(ddi_acc_handle_t config_handle);
static uint64_t pcicfg_unused_space(hole_t *, uint32_t *);
#define PCICFG_DUMP_COMMON_CONFIG(hdl) (void)pcicfg_dump_common_config(hdl)
#define PCICFG_DUMP_DEVICE_CONFIG(hdl) (void)pcicfg_dump_device_config(hdl)
#define PCICFG_DUMP_BRIDGE_CONFIG(hdl) (void)pcicfg_dump_bridge_config(hdl)
#else
#define PCICFG_DUMP_COMMON_CONFIG(handle)
#define PCICFG_DUMP_DEVICE_CONFIG(handle)
#define PCICFG_DUMP_BRIDGE_CONFIG(handle)
#endif
static kmutex_t pcicfg_list_mutex; /* Protects the probe handle list */
static pcicfg_phdl_t *pcicfg_phdl_list = NULL;
#ifndef _DONT_USE_1275_GENERIC_NAMES
/*
* Class code table
*/
static struct pcicfg_name_entry pcicfg_class_lookup [] = {
{ 0x001, "display" },
{ 0x100, "scsi" },
{ 0x101, "ide" },
{ 0x102, "fdc" },
{ 0x103, "ipi" },
{ 0x104, "raid" },
{ 0x200, "ethernet" },
{ 0x201, "token-ring" },
{ 0x202, "fddi" },
{ 0x203, "atm" },
{ 0x300, "display" },
{ 0x400, "video" },
{ 0x401, "sound" },
{ 0x500, "memory" },
{ 0x501, "flash" },
{ 0x600, "host" },
{ 0x601, "isa" },
{ 0x602, "eisa" },
{ 0x603, "mca" },
{ 0x604, "pci" },
{ 0x605, "pcmcia" },
{ 0x606, "nubus" },
{ 0x607, "cardbus" },
{ 0x609, "pci" },
{ 0x700, "serial" },
{ 0x701, "parallel" },
{ 0x800, "interrupt-controller" },
{ 0x801, "dma-controller" },
{ 0x802, "timer" },
{ 0x803, "rtc" },
{ 0x900, "keyboard" },
{ 0x901, "pen" },
{ 0x902, "mouse" },
{ 0xa00, "dock" },
{ 0xb00, "cpu" },
{ 0xc00, "firewire" },
{ 0xc01, "access-bus" },
{ 0xc02, "ssa" },
{ 0xc03, "usb" },
{ 0xc04, "fibre-channel" },
{ 0, 0 }
};
#endif /* _DONT_USE_1275_GENERIC_NAMES */
/*
* Module control operations
*/
extern struct mod_ops mod_miscops;
static struct modlmisc modlmisc = {
&mod_miscops, /* Type of module */
"PCIe/PCI Config (EFCode Enabled)"
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlmisc, NULL
};
#ifdef DEBUG
static void
pcicfg_dump_common_config(ddi_acc_handle_t config_handle)
{
if ((pcicfg_debug & 1) == 0)
return;
cmn_err(CE_CONT, " Vendor ID = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_VENID));
cmn_err(CE_CONT, " Device ID = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_DEVID));
cmn_err(CE_CONT, " Command REG = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_COMM));
cmn_err(CE_CONT, " Status REG = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_STAT));
cmn_err(CE_CONT, " Revision ID = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_REVID));
cmn_err(CE_CONT, " Prog Class = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_PROGCLASS));
cmn_err(CE_CONT, " Dev Class = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_SUBCLASS));
cmn_err(CE_CONT, " Base Class = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_BASCLASS));
cmn_err(CE_CONT, " Device ID = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_CACHE_LINESZ));
cmn_err(CE_CONT, " Header Type = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_HEADER));
cmn_err(CE_CONT, " BIST = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_BIST));
cmn_err(CE_CONT, " BASE 0 = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_BASE0));
cmn_err(CE_CONT, " BASE 1 = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_BASE1));
}
static void
pcicfg_dump_device_config(ddi_acc_handle_t config_handle)
{
if ((pcicfg_debug & 1) == 0)
return;
pcicfg_dump_common_config(config_handle);
cmn_err(CE_CONT, " BASE 2 = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_BASE2));
cmn_err(CE_CONT, " BASE 3 = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_BASE3));
cmn_err(CE_CONT, " BASE 4 = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_BASE4));
cmn_err(CE_CONT, " BASE 5 = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_BASE5));
cmn_err(CE_CONT, " Cardbus CIS = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_CIS));
cmn_err(CE_CONT, " Sub VID = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_SUBVENID));
cmn_err(CE_CONT, " Sub SID = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_SUBSYSID));
cmn_err(CE_CONT, " ROM = [0x%x]\n",
pci_config_get32(config_handle, PCI_CONF_ROM));
cmn_err(CE_CONT, " I Line = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_ILINE));
cmn_err(CE_CONT, " I Pin = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_IPIN));
cmn_err(CE_CONT, " Max Grant = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_MIN_G));
cmn_err(CE_CONT, " Max Latent = [0x%x]\n",
pci_config_get8(config_handle, PCI_CONF_MAX_L));
}
static void
pcicfg_dump_bridge_config(ddi_acc_handle_t config_handle)
{
if ((pcicfg_debug & 1) == 0)
return;
pcicfg_dump_common_config(config_handle);
cmn_err(CE_CONT, "........................................\n");
cmn_err(CE_CONT, " Pri Bus = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_PRIBUS));
cmn_err(CE_CONT, " Sec Bus = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_SECBUS));
cmn_err(CE_CONT, " Sub Bus = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_SUBBUS));
cmn_err(CE_CONT, " Latency = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_LATENCY_TIMER));
cmn_err(CE_CONT, " I/O Base LO = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_IO_BASE_LOW));
cmn_err(CE_CONT, " I/O Lim LO = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_IO_LIMIT_LOW));
cmn_err(CE_CONT, " Sec. Status = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_SEC_STATUS));
cmn_err(CE_CONT, " Mem Base = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_MEM_BASE));
cmn_err(CE_CONT, " Mem Limit = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_MEM_LIMIT));
cmn_err(CE_CONT, " PF Mem Base = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_PF_BASE_LOW));
cmn_err(CE_CONT, " PF Mem Lim = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_PF_LIMIT_LOW));
cmn_err(CE_CONT, " PF Base HI = [0x%x]\n",
pci_config_get32(config_handle, PCI_BCNF_PF_BASE_HIGH));
cmn_err(CE_CONT, " PF Lim HI = [0x%x]\n",
pci_config_get32(config_handle, PCI_BCNF_PF_LIMIT_HIGH));
cmn_err(CE_CONT, " I/O Base HI = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_IO_BASE_HI));
cmn_err(CE_CONT, " I/O Lim HI = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_IO_LIMIT_HI));
cmn_err(CE_CONT, " ROM addr = [0x%x]\n",
pci_config_get32(config_handle, PCI_BCNF_ROM));
cmn_err(CE_CONT, " Intr Line = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_ILINE));
cmn_err(CE_CONT, " Intr Pin = [0x%x]\n",
pci_config_get8(config_handle, PCI_BCNF_IPIN));
cmn_err(CE_CONT, " Bridge Ctrl = [0x%x]\n",
pci_config_get16(config_handle, PCI_BCNF_BCNTRL));
}
#endif
int
_init()
{
DEBUG0("PCI configurator installed - Fcode Interpretation/21554\n");
mutex_init(&pcicfg_list_mutex, NULL, MUTEX_DRIVER, NULL);
return (mod_install(&modlinkage));
}
int
_fini(void)
{
int error;
error = mod_remove(&modlinkage);
if (error != 0) {
return (error);
}
mutex_destroy(&pcicfg_list_mutex);
return (0);
}
int
_info(modinfop)
struct modinfo *modinfop;
{
return (mod_info(&modlinkage, modinfop));
}
/*ARGSUSED*/
static uint8_t
pcicfg_get_nslots(dev_info_t *dip, ddi_acc_handle_t handle)
{
uint8_t num_slots = 0;
uint16_t cap_ptr;
if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_HOTPLUG,
&cap_ptr)) == DDI_SUCCESS) {
uint32_t config;
PCI_CAP_PUT8(handle, NULL, cap_ptr, PCI_HP_DWORD_SELECT_OFF,
PCI_HP_SLOT_CONFIGURATION_REG);
config = PCI_CAP_GET32(handle, NULL, cap_ptr,
PCI_HP_DWORD_DATA_OFF);
num_slots = config & 0x1F;
} else if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_SLOT_ID, &cap_ptr))
== DDI_SUCCESS) {
uint8_t esr_reg = PCI_CAP_GET8(handle, NULL,
cap_ptr, PCI_CAP_ID_REGS_OFF);
num_slots = PCI_CAPSLOT_NSLOTS(esr_reg);
} else if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr))
== DDI_SUCCESS) {
int port_type = PCI_CAP_GET16(handle, NULL, cap_ptr,
PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
if ((port_type == PCIE_PCIECAP_DEV_TYPE_DOWN) &&
(PCI_CAP_GET16(handle, NULL, cap_ptr, PCIE_PCIECAP)
& PCIE_PCIECAP_SLOT_IMPL))
num_slots = 1;
}
DEBUG3("%s#%d has %d slots",
ddi_get_name(dip), ddi_get_instance(dip), num_slots);
return (num_slots);
}
/*ARGSUSED*/
static uint8_t
pcicfg_is_chassis(dev_info_t *dip, ddi_acc_handle_t handle)
{
uint16_t cap_ptr;
if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_SLOT_ID, &cap_ptr)) !=
DDI_FAILURE) {
uint8_t esr_reg = PCI_CAP_GET8(handle, NULL, cap_ptr, 2);
if (PCI_CAPSLOT_FIC(esr_reg))
return (B_TRUE);
}
return (B_FALSE);
}
/*ARGSUSED*/
static int
pcicfg_pcie_dev(dev_info_t *dip, int bus_type, pcicfg_err_regs_t *regs)
{
/* get parent device's device_type property */
char *device_type;
int rc = DDI_FAILURE;
dev_info_t *pdip = ddi_get_parent(dip);
regs->pcie_dev = 0;
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
DDI_PROP_DONTPASS, "device_type", &device_type)
!= DDI_PROP_SUCCESS) {
DEBUG2("device_type property missing for %s#%d",
ddi_get_name(pdip), ddi_get_instance(pdip));
return (DDI_FAILURE);
}
switch (bus_type) {
case PCICFG_DEVICE_TYPE_PCIE:
if (strcmp(device_type, "pciex") == 0) {
rc = DDI_SUCCESS;
regs->pcie_dev = 1;
}
break;
case PCICFG_DEVICE_TYPE_PCI:
if (strcmp(device_type, "pci") == 0)
rc = DDI_SUCCESS;
break;
default:
break;
}
ddi_prop_free(device_type);
return (rc);
}
/*ARGSUSED*/
static int
pcicfg_pcie_port_type(dev_info_t *dip, ddi_acc_handle_t handle)
{
int port_type = -1;
uint16_t cap_ptr;
if ((PCI_CAP_LOCATE(handle, PCI_CAP_ID_PCI_E, &cap_ptr)) !=
DDI_FAILURE)
port_type = PCI_CAP_GET16(handle, NULL,
cap_ptr, PCIE_PCIECAP) & PCIE_PCIECAP_DEV_TYPE_MASK;
return (port_type);
}
static int
pcicfg_pcie_device_type(dev_info_t *dip, ddi_acc_handle_t handle)
{
int port_type = pcicfg_pcie_port_type(dip, handle);
DEBUG1("device port_type = %x\n", port_type);
/* No PCIe CAP regs, we are not PCIe device_type */
if (port_type < 0)
return (DDI_FAILURE);
/* check for all PCIe device_types */
if ((port_type == PCIE_PCIECAP_DEV_TYPE_UP) ||
(port_type == PCIE_PCIECAP_DEV_TYPE_DOWN) ||
(port_type == PCIE_PCIECAP_DEV_TYPE_ROOT) ||
(port_type == PCIE_PCIECAP_DEV_TYPE_PCI2PCIE))
return (DDI_SUCCESS);
return (DDI_FAILURE);
}
/*
* In the following functions ndi_devi_enter() without holding the
* parent dip is sufficient. This is because pci dr is driven through
* opens on the nexus which is in the device tree path above the node
* being operated on, and implicitly held due to the open.
*/
/*
* This entry point is called to configure a device (and
* all its children) on the given bus. It is called when
* a new device is added to the PCI domain. This routine
* will create the device tree and program the devices
* registers.
*/
int
pcicfg_configure(dev_info_t *devi, uint_t device, uint_t function,
pcicfg_flags_t flags)
{
uint_t bus;
int len;
int func;
int trans_device;
dev_info_t *new_device;
pcicfg_bus_range_t pci_bus_range;
int rv;
int circ;
uint_t highest_bus = 0;
int ari_mode = B_FALSE;
int max_function = PCICFG_MAX_FUNCTION;
boolean_t is_pcie;
if (flags == PCICFG_FLAG_ENABLE_ARI)
return (pcicfg_ari_configure(devi));
/*
* Start probing at the device specified in "device" on the
* "bus" specified.
*/
len = sizeof (pcicfg_bus_range_t);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
"bus-range", (caddr_t)&pci_bus_range, &len) != DDI_SUCCESS) {
DEBUG0("no bus-range property\n");
return (PCICFG_FAILURE);
}
bus = pci_bus_range.lo; /* primary bus number of this bus node */
is_pcie = is_pcie_fabric(devi);
ndi_devi_enter(devi, &circ);
for (func = 0; func < max_function; ) {
if ((function != PCICFG_ALL_FUNC) && (function != func))
goto next;
if (ari_mode)
trans_device = func >> 3;
else
trans_device = device;
DEBUG3("Configuring [0x%x][0x%x][0x%x]\n",
bus, trans_device, func & 7);
/*
* Try executing fcode if available.
*/
switch (rv = pcicfg_fcode_probe(devi, bus, trans_device,
func & 7, &highest_bus, flags, is_pcie)) {
case PCICFG_FAILURE:
DEBUG2("configure failed: "
"bus [0x%x] device [0x%x]\n",
bus, trans_device);
break;
case PCICFG_NODEVICE:
DEBUG3("no device : bus "
"[0x%x] slot [0x%x] func [0x%x]\n",
bus, trans_device, func & 7);
/*
* When walking the list of ARI functions
* we don't expect to see a non-present
* function, so we will stop walking
* the function list.
*/
if (ari_mode == B_TRUE)
break;
if (func)
goto next;
break;
default:
DEBUG3("configure: bus => [%d] "
"slot => [%d] func => [%d]\n",
bus, trans_device, func & 7);
break;
}
if (rv != PCICFG_SUCCESS)
break;
if ((new_device = pcicfg_devi_find(devi,
trans_device, (func & 7))) == NULL) {
DEBUG0("Did'nt find device node just created\n");
goto cleanup;
}
next:
/*
* Determine if ARI Forwarding should be enabled.
*/
if (func == 0) {
if ((pcie_ari_supported(devi)
== PCIE_ARI_FORW_SUPPORTED) &&
(pcie_ari_device(new_device) == PCIE_ARI_DEVICE)) {
if (pcie_ari_enable(devi) == DDI_SUCCESS) {
(void) ddi_prop_create(DDI_DEV_T_NONE,
devi, DDI_PROP_CANSLEEP,
"ari-enabled", NULL, 0);
ari_mode = B_TRUE;
max_function = PCICFG_MAX_ARI_FUNCTION;
}
}
}
if (ari_mode == B_TRUE) {
int next_function;
DEBUG0("Next Function - ARI Device\n");
if (pcie_ari_get_next_function(new_device,
&next_function) != DDI_SUCCESS)
goto cleanup;
/*
* Check if there are more fucntions to probe.
*/
if (next_function == 0) {
DEBUG0("Next Function - "
"No more ARI Functions\n");
break;
}
func = next_function;
} else {
func++;
}
DEBUG1("Next Function - %x\n", func);
}
ndi_devi_exit(devi, circ);
if (func == 0)
return (PCICFG_FAILURE); /* probe failed */
else
return (PCICFG_SUCCESS);
cleanup:
/*
* Clean up a partially created "probe state" tree.
* There are no resources allocated to the in the
* probe state.
*/
if (pcie_ari_is_enabled(devi) == PCIE_ARI_FORW_ENABLED)
max_function = PCICFG_MAX_ARI_FUNCTION;
else
max_function = PCICFG_MAX_FUNCTION;
for (func = 0; func < max_function; func++) {
if (max_function == PCICFG_MAX_ARI_FUNCTION)
trans_device = func >> 3; /* ARI Device */
else
trans_device = device;
if ((new_device = pcicfg_devi_find(devi,
trans_device, (func & 0x7))) == NULL) {
DEBUG0("No more devices to clean up\n");
continue;
}
DEBUG2("Cleaning up device [0x%x] function [0x%x]\n",
trans_device, func & 7);
/*
* If this was a bridge device it will have a
* probe handle - if not, no harm in calling this.
*/
(void) pcicfg_destroy_phdl(new_device);
if (is_pcie) {
/*
* Free bus_t structure
*/
if (ddi_get_child(new_device) != NULL)
pcie_fab_fini_bus(new_device, PCIE_BUS_ALL);
pcie_fini_bus(new_device, PCIE_BUS_ALL);
}
/*
* This will free up the node
*/
(void) ndi_devi_offline(new_device, NDI_DEVI_REMOVE);
}
ndi_devi_exit(devi, circ);
return (PCICFG_FAILURE);
}
/*
* configure the child nodes of ntbridge. new_device points to ntbridge itself
*/
/*ARGSUSED*/
static uint_t
pcicfg_configure_ntbridge(dev_info_t *new_device, uint_t bus, uint_t device)
{
int bus_range[2], rc = PCICFG_FAILURE, rc1, max_devs = 0;
int devno;
dev_info_t *new_ntbridgechild;
ddi_acc_handle_t config_handle;
uint16_t vid;
uint64_t next_bus;
uint64_t blen;
ndi_ra_request_t req;
uint8_t pcie_device_type = 0;
/*
* If we need to do indirect config, lets create a property here
* to let the child conf map routine know that it has to
* go through the DDI calls, and not assume the devices are
* mapped directly under the host.
*/
if ((rc = ndi_prop_update_int(DDI_DEV_T_NONE, new_device,
PCI_DEV_CONF_MAP_PROP, (int)DDI_SUCCESS))
!= DDI_SUCCESS) {
DEBUG0("Cannot create indirect conf map property.\n");
return ((uint_t)PCICFG_FAILURE);
}
if (pci_config_setup(new_device, &config_handle) != DDI_SUCCESS)
return ((uint_t)PCICFG_FAILURE);
/* check if we are PCIe device */
if (pcicfg_pcie_device_type(new_device, config_handle) == DDI_SUCCESS)
pcie_device_type = 1;
pci_config_teardown(&config_handle);
/* create Bus node properties for ntbridge. */
if (pcicfg_set_busnode_props(new_device, pcie_device_type, -1, -1) !=
PCICFG_SUCCESS) {
DEBUG0("Failed to set busnode props\n");
return (rc);
}
/* For now: Lets only support one layer of child */
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_len = 1;
if (ndi_ra_alloc(ddi_get_parent(new_device), &req,
&next_bus, &blen, NDI_RA_TYPE_PCI_BUSNUM,
NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("ntbridge: Failed to get a bus number\n");
return (rc);
}
DEBUG1("ntbridge bus range start ->[%d]\n", next_bus);
/*
* Following will change, as we detect more bridges
* on the way.
*/
bus_range[0] = (int)next_bus;
bus_range[1] = (int)next_bus;
if (ndi_prop_update_int_array(DDI_DEV_T_NONE, new_device,
"bus-range", bus_range, 2) != DDI_SUCCESS) {
DEBUG0("Cannot set ntbridge bus-range property");
return (rc);
}
/*
* The other interface (away from the host) will be
* initialized by the nexus driver when it loads.
* We just have to set the registers and the nexus driver
* figures out the rest.
*/
/*
* finally, lets load and attach the driver
* before configuring children of ntbridge.
*/
rc = ndi_devi_online(new_device, NDI_NO_EVENT|NDI_CONFIG);
if (rc != NDI_SUCCESS) {
cmn_err(CE_WARN,
"pcicfg: Fail: can\'t load non-transparent bridge \
driver.\n");
rc = PCICFG_FAILURE;
return (rc);
}
DEBUG0("pcicfg: Success loading nontransparent bridge nexus driver..");
/* Now set aside pci resources for our children. */
if (pcicfg_ntbridge_allocate_resources(new_device) !=
PCICFG_SUCCESS) {
max_devs = 0;
rc = PCICFG_FAILURE;
} else
max_devs = PCICFG_MAX_DEVICE;
/* Probe devices on 2nd bus */
for (devno = pcicfg_start_devno; devno < max_devs; devno++) {
if (ndi_devi_alloc(new_device, DEVI_PSEUDO_NEXNAME,
(pnode_t)DEVI_SID_NODEID, &new_ntbridgechild)
!= NDI_SUCCESS) {
DEBUG0("pcicfg: Failed to alloc test node\n");
rc = PCICFG_FAILURE;
break;
}
if (pcicfg_add_config_reg(new_ntbridgechild, next_bus, devno, 0)
!= DDI_PROP_SUCCESS) {
cmn_err(CE_WARN,
"Failed to add conf reg for ntbridge child.\n");
(void) ndi_devi_free(new_ntbridgechild);
rc = PCICFG_FAILURE;
break;
}
if ((rc = pci_config_setup(new_ntbridgechild,
&config_handle)) != PCICFG_SUCCESS) {
cmn_err(CE_WARN,
"Cannot map ntbridge child %x\n", devno);
(void) ndi_devi_free(new_ntbridgechild);
rc = PCICFG_FAILURE;
break;
}
/*
* See if there is any PCI HW at this location
* by reading the Vendor ID. If it returns with 0xffff
* then there is no hardware at this location.
*/
vid = pci_config_get16(config_handle, PCI_CONF_VENID);
pci_config_teardown(&config_handle);
(void) ndi_devi_free(new_ntbridgechild);
if (vid == 0xffff)
continue;
/* Lets fake attachments points for each child, */
if (pcicfg_configure(new_device, devno, PCICFG_ALL_FUNC, 0)
!= PCICFG_SUCCESS) {
int old_dev = pcicfg_start_devno;
cmn_err(CE_WARN,
"Error configuring ntbridge child dev=%d\n", devno);
rc = PCICFG_FAILURE;
while (old_dev != devno) {
if (pcicfg_ntbridge_unconfigure_child(
new_device, old_dev) == PCICFG_FAILURE)
cmn_err(CE_WARN,
"Unconfig Error ntbridge child "
"dev=%d\n", old_dev);
old_dev++;
}
break;
}
} /* devno loop */
DEBUG1("ntbridge: finish probing 2nd bus, rc=%d\n", rc);
if (rc != PCICFG_FAILURE)
rc = pcicfg_ntbridge_configure_done(new_device);
else {
pcicfg_phdl_t *entry = pcicfg_find_phdl(new_device);
uint_t *bus;
int k;
if (ddi_getlongprop(DDI_DEV_T_ANY, new_device,
DDI_PROP_DONTPASS, "bus-range", (caddr_t)&bus,
&k) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read bus-range property\n");
rc = PCICFG_FAILURE;
return (rc);
}
DEBUG2("Need to free bus [%d] range [%d]\n",
bus[0], bus[1] - bus[0] + 1);
if (ndi_ra_free(ddi_get_parent(new_device),
(uint64_t)bus[0], (uint64_t)(bus[1] - bus[0] + 1),
NDI_RA_TYPE_PCI_BUSNUM, NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Failed to free a bus number\n");
rc = PCICFG_FAILURE;
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)bus, k);
return (rc);
}
/*
* Since no memory allocations are done for non transparent
* bridges (but instead we just set the handle with the
* already allocated memory, we just need to reset the
* following values before calling the destroy_phdl()
* function next, otherwise the it will try to free
* memory allocated as in case of a transparent bridge.
*/
entry->memory_len = 0;
entry->io_len = 0;
/* the following will free hole data. */
(void) pcicfg_destroy_phdl(new_device);
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)bus, k);
}
/*
* Unload driver just in case child configure failed!
*/
rc1 = ndi_devi_offline(new_device, NDI_NO_EVENT);
DEBUG1("pcicfg: now unloading the ntbridge driver. rc1=%d\n", rc1);
if (rc1 != NDI_SUCCESS) {
cmn_err(CE_WARN,
"pcicfg: can\'t unload ntbridge driver children.\n");
rc = PCICFG_FAILURE;
}
return (rc);
}
static int
pcicfg_ntbridge_allocate_resources(dev_info_t *dip)
{
pcicfg_phdl_t *phdl;
ndi_ra_request_t *mem_request;
ndi_ra_request_t *io_request;
uint64_t boundbase, boundlen;
phdl = pcicfg_find_phdl(dip);
ASSERT(phdl);
mem_request = &phdl->mem_req;
io_request = &phdl->io_req;
phdl->error = PCICFG_SUCCESS;
/* Set Memory space handle for ntbridge */
if (pcicfg_get_ntbridge_child_range(dip, &boundbase, &boundlen,
PCI_BASE_SPACE_MEM) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"ntbridge: Mem resource information failure\n");
phdl->memory_len = 0;
return (PCICFG_FAILURE);
}
mem_request->ra_boundbase = boundbase;
mem_request->ra_boundlen = boundbase + boundlen;
mem_request->ra_len = boundlen;
mem_request->ra_align_mask =
PCICFG_MEMGRAN - 1; /* 1M alignment on memory space */
mem_request->ra_flags |= NDI_RA_ALLOC_BOUNDED;
/*
* mem_request->ra_len =
* PCICFG_ROUND_UP(mem_request->ra_len, PCICFG_MEMGRAN);
*/
phdl->memory_base = phdl->memory_last = boundbase;
phdl->memory_len = boundlen;
phdl->mem_hole.start = phdl->memory_base;
phdl->mem_hole.len = mem_request->ra_len;
phdl->mem_hole.next = (hole_t *)NULL;
DEBUG2("Connector requested [0x%llx], needs [0x%llx] bytes of memory\n",
boundlen, mem_request->ra_len);
/* set up a memory resource map for NT bridge */
if (ndi_ra_map_setup(dip, NDI_RA_TYPE_MEM) == NDI_FAILURE) {
DEBUG0("Can not setup ntbridge memory resource map\n");
return (PCICFG_FAILURE);
}
/* initialize the memory map */
if (ndi_ra_free(dip, boundbase, boundlen, NDI_RA_TYPE_MEM,
NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Can not initalize ntbridge memory resource map\n");
return (PCICFG_FAILURE);
}
/* Set IO space handle for ntbridge */
if (pcicfg_get_ntbridge_child_range(dip, &boundbase, &boundlen,
PCI_BASE_SPACE_IO) != DDI_SUCCESS) {
cmn_err(CE_WARN, "ntbridge: IO resource information failure\n");
phdl->io_len = 0;
return (PCICFG_FAILURE);
}
io_request->ra_len = boundlen;
io_request->ra_align_mask =
PCICFG_IOGRAN - 1; /* 4K alignment on I/O space */
io_request->ra_boundbase = boundbase;
io_request->ra_boundlen = boundbase + boundlen;
io_request->ra_flags |= NDI_RA_ALLOC_BOUNDED;
/*
* io_request->ra_len =
* PCICFG_ROUND_UP(io_request->ra_len, PCICFG_IOGRAN);
*/
phdl->io_base = phdl->io_last = (uint32_t)boundbase;
phdl->io_len = (uint32_t)boundlen;
phdl->io_hole.start = phdl->io_base;
phdl->io_hole.len = io_request->ra_len;
phdl->io_hole.next = (hole_t *)NULL;
DEBUG2("Connector requested [0x%llx], needs [0x%llx] bytes of IO\n",
boundlen, io_request->ra_len);
DEBUG2("MEMORY BASE = [0x%x] length [0x%x]\n",
phdl->memory_base, phdl->memory_len);
DEBUG2("IO BASE = [0x%x] length [0x%x]\n",
phdl->io_base, phdl->io_len);
/* set up a IO resource map for NT bridge */
if (ndi_ra_map_setup(dip, NDI_RA_TYPE_IO) == NDI_FAILURE) {
DEBUG0("Can not setup ntbridge memory resource map\n");
return (PCICFG_FAILURE);
}
/* initialize the IO map */
if (ndi_ra_free(dip, boundbase, boundlen, NDI_RA_TYPE_IO,
NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Can not initalize ntbridge memory resource map\n");
return (PCICFG_FAILURE);
}
return (PCICFG_SUCCESS);
}
static int
pcicfg_ntbridge_configure_done(dev_info_t *dip)
{
pcicfg_range_t range[PCICFG_RANGE_LEN];
pcicfg_phdl_t *entry;
uint_t len;
pcicfg_bus_range_t bus_range;
int new_bus_range[2];
DEBUG1("Configuring children for %llx\n", dip);
entry = pcicfg_find_phdl(dip);
ASSERT(entry);
bzero((caddr_t)range,
sizeof (pcicfg_range_t) * PCICFG_RANGE_LEN);
range[1].child_hi = range[1].parent_hi |=
(PCI_REG_REL_M | PCI_ADDR_MEM32);
range[1].child_lo = range[1].parent_lo = (uint32_t)entry->memory_base;
range[0].child_hi = range[0].parent_hi |=
(PCI_REG_REL_M | PCI_ADDR_IO);
range[0].child_lo = range[0].parent_lo = (uint32_t)entry->io_base;
len = sizeof (pcicfg_bus_range_t);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"bus-range", (caddr_t)&bus_range, (int *)&len) != DDI_SUCCESS) {
DEBUG0("no bus-range property\n");
return (PCICFG_FAILURE);
}
new_bus_range[0] = bus_range.lo; /* primary bus number */
if (entry->highest_bus) { /* secondary bus number */
if (entry->highest_bus < bus_range.lo) {
cmn_err(CE_WARN,
"ntbridge bus range invalid !(%d,%d)\n",
bus_range.lo, entry->highest_bus);
new_bus_range[1] = bus_range.lo + entry->highest_bus;
}
else
new_bus_range[1] = entry->highest_bus;
}
else
new_bus_range[1] = bus_range.hi;
DEBUG2("ntbridge: bus range lo=%x, hi=%x\n",
new_bus_range[0], new_bus_range[1]);
if (ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"bus-range", new_bus_range, 2) != DDI_SUCCESS) {
DEBUG0("Failed to set bus-range property");
entry->error = PCICFG_FAILURE;
return (PCICFG_FAILURE);
}
#ifdef DEBUG
{
uint64_t unused;
unused = pcicfg_unused_space(&entry->io_hole, &len);
DEBUG2("ntbridge: Unused IO space %llx bytes over %d holes\n",
unused, len);
}
#endif
range[0].size_lo = entry->io_len;
if (pcicfg_update_ranges_prop(dip, &range[0])) {
DEBUG0("Failed to update ranges (i/o)\n");
entry->error = PCICFG_FAILURE;
return (PCICFG_FAILURE);
}
#ifdef DEBUG
{
uint64_t unused;
unused = pcicfg_unused_space(&entry->mem_hole, &len);
DEBUG2("ntbridge: Unused Mem space %llx bytes over %d holes\n",
unused, len);
}
#endif
range[1].size_lo = entry->memory_len;
if (pcicfg_update_ranges_prop(dip, &range[1])) {
DEBUG0("Failed to update ranges (memory)\n");
entry->error = PCICFG_FAILURE;
return (PCICFG_FAILURE);
}
return (PCICFG_SUCCESS);
}
static int
pcicfg_ntbridge_unconfigure_child(dev_info_t *new_device, uint_t devno)
{
dev_info_t *new_ntbridgechild;
int len, bus;
uint16_t vid;
ddi_acc_handle_t config_handle;
pcicfg_bus_range_t pci_bus_range;
len = sizeof (pcicfg_bus_range_t);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, new_device, DDI_PROP_DONTPASS,
"bus-range", (caddr_t)&pci_bus_range, &len) != DDI_SUCCESS) {
DEBUG0("no bus-range property\n");
return (PCICFG_FAILURE);
}
bus = pci_bus_range.lo; /* primary bus number of this bus node */
if (ndi_devi_alloc(new_device, DEVI_PSEUDO_NEXNAME,
(pnode_t)DEVI_SID_NODEID, &new_ntbridgechild) != NDI_SUCCESS) {
DEBUG0("pcicfg: Failed to alloc test node\n");
return (PCICFG_FAILURE);
}
if (pcicfg_add_config_reg(new_ntbridgechild, bus, devno, 0)
!= DDI_PROP_SUCCESS) {
cmn_err(CE_WARN,
"Unconfigure: Failed to add conf reg prop for ntbridge "
"child.\n");
(void) ndi_devi_free(new_ntbridgechild);
return (PCICFG_FAILURE);
}
if (pcicfg_config_setup(new_ntbridgechild, &config_handle)
!= DDI_SUCCESS) {
cmn_err(CE_WARN,
"pcicfg: Cannot map ntbridge child %x\n", devno);
(void) ndi_devi_free(new_ntbridgechild);
return (PCICFG_FAILURE);
}
/*
* See if there is any PCI HW at this location
* by reading the Vendor ID. If it returns with 0xffff
* then there is no hardware at this location.
*/
vid = pci_config_get16(config_handle, PCI_CONF_VENID);
pci_config_teardown(&config_handle);
(void) ndi_devi_free(new_ntbridgechild);
if (vid == 0xffff)
return (PCICFG_NODEVICE);
return (pcicfg_unconfigure(new_device, devno, PCICFG_ALL_FUNC, 0));
}
static int
pcicfg_ntbridge_unconfigure(dev_info_t *dip)
{
pcicfg_phdl_t *entry = pcicfg_find_phdl(dip);
uint_t *bus;
int k, rc = PCICFG_FAILURE;
if (entry->memory_len)
if (ndi_ra_map_destroy(dip, NDI_RA_TYPE_MEM) == NDI_FAILURE) {
DEBUG1("cannot destroy ntbridge memory map size=%x\n",
entry->memory_len);
return (PCICFG_FAILURE);
}
if (entry->io_len)
if (ndi_ra_map_destroy(dip, NDI_RA_TYPE_IO) == NDI_FAILURE) {
DEBUG1("cannot destroy ntbridge io map size=%x\n",
entry->io_len);
return (PCICFG_FAILURE);
}
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "bus-range", (caddr_t)&bus,
&k) != DDI_PROP_SUCCESS) {
DEBUG0("ntbridge: Failed to read bus-range property\n");
return (rc);
}
DEBUG2("ntbridge: Need to free bus [%d] range [%d]\n",
bus[0], bus[1] - bus[0] + 1);
if (ndi_ra_free(ddi_get_parent(dip),
(uint64_t)bus[0], (uint64_t)(bus[1] - bus[0] + 1),
NDI_RA_TYPE_PCI_BUSNUM, NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("ntbridge: Failed to free a bus number\n");
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)bus, k);
return (rc);
}
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)bus, k);
/*
* Since our resources will be freed at the parent level,
* just reset these values.
*/
entry->memory_len = 0;
entry->io_len = 0;
/* the following will also free hole data. */
return (pcicfg_destroy_phdl(dip));
}
static int
pcicfg_is_ntbridge(dev_info_t *dip)
{
ddi_acc_handle_t config_handle;
uint8_t class, subclass;
int rc = DDI_SUCCESS;
if (pcicfg_config_setup(dip, &config_handle) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"pcicfg: cannot map config space, to get map type\n");
return (DDI_FAILURE);
}
class = pci_config_get8(config_handle, PCI_CONF_BASCLASS);
subclass = pci_config_get8(config_handle, PCI_CONF_SUBCLASS);
/* check for class=6, subclass=9, for non transparent bridges. */
if ((class != PCI_CLASS_BRIDGE) || (subclass != PCI_BRIDGE_STBRIDGE))
rc = DDI_FAILURE;
DEBUG3("pcicfg: checking device %x,%x for indirect map. rc=%d\n",
pci_config_get16(config_handle, PCI_CONF_VENID),
pci_config_get16(config_handle, PCI_CONF_DEVID),
rc);
pci_config_teardown(&config_handle);
return (rc);
}
/*
* this function is called only for SPARC platforms, where we may have
* a mix n' match of direct vs indirectly mapped configuration space.
* On x86, this function does not get called. We always return TRUE
* via a macro for x86.
*/
/*ARGSUSED*/
static int
pcicfg_indirect_map(dev_info_t *dip)
{
#if defined(__sparc)
int rc = DDI_FAILURE;
if (ddi_prop_get_int(DDI_DEV_T_ANY, ddi_get_parent(dip), 0,
PCI_DEV_CONF_MAP_PROP, DDI_FAILURE) != DDI_FAILURE)
rc = DDI_SUCCESS;
else
if (ddi_prop_get_int(DDI_DEV_T_ANY, ddi_get_parent(dip),
0, PCI_BUS_CONF_MAP_PROP,
DDI_FAILURE) != DDI_FAILURE)
rc = DDI_SUCCESS;
DEBUG1("pci conf map = %d", rc);
return (rc);
#else
return (DDI_SUCCESS);
#endif
}
static uint_t
pcicfg_get_ntbridge_child_range(dev_info_t *dip, uint64_t *boundbase,
uint64_t *boundlen, uint_t space_type)
{
int length, found = DDI_FAILURE, acount, i, ibridge;
pci_regspec_t *assigned;
if ((ibridge = pcicfg_is_ntbridge(dip)) == DDI_FAILURE)
return (found);
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&assigned,
&length) != DDI_PROP_SUCCESS) {
DEBUG1("Failed to get assigned-addresses property %llx\n", dip);
return (found);
}
DEBUG1("pcicfg: ntbridge child range: dip = %s\n",
ddi_driver_name(dip));
acount = length / sizeof (pci_regspec_t);
for (i = 0; i < acount; i++) {
if ((PCI_REG_REG_G(assigned[i].pci_phys_hi) ==
pcicfg_indirect_map_devs[ibridge].mem_range_bar_offset) &&
(space_type == PCI_BASE_SPACE_MEM)) {
found = DDI_SUCCESS;
break;
} else {
if ((PCI_REG_REG_G(assigned[i].pci_phys_hi) ==
pcicfg_indirect_map_devs[ibridge].\
io_range_bar_offset) &&
(space_type == PCI_BASE_SPACE_IO)) {
found = DDI_SUCCESS;
break;
}
}
}
DEBUG3("pcicfg: ntbridge child range: space=%x, base=%lx, len=%lx\n",
space_type, assigned[i].pci_phys_low, assigned[i].pci_size_low);
if (found == DDI_SUCCESS) {
*boundbase = assigned[i].pci_phys_low;
*boundlen = assigned[i].pci_size_low;
}
kmem_free(assigned, length);
return (found);
}
/*
* This will turn resources allocated by pcicfg_configure()
* and remove the device tree from the Hotplug Connection (CN)
* and below. The routine assumes the devices have their
* drivers detached.
*/
int
pcicfg_unconfigure(dev_info_t *devi, uint_t device, uint_t function,
pcicfg_flags_t flags)
{
dev_info_t *child_dip;
int func;
int i;
int max_function;
int trans_device;
int circ;
boolean_t is_pcie;
if (pcie_ari_is_enabled(devi) == PCIE_ARI_FORW_ENABLED)
max_function = PCICFG_MAX_ARI_FUNCTION;
else
max_function = PCICFG_MAX_FUNCTION;
/*
* Cycle through devices to make sure none are busy.
* If a single device is busy fail the whole unconfigure.
*/
is_pcie = is_pcie_fabric(devi);
ndi_devi_enter(devi, &circ);
for (func = 0; func < max_function; func++) {
if (max_function == PCICFG_MAX_ARI_FUNCTION)
trans_device = func >> 3; /* ARI Device */
else
trans_device = device;
if ((child_dip = pcicfg_devi_find(devi, trans_device,
(func & 0x7))) == NULL)
continue;
if (ndi_devi_offline(child_dip, NDI_UNCONFIG) == NDI_SUCCESS)
continue;
/*
* Device function is busy. Before returning we have to
* put all functions back online which were taken
* offline during the process.
*/
DEBUG2("Device [0x%x] function [%x] is busy\n", device, func);
/*
* If we are only asked to offline one specific function,
* and that fails, we just simply return.
*/
if (function != PCICFG_ALL_FUNC)
return (PCICFG_FAILURE);
for (i = 0; i < func; i++) {
if (max_function == PCICFG_MAX_ARI_FUNCTION)
trans_device = i >> 3;
if ((child_dip =
pcicfg_devi_find(devi, trans_device, (i & 7)))
== NULL) {
DEBUG0(
"No more devices to put back on line!!\n");
/*
* Made it through all functions
*/
continue;
}
if (ndi_devi_online(child_dip, NDI_CONFIG)
!= NDI_SUCCESS) {
DEBUG0("Failed to put back devices state\n");
goto fail;
}
}
goto fail;
}
/*
* Now, tear down all devinfo nodes for this Connector.
*/
for (func = 0; func < max_function; func++) {
if (max_function == PCICFG_MAX_ARI_FUNCTION)
trans_device = func >> 3; /* ARI Device */
else
trans_device = device;
if ((child_dip = pcicfg_devi_find(devi,
trans_device, (func & 7))) == NULL) {
DEBUG0("No more devices to tear down!\n");
continue;
}
DEBUG2("Tearing down device [0x%x] function [0x%x]\n",
trans_device, (func & 7));
if (pcicfg_is_ntbridge(child_dip) != DDI_FAILURE)
if (pcicfg_ntbridge_unconfigure(child_dip) !=
PCICFG_SUCCESS) {
cmn_err(CE_WARN,
"ntbridge: unconfigure failed\n");
goto fail;
}
if (pcicfg_teardown_device(child_dip, flags, is_pcie)
!= PCICFG_SUCCESS) {
DEBUG2("Failed to tear down device [0x%x]"
"function [0x%x]\n",
trans_device, func & 7);
goto fail;
}
}
if (pcie_ari_is_enabled(devi) == PCIE_ARI_FORW_ENABLED) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, devi, "ari-enabled");
(void) pcie_ari_disable(devi);
}
ndi_devi_exit(devi, circ);
return (PCICFG_SUCCESS);
fail:
ndi_devi_exit(devi, circ);
return (PCICFG_FAILURE);
}
static int
pcicfg_teardown_device(dev_info_t *dip, pcicfg_flags_t flags, boolean_t is_pcie)
{
ddi_acc_handle_t config_handle;
/*
* Free up resources associated with 'dip'
*/
if (pcicfg_free_resources(dip, flags) != PCICFG_SUCCESS) {
DEBUG0("Failed to free resources\n");
return (PCICFG_FAILURE);
}
/*
* This will disable the device
*/
if (pci_config_setup(dip, &config_handle) != PCICFG_SUCCESS) {
return (PCICFG_FAILURE);
}
pcicfg_device_off(config_handle);
pci_config_teardown(&config_handle);
/*
* free pcie_bus_t for the sub-tree
*/
if (is_pcie) {
if (ddi_get_child(dip) != NULL)
pcie_fab_fini_bus(dip, PCIE_BUS_ALL);
pcie_fini_bus(dip, PCIE_BUS_ALL);
}
/*
* The framework provides this routine which can
* tear down a sub-tree.
*/
if (ndi_devi_offline(dip, NDI_DEVI_REMOVE) != NDI_SUCCESS) {
DEBUG0("Failed to offline and remove node\n");
return (PCICFG_FAILURE);
}
return (PCICFG_SUCCESS);
}
/*
* BEGIN GENERIC SUPPORT ROUTINES
*/
static pcicfg_phdl_t *
pcicfg_find_phdl(dev_info_t *dip)
{
pcicfg_phdl_t *entry;
mutex_enter(&pcicfg_list_mutex);
for (entry = pcicfg_phdl_list; entry != NULL; entry = entry->next) {
if (entry->dip == dip) {
mutex_exit(&pcicfg_list_mutex);
return (entry);
}
}
mutex_exit(&pcicfg_list_mutex);
/*
* Did'nt find entry - create one
*/
return (pcicfg_create_phdl(dip));
}
static pcicfg_phdl_t *
pcicfg_create_phdl(dev_info_t *dip)
{
pcicfg_phdl_t *new;
new = (pcicfg_phdl_t *)kmem_zalloc(sizeof (pcicfg_phdl_t),
KM_SLEEP);
new->dip = dip;
mutex_enter(&pcicfg_list_mutex);
new->next = pcicfg_phdl_list;
pcicfg_phdl_list = new;
mutex_exit(&pcicfg_list_mutex);
return (new);
}
static int
pcicfg_destroy_phdl(dev_info_t *dip)
{
pcicfg_phdl_t *entry;
pcicfg_phdl_t *follow = NULL;
mutex_enter(&pcicfg_list_mutex);
for (entry = pcicfg_phdl_list; entry != NULL; follow = entry,
entry = entry->next) {
if (entry->dip == dip) {
if (entry == pcicfg_phdl_list) {
pcicfg_phdl_list = entry->next;
} else {
follow->next = entry->next;
}
/*
* If this entry has any allocated memory
* or IO space associated with it, that
* must be freed up.
*/
if (entry->memory_len > 0) {
(void) ndi_ra_free(ddi_get_parent(dip),
entry->memory_base,
entry->memory_len,
NDI_RA_TYPE_MEM, NDI_RA_PASS);
}
pcicfg_free_hole(&entry->mem_hole);
if (entry->io_len > 0) {
(void) ndi_ra_free(ddi_get_parent(dip),
entry->io_base,
entry->io_len,
NDI_RA_TYPE_IO, NDI_RA_PASS);
}
pcicfg_free_hole(&entry->io_hole);
/*
* Destroy this entry
*/
kmem_free((caddr_t)entry, sizeof (pcicfg_phdl_t));
mutex_exit(&pcicfg_list_mutex);
return (PCICFG_SUCCESS);
}
}
mutex_exit(&pcicfg_list_mutex);
/*
* Did'nt find the entry
*/
return (PCICFG_FAILURE);
}
static int
pcicfg_program_ap(dev_info_t *dip)
{
pcicfg_phdl_t *phdl;
uint8_t header_type;
ddi_acc_handle_t handle;
pcicfg_phdl_t *entry;
if (pcicfg_config_setup(dip, &handle) != DDI_SUCCESS) {
DEBUG0("Failed to map config space!\n");
return (PCICFG_FAILURE);
}
header_type = pci_config_get8(handle, PCI_CONF_HEADER);
(void) pcicfg_config_teardown(&handle);
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_PPB) {
if (pcicfg_allocate_chunk(dip) != PCICFG_SUCCESS) {
DEBUG0("Not enough memory to hotplug\n");
(void) pcicfg_destroy_phdl(dip);
return (PCICFG_FAILURE);
}
phdl = pcicfg_find_phdl(dip);
ASSERT(phdl);
(void) pcicfg_bridge_assign(dip, (void *)phdl);
if (phdl->error != PCICFG_SUCCESS) {
DEBUG0("Problem assigning bridge\n");
(void) pcicfg_destroy_phdl(dip);
return (phdl->error);
}
/*
* Successfully allocated and assigned
* memory. Set the memory and IO length
* to zero so when the handle is freed up
* it will not de-allocate assigned resources.
*/
entry = (pcicfg_phdl_t *)phdl;
entry->memory_len = entry->io_len = 0;
/*
* Free up the "entry" structure.
*/
(void) pcicfg_destroy_phdl(dip);
} else {
if (pcicfg_device_assign(dip) != PCICFG_SUCCESS) {
return (PCICFG_FAILURE);
}
}
return (PCICFG_SUCCESS);
}
static int
pcicfg_bridge_assign(dev_info_t *dip, void *hdl)
{
ddi_acc_handle_t handle;
pci_regspec_t *reg;
int length;
int rcount;
int i;
int offset;
uint64_t mem_answer;
uint32_t io_answer;
int count;
uint8_t header_type;
pcicfg_range_t range[PCICFG_RANGE_LEN];
int bus_range[2];
pcicfg_phdl_t *entry = (pcicfg_phdl_t *)hdl;
DEBUG1("bridge assign: assigning addresses to %s\n", ddi_get_name(dip));
if (entry == NULL) {
DEBUG0("Failed to get entry\n");
return (DDI_WALK_TERMINATE);
}
entry->error = PCICFG_SUCCESS;
if (pcicfg_config_setup(dip, &handle) != DDI_SUCCESS) {
DEBUG0("Failed to map config space!\n");
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
header_type = pci_config_get8(handle, PCI_CONF_HEADER);
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_PPB) {
bzero((caddr_t)range,
sizeof (pcicfg_range_t) * PCICFG_RANGE_LEN);
(void) pcicfg_setup_bridge(entry, handle, dip);
range[0].child_hi = range[0].parent_hi |=
(PCI_REG_REL_M | PCI_ADDR_IO);
range[0].child_lo = range[0].parent_lo =
entry->io_last;
range[1].child_hi = range[1].parent_hi |=
(PCI_REG_REL_M | PCI_ADDR_MEM32);
range[1].child_lo = range[1].parent_lo =
entry->memory_last;
ndi_devi_enter(dip, &count);
ddi_walk_devs(ddi_get_child(dip),
pcicfg_bridge_assign, (void *)entry);
ndi_devi_exit(dip, count);
(void) pcicfg_update_bridge(entry, handle);
bus_range[0] = pci_config_get8(handle, PCI_BCNF_SECBUS);
bus_range[1] = pci_config_get8(handle, PCI_BCNF_SUBBUS);
if (ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"bus-range", bus_range, 2) != DDI_SUCCESS) {
DEBUG0("Failed to set bus-range property");
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
if (entry->io_len > 0) {
range[0].size_lo = entry->io_last - entry->io_base;
if (pcicfg_update_ranges_prop(dip, &range[0])) {
DEBUG0("Failed to update ranges (i/o)\n");
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
}
if (entry->memory_len > 0) {
range[1].size_lo =
entry->memory_last - entry->memory_base;
if (pcicfg_update_ranges_prop(dip, &range[1])) {
DEBUG0("Failed to update ranges (memory)\n");
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
}
(void) pcicfg_device_on(handle);
PCICFG_DUMP_BRIDGE_CONFIG(handle);
return (DDI_WALK_PRUNECHILD);
}
/*
* If there is an interrupt pin set program
* interrupt line with default values.
*/
if (pci_config_get8(handle, PCI_CONF_IPIN)) {
pci_config_put8(handle, PCI_CONF_ILINE, 0xf);
}
/*
* A single device (under a bridge).
* For each "reg" property with a length, allocate memory
* and program the base registers.
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (caddr_t)&reg,
&length) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read reg property\n");
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
rcount = length / sizeof (pci_regspec_t);
offset = PCI_CONF_BASE0;
for (i = 0; i < rcount; i++) {
if ((reg[i].pci_size_low != 0)||
(reg[i].pci_size_hi != 0)) {
offset = PCI_REG_REG_G(reg[i].pci_phys_hi);
switch (PCI_REG_ADDR_G(reg[i].pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
(void) pcicfg_get_mem(entry,
reg[i].pci_size_low, &mem_answer);
pci_config_put64(handle, offset, mem_answer);
DEBUG2("REGISTER off %x (64)LO ----> [0x%x]\n",
offset,
pci_config_get32(handle, offset));
DEBUG2("REGISTER off %x (64)HI ----> [0x%x]\n",
offset + 4,
pci_config_get32(handle, offset + 4));
reg[i].pci_phys_low = PCICFG_HIADDR(mem_answer);
reg[i].pci_phys_mid =
PCICFG_LOADDR(mem_answer);
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
/* allocate memory space from the allocator */
(void) pcicfg_get_mem(entry,
reg[i].pci_size_low, &mem_answer);
pci_config_put32(handle,
offset, (uint32_t)mem_answer);
DEBUG2("REGISTER off %x(32)LO ----> [0x%x]\n",
offset,
pci_config_get32(handle, offset));
reg[i].pci_phys_low = (uint32_t)mem_answer;
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
/* allocate I/O space from the allocator */
(void) pcicfg_get_io(entry,
reg[i].pci_size_low, &io_answer);
pci_config_put32(handle, offset, io_answer);
DEBUG2("REGISTER off %x (I/O)LO ----> [0x%x]\n",
offset,
pci_config_get32(handle, offset));
reg[i].pci_phys_low = io_answer;
break;
default:
DEBUG0("Unknown register type\n");
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
} /* switch */
/*
* Now that memory locations are assigned,
* update the assigned address property.
*/
if (pcicfg_update_assigned_prop(dip,
&reg[i]) != PCICFG_SUCCESS) {
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
}
}
(void) pcicfg_device_on(handle);
PCICFG_DUMP_DEVICE_CONFIG(handle);
(void) pcicfg_config_teardown(&handle);
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)reg, length);
return (DDI_WALK_CONTINUE);
}
static int
pcicfg_device_assign(dev_info_t *dip)
{
ddi_acc_handle_t handle;
pci_regspec_t *reg;
int length;
int rcount;
int i;
int offset;
ndi_ra_request_t request;
uint64_t answer;
uint64_t alen;
DEBUG1("%llx now under configuration\n", dip);
/*
* XXX Failure here should be noted
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (caddr_t)&reg,
&length) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read reg property\n");
return (PCICFG_FAILURE);
}
if (pcicfg_config_setup(dip, &handle) != DDI_SUCCESS) {
DEBUG0("Failed to map config space!\n");
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)reg, length);
return (PCICFG_FAILURE);
}
/*
* A single device
*
* For each "reg" property with a length, allocate memory
* and program the base registers.
*/
/*
* If there is an interrupt pin set program
* interrupt line with default values.
*/
if (pci_config_get8(handle, PCI_CONF_IPIN)) {
pci_config_put8(handle, PCI_CONF_ILINE, 0xf);
}
bzero((caddr_t)&request, sizeof (ndi_ra_request_t));
request.ra_flags = NDI_RA_ALIGN_SIZE;
request.ra_boundbase = 0;
request.ra_boundlen = PCICFG_4GIG_LIMIT;
rcount = length / sizeof (pci_regspec_t);
for (i = 0; i < rcount; i++) {
if ((reg[i].pci_size_low != 0)||
(reg[i].pci_size_hi != 0)) {
offset = PCI_REG_REG_G(reg[i].pci_phys_hi);
request.ra_len = reg[i].pci_size_low;
switch (PCI_REG_ADDR_G(reg[i].pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
request.ra_flags &= ~NDI_RA_ALLOC_BOUNDED;
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate 64b mem\n");
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_FAILURE);
}
DEBUG3("64 addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
/* program the low word */
pci_config_put32(handle,
offset, PCICFG_LOADDR(answer));
/* program the high word */
pci_config_put32(handle, offset + 4,
PCICFG_HIADDR(answer));
reg[i].pci_phys_low = PCICFG_LOADDR(answer);
reg[i].pci_phys_mid = PCICFG_HIADDR(answer);
/* adjust to 32b address space when possible */
if ((answer + alen) <= PCICFG_4GIG_LIMIT)
reg[i].pci_phys_hi ^=
PCI_ADDR_MEM64 ^ PCI_ADDR_MEM32;
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
request.ra_flags |= NDI_RA_ALLOC_BOUNDED;
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate 32b mem\n");
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_FAILURE);
}
DEBUG3("32 addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
/* program the low word */
pci_config_put32(handle,
offset, PCICFG_LOADDR(answer));
reg[i].pci_phys_low = PCICFG_LOADDR(answer);
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
/* allocate I/O space from the allocator */
request.ra_flags |= NDI_RA_ALLOC_BOUNDED;
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_IO, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate I/O\n");
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_FAILURE);
}
DEBUG3("I/O addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
pci_config_put32(handle,
offset, PCICFG_LOADDR(answer));
reg[i].pci_phys_low = PCICFG_LOADDR(answer);
break;
default:
DEBUG0("Unknown register type\n");
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_FAILURE);
} /* switch */
/*
* Now that memory locations are assigned,
* update the assigned address property.
*/
if (pcicfg_update_assigned_prop(dip,
&reg[i]) != PCICFG_SUCCESS) {
kmem_free(reg, length);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_FAILURE);
}
}
}
(void) pcicfg_device_on(handle);
kmem_free(reg, length);
PCICFG_DUMP_DEVICE_CONFIG(handle);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_SUCCESS);
}
static int
pcicfg_device_assign_readonly(dev_info_t *dip)
{
ddi_acc_handle_t handle;
pci_regspec_t *assigned;
int length;
int acount;
int i;
ndi_ra_request_t request;
uint64_t answer;
uint64_t alen;
DEBUG1("%llx now under configuration\n", dip);
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&assigned,
&length) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read assigned-addresses property\n");
return (PCICFG_FAILURE);
}
if (pcicfg_config_setup(dip, &handle) != DDI_SUCCESS) {
DEBUG0("Failed to map config space!\n");
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)assigned, length);
return (PCICFG_FAILURE);
}
/*
* For each "assigned-addresses" property entry with a length,
* call the memory allocation routines to return the
* resource.
*/
/*
* If there is an interrupt pin set program
* interrupt line with default values.
*/
if (pci_config_get8(handle, PCI_CONF_IPIN)) {
pci_config_put8(handle, PCI_CONF_ILINE, 0xf);
}
bzero((caddr_t)&request, sizeof (ndi_ra_request_t));
request.ra_flags = NDI_RA_ALLOC_SPECIFIED; /* specified addr */
request.ra_boundbase = 0;
request.ra_boundlen = PCICFG_4GIG_LIMIT;
acount = length / sizeof (pci_regspec_t);
for (i = 0; i < acount; i++) {
if ((assigned[i].pci_size_low != 0)||
(assigned[i].pci_size_hi != 0)) {
request.ra_len = assigned[i].pci_size_low;
switch (PCI_REG_ADDR_G(assigned[i].pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
request.ra_addr = (uint64_t)PCICFG_LADDR(
assigned[i].pci_phys_low,
assigned[i].pci_phys_mid);
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate 64b mem\n");
kmem_free(assigned, length);
return (PCICFG_FAILURE);
}
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
request.ra_addr = (uint64_t)
assigned[i].pci_phys_low;
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate 32b mem\n");
kmem_free(assigned, length);
return (PCICFG_FAILURE);
}
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
request.ra_addr = (uint64_t)
assigned[i].pci_phys_low;
/* allocate I/O space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_IO, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate I/O\n");
kmem_free(assigned, length);
return (PCICFG_FAILURE);
}
break;
default:
DEBUG0("Unknown register type\n");
kmem_free(assigned, length);
return (PCICFG_FAILURE);
} /* switch */
}
}
(void) pcicfg_device_on(handle);
kmem_free(assigned, length);
PCICFG_DUMP_DEVICE_CONFIG(handle);
(void) pcicfg_config_teardown(&handle);
return (PCICFG_SUCCESS);
}
/*
* The "dip" passed to this routine is assumed to be
* the device at the Hotplug Connection (CN). Currently it is
* assumed to be a bridge.
*/
static int
pcicfg_allocate_chunk(dev_info_t *dip)
{
pcicfg_phdl_t *phdl;
ndi_ra_request_t *mem_request;
ndi_ra_request_t *io_request;
uint64_t mem_answer;
uint64_t io_answer;
int count;
uint64_t alen;
/*
* This should not find an existing entry - so
* it will create a new one.
*/
phdl = pcicfg_find_phdl(dip);
ASSERT(phdl);
mem_request = &phdl->mem_req;
io_request = &phdl->io_req;
/*
* From this point in the tree - walk the devices,
* The function passed in will read and "sum" up
* the memory and I/O requirements and put them in
* structure "phdl".
*/
ndi_devi_enter(ddi_get_parent(dip), &count);
ddi_walk_devs(dip, pcicfg_sum_resources, (void *)phdl);
ndi_devi_exit(ddi_get_parent(dip), count);
if (phdl->error != PCICFG_SUCCESS) {
DEBUG0("Failure summing resources\n");
return (phdl->error);
}
/*
* Call into the memory allocator with the request.
* Record the addresses returned in the phdl
*/
DEBUG1("Connector requires [0x%x] bytes of memory space\n",
mem_request->ra_len);
DEBUG1("Connector requires [0x%x] bytes of I/O space\n",
io_request->ra_len);
mem_request->ra_align_mask =
PCICFG_MEMGRAN - 1; /* 1M alignment on memory space */
io_request->ra_align_mask =
PCICFG_IOGRAN - 1; /* 4K alignment on I/O space */
io_request->ra_boundbase = 0;
io_request->ra_boundlen = PCICFG_4GIG_LIMIT;
io_request->ra_flags |= NDI_RA_ALLOC_BOUNDED;
mem_request->ra_len =
PCICFG_ROUND_UP(mem_request->ra_len, PCICFG_MEMGRAN);
io_request->ra_len =
PCICFG_ROUND_UP(io_request->ra_len, PCICFG_IOGRAN);
if (ndi_ra_alloc(ddi_get_parent(dip),
mem_request, &mem_answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Failed to allocate memory\n");
return (PCICFG_FAILURE);
}
phdl->memory_base = phdl->memory_last = mem_answer;
phdl->memory_len = alen;
phdl->mem_hole.start = phdl->memory_base;
phdl->mem_hole.len = phdl->memory_len;
phdl->mem_hole.next = (hole_t *)NULL;
if (ndi_ra_alloc(ddi_get_parent(dip), io_request, &io_answer,
&alen, NDI_RA_TYPE_IO, NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Failed to allocate I/O space\n");
(void) ndi_ra_free(ddi_get_parent(dip), mem_answer,
alen, NDI_RA_TYPE_MEM, NDI_RA_PASS);
phdl->memory_len = phdl->io_len = 0;
return (PCICFG_FAILURE);
}
phdl->io_base = phdl->io_last = (uint32_t)io_answer;
phdl->io_len = (uint32_t)alen;
phdl->io_hole.start = phdl->io_base;
phdl->io_hole.len = phdl->io_len;
phdl->io_hole.next = (hole_t *)NULL;
DEBUG2("MEMORY BASE = [0x%x] length [0x%x]\n",
phdl->memory_base, phdl->memory_len);
DEBUG2("IO BASE = [0x%x] length [0x%x]\n",
phdl->io_base, phdl->io_len);
return (PCICFG_SUCCESS);
}
#ifdef DEBUG
/*
* This function is useful in debug mode, where we can measure how
* much memory was wasted/unallocated in bridge device's domain.
*/
static uint64_t
pcicfg_unused_space(hole_t *hole, uint32_t *hole_count)
{
uint64_t len = 0;
uint32_t count = 0;
do {
len += hole->len;
hole = hole->next;
count++;
} while (hole);
*hole_count = count;
return (len);
}
#endif
/*
* This function frees data structures that hold the hole information
* which are allocated in pcicfg_alloc_hole(). This is not freeing
* any memory allocated through NDI calls.
*/
static void
pcicfg_free_hole(hole_t *addr_hole)
{
hole_t *nhole, *hole = addr_hole->next;
while (hole) {
nhole = hole->next;
kmem_free(hole, sizeof (hole_t));
hole = nhole;
}
}
static uint64_t
pcicfg_alloc_hole(hole_t *addr_hole, uint64_t *alast, uint32_t length)
{
uint64_t actual_hole_start, ostart, olen;
hole_t *hole = addr_hole, *thole, *nhole;
do {
actual_hole_start = PCICFG_ROUND_UP(hole->start, length);
if (((actual_hole_start - hole->start) + length) <= hole->len) {
DEBUG3("hole found. start %llx, len %llx, req=%x\n",
hole->start, hole->len, length);
ostart = hole->start;
olen = hole->len;
/* current hole parameters adjust */
if ((actual_hole_start - hole->start) == 0) {
hole->start += length;
hole->len -= length;
if (hole->start > *alast)
*alast = hole->start;
} else {
hole->len = actual_hole_start - hole->start;
nhole = (hole_t *)kmem_zalloc(sizeof (hole_t),
KM_SLEEP);
nhole->start = actual_hole_start + length;
nhole->len = (ostart + olen) - nhole->start;
nhole->next = NULL;
thole = hole->next;
hole->next = nhole;
nhole->next = thole;
if (nhole->start > *alast)
*alast = nhole->start;
DEBUG2("put new hole to %llx, %llx\n",
nhole->start, nhole->len);
}
DEBUG2("adjust current hole to %llx, %llx\n",
hole->start, hole->len);
break;
}
actual_hole_start = 0;
hole = hole->next;
} while (hole);
DEBUG1("return hole at %llx\n", actual_hole_start);
return (actual_hole_start);
}
static void
pcicfg_get_mem(pcicfg_phdl_t *entry,
uint32_t length, uint64_t *ans)
{
uint64_t new_mem;
/* See if there is a hole, that can hold this request. */
new_mem = pcicfg_alloc_hole(&entry->mem_hole, &entry->memory_last,
length);
if (new_mem) { /* if non-zero, found a hole. */
if (ans != NULL)
*ans = new_mem;
} else
cmn_err(CE_WARN, "No %u bytes memory window for %s\n",
length, ddi_get_name(entry->dip));
}
static void
pcicfg_get_io(pcicfg_phdl_t *entry,
uint32_t length, uint32_t *ans)
{
uint32_t new_io;
uint64_t io_last;
/*
* See if there is a hole, that can hold this request.
* Pass 64 bit parameters and then truncate to 32 bit.
*/
io_last = entry->io_last;
new_io = (uint32_t)pcicfg_alloc_hole(&entry->io_hole, &io_last, length);
if (new_io) { /* if non-zero, found a hole. */
entry->io_last = (uint32_t)io_last;
if (ans != NULL)
*ans = new_io;
} else
cmn_err(CE_WARN, "No %u bytes IO space window for %s\n",
length, ddi_get_name(entry->dip));
}
static int
pcicfg_sum_resources(dev_info_t *dip, void *hdl)
{
pcicfg_phdl_t *entry = (pcicfg_phdl_t *)hdl;
pci_regspec_t *pci_rp;
int length;
int rcount;
int i;
ndi_ra_request_t *mem_request;
ndi_ra_request_t *io_request;
uint8_t header_type;
ddi_acc_handle_t handle;
entry->error = PCICFG_SUCCESS;
mem_request = &entry->mem_req;
io_request = &entry->io_req;
if (pcicfg_config_setup(dip, &handle) != DDI_SUCCESS) {
DEBUG0("Failed to map config space!\n");
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
header_type = pci_config_get8(handle, PCI_CONF_HEADER);
/*
* If its a bridge - just record the highest bus seen
*/
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_PPB) {
if (entry->highest_bus < pci_config_get8(handle,
PCI_BCNF_SECBUS)) {
entry->highest_bus =
pci_config_get8(handle, PCI_BCNF_SECBUS);
}
(void) pcicfg_config_teardown(&handle);
entry->error = PCICFG_FAILURE;
return (DDI_WALK_CONTINUE);
} else {
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (caddr_t)&pci_rp,
&length) != DDI_PROP_SUCCESS) {
/*
* If one node in (the subtree of nodes)
* does'nt have a "reg" property fail the
* allocation.
*/
entry->memory_len = 0;
entry->io_len = 0;
entry->error = PCICFG_FAILURE;
return (DDI_WALK_TERMINATE);
}
/*
* For each "reg" property with a length, add that to the
* total memory (or I/O) to allocate.
*/
rcount = length / sizeof (pci_regspec_t);
for (i = 0; i < rcount; i++) {
switch (PCI_REG_ADDR_G(pci_rp[i].pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
mem_request->ra_len =
pci_rp[i].pci_size_low +
PCICFG_ROUND_UP(mem_request->ra_len,
pci_rp[i].pci_size_low);
DEBUG1("ADDING 32 --->0x%x\n",
pci_rp[i].pci_size_low);
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
mem_request->ra_len =
pci_rp[i].pci_size_low +
PCICFG_ROUND_UP(mem_request->ra_len,
pci_rp[i].pci_size_low);
DEBUG1("ADDING 64 --->0x%x\n",
pci_rp[i].pci_size_low);
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
io_request->ra_len =
pci_rp[i].pci_size_low +
PCICFG_ROUND_UP(io_request->ra_len,
pci_rp[i].pci_size_low);
DEBUG1("ADDING I/O --->0x%x\n",
pci_rp[i].pci_size_low);
break;
default:
/* Config space register - not included */
break;
}
}
/*
* free the memory allocated by ddi_getlongprop
*/
kmem_free(pci_rp, length);
/*
* continue the walk to the next sibling to sum memory
*/
(void) pcicfg_config_teardown(&handle);
return (DDI_WALK_CONTINUE);
}
}
static int
pcicfg_find_resource_end(dev_info_t *dip, void *hdl)
{
pcicfg_phdl_t *entry_p = (pcicfg_phdl_t *)hdl;
pci_regspec_t *pci_ap;
pcicfg_range_t *ranges;
int length;
int rcount;
int i;
entry_p->error = PCICFG_SUCCESS;
if (dip == entry_p->dip) {
DEBUG0("Don't include parent bridge node\n");
return (DDI_WALK_CONTINUE);
}
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "ranges",
(caddr_t)&ranges, &length) != DDI_PROP_SUCCESS) {
DEBUG0("Node doesn't have ranges\n");
goto ap;
}
rcount = length / sizeof (pcicfg_range_t);
for (i = 0; i < rcount; i++) {
uint64_t base;
uint64_t mid = ranges[i].child_mid;
uint64_t lo = ranges[i].child_lo;
uint64_t size = ranges[i].size_lo;
switch (PCI_REG_ADDR_G(ranges[i].child_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
base = entry_p->memory_base;
entry_p->memory_base = MAX(base, lo + size);
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
base = entry_p->memory_base;
entry_p->memory_base = MAX(base,
PCICFG_LADDR(lo, mid) + size);
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
base = entry_p->io_base;
entry_p->io_base = MAX(base, lo + size);
break;
}
}
kmem_free(ranges, length);
return (DDI_WALK_CONTINUE);
ap: if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses",
(caddr_t)&pci_ap, &length) != DDI_PROP_SUCCESS) {
DEBUG0("Node doesn't have assigned-addresses\n");
return (DDI_WALK_CONTINUE);
}
rcount = length / sizeof (pci_regspec_t);
for (i = 0; i < rcount; i++) {
switch (PCI_REG_ADDR_G(pci_ap[i].pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
if ((pci_ap[i].pci_phys_low +
pci_ap[i].pci_size_low) >
entry_p->memory_base) {
entry_p->memory_base =
pci_ap[i].pci_phys_low +
pci_ap[i].pci_size_low;
}
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
if ((PCICFG_LADDR(pci_ap[i].pci_phys_low,
pci_ap[i].pci_phys_mid) +
pci_ap[i].pci_size_low) >
entry_p->memory_base) {
entry_p->memory_base = PCICFG_LADDR(
pci_ap[i].pci_phys_low,
pci_ap[i].pci_phys_mid) +
pci_ap[i].pci_size_low;
}
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
if ((pci_ap[i].pci_phys_low +
pci_ap[i].pci_size_low) >
entry_p->io_base) {
entry_p->io_base =
pci_ap[i].pci_phys_low +
pci_ap[i].pci_size_low;
}
break;
}
}
/*
* free the memory allocated by ddi_getlongprop
*/
kmem_free(pci_ap, length);
/*
* continue the walk to the next sibling to sum memory
*/
return (DDI_WALK_CONTINUE);
}
static int
pcicfg_free_bridge_resources(dev_info_t *dip)
{
pcicfg_range_t *ranges;
uint_t *bus;
int k;
int length;
int i;
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "ranges", (caddr_t)&ranges,
&length) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read ranges property\n");
if (ddi_get_child(dip)) {
cmn_err(CE_WARN, "No ranges property found for %s",
ddi_get_name(dip));
/*
* strictly speaking, we can check for children with
* assigned-addresses but for now it is better to
* be conservative and assume that if there are child
* nodes, then they do consume PCI memory or IO
* resources, Hence return failure.
*/
return (PCICFG_FAILURE);
}
length = 0;
}
for (i = 0; i < length / sizeof (pcicfg_range_t); i++) {
if (ranges[i].size_lo != 0 ||
ranges[i].size_hi != 0) {
switch (ranges[i].parent_hi & PCI_REG_ADDR_M) {
case PCI_ADDR_IO:
DEBUG2("Free I/O "
"base/length = [0x%x]/[0x%x]\n",
ranges[i].child_lo,
ranges[i].size_lo);
if (ndi_ra_free(ddi_get_parent(dip),
(uint64_t)ranges[i].child_lo,
(uint64_t)ranges[i].size_lo,
NDI_RA_TYPE_IO, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Trouble freeing "
"PCI i/o space\n");
kmem_free(ranges, length);
return (PCICFG_FAILURE);
}
break;
case PCI_ADDR_MEM32:
case PCI_ADDR_MEM64:
DEBUG3("Free Memory base/length = "
"[0x%x.%x]/[0x%x]\n",
ranges[i].child_mid,
ranges[i].child_lo,
ranges[i].size_lo)
if (ndi_ra_free(ddi_get_parent(dip),
PCICFG_LADDR(ranges[i].child_lo,
ranges[i].child_mid),
(uint64_t)ranges[i].size_lo,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Trouble freeing "
"PCI memory space\n");
kmem_free(ranges, length);
return (PCICFG_FAILURE);
}
break;
default:
DEBUG0("Unknown memory space\n");
break;
}
}
}
if (length)
kmem_free(ranges, length);
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "bus-range", (caddr_t)&bus,
&k) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read bus-range property\n");
return (PCICFG_FAILURE);
}
DEBUG2("Need to free bus [%d] range [%d]\n",
bus[0], bus[1] - bus[0] + 1);
if (ndi_ra_free(ddi_get_parent(dip),
(uint64_t)bus[0], (uint64_t)(bus[1] - bus[0] + 1),
NDI_RA_TYPE_PCI_BUSNUM, NDI_RA_PASS) != NDI_SUCCESS) {
/*EMPTY*/
DEBUG0("Failed to free a bus number\n");
}
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)bus, k);
return (PCICFG_SUCCESS);
}
static int
pcicfg_free_device_resources(dev_info_t *dip, pcicfg_flags_t flags)
{
pci_regspec_t *assigned;
int length;
int acount;
int i;
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&assigned,
&length) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read assigned-addresses property\n");
return (PCICFG_FAILURE);
}
/*
* For each "assigned-addresses" property entry with a length,
* call the memory allocation routines to return the
* resource.
*/
acount = length / sizeof (pci_regspec_t);
for (i = 0; i < acount; i++) {
/*
* Workaround for Devconf (x86) bug to skip extra entries
* beyond the PCI_CONF_BASE5 offset. But we want to free up
* any memory for expansion roms if allocated.
*/
if ((PCI_REG_REG_G(assigned[i].pci_phys_hi) > PCI_CONF_BASE5) &&
(PCI_REG_REG_G(assigned[i].pci_phys_hi) != PCI_CONF_ROM))
break;
if (pcicfg_free_resource(dip, assigned[i], flags)) {
DEBUG1("pcicfg_free_device_resources - Trouble freeing "
"%x\n", assigned[i].pci_phys_hi);
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)assigned, length);
return (PCICFG_FAILURE);
}
}
kmem_free(assigned, length);
return (PCICFG_SUCCESS);
}
static int
pcicfg_free_resources(dev_info_t *dip, pcicfg_flags_t flags)
{
ddi_acc_handle_t handle;
uint8_t header_type;
if (pcicfg_config_setup(dip, &handle) != DDI_SUCCESS) {
DEBUG0("Failed to map config space!\n");
return (PCICFG_FAILURE);
}
header_type = pci_config_get8(handle, PCI_CONF_HEADER);
(void) pci_config_teardown(&handle);
/*
* A different algorithm is used for bridges and leaf devices.
*/
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_PPB) {
/*
* We only support readonly probing for leaf devices.
*/
if (flags & PCICFG_FLAG_READ_ONLY)
return (PCICFG_FAILURE);
if (pcicfg_free_bridge_resources(dip) != PCICFG_SUCCESS) {
DEBUG0("Failed freeing up bridge resources\n");
return (PCICFG_FAILURE);
}
} else {
if (pcicfg_free_device_resources(dip, flags)
!= PCICFG_SUCCESS) {
DEBUG0("Failed freeing up device resources\n");
return (PCICFG_FAILURE);
}
}
return (PCICFG_SUCCESS);
}
#ifndef _DONT_USE_1275_GENERIC_NAMES
static char *
pcicfg_get_class_name(uint32_t classcode)
{
struct pcicfg_name_entry *ptr;
for (ptr = &pcicfg_class_lookup[0]; ptr->name != NULL; ptr++) {
if (ptr->class_code == classcode) {
return (ptr->name);
}
}
return (NULL);
}
#endif /* _DONT_USE_1275_GENERIC_NAMES */
static dev_info_t *
pcicfg_devi_find(dev_info_t *dip, uint_t device, uint_t function)
{
struct pcicfg_find_ctrl ctrl;
int count;
ctrl.device = device;
ctrl.function = function;
ctrl.dip = NULL;
ndi_devi_enter(dip, &count);
ddi_walk_devs(ddi_get_child(dip), pcicfg_match_dev, (void *)&ctrl);
ndi_devi_exit(dip, count);
return (ctrl.dip);
}
static int
pcicfg_match_dev(dev_info_t *dip, void *hdl)
{
struct pcicfg_find_ctrl *ctrl = (struct pcicfg_find_ctrl *)hdl;
pci_regspec_t *pci_rp;
int length;
int pci_dev;
int pci_func;
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (int **)&pci_rp,
(uint_t *)&length) != DDI_PROP_SUCCESS) {
ctrl->dip = NULL;
return (DDI_WALK_TERMINATE);
}
/* get the PCI device address info */
pci_dev = PCI_REG_DEV_G(pci_rp->pci_phys_hi);
pci_func = PCI_REG_FUNC_G(pci_rp->pci_phys_hi);
/*
* free the memory allocated by ddi_prop_lookup_int_array
*/
ddi_prop_free(pci_rp);
if ((pci_dev == ctrl->device) && (pci_func == ctrl->function)) {
/* found the match for the specified device address */
ctrl->dip = dip;
return (DDI_WALK_TERMINATE);
}
/*
* continue the walk to the next sibling to look for a match.
*/
return (DDI_WALK_PRUNECHILD);
}
static int
pcicfg_update_assigned_prop(dev_info_t *dip, pci_regspec_t *newone)
{
int alen;
pci_regspec_t *assigned;
caddr_t newreg;
uint_t status;
DEBUG0("pcicfg_update_assigned_prop()\n");
status = ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"assigned-addresses", (caddr_t)&assigned, &alen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("no memory for assigned-addresses property\n");
return (PCICFG_FAILURE);
default:
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"assigned-addresses", (int *)newone,
sizeof (*newone)/sizeof (int));
(void) pcicfg_dump_assigned(dip);
return (PCICFG_SUCCESS);
}
/*
* Allocate memory for the existing
* assigned-addresses(s) plus one and then
* build it.
*/
newreg = kmem_zalloc(alen+sizeof (*newone), KM_SLEEP);
bcopy(assigned, newreg, alen);
bcopy(newone, newreg + alen, sizeof (*newone));
/*
* Write out the new "assigned-addresses" spec
*/
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"assigned-addresses", (int *)newreg,
(alen + sizeof (*newone))/sizeof (int));
kmem_free((caddr_t)newreg, alen+sizeof (*newone));
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)assigned, alen);
(void) pcicfg_dump_assigned(dip);
return (PCICFG_SUCCESS);
}
static int
pcicfg_update_ranges_prop(dev_info_t *dip, pcicfg_range_t *addition)
{
int rlen;
pcicfg_range_t *ranges;
caddr_t newreg;
uint_t status;
status = ddi_getlongprop(DDI_DEV_T_ANY,
dip, DDI_PROP_DONTPASS, "ranges", (caddr_t)&ranges, &rlen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("ranges present, but unable to get memory\n");
return (PCICFG_FAILURE);
default:
DEBUG0("no ranges property - creating one\n");
if (ndi_prop_update_int_array(DDI_DEV_T_NONE,
dip, "ranges", (int *)addition,
sizeof (pcicfg_range_t)/sizeof (int))
!= DDI_SUCCESS) {
DEBUG0("Did'nt create ranges property\n");
return (PCICFG_FAILURE);
}
return (PCICFG_SUCCESS);
}
/*
* Allocate memory for the existing reg(s) plus one and then
* build it.
*/
newreg = kmem_zalloc(rlen + sizeof (pcicfg_range_t), KM_SLEEP);
bcopy(ranges, newreg, rlen);
bcopy(addition, newreg + rlen, sizeof (pcicfg_range_t));
/*
* Write out the new "ranges" property
*/
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE,
dip, "ranges", (int *)newreg,
(rlen + sizeof (pcicfg_range_t))/sizeof (int));
kmem_free((caddr_t)newreg, rlen+sizeof (pcicfg_range_t));
kmem_free((caddr_t)ranges, rlen);
return (PCICFG_SUCCESS);
}
static int
pcicfg_update_reg_prop(dev_info_t *dip, uint32_t regvalue, uint_t reg_offset)
{
int rlen;
pci_regspec_t *reg;
caddr_t newreg;
uint32_t hiword;
pci_regspec_t addition;
uint32_t size;
uint_t status;
status = ddi_getlongprop(DDI_DEV_T_ANY,
dip, DDI_PROP_DONTPASS, "reg", (caddr_t)&reg, &rlen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("reg present, but unable to get memory\n");
return (PCICFG_FAILURE);
default:
DEBUG0("no reg property\n");
return (PCICFG_FAILURE);
}
/*
* Allocate memory for the existing reg(s) plus one and then
* build it.
*/
newreg = kmem_zalloc(rlen+sizeof (pci_regspec_t), KM_SLEEP);
/*
* Build the regspec, then add it to the existing one(s)
*/
hiword = PCICFG_MAKE_REG_HIGH(PCI_REG_BUS_G(reg->pci_phys_hi),
PCI_REG_DEV_G(reg->pci_phys_hi),
PCI_REG_FUNC_G(reg->pci_phys_hi), reg_offset);
if (reg_offset == PCI_CONF_ROM) {
size = (~(PCI_BASE_ROM_ADDR_M & regvalue))+1;
hiword |= PCI_ADDR_MEM32;
} else {
size = (~(PCI_BASE_M_ADDR_M & regvalue))+1;
if ((PCI_BASE_SPACE_M & regvalue) == PCI_BASE_SPACE_MEM) {
if ((PCI_BASE_TYPE_M & regvalue) == PCI_BASE_TYPE_MEM) {
hiword |= PCI_ADDR_MEM32;
} else if ((PCI_BASE_TYPE_M & regvalue)
== PCI_BASE_TYPE_ALL) {
hiword |= PCI_ADDR_MEM64;
}
} else {
hiword |= PCI_ADDR_IO;
}
}
addition.pci_phys_hi = hiword;
addition.pci_phys_mid = 0;
addition.pci_phys_low = 0;
addition.pci_size_hi = 0;
addition.pci_size_low = size;
bcopy(reg, newreg, rlen);
bcopy(&addition, newreg + rlen, sizeof (pci_regspec_t));
/*
* Write out the new "reg" property
*/
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE,
dip, "reg", (int *)newreg,
(rlen + sizeof (pci_regspec_t))/sizeof (int));
kmem_free((caddr_t)newreg, rlen+sizeof (pci_regspec_t));
kmem_free((caddr_t)reg, rlen);
return (PCICFG_SUCCESS);
}
static int
pcicfg_update_available_prop(dev_info_t *dip, pci_regspec_t *newone)
{
int alen;
pci_regspec_t *avail_p;
caddr_t new_avail;
uint_t status;
DEBUG2("pcicfg_update_available_prop() - Address %lx Size %x\n",
newone->pci_phys_low, newone->pci_size_low);
status = ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"available", (caddr_t)&avail_p, &alen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("no memory for available property\n");
return (PCICFG_FAILURE);
default:
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"available", (int *)newone,
sizeof (*newone)/sizeof (int));
return (PCICFG_SUCCESS);
}
/*
* Allocate memory for the existing available plus one and then
* build it.
*/
new_avail = kmem_zalloc(alen+sizeof (*newone), KM_SLEEP);
bcopy(avail_p, new_avail, alen);
bcopy(newone, new_avail + alen, sizeof (*newone));
/* Write out the new "available" spec */
(void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"available", (int *)new_avail,
(alen + sizeof (*newone))/sizeof (int));
kmem_free((caddr_t)new_avail, alen+sizeof (*newone));
/* Don't forget to free up memory from ddi_getlongprop */
kmem_free((caddr_t)avail_p, alen);
return (PCICFG_SUCCESS);
}
static int
pcicfg_update_assigned_prop_value(dev_info_t *dip, uint32_t size,
uint32_t base, uint32_t base_hi, uint_t reg_offset)
{
int rlen;
pci_regspec_t *reg;
uint32_t hiword;
pci_regspec_t addition;
uint_t status;
status = ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", (caddr_t)&reg, &rlen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("reg present, but unable to get memory\n");
return (PCICFG_FAILURE);
default:
/*
* Since the config space "reg" entry should have been
* created, we expect a "reg" property already
* present here.
*/
DEBUG0("no reg property\n");
return (PCICFG_FAILURE);
}
/*
* Build the regspec, then add it to the existing one(s)
*/
hiword = PCICFG_MAKE_REG_HIGH(PCI_REG_BUS_G(reg->pci_phys_hi),
PCI_REG_DEV_G(reg->pci_phys_hi),
PCI_REG_FUNC_G(reg->pci_phys_hi), reg_offset);
hiword |= PCI_REG_REL_M;
if (reg_offset == PCI_CONF_ROM) {
hiword |= PCI_ADDR_MEM32;
base = PCI_BASE_ROM_ADDR_M & base;
} else {
if ((PCI_BASE_SPACE_M & base) == PCI_BASE_SPACE_MEM) {
if ((PCI_BASE_TYPE_M & base) == PCI_BASE_TYPE_MEM) {
hiword |= PCI_ADDR_MEM32;
} else if ((PCI_BASE_TYPE_M & base)
== PCI_BASE_TYPE_ALL) {
hiword |= PCI_ADDR_MEM64;
}
if (base & PCI_BASE_PREF_M)
hiword |= PCI_REG_PF_M;
base = PCI_BASE_M_ADDR_M & base;
} else {
hiword |= PCI_ADDR_IO;
base = PCI_BASE_IO_ADDR_M & base;
base_hi = 0;
}
}
addition.pci_phys_hi = hiword;
addition.pci_phys_mid = base_hi;
addition.pci_phys_low = base;
addition.pci_size_hi = 0;
addition.pci_size_low = size;
DEBUG3("updating BAR@off %x with %x,%x\n", reg_offset, hiword, size);
kmem_free((caddr_t)reg, rlen);
return (pcicfg_update_assigned_prop(dip, &addition));
}
static void
pcicfg_device_on(ddi_acc_handle_t config_handle)
{
/*
* Enable memory, IO, and bus mastership
* XXX should we enable parity, SERR#,
* fast back-to-back, and addr. stepping?
*/
pci_config_put16(config_handle, PCI_CONF_COMM,
pci_config_get16(config_handle, PCI_CONF_COMM) | 0x7);
}
static void
pcicfg_device_off(ddi_acc_handle_t config_handle)
{
/*
* Disable I/O and memory traffic through the bridge
*/
pci_config_put16(config_handle, PCI_CONF_COMM, 0x0);
}
/*
* Setup the basic 1275 properties based on information found in the config
* header of the PCI device
*/
static int
pcicfg_set_standard_props(dev_info_t *dip, ddi_acc_handle_t config_handle,
uint8_t pcie_dev)
{
int ret;
uint16_t val, cap_ptr;
uint32_t wordval;
uint8_t byteval;
/* These two exists only for non-bridges */
if (((pci_config_get8(config_handle, PCI_CONF_HEADER)
& PCI_HEADER_TYPE_M) == PCI_HEADER_ZERO) && !pcie_dev) {
byteval = pci_config_get8(config_handle, PCI_CONF_MIN_G);
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"min-grant", byteval)) != DDI_SUCCESS) {
return (ret);
}
byteval = pci_config_get8(config_handle, PCI_CONF_MAX_L);
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"max-latency", byteval)) != DDI_SUCCESS) {
return (ret);
}
}
/*
* These should always exist and have the value of the
* corresponding register value
*/
val = pci_config_get16(config_handle, PCI_CONF_VENID);
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"vendor-id", val)) != DDI_SUCCESS) {
return (ret);
}
val = pci_config_get16(config_handle, PCI_CONF_DEVID);
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"device-id", val)) != DDI_SUCCESS) {
return (ret);
}
byteval = pci_config_get8(config_handle, PCI_CONF_REVID);
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"revision-id", byteval)) != DDI_SUCCESS) {
return (ret);
}
wordval = (pci_config_get16(config_handle, PCI_CONF_SUBCLASS)<< 8) |
(pci_config_get8(config_handle, PCI_CONF_PROGCLASS));
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"class-code", wordval)) != DDI_SUCCESS) {
return (ret);
}
/* devsel-speed starts at the 9th bit */
val = (pci_config_get16(config_handle,
PCI_CONF_STAT) & PCI_STAT_DEVSELT) >> 9;
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"devsel-speed", val)) != DDI_SUCCESS) {
return (ret);
}
/*
* The next three are bits set in the status register. The property is
* present (but with no value other than its own existence) if the bit
* is set, non-existent otherwise
*/
if ((!pcie_dev) &&
(pci_config_get16(config_handle, PCI_CONF_STAT) &
PCI_STAT_FBBC)) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"fast-back-to-back", 0)) != DDI_SUCCESS) {
return (ret);
}
}
if ((!pcie_dev) &&
(pci_config_get16(config_handle, PCI_CONF_STAT) &
PCI_STAT_66MHZ)) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"66mhz-capable", 0)) != DDI_SUCCESS) {
return (ret);
}
}
if (pci_config_get16(config_handle, PCI_CONF_STAT) & PCI_STAT_UDF) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"udf-supported", 0)) != DDI_SUCCESS) {
return (ret);
}
}
/*
* These next three are optional and are not present
* if the corresponding register is zero. If the value
* is non-zero then the property exists with the value
* of the register.
*/
if ((val = pci_config_get16(config_handle,
PCI_CONF_SUBVENID)) != 0) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"subsystem-vendor-id", val)) != DDI_SUCCESS) {
return (ret);
}
}
if ((val = pci_config_get16(config_handle,
PCI_CONF_SUBSYSID)) != 0) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"subsystem-id", val)) != DDI_SUCCESS) {
return (ret);
}
}
if ((val = pci_config_get16(config_handle,
PCI_CONF_CACHE_LINESZ)) != 0) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"cache-line-size", val)) != DDI_SUCCESS) {
return (ret);
}
}
/*
* If the Interrupt Pin register is non-zero then the
* interrupts property exists
*/
if ((byteval = pci_config_get8(config_handle, PCI_CONF_IPIN)) != 0) {
/*
* If interrupt pin is non-zero,
* record the interrupt line used
*/
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"interrupts", byteval)) != DDI_SUCCESS) {
return (ret);
}
}
ret = PCI_CAP_LOCATE(config_handle, PCI_CAP_ID_PCI_E, &cap_ptr);
if (pcie_dev && (ret == DDI_SUCCESS)) {
val = PCI_CAP_GET16(config_handle, NULL, cap_ptr,
PCIE_PCIECAP) & PCIE_PCIECAP_SLOT_IMPL;
/* if slot implemented, get physical slot number */
if (val) {
wordval = (PCI_CAP_GET32(config_handle, NULL,
cap_ptr, PCIE_SLOTCAP) >>
PCIE_SLOTCAP_PHY_SLOT_NUM_SHIFT) &
PCIE_SLOTCAP_PHY_SLOT_NUM_MASK;
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE,
dip, "physical-slot#", wordval))
!= DDI_SUCCESS) {
return (ret);
}
}
}
return (PCICFG_SUCCESS);
}
static int
pcicfg_set_busnode_props(dev_info_t *dip, uint8_t pcie_device_type,
int pbus, int sbus)
{
int ret;
char device_type[8];
if (pcie_device_type)
(void) strcpy(device_type, "pciex");
else
(void) strcpy(device_type, "pci");
if ((ret = ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"device_type", device_type)) != DDI_SUCCESS) {
return (ret);
}
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#address-cells", 3)) != DDI_SUCCESS) {
return (ret);
}
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"#size-cells", 2)) != DDI_SUCCESS) {
return (ret);
}
/*
* Create primary-bus and secondary-bus properties to be used
* to restore bus numbers in the pcicfg_setup_bridge() routine.
*/
if (pbus != -1 && sbus != -1) {
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"primary-bus", pbus)) != DDI_SUCCESS) {
return (ret);
}
if ((ret = ndi_prop_update_int(DDI_DEV_T_NONE, dip,
"secondary-bus", sbus)) != DDI_SUCCESS) {
return (ret);
}
}
return (PCICFG_SUCCESS);
}
static int
pcicfg_set_childnode_props(dev_info_t *dip, ddi_acc_handle_t config_handle,
uint8_t pcie_dev)
{
int ret;
char *name;
char buffer[64], pprefix[8];
uint16_t classcode;
uint8_t revid, pif, pclass, psubclass;
char *compat[24];
int i;
int n;
uint16_t sub_vid, sub_sid, vid, did;
/* set the property prefix based on the device type */
if (pcie_dev)
(void) sprintf(pprefix, "pciex");
else
(void) sprintf(pprefix, "pci");
sub_vid = pci_config_get16(config_handle, PCI_CONF_SUBVENID);
sub_sid = pci_config_get16(config_handle, PCI_CONF_SUBSYSID);
vid = pci_config_get16(config_handle, PCI_CONF_VENID);
did = pci_config_get16(config_handle, PCI_CONF_DEVID);
revid = pci_config_get8(config_handle, PCI_CONF_REVID);
pif = pci_config_get8(config_handle, PCI_CONF_PROGCLASS);
classcode = pci_config_get16(config_handle, PCI_CONF_SUBCLASS);
pclass = pci_config_get8(config_handle, PCI_CONF_BASCLASS);
psubclass = pci_config_get8(config_handle, PCI_CONF_SUBCLASS);
/*
* NOTE: These are for both a child and PCI-PCI bridge node
*/
/*
* "name" property rule
* --------------------
*
*
* | \svid |
* | \ |
* | \ |
* | ssid \ | =0 | != 0 |
* |------------|-----------------------|-----------------------|
* | | | |
* | =0 | vid,did | svid,ssid |
* | | | |
* |------------|-----------------------|-----------------------|
* | | | |
* | !=0 | svid,ssid | svid,ssid |
* | | | |
* |------------|-----------------------|-----------------------|
*
* where:
* vid = vendor id
* did = device id
* svid = subsystem vendor id
* ssid = subsystem id
*/
if ((sub_sid != 0) || (sub_vid != 0)) {
(void) sprintf(buffer, "%s%x,%x", pprefix, sub_vid, sub_sid);
} else {
(void) sprintf(buffer, "%s%x,%x", pprefix, vid, did);
}
/*
* In some environments, trying to use "generic" 1275 names is
* not the convention. In those cases use the name as created
* above. In all the rest of the cases, check to see if there
* is a generic name first.
*/
#ifdef _DONT_USE_1275_GENERIC_NAMES
name = buffer;
#else
if ((name = pcicfg_get_class_name(classcode)) == NULL) {
/*
* Set name to the above fabricated name
*/
name = buffer;
}
#endif
/*
* The node name field needs to be filled in with the name
*/
if (ndi_devi_set_nodename(dip, name, 0) != NDI_SUCCESS) {
DEBUG0("Failed to set nodename for node\n");
return (PCICFG_FAILURE);
}
/*
* Create the compatible property as an array of pointers
* to strings. Start with the buffer created above.
*/
n = 0;
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
/*
* Setup 'compatible' as per the PCI2.1 bindings document.
* pci[ex]VVVV,DDDD.SSSS.ssss.RR
* pci[ex]VVVV,DDDD.SSSS.ssss
* pciSSSS.ssss -> not created for PCIe as per PCIe bindings
* pci[ex]VVVV,DDDD.RR
* pci[ex]VVVV,DDDD
* pci[ex]class,CCSSPP
* pci[ex]class,CCSS
*/
/* pci[ex]VVVV,DDDD.SSSS.ssss.RR */
(void) sprintf(buffer, "%s%x,%x.%x.%x.%x", pprefix, vid, did,
sub_vid, sub_sid, revid);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
/* pci[ex]VVVV,DDDD.SSSS.ssss */
(void) sprintf(buffer, "%s%x,%x.%x.%x", pprefix, vid, did,
sub_vid, sub_sid);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
/* pciSSSS.ssss -> not created for PCIe as per PCIe bindings */
if (!pcie_dev) {
(void) sprintf(buffer, "pci%x,%x", sub_vid, sub_sid);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
}
/* pci[ex]VVVV,DDDD.RR */
(void) sprintf(buffer, "%s%x,%x.%x", pprefix, vid, did, revid);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
/* pci[ex]VVVV,DDDD */
(void) sprintf(buffer, "%s%x,%x", pprefix, vid, did);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
/* pci[ex]class,CCSSPP */
(void) sprintf(buffer, "%sclass,%02x%02x%02x", pprefix,
pclass, psubclass, pif);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
/* pci[ex]class,CCSS */
(void) sprintf(buffer, "%sclass,%04x", pprefix, classcode);
compat[n] = kmem_alloc(strlen(buffer) + 1, KM_SLEEP);
(void) strcpy(compat[n++], buffer);
if ((ret = ndi_prop_update_string_array(DDI_DEV_T_NONE, dip,
"compatible", (char **)compat, n)) != DDI_SUCCESS) {
return (ret);
}
for (i = 0; i < n; i++) {
kmem_free(compat[i], strlen(compat[i]) + 1);
}
DEBUG1("pcicfg_set_childnode_props - creating name=%s\n", name);
if ((ret = ndi_prop_update_string(DDI_DEV_T_NONE, dip,
"name", name)) != DDI_SUCCESS) {
DEBUG0("pcicfg_set_childnode_props - Unable to create name "
"property\n");
return (ret);
}
return (PCICFG_SUCCESS);
}
/*
* Program the bus numbers into the bridge
*/
static void
pcicfg_set_bus_numbers(ddi_acc_handle_t config_handle,
uint_t primary, uint_t secondary, uint_t subordinate)
{
DEBUG3("Setting bridge bus-range %d,%d,%d\n", primary, secondary,
subordinate);
/*
* Primary bus#
*/
pci_config_put8(config_handle, PCI_BCNF_PRIBUS, primary);
/*
* Secondary bus#
*/
pci_config_put8(config_handle, PCI_BCNF_SECBUS, secondary);
/*
* Subordinate bus#
*/
pci_config_put8(config_handle, PCI_BCNF_SUBBUS, subordinate);
}
/*
* Put bridge registers into initial state
*/
static void
pcicfg_setup_bridge(pcicfg_phdl_t *entry,
ddi_acc_handle_t handle, dev_info_t *dip)
{
int pbus, sbus;
/*
* The highest bus seen during probing is the max-subordinate bus
*/
pci_config_put8(handle, PCI_BCNF_SUBBUS, entry->highest_bus);
/*
* If there exists more than 1 downstream bridge, it
* will be reset by the below secondary bus reset which
* will clear the bus numbers assumed to be programmed in
* the pcicfg_probe_children() routine. We therefore restore
* them here.
*/
if (pci_config_get8(handle, PCI_BCNF_SECBUS) == 0) {
pbus = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "primary-bus", -1);
sbus = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "secondary-bus", -1);
if (pbus != -1 && sbus != -1) {
pci_config_put8(handle, PCI_BCNF_PRIBUS, (uint_t)pbus);
pci_config_put8(handle, PCI_BCNF_SECBUS, (uint_t)sbus);
} else {
cmn_err(CE_WARN, "Invalid Bridge number detected: \
%s%d: pbus = 0x%x, sbus = 0x%x",
ddi_get_name(dip), ddi_get_instance(dip), pbus,
sbus);
}
}
/*
* Reset the secondary bus
*/
pci_config_put16(handle, PCI_BCNF_BCNTRL,
pci_config_get16(handle, PCI_BCNF_BCNTRL) | 0x40);
drv_usecwait(100);
pci_config_put16(handle, PCI_BCNF_BCNTRL,
pci_config_get16(handle, PCI_BCNF_BCNTRL) & ~0x40);
/*
* Program the memory base register with the
* start of the memory range
*/
pci_config_put16(handle, PCI_BCNF_MEM_BASE,
PCICFG_HIWORD(PCICFG_LOADDR(entry->memory_last)));
/*
* Program the I/O base register with the start of the I/O range
*/
pci_config_put8(handle, PCI_BCNF_IO_BASE_LOW,
PCICFG_HIBYTE(PCICFG_LOWORD(PCICFG_LOADDR(entry->io_last))));
pci_config_put16(handle, PCI_BCNF_IO_BASE_HI,
PCICFG_HIWORD(PCICFG_LOADDR(entry->io_last)));
/*
* Clear status bits
*/
pci_config_put16(handle, PCI_BCNF_SEC_STATUS, 0xffff);
/*
* Turn off prefetchable range
*/
pci_config_put32(handle, PCI_BCNF_PF_BASE_LOW, 0x0000ffff);
pci_config_put32(handle, PCI_BCNF_PF_BASE_HIGH, 0xffffffff);
pci_config_put32(handle, PCI_BCNF_PF_LIMIT_HIGH, 0x0);
/*
* Needs to be set to this value
*/
pci_config_put8(handle, PCI_CONF_ILINE, 0xf);
/*
* After a Reset, we need to wait 2^25 clock cycles before the
* first Configuration access. The worst case is 33MHz, which
* is a 1 second wait.
*/
drv_usecwait(pcicfg_sec_reset_delay);
}
static void
pcicfg_update_bridge(pcicfg_phdl_t *entry,
ddi_acc_handle_t handle)
{
uint_t length;
/*
* Program the memory limit register with the end of the memory range
*/
DEBUG1("DOWN ROUNDED ===>[0x%x]\n",
PCICFG_ROUND_DOWN(entry->memory_last,
PCICFG_MEMGRAN));
pci_config_put16(handle, PCI_BCNF_MEM_LIMIT,
PCICFG_HIWORD(PCICFG_LOADDR(
PCICFG_ROUND_DOWN(entry->memory_last,
PCICFG_MEMGRAN))));
/*
* Since this is a bridge, the rest of this range will
* be responded to by the bridge. We have to round up
* so no other device claims it.
*/
if ((length = (PCICFG_ROUND_UP(entry->memory_last,
PCICFG_MEMGRAN) - entry->memory_last)) > 0) {
(void) pcicfg_get_mem(entry, length, NULL);
DEBUG1("Added [0x%x]at the top of "
"the bridge (mem)\n", length);
}
/*
* Program the I/O limit register with the end of the I/O range
*/
pci_config_put8(handle, PCI_BCNF_IO_LIMIT_LOW,
PCICFG_HIBYTE(PCICFG_LOWORD(
PCICFG_LOADDR(PCICFG_ROUND_DOWN(entry->io_last,
PCICFG_IOGRAN)))));
pci_config_put16(handle, PCI_BCNF_IO_LIMIT_HI,
PCICFG_HIWORD(PCICFG_LOADDR(PCICFG_ROUND_DOWN(entry->io_last,
PCICFG_IOGRAN))));
/*
* Same as above for I/O space. Since this is a
* bridge, the rest of this range will be responded
* to by the bridge. We have to round up so no
* other device claims it.
*/
if ((length = (PCICFG_ROUND_UP(entry->io_last,
PCICFG_IOGRAN) - entry->io_last)) > 0) {
(void) pcicfg_get_io(entry, length, NULL);
DEBUG1("Added [0x%x]at the top of "
"the bridge (I/O)\n", length);
}
}
/*ARGSUSED*/
static void
pcicfg_disable_bridge_probe_err(dev_info_t *dip, ddi_acc_handle_t h,
pcicfg_err_regs_t *regs)
{
uint16_t val;
/* disable SERR generated in the context of Master Aborts. */
regs->cmd = val = pci_config_get16(h, PCI_CONF_COMM);
val &= ~PCI_COMM_SERR_ENABLE;
pci_config_put16(h, PCI_CONF_COMM, val);
regs->bcntl = val = pci_config_get16(h, PCI_BCNF_BCNTRL);
val &= ~PCI_BCNF_BCNTRL_SERR_ENABLE;
pci_config_put16(h, PCI_BCNF_BCNTRL, val);
/* clear any current pending errors */
pci_config_put16(h, PCI_CONF_STAT, PCI_STAT_S_TARG_AB|
PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB | PCI_STAT_S_SYSERR);
pci_config_put16(h, PCI_BCNF_SEC_STATUS, PCI_STAT_S_TARG_AB|
PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB | PCI_STAT_S_SYSERR);
/* if we are a PCIe device, disable the generation of UR, CE and NFE */
if (regs->pcie_dev) {
uint16_t devctl;
uint16_t cap_ptr;
if ((PCI_CAP_LOCATE(h, PCI_CAP_ID_PCI_E, &cap_ptr)) ==
DDI_FAILURE)
return;
regs->pcie_cap_off = cap_ptr;
regs->devctl = devctl = PCI_CAP_GET16(h, NULL, cap_ptr,
PCIE_DEVCTL);
devctl &= ~(PCIE_DEVCTL_UR_REPORTING_EN |
PCIE_DEVCTL_CE_REPORTING_EN |
PCIE_DEVCTL_NFE_REPORTING_EN |
PCIE_DEVCTL_FE_REPORTING_EN);
PCI_CAP_PUT16(h, NULL, cap_ptr, PCIE_DEVCTL, devctl);
}
}
/*ARGSUSED*/
static void
pcicfg_enable_bridge_probe_err(dev_info_t *dip, ddi_acc_handle_t h,
pcicfg_err_regs_t *regs)
{
/* clear any pending errors */
pci_config_put16(h, PCI_CONF_STAT, PCI_STAT_S_TARG_AB|
PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB | PCI_STAT_S_SYSERR);
pci_config_put16(h, PCI_BCNF_SEC_STATUS, PCI_STAT_S_TARG_AB|
PCI_STAT_R_TARG_AB | PCI_STAT_R_MAST_AB | PCI_STAT_S_SYSERR);
/* restore original settings */
if (regs->pcie_dev) {
pcie_clear_errors(dip);
pci_config_put16(h, regs->pcie_cap_off + PCIE_DEVCTL,
regs->devctl);
}
pci_config_put16(h, PCI_BCNF_BCNTRL, regs->bcntl);
pci_config_put16(h, PCI_CONF_COMM, regs->cmd);
}
static int
pcicfg_probe_children(dev_info_t *parent, uint_t bus, uint_t device,
uint_t func, uint_t *highest_bus, pcicfg_flags_t flags, boolean_t is_pcie)
{
dev_info_t *new_child;
ddi_acc_handle_t config_handle;
uint8_t header_type, pcie_dev = 0;
int ret;
pcicfg_err_regs_t regs;
/*
* This node will be put immediately below
* "parent". Allocate a blank device node. It will either
* be filled in or freed up based on further probing.
*/
/*
* Note: in usr/src/uts/common/io/hotplug/pcicfg/pcicfg.c
* ndi_devi_alloc() is called as ndi_devi_alloc_sleep()
*/
if (ndi_devi_alloc(parent, DEVI_PSEUDO_NEXNAME,
(pnode_t)DEVI_SID_NODEID, &new_child)
!= NDI_SUCCESS) {
DEBUG0("pcicfg_probe_children(): Failed to alloc child node\n");
return (PCICFG_FAILURE);
}
if (pcicfg_add_config_reg(new_child, bus,
device, func) != DDI_SUCCESS) {
DEBUG0("pcicfg_probe_children():"
"Failed to add candidate REG\n");
goto failedconfig;
}
if ((ret = pcicfg_config_setup(new_child, &config_handle))
!= PCICFG_SUCCESS) {
if (ret == PCICFG_NODEVICE) {
(void) ndi_devi_free(new_child);
return (ret);
}
DEBUG0("pcicfg_probe_children():"
"Failed to setup config space\n");
goto failedconfig;
}
if (is_pcie)
(void) pcie_init_bus(new_child, PCI_GETBDF(bus, device, func),
PCIE_BUS_INITIAL);
/*
* As soon as we have access to config space,
* turn off device. It will get turned on
* later (after memory is assigned).
*/
(void) pcicfg_device_off(config_handle);
/* check if we are PCIe device */
if (pcicfg_pcie_dev(new_child, PCICFG_DEVICE_TYPE_PCIE, &regs)
== DDI_SUCCESS) {
DEBUG0("PCIe device detected\n");
pcie_dev = 1;
}
/*
* Set 1275 properties common to all devices
*/
if (pcicfg_set_standard_props(new_child, config_handle,
pcie_dev) != PCICFG_SUCCESS) {
DEBUG0("Failed to set standard properties\n");
goto failedchild;
}
/*
* Child node properties NOTE: Both for PCI-PCI bridge and child node
*/
if (pcicfg_set_childnode_props(new_child, config_handle,
pcie_dev) != PCICFG_SUCCESS) {
goto failedchild;
}
header_type = pci_config_get8(config_handle, PCI_CONF_HEADER);
/*
* If this is not a multi-function card only probe function zero.
*/
if ((!(header_type & PCI_HEADER_MULTI)) && (func != 0)) {
(void) pcicfg_config_teardown(&config_handle);
(void) ndi_devi_free(new_child);
return (PCICFG_NODEVICE);
}
DEBUG1("---Vendor ID = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_VENID));
DEBUG1("---Device ID = [0x%x]\n",
pci_config_get16(config_handle, PCI_CONF_DEVID));
/*
* Attach the child to its parent
*/
(void) i_ndi_config_node(new_child, DS_LINKED, 0);
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_PPB) {
DEBUG3("--Bridge found bus [0x%x] device"
"[0x%x] func [0x%x]\n", bus, device, func);
/* Only support read-only probe for leaf device */
if (flags & PCICFG_FLAG_READ_ONLY)
goto failedchild;
if (pcicfg_probe_bridge(new_child, config_handle,
bus, highest_bus, is_pcie) != PCICFG_SUCCESS) {
(void) pcicfg_free_bridge_resources(new_child);
goto failedchild;
}
} else {
DEBUG3("--Leaf device found bus [0x%x] device"
"[0x%x] func [0x%x]\n",
bus, device, func);
if (flags & PCICFG_FLAG_READ_ONLY) {
/*
* with read-only probe, don't do any resource
* allocation, just read the BARs and update props.
*/
ret = pcicfg_populate_props_from_bar(new_child,
config_handle);
if (ret != PCICFG_SUCCESS)
goto failedchild;
/*
* for readonly probe "assigned-addresses" property
* has already been setup by reading the BAR, here
* just substract the resource from its parent here.
*/
ret = pcicfg_device_assign_readonly(new_child);
if (ret != PCICFG_SUCCESS) {
(void) pcicfg_free_device_resources(new_child,
flags);
goto failedchild;
}
} else {
/*
* update "reg" property by sizing the BARs.
*/
ret = pcicfg_populate_reg_props(new_child,
config_handle);
if (ret != PCICFG_SUCCESS)
goto failedchild;
/* now allocate & program the resources */
ret = pcicfg_device_assign(new_child);
if (ret != PCICFG_SUCCESS) {
(void) pcicfg_free_device_resources(new_child,
flags);
goto failedchild;
}
}
(void) ndi_devi_bind_driver(new_child, 0);
}
(void) pcicfg_config_teardown(&config_handle);
/*
* Properties have been setted up, so initilize the rest fields
* in bus_t.
*/
if (is_pcie)
(void) pcie_init_bus(new_child, 0, PCIE_BUS_FINAL);
return (PCICFG_SUCCESS);
failedchild:
(void) pcicfg_config_teardown(&config_handle);
if (is_pcie)
pcie_fini_bus(new_child, PCIE_BUS_FINAL);
failedconfig:
(void) ndi_devi_free(new_child);
return (PCICFG_FAILURE);
}
/*
* Sizing the BARs and update "reg" property
*/
static int
pcicfg_populate_reg_props(dev_info_t *new_child,
ddi_acc_handle_t config_handle)
{
int i;
uint32_t request;
i = PCI_CONF_BASE0;
while (i <= PCI_CONF_BASE5) {
pci_config_put32(config_handle, i, 0xffffffff);
request = pci_config_get32(config_handle, i);
/*
* If its a zero length, don't do
* any programming.
*/
if (request != 0) {
/*
* Add to the "reg" property
*/
if (pcicfg_update_reg_prop(new_child,
request, i) != PCICFG_SUCCESS) {
goto failedchild;
}
} else {
DEBUG1("BASE register [0x%x] asks for "
"[0x0]=[0x0](32)\n", i);
i += 4;
continue;
}
/*
* Increment by eight if it is 64 bit address space
*/
if ((PCI_BASE_TYPE_M & request) == PCI_BASE_TYPE_ALL) {
DEBUG3("BASE register [0x%x] asks for "
"[0x%x]=[0x%x] (64)\n",
i, request,
(~(PCI_BASE_M_ADDR_M & request))+1)
i += 8;
} else {
DEBUG3("BASE register [0x%x] asks for "
"[0x%x]=[0x%x](32)\n",
i, request,
(~(PCI_BASE_M_ADDR_M & request))+1)
i += 4;
}
}
/*
* Get the ROM size and create register for it
*/
pci_config_put32(config_handle, PCI_CONF_ROM, 0xfffffffe);
request = pci_config_get32(config_handle, PCI_CONF_ROM);
/*
* If its a zero length, don't do
* any programming.
*/
if (request != 0) {
DEBUG3("BASE register [0x%x] asks for [0x%x]=[0x%x]\n",
PCI_CONF_ROM, request,
(~(PCI_BASE_ROM_ADDR_M & request))+1);
/*
* Add to the "reg" property
*/
if (pcicfg_update_reg_prop(new_child,
request, PCI_CONF_ROM) != PCICFG_SUCCESS) {
goto failedchild;
}
}
return (PCICFG_SUCCESS);
failedchild:
return (PCICFG_FAILURE);
}
static int
pcicfg_fcode_probe(dev_info_t *parent, uint_t bus, uint_t device,
uint_t func, uint_t *highest_bus, pcicfg_flags_t flags, boolean_t is_pcie)
{
dev_info_t *new_child;
int8_t header_type;
int ret;
ddi_acc_handle_t h, ph;
int error = 0;
extern int pcicfg_dont_interpret;
pcicfg_err_regs_t parent_regs, regs;
char *status_prop = NULL;
#ifdef PCICFG_INTERPRET_FCODE
struct pci_ops_bus_args po;
fco_handle_t c;
char unit_address[64];
int fcode_size = 0;
uchar_t *fcode_addr;
uint64_t mem_answer, mem_alen;
pci_regspec_t p;
int32_t request;
ndi_ra_request_t req;
int16_t vendor_id, device_id;
#endif
/*
* check if our parent is of type pciex.
* if so, program config space to disable error msgs during probe.
*/
if (pcicfg_pcie_dev(parent, PCICFG_DEVICE_TYPE_PCIE, &parent_regs)
== DDI_SUCCESS) {
DEBUG0("PCI/PCIe parent detected. Disable errors.\n");
/*
* disable parent generating URs or SERR#s during probing
* alone.
*/
if (pci_config_setup(parent, &ph) != DDI_SUCCESS)
return (DDI_FAILURE);
if ((flags & PCICFG_FLAG_READ_ONLY) == 0) {
pcicfg_disable_bridge_probe_err(parent,
ph, &parent_regs);
}
}
/*
* This node will be put immediately below
* "parent". Allocate a blank device node. It will either
* be filled in or freed up based on further probing.
*/
if (ndi_devi_alloc(parent, DEVI_PSEUDO_NEXNAME,
(pnode_t)DEVI_SID_NODEID, &new_child)
!= NDI_SUCCESS) {
DEBUG0("pcicfg_fcode_probe(): Failed to alloc child node\n");
/* return (PCICFG_FAILURE); */
ret = PCICFG_FAILURE;
goto failed2;
}
/*
* Create a dummy reg property. This will be replaced with
* a real reg property when fcode completes or if we need to
* produce one by hand.
*/
if (pcicfg_add_config_reg(new_child, bus,
device, func) != DDI_SUCCESS) {
ret = PCICFG_FAILURE;
goto failed3;
}
#ifdef EFCODE21554
if ((ret = pcicfg_config_setup(new_child, &h))
!= PCICFG_SUCCESS) {
DEBUG0("pcicfg_fcode_probe():"
"Failed to setup config space\n");
ret = PCICFG_NODEVICE;
goto failed3;
}
#else
p.pci_phys_hi = PCICFG_MAKE_REG_HIGH(bus, device, func, 0);
p.pci_phys_mid = p.pci_phys_low = 0;
p.pci_size_hi = p.pci_size_low = 0;
/*
* Map in configuration space (temporarily)
*/
acc.devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
if (pcicfg_map_phys(new_child, &p, &virt, &acc, &h)) {
DEBUG0("pcicfg_fcode_probe():"
"Failed to setup config space\n");
ret = PCICFG_NODEVICE;
goto failed3;
}
/*
* First use ddi_peek16 so that if there is not a device there,
* a bus error will not cause a panic.
*/
v = virt + PCI_CONF_VENID;
if (ddi_peek16(new_child, (int16_t *)v, &vendor_id)) {
DEBUG0("Can not read Vendor ID");
pcicfg_unmap_phys(&h, &p);
ret = PCICFG_NODEVICE;
goto failed3;
}
#endif
if (is_pcie)
(void) pcie_init_bus(new_child, PCI_GETBDF(bus, device, func),
PCIE_BUS_INITIAL);
DEBUG0("fcode_probe: conf space mapped.\n");
/*
* As soon as we have access to config space,
* turn off device. It will get turned on
* later (after memory is assigned).
*/
(void) pcicfg_device_off(h);
/* check if we are PCIe device */
if (pcicfg_pcie_dev(new_child, PCICFG_DEVICE_TYPE_PCIE, &regs)
== DDI_SUCCESS) {
/*EMPTY*/
DEBUG0("PCI/PCIe device detected\n");
}
/*
* Set 1275 properties common to all devices
*/
if (pcicfg_set_standard_props(new_child,
h, regs.pcie_dev) != PCICFG_SUCCESS) {
DEBUG0("Failed to set standard properties\n");
goto failed;
}
/*
* Child node properties NOTE: Both for PCI-PCI bridge and child node
*/
if (pcicfg_set_childnode_props(new_child,
h, regs.pcie_dev) != PCICFG_SUCCESS) {
ret = PCICFG_FAILURE;
goto failed;
}
header_type = pci_config_get8(h, PCI_CONF_HEADER);
/*
* If this is not a multi-function card only probe function zero.
*/
if (!(header_type & PCI_HEADER_MULTI) && (func > 0)) {
ret = PCICFG_NODEVICE;
goto failed;
}
if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_PPB) {
/*
* XXX - Transparent bridges are handled differently
* than other devices with regards to fcode. Since
* no transparent bridge currently ships with fcode,
* there is no reason to try to extract it from its rom
* or call the fcode interpreter to try to load a drop-in.
* If fcode is developed to handle transparent bridges,
* this code will have to change.
*/
DEBUG3("--Bridge found bus [0x%x] device"
"[0x%x] func [0x%x]\n", bus, device, func);
/* Only support read-only probe for leaf device */
if (flags & PCICFG_FLAG_READ_ONLY)
goto failed;
if ((ret = pcicfg_probe_bridge(new_child, h,
bus, highest_bus, is_pcie)) != PCICFG_SUCCESS)
(void) pcicfg_free_bridge_resources(new_child);
goto done;
} else {
DEBUG3("--Leaf device found bus [0x%x] device"
"[0x%x] func [0x%x]\n",
bus, device, func);
/*
* link in tree, but don't bind driver
* We don't have compatible property yet
*/
(void) i_ndi_config_node(new_child, DS_LINKED, 0);
/* XXX for now, don't run Fcode in read-only probe. */
if (flags & PCICFG_FLAG_READ_ONLY)
goto no_fcode;
if (pci_config_get8(h, PCI_CONF_IPIN)) {
pci_config_put8(h, PCI_CONF_ILINE, 0xf);
}
#ifdef PCICFG_INTERPRET_FCODE
/*
* Some platforms (x86) don't run fcode, so don't interpret
* fcode that might be in the ROM.
*/
if (pcicfg_dont_interpret == 0) {
/* This platform supports fcode */
vendor_id = pci_config_get16(h, PCI_CONF_VENID);
device_id = pci_config_get16(h, PCI_CONF_DEVID);
/*
* Get the ROM size and create register for it
*/
pci_config_put32(h, PCI_CONF_ROM, 0xfffffffe);
request = pci_config_get32(h, PCI_CONF_ROM);
/*
* If its a zero length, don't do
* any programming.
*/
if (request != 0) {
/*
* Add resource to assigned-addresses.
*/
if (pcicfg_fcode_assign_bars(h, new_child,
bus, device, func, request, &p)
!= PCICFG_SUCCESS) {
DEBUG0("Failed to assign addresses to "
"implemented BARs");
ret = PCICFG_FAILURE;
goto failed;
}
/* Turn device on */
(void) pcicfg_device_on(h);
/*
* Attempt to load fcode.
*/
(void) pcicfg_load_fcode(new_child, bus, device,
func, vendor_id, device_id, &fcode_addr,
&fcode_size, PCICFG_LOADDR(mem_answer),
(~(PCI_BASE_ROM_ADDR_M & request)) + 1);
/* Turn device off */
(void) pcicfg_device_off(h);
/*
* Free the ROM resources.
*/
(void) pcicfg_free_resource(new_child, p, 0);
DEBUG2("configure: fcode addr %lx size %x\n",
fcode_addr, fcode_size);
/*
* Create the fcode-rom-offset property. The
* buffer containing the fcode always starts
* with 0xF1, so the fcode offset is zero.
*/
if (ndi_prop_update_int(DDI_DEV_T_NONE,
new_child, "fcode-rom-offset", 0)
!= DDI_SUCCESS) {
DEBUG0("Failed to create "
"fcode-rom-offset property\n");
ret = PCICFG_FAILURE;
goto failed;
}
} else {
DEBUG0("There is no Expansion ROM\n");
fcode_addr = NULL;
fcode_size = 0;
}
/*
* Fill in the bus specific arguments. For
* PCI, it is the config address.
*/
po.config_address =
PCICFG_MAKE_REG_HIGH(bus, device, func, 0);
DEBUG1("config_address=%x\n", po.config_address);
/*
* Build unit address.
*/
(void) sprintf(unit_address, "%x,%x", device, func);
DEBUG3("pci_fc_ops_alloc_handle ap=%lx "
"new device=%lx unit address=%s\n",
parent, new_child, unit_address);
c = pci_fc_ops_alloc_handle(parent, new_child,
fcode_addr, fcode_size, unit_address, &po);
DEBUG0("calling fcode_interpreter()\n");
DEBUG3("Before int DIP=%lx binding name %s major %d\n",
new_child, ddi_binding_name(new_child),
ddi_driver_major(new_child));
error = fcode_interpreter(parent, &pci_fc_ops, c);
DEBUG1("returned from fcode_interpreter() - "
"returned %x\n", error);
pci_fc_ops_free_handle(c);
DEBUG1("fcode size = %x\n", fcode_size);
/*
* We don't need the fcode anymore. While allocating
* we had rounded up to a page size.
*/
if (fcode_size) {
kmem_free(fcode_addr, ptob(btopr(fcode_size)));
}
} else {
/* This platform does not support fcode */
DEBUG0("NOT calling fcode_interpreter()\n");
}
#endif /* PCICFG_INTERPRET_FCODE */
if ((error == 0) && (pcicfg_dont_interpret == 0)) {
/*
* The interpreter completed successfully.
* We need to redo the resources based on the new reg
* property.
*/
DEBUG3("DIP=%lx binding name %s major %d\n", new_child,
ddi_binding_name(new_child),
ddi_driver_major(new_child));
/*
* Readjust resources specified by reg property.
*/
if (pcicfg_alloc_new_resources(new_child) ==
PCICFG_FAILURE) {
ret = PCICFG_FAILURE;
goto failed;
}
/*
* At this stage, there should be enough info to pull
* the status property if it exists.
*/
if (ddi_prop_lookup_string(DDI_DEV_T_ANY,
new_child, NULL, "status", &status_prop) ==
DDI_PROP_SUCCESS) {
if ((strncmp("disabled", status_prop, 8) ==
0) || (strncmp("fail", status_prop, 4) ==
0)) {
ret = PCICFG_FAILURE;
ddi_prop_free(status_prop);
goto failed;
} else {
ddi_prop_free(status_prop);
}
}
ret = PCICFG_SUCCESS;
/* no fcode, bind driver now */
(void) ndi_devi_bind_driver(new_child, 0);
goto done;
} else if ((error != FC_NO_FCODE) &&
(pcicfg_dont_interpret == 0)) {
/*
* The interpreter located fcode, but had an error in
* processing. Cleanup and fail the operation.
*/
DEBUG0("Interpreter detected fcode failure\n");
(void) pcicfg_free_resources(new_child, flags);
ret = PCICFG_FAILURE;
goto failed;
} else {
no_fcode:
/*
* Either the interpreter failed with FC_NO_FCODE or we
* chose not to run the interpreter
* (pcicfg_dont_interpret).
*
* If the interpreter failed because there was no
* dropin, then we need to probe the device ourself.
*/
/*
* Free any resources that may have been assigned
* during fcode loading/execution since we need
* to start over.
*/
(void) pcicfg_free_resources(new_child, flags);
#ifdef EFCODE21554
pcicfg_config_teardown(&h);
#else
pcicfg_unmap_phys(&h, &p);
#endif
/* destroy the bus_t before the dev node is gone */
if (is_pcie)
pcie_fini_bus(new_child, PCIE_BUS_FINAL);
(void) ndi_devi_free(new_child);
DEBUG0("No Drop-in Probe device ourself\n");
ret = pcicfg_probe_children(parent, bus, device, func,
highest_bus, flags, is_pcie);
if (ret != PCICFG_SUCCESS) {
DEBUG0("Could not self probe child\n");
goto failed2;
}
/*
* We successfully self probed the device.
*/
if ((new_child = pcicfg_devi_find(
parent, device, func)) == NULL) {
DEBUG0("Did'nt find device node "
"just created\n");
ret = PCICFG_FAILURE;
goto failed2;
}
#ifdef EFCODE21554
/*
* Till now, we have detected a non transparent bridge
* (ntbridge) as a part of the generic probe code and
* configured only one configuration
* header which is the side facing the host bus.
* Now, configure the other side and create children.
*
* To make the process simpler, lets load the device
* driver for the non transparent bridge as this is a
* Solaris bundled driver, and use its configuration map
* services rather than programming it here.
* If the driver is not bundled into Solaris, it must be
* first loaded and configured before performing any
* hotplug operations.
*
* This not only makes the code simpler but also more
* generic.
*
* So here we go.
*/
if (pcicfg_is_ntbridge(new_child) != DDI_FAILURE) {
DEBUG0("Found nontransparent bridge.\n");
ret = pcicfg_configure_ntbridge(new_child,
bus, device);
}
if (ret != PCICFG_SUCCESS) {
/*
* Bridge configure failed. Free up the self
* probed entry. The bus resource allocation
* maps need to be cleaned up to prevent
* warnings on retries of the failed configure.
*/
(void) pcicfg_ntbridge_unconfigure(new_child);
(void) pcicfg_teardown_device(new_child,
flags, is_pcie);
}
#endif
goto done2;
}
}
done:
failed:
if (is_pcie) {
if (ret == PCICFG_SUCCESS)
(void) pcie_init_bus(new_child, 0, PCIE_BUS_FINAL);
else
pcie_fini_bus(new_child, PCIE_BUS_FINAL);
}
#ifdef EFCODE21554
pcicfg_config_teardown(&h);
#else
pcicfg_unmap_phys(&h, &p);
#endif
failed3:
if (ret != PCICFG_SUCCESS)
(void) ndi_devi_free(new_child);
done2:
failed2:
if (parent_regs.pcie_dev) {
if ((flags & PCICFG_FLAG_READ_ONLY) == 0) {
pcicfg_enable_bridge_probe_err(parent,
ph, &parent_regs);
}
pci_config_teardown(&ph);
}
return (ret);
}
/*
* Read the BARs and update properties. Used in virtual hotplug.
*/
static int
pcicfg_populate_props_from_bar(dev_info_t *new_child,
ddi_acc_handle_t config_handle)
{
uint32_t request, base, base_hi, size;
int i;
i = PCI_CONF_BASE0;
while (i <= PCI_CONF_BASE5) {
/*
* determine the size of the address space
*/
base = pci_config_get32(config_handle, i);
pci_config_put32(config_handle, i, 0xffffffff);
request = pci_config_get32(config_handle, i);
pci_config_put32(config_handle, i, base);
/*
* If its a zero length, don't do any programming.
*/
if (request != 0) {
/*
* Add to the "reg" property
*/
if (pcicfg_update_reg_prop(new_child,
request, i) != PCICFG_SUCCESS) {
goto failedchild;
}
if ((PCI_BASE_SPACE_IO & request) == 0 &&
(PCI_BASE_TYPE_M & request) == PCI_BASE_TYPE_ALL) {
base_hi = pci_config_get32(config_handle, i+4);
} else {
base_hi = 0;
}
/*
* Add to "assigned-addresses" property
*/
size = (~(PCI_BASE_M_ADDR_M & request))+1;
if (pcicfg_update_assigned_prop_value(new_child,
size, base, base_hi, i) != PCICFG_SUCCESS) {
goto failedchild;
}
} else {
DEBUG1("BASE register [0x%x] asks for "
"[0x0]=[0x0](32)\n", i);
i += 4;
continue;
}
/*
* Increment by eight if it is 64 bit address space
*/
if ((PCI_BASE_TYPE_M & request) == PCI_BASE_TYPE_ALL) {
DEBUG3("BASE register [0x%x] asks for "
"[0x%x]=[0x%x] (64)\n",
i, request,
(~(PCI_BASE_M_ADDR_M & request))+1)
i += 8;
} else {
DEBUG3("BASE register [0x%x] asks for "
"[0x%x]=[0x%x](32)\n",
i, request,
(~(PCI_BASE_M_ADDR_M & request))+1)
i += 4;
}
}
/*
* Get the ROM size and create register for it
*/
base = pci_config_get32(config_handle, PCI_CONF_ROM);
pci_config_put32(config_handle, PCI_CONF_ROM, 0xfffffffe);
request = pci_config_get32(config_handle, PCI_CONF_ROM);
pci_config_put32(config_handle, PCI_CONF_ROM, base);
/*
* If its a zero length, don't do
* any programming.
*/
if (request != 0) {
DEBUG3("BASE register [0x%x] asks for [0x%x]=[0x%x]\n",
PCI_CONF_ROM, request,
(~(PCI_BASE_ROM_ADDR_M & request))+1);
/*
* Add to the "reg" property
*/
if (pcicfg_update_reg_prop(new_child,
request, PCI_CONF_ROM) != PCICFG_SUCCESS) {
goto failedchild;
}
/*
* Add to "assigned-addresses" property
*/
size = (~(PCI_BASE_ROM_ADDR_M & request))+1;
if (pcicfg_update_assigned_prop_value(new_child, size,
base, 0, PCI_CONF_ROM) != PCICFG_SUCCESS) {
goto failedchild;
}
}
return (PCICFG_SUCCESS);
failedchild:
return (PCICFG_FAILURE);
}
static int
pcicfg_probe_bridge(dev_info_t *new_child, ddi_acc_handle_t h, uint_t bus,
uint_t *highest_bus, boolean_t is_pcie)
{
uint64_t next_bus;
uint_t new_bus, num_slots;
ndi_ra_request_t req;
int rval, i, j;
uint64_t mem_answer, mem_base, mem_alen, mem_size, mem_end;
uint64_t io_answer, io_base, io_alen, io_size, io_end;
uint64_t round_answer, round_len;
pcicfg_range_t range[PCICFG_RANGE_LEN];
int bus_range[2];
pcicfg_phdl_t phdl;
int count;
uint64_t pcibus_base, pcibus_alen;
uint64_t max_bus;
uint8_t pcie_device_type = 0;
dev_info_t *new_device;
int trans_device;
int ari_mode = B_FALSE;
int max_function = PCICFG_MAX_FUNCTION;
/*
* Set "device_type" to "pci", the actual type will be set later
* by pcicfg_set_busnode_props() below. This is needed as the
* pcicfg_ra_free() below would update "available" property based
* on "device_type".
*
* This code can be removed later after PCI configurator is changed
* to use PCIRM, which automatically update properties upon allocation
* and free, at that time we'll be able to remove the code inside
* ndi_ra_alloc/free() which currently updates "available" property
* for pci/pcie devices in pcie fabric.
*/
if (ndi_prop_update_string(DDI_DEV_T_NONE, new_child,
"device_type", "pci") != DDI_SUCCESS) {
DEBUG0("Failed to set \"device_type\" props\n");
return (PCICFG_FAILURE);
}
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_flags = (NDI_RA_ALLOC_BOUNDED | NDI_RA_ALLOC_PARTIAL_OK);
req.ra_boundbase = 0;
req.ra_boundlen = PCICFG_MAX_BUS_DEPTH;
req.ra_len = PCICFG_MAX_BUS_DEPTH;
req.ra_align_mask = 0; /* no alignment needed */
rval = ndi_ra_alloc(ddi_get_parent(new_child), &req,
&pcibus_base, &pcibus_alen, NDI_RA_TYPE_PCI_BUSNUM, NDI_RA_PASS);
if (rval != NDI_SUCCESS) {
if (rval == NDI_RA_PARTIAL_REQ) {
/*EMPTY*/
DEBUG0("NDI_RA_PARTIAL_REQ returned for bus range\n");
} else {
DEBUG0(
"Failed to allocate bus range for bridge\n");
return (PCICFG_FAILURE);
}
}
DEBUG2("Bus Range Allocated [base=%d] [len=%d]\n",
pcibus_base, pcibus_alen);
if (ndi_ra_map_setup(new_child, NDI_RA_TYPE_PCI_BUSNUM)
== NDI_FAILURE) {
DEBUG0("Can not setup resource map - NDI_RA_TYPE_PCI_BUSNUM\n");
return (PCICFG_FAILURE);
}
/*
* Put available bus range into the pool.
* Take the first one for this bridge to use and don't give
* to child.
*/
(void) ndi_ra_free(new_child, pcibus_base+1, pcibus_alen-1,
NDI_RA_TYPE_PCI_BUSNUM, NDI_RA_PASS);
next_bus = pcibus_base;
max_bus = pcibus_base + pcibus_alen - 1;
new_bus = next_bus;
DEBUG1("NEW bus found ->[%d]\n", new_bus);
/* Keep track of highest bus for subordinate bus programming */
*highest_bus = new_bus;
/*
* Allocate Memory Space for Bridge
*/
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_flags = (NDI_RA_ALLOC_BOUNDED | NDI_RA_ALLOC_PARTIAL_OK);
req.ra_boundbase = 0;
/*
* Note: To support a 32b system, boundlen and len need to be
* 32b quantities
*/
req.ra_boundlen = PCICFG_4GIG_LIMIT + 1;
req.ra_len = PCICFG_4GIG_LIMIT + 1; /* Get as big as possible */
req.ra_align_mask =
PCICFG_MEMGRAN - 1; /* 1M alignment on memory space */
rval = ndi_ra_alloc(ddi_get_parent(new_child), &req,
&mem_answer, &mem_alen, NDI_RA_TYPE_MEM, NDI_RA_PASS);
if (rval != NDI_SUCCESS) {
if (rval == NDI_RA_PARTIAL_REQ) {
/*EMPTY*/
DEBUG0("NDI_RA_PARTIAL_REQ returned\n");
} else {
DEBUG0(
"Failed to allocate memory for bridge\n");
return (PCICFG_FAILURE);
}
}
DEBUG3("Bridge Memory Allocated [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(mem_answer),
PCICFG_LOADDR(mem_answer),
mem_alen);
if (ndi_ra_map_setup(new_child, NDI_RA_TYPE_MEM) == NDI_FAILURE) {
DEBUG0("Can not setup resource map - NDI_RA_TYPE_MEM\n");
return (PCICFG_FAILURE);
}
/*
* Put available memory into the pool.
*/
(void) ndi_ra_free(new_child, mem_answer, mem_alen, NDI_RA_TYPE_MEM,
NDI_RA_PASS);
mem_base = mem_answer;
/*
* Allocate I/O Space for Bridge
*/
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_align_mask = PCICFG_IOGRAN - 1; /* 4k alignment */
req.ra_boundbase = 0;
req.ra_boundlen = PCICFG_4GIG_LIMIT;
req.ra_flags = (NDI_RA_ALLOC_BOUNDED | NDI_RA_ALLOC_PARTIAL_OK);
req.ra_len = PCICFG_4GIG_LIMIT; /* Get as big as possible */
rval = ndi_ra_alloc(ddi_get_parent(new_child), &req, &io_answer,
&io_alen, NDI_RA_TYPE_IO, NDI_RA_PASS);
if (rval != NDI_SUCCESS) {
if (rval == NDI_RA_PARTIAL_REQ) {
/*EMPTY*/
DEBUG0("NDI_RA_PARTIAL_REQ returned\n");
} else {
DEBUG0("Failed to allocate io space for bridge\n");
io_base = io_answer = io_alen = 0;
/* return (PCICFG_FAILURE); */
}
}
if (io_alen) {
DEBUG3("Bridge IO Space Allocated [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(io_answer), PCICFG_LOADDR(io_answer),
io_alen);
if (ndi_ra_map_setup(new_child, NDI_RA_TYPE_IO) ==
NDI_FAILURE) {
DEBUG0("Can not setup resource map - NDI_RA_TYPE_IO\n");
return (PCICFG_FAILURE);
}
/*
* Put available I/O into the pool.
*/
(void) ndi_ra_free(new_child, io_answer, io_alen,
NDI_RA_TYPE_IO, NDI_RA_PASS);
io_base = io_answer;
}
pcicfg_set_bus_numbers(h, bus, new_bus, max_bus);
/*
* Setup "bus-range" property before onlining the bridge.
*/
bus_range[0] = new_bus;
bus_range[1] = max_bus;
if (ndi_prop_update_int_array(DDI_DEV_T_NONE, new_child,
"bus-range", bus_range, 2) != DDI_SUCCESS) {
DEBUG0("Failed to set bus-range property");
return (PCICFG_FAILURE);
}
/*
* Reset the secondary bus
*/
pci_config_put16(h, PCI_BCNF_BCNTRL,
pci_config_get16(h, PCI_BCNF_BCNTRL) | 0x40);
drv_usecwait(100);
pci_config_put16(h, PCI_BCNF_BCNTRL,
pci_config_get16(h, PCI_BCNF_BCNTRL) & ~0x40);
/*
* Program the memory base register with the
* start of the memory range
*/
pci_config_put16(h, PCI_BCNF_MEM_BASE,
PCICFG_HIWORD(PCICFG_LOADDR(mem_answer)));
/*
* Program the memory limit register with the
* end of the memory range.
*/
pci_config_put16(h, PCI_BCNF_MEM_LIMIT,
PCICFG_HIWORD(PCICFG_LOADDR(
PCICFG_ROUND_DOWN((mem_answer + mem_alen), PCICFG_MEMGRAN) - 1)));
/*
* Allocate the chunk of memory (if any) not programmed into the
* bridge because of the round down.
*/
if (PCICFG_ROUND_DOWN((mem_answer + mem_alen), PCICFG_MEMGRAN)
!= (mem_answer + mem_alen)) {
DEBUG0("Need to allocate Memory round off chunk\n");
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_flags = NDI_RA_ALLOC_SPECIFIED;
req.ra_addr = PCICFG_ROUND_DOWN((mem_answer + mem_alen),
PCICFG_MEMGRAN);
req.ra_len = (mem_answer + mem_alen) -
(PCICFG_ROUND_DOWN((mem_answer + mem_alen),
PCICFG_MEMGRAN));
(void) ndi_ra_alloc(new_child, &req,
&round_answer, &round_len, NDI_RA_TYPE_MEM, NDI_RA_PASS);
}
/*
* Program the I/O Space Base
*/
pci_config_put8(h, PCI_BCNF_IO_BASE_LOW,
PCICFG_HIBYTE(PCICFG_LOWORD(
PCICFG_LOADDR(io_answer))));
pci_config_put16(h, PCI_BCNF_IO_BASE_HI,
PCICFG_HIWORD(PCICFG_LOADDR(io_answer)));
/*
* Program the I/O Space Limit
*/
pci_config_put8(h, PCI_BCNF_IO_LIMIT_LOW,
PCICFG_HIBYTE(PCICFG_LOWORD(
PCICFG_LOADDR(PCICFG_ROUND_DOWN(io_answer + io_alen,
PCICFG_IOGRAN)))) - 1);
pci_config_put16(h, PCI_BCNF_IO_LIMIT_HI,
PCICFG_HIWORD(PCICFG_LOADDR(
PCICFG_ROUND_DOWN(io_answer + io_alen, PCICFG_IOGRAN)))
- 1);
/*
* Allocate the chunk of I/O (if any) not programmed into the
* bridge because of the round down.
*/
if (PCICFG_ROUND_DOWN((io_answer + io_alen), PCICFG_IOGRAN)
!= (io_answer + io_alen)) {
DEBUG0("Need to allocate I/O round off chunk\n");
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_flags = NDI_RA_ALLOC_SPECIFIED;
req.ra_addr = PCICFG_ROUND_DOWN((io_answer + io_alen),
PCICFG_IOGRAN);
req.ra_len = (io_answer + io_alen) -
(PCICFG_ROUND_DOWN((io_answer + io_alen),
PCICFG_IOGRAN));
(void) ndi_ra_alloc(new_child, &req,
&round_answer, &round_len, NDI_RA_TYPE_IO, NDI_RA_PASS);
}
/*
* Setup "ranges" property before onlining the bridge.
*/
bzero((caddr_t)range, sizeof (pcicfg_range_t) * PCICFG_RANGE_LEN);
range[0].child_hi = range[0].parent_hi |= (PCI_REG_REL_M | PCI_ADDR_IO);
range[0].child_lo = range[0].parent_lo = io_base;
range[1].child_hi = range[1].parent_hi |=
(PCI_REG_REL_M | PCI_ADDR_MEM32);
range[1].child_lo = range[1].parent_lo = mem_base;
range[0].size_lo = io_alen;
if (pcicfg_update_ranges_prop(new_child, &range[0])) {
DEBUG0("Failed to update ranges (io)\n");
return (PCICFG_FAILURE);
}
range[1].size_lo = mem_alen;
if (pcicfg_update_ranges_prop(new_child, &range[1])) {
DEBUG0("Failed to update ranges (memory)\n");
return (PCICFG_FAILURE);
}
/*
* Clear status bits
*/
pci_config_put16(h, PCI_BCNF_SEC_STATUS, 0xffff);
/*
* Turn off prefetchable range
*/
pci_config_put32(h, PCI_BCNF_PF_BASE_LOW, 0x0000ffff);
pci_config_put32(h, PCI_BCNF_PF_BASE_HIGH, 0xffffffff);
pci_config_put32(h, PCI_BCNF_PF_LIMIT_HIGH, 0x0);
/*
* Needs to be set to this value
*/
pci_config_put8(h, PCI_CONF_ILINE, 0xf);
/* check our device_type as defined by Open Firmware */
if (pcicfg_pcie_device_type(new_child, h) == DDI_SUCCESS)
pcie_device_type = 1;
/*
* Set bus properties
*/
if (pcicfg_set_busnode_props(new_child, pcie_device_type,
(int)bus, (int)new_bus) != PCICFG_SUCCESS) {
DEBUG0("Failed to set busnode props\n");
return (PCICFG_FAILURE);
}
(void) pcicfg_device_on(h);
if (is_pcie)
(void) pcie_init_bus(new_child, 0, PCIE_BUS_FINAL);
if (ndi_devi_online(new_child, NDI_NO_EVENT|NDI_CONFIG)
!= NDI_SUCCESS) {
DEBUG0("Unable to online bridge\n");
return (PCICFG_FAILURE);
}
DEBUG0("Bridge is ONLINE\n");
/*
* After a Reset, we need to wait 2^25 clock cycles before the
* first Configuration access. The worst case is 33MHz, which
* is a 1 second wait.
*/
drv_usecwait(pcicfg_sec_reset_delay);
/*
* Probe all children devices
*/
DEBUG0("Bridge Programming Complete - probe children\n");
ndi_devi_enter(new_child, &count);
for (i = 0; ((i < PCICFG_MAX_DEVICE) && (ari_mode == B_FALSE));
i++) {
for (j = 0; j < max_function; ) {
if (ari_mode)
trans_device = j >> 3;
else
trans_device = i;
if ((rval = pcicfg_fcode_probe(new_child,
new_bus, trans_device, (j & 7), highest_bus,
0, is_pcie))
!= PCICFG_SUCCESS) {
if (rval == PCICFG_NODEVICE) {
DEBUG3("No Device at bus [0x%x]"
"device [0x%x] "
"func [0x%x]\n", new_bus,
trans_device, j & 7);
if (j)
goto next;
} else {
DEBUG3("Failed to configure bus "
"[0x%x] device [0x%x] "
"func [0x%x]\n", new_bus,
trans_device, j & 7);
rval = PCICFG_FAILURE;
}
break;
}
next:
new_device = pcicfg_devi_find(new_child,
trans_device, (j & 7));
/*
* Determine if ARI Forwarding should be enabled.
*/
if (j == 0) {
if (new_device == NULL)
break;
if ((pcie_ari_supported(new_child) ==
PCIE_ARI_FORW_ENABLED) &&
(pcie_ari_device(new_device) ==
PCIE_ARI_DEVICE)) {
if (pcie_ari_enable(new_child) ==
DDI_SUCCESS) {
(void) ddi_prop_create(
DDI_DEV_T_NONE,
new_child,
DDI_PROP_CANSLEEP,
"ari-enabled", NULL, 0);
ari_mode = B_TRUE;
max_function =
PCICFG_MAX_ARI_FUNCTION;
}
}
}
if (ari_mode == B_TRUE) {
int next_function;
if (new_device == NULL)
break;
if (pcie_ari_get_next_function(new_device,
&next_function) != DDI_SUCCESS)
break;
j = next_function;
if (next_function == 0)
break;
} else
j++;
}
}
ndi_devi_exit(new_child, count);
/* if empty topology underneath, it is still a success. */
if (rval != PCICFG_FAILURE)
rval = PCICFG_SUCCESS;
/*
* Offline the bridge to allow reprogramming of resources.
*
* This should always succeed since nobody else has started to
* use it yet, failing to detach the driver would indicate a bug.
* Also in that case it's better just panic than allowing the
* configurator to proceed with BAR reprogramming without bridge
* driver detached.
*/
VERIFY(ndi_devi_offline(new_child, NDI_NO_EVENT|NDI_UNCONFIG)
== NDI_SUCCESS);
if (is_pcie)
pcie_fini_bus(new_child, PCIE_BUS_INITIAL);
phdl.dip = new_child;
phdl.memory_base = mem_answer;
phdl.io_base = (uint32_t)io_answer;
phdl.error = PCICFG_SUCCESS; /* in case of empty child tree */
ndi_devi_enter(ddi_get_parent(new_child), &count);
ddi_walk_devs(new_child, pcicfg_find_resource_end, (void *)&phdl);
ndi_devi_exit(ddi_get_parent(new_child), count);
if (phdl.error != PCICFG_SUCCESS) {
DEBUG0("Failure summing resources\n");
return (PCICFG_FAILURE);
}
num_slots = pcicfg_get_nslots(new_child, h);
mem_end = PCICFG_ROUND_UP(phdl.memory_base, PCICFG_MEMGRAN);
io_end = PCICFG_ROUND_UP(phdl.io_base, PCICFG_IOGRAN);
DEBUG3("Start of Unallocated Bridge(%d slots) Resources "
"Mem=0x%lx I/O=0x%lx\n", num_slots, mem_end, io_end);
/*
* Before probing the children we've allocated maximum MEM/IO
* resources from parent, and updated "available" property
* accordingly. Later we'll be giving up unused resources to
* the parent, thus we need to destroy "available" property
* here otherwise it will be out-of-sync with the actual free
* resources this bridge has. This property will be rebuilt below
* with the actual free resources reserved for hotplug slots
* (if any).
*/
(void) ndi_prop_remove(DDI_DEV_T_NONE, new_child, "available");
/*
* if the bridge a slots, then preallocate. If not, assume static
* configuration. Also check for preallocation limits and spit
* warning messages appropriately (perhaps some can be in debug mode).
*/
if (num_slots) {
pci_regspec_t reg;
uint64_t mem_assigned = mem_end;
uint64_t io_assigned = io_end;
uint64_t mem_reqd = mem_answer + (num_slots *
pcicfg_slot_memsize);
uint64_t io_reqd = io_answer + (num_slots *
pcicfg_slot_iosize);
uint8_t highest_bus_reqd = new_bus + (num_slots *
pcicfg_slot_busnums);
#ifdef DEBUG
if (mem_end > mem_reqd)
DEBUG3("Memory space consumed by bridge"
" more than planned for %d slot(s)(%lx, %lx)",
num_slots, mem_answer, mem_end);
if (io_end > io_reqd)
DEBUG3("IO space consumed by bridge"
" more than planned for %d slot(s)(%lx, %lx)",
num_slots, io_answer, io_end);
if (*highest_bus > highest_bus_reqd)
DEBUG3("Buses consumed by bridge"
" more than planned for %d slot(s)(%x, %x)",
num_slots, new_bus, *highest_bus);
if (mem_reqd > (mem_answer + mem_alen))
DEBUG3("Memory space required by bridge"
" more than available for %d slot(s)(%lx, %lx)",
num_slots, mem_answer, mem_end);
if (io_reqd > (io_answer + io_alen))
DEBUG3("IO space required by bridge"
" more than available for %d slot(s)(%lx, %lx)",
num_slots, io_answer, io_end);
if (highest_bus_reqd > max_bus)
DEBUG3("Bus numbers required by bridge"
" more than available for %d slot(s)(%x, %x)",
num_slots, new_bus, *highest_bus);
#endif
mem_end = MAX((MIN(mem_reqd, (mem_answer + mem_alen))),
mem_end);
io_end = MAX((MIN(io_reqd, (io_answer + io_alen))), io_end);
*highest_bus = MAX((MIN(highest_bus_reqd, max_bus)),
*highest_bus);
DEBUG3("mem_end %lx, io_end %lx, highest_bus %x\n",
mem_end, io_end, *highest_bus);
mem_size = mem_end - mem_assigned;
io_size = io_end - io_assigned;
reg.pci_phys_mid = reg.pci_size_hi = 0;
if (io_size > 0) {
reg.pci_phys_hi = (PCI_REG_REL_M | PCI_ADDR_IO);
reg.pci_phys_low = io_assigned;
reg.pci_size_low = io_size;
if (pcicfg_update_available_prop(new_child, &reg)) {
DEBUG0("Failed to update available prop "
"(io)\n");
return (PCICFG_FAILURE);
}
}
if (mem_size > 0) {
reg.pci_phys_hi = (PCI_REG_REL_M | PCI_ADDR_MEM32);
reg.pci_phys_low = mem_assigned;
reg.pci_size_low = mem_size;
if (pcicfg_update_available_prop(new_child, &reg)) {
DEBUG0("Failed to update available prop "
"(memory)\n");
return (PCICFG_FAILURE);
}
}
}
/*
* Give back unused memory space to parent.
*/
(void) ndi_ra_free(ddi_get_parent(new_child),
mem_end, (mem_answer + mem_alen) - mem_end, NDI_RA_TYPE_MEM,
NDI_RA_PASS);
if (mem_end == mem_answer) {
DEBUG0("No memory resources used\n");
/*
* To prevent the bridge from forwarding any Memory
* transactions, the Memory Limit will be programmed
* with a smaller value than the Memory Base.
*/
pci_config_put16(h, PCI_BCNF_MEM_BASE, 0xffff);
pci_config_put16(h, PCI_BCNF_MEM_LIMIT, 0);
mem_size = 0;
} else {
/*
* Reprogram the end of the memory.
*/
pci_config_put16(h, PCI_BCNF_MEM_LIMIT,
PCICFG_HIWORD(mem_end) - 1);
mem_size = mem_end - mem_base;
}
/*
* Give back unused io space to parent.
*/
(void) ndi_ra_free(ddi_get_parent(new_child),
io_end, (io_answer + io_alen) - io_end,
NDI_RA_TYPE_IO, NDI_RA_PASS);
if (io_end == io_answer) {
DEBUG0("No IO Space resources used\n");
/*
* To prevent the bridge from forwarding any I/O
* transactions, the I/O Limit will be programmed
* with a smaller value than the I/O Base.
*/
pci_config_put8(h, PCI_BCNF_IO_LIMIT_LOW, 0);
pci_config_put16(h, PCI_BCNF_IO_LIMIT_HI, 0);
pci_config_put8(h, PCI_BCNF_IO_BASE_LOW, 0xff);
pci_config_put16(h, PCI_BCNF_IO_BASE_HI, 0);
io_size = 0;
} else {
/*
* Reprogram the end of the io space.
*/
pci_config_put8(h, PCI_BCNF_IO_LIMIT_LOW,
PCICFG_HIBYTE(PCICFG_LOWORD(
PCICFG_LOADDR(io_end) - 1)));
pci_config_put16(h, PCI_BCNF_IO_LIMIT_HI,
PCICFG_HIWORD(PCICFG_LOADDR(io_end - 1)));
io_size = io_end - io_base;
}
if ((max_bus - *highest_bus) > 0) {
/*
* Give back unused bus numbers
*/
(void) ndi_ra_free(ddi_get_parent(new_child),
*highest_bus+1, max_bus - *highest_bus,
NDI_RA_TYPE_PCI_BUSNUM, NDI_RA_PASS);
}
/*
* Set bus numbers to ranges encountered during scan
*/
pcicfg_set_bus_numbers(h, bus, new_bus, *highest_bus);
bus_range[0] = pci_config_get8(h, PCI_BCNF_SECBUS);
bus_range[1] = pci_config_get8(h, PCI_BCNF_SUBBUS);
DEBUG1("End of bridge probe: bus_range[0] = %d\n", bus_range[0]);
DEBUG1("End of bridge probe: bus_range[1] = %d\n", bus_range[1]);
if (ndi_prop_update_int_array(DDI_DEV_T_NONE, new_child,
"bus-range", bus_range, 2) != DDI_SUCCESS) {
DEBUG0("Failed to set bus-range property");
return (PCICFG_FAILURE);
}
/*
* Remove the ranges property if it exists since we will create
* a new one.
*/
(void) ndi_prop_remove(DDI_DEV_T_NONE, new_child, "ranges");
DEBUG2("Creating Ranges property - Mem Address %lx Mem Size %x\n",
mem_base, mem_size);
DEBUG2(" - I/O Address %lx I/O Size %x\n",
io_base, io_size);
bzero((caddr_t)range, sizeof (pcicfg_range_t) * PCICFG_RANGE_LEN);
range[0].child_hi = range[0].parent_hi |= (PCI_REG_REL_M | PCI_ADDR_IO);
range[0].child_lo = range[0].parent_lo = io_base;
range[1].child_hi = range[1].parent_hi |=
(PCI_REG_REL_M | PCI_ADDR_MEM32);
range[1].child_lo = range[1].parent_lo = mem_base;
if (io_size > 0) {
range[0].size_lo = io_size;
if (pcicfg_update_ranges_prop(new_child, &range[0])) {
DEBUG0("Failed to update ranges (io)\n");
return (PCICFG_FAILURE);
}
}
if (mem_size > 0) {
range[1].size_lo = mem_size;
if (pcicfg_update_ranges_prop(new_child, &range[1])) {
DEBUG0("Failed to update ranges (memory)\n");
return (PCICFG_FAILURE);
}
}
/*
* Remove the resource maps for the bridge since we no longer
* need them. Note that the failure is ignored since the
* ndi_devi_offline above may have already taken care of it via
* driver detach.
* It has been checked that there are no other reasons for
* failure other than map itself being non-existent. So we are Ok.
*/
if (ndi_ra_map_destroy(new_child, NDI_RA_TYPE_MEM) == NDI_FAILURE) {
/*EMPTY*/
DEBUG0("Can not destroy resource map - NDI_RA_TYPE_MEM\n");
}
if (ndi_ra_map_destroy(new_child, NDI_RA_TYPE_IO) == NDI_FAILURE) {
/*EMPTY*/
DEBUG0("Can not destroy resource map - NDI_RA_TYPE_IO\n");
}
if (ndi_ra_map_destroy(new_child, NDI_RA_TYPE_PCI_BUSNUM)
== NDI_FAILURE) {
/*EMPTY*/
DEBUG0("Can't destroy resource map - NDI_RA_TYPE_PCI_BUSNUM\n");
}
return (rval);
}
/*
* Return PCICFG_SUCCESS if device exists at the specified address.
* Return PCICFG_NODEVICE is no device exists at the specified address.
*
*/
int
pcicfg_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle)
{
caddr_t virt;
ddi_device_acc_attr_t attr;
int status;
int rlen;
pci_regspec_t *reg;
int ret = DDI_SUCCESS;
int16_t tmp;
/*
* flags = PCICFG_CONF_INDIRECT_MAP if configuration space is indirectly
* mapped, otherwise it is 0. "flags" is introduced in support of any
* non transparent bridges, where configuration space is indirectly
* mapped.
* Indirect mapping is always true on sun4v systems.
*/
int flags = 0;
/*
* Get the pci register spec from the node
*/
status = ddi_getlongprop(DDI_DEV_T_ANY,
dip, DDI_PROP_DONTPASS, "reg", (caddr_t)&reg, &rlen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("reg present, but unable to get memory\n");
return (PCICFG_FAILURE);
default:
DEBUG0("no reg property\n");
return (PCICFG_FAILURE);
}
if (pcicfg_indirect_map(dip) == DDI_SUCCESS)
flags |= PCICFG_CONF_INDIRECT_MAP;
/*
* Map in configuration space (temporarily)
*/
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
attr.devacc_attr_access = DDI_CAUTIOUS_ACC;
#ifdef EFCODE21554
if (ddi_regs_map_setup(dip, 0, &virt,
0, 0, &attr, handle) != DDI_SUCCESS)
#else
if (pcicfg_map_phys(dip, reg, &virt, &attr, handle)
!= DDI_SUCCESS)
#endif
{
DEBUG0("pcicfg_config_setup():"
"Failed to setup config space\n");
kmem_free((caddr_t)reg, rlen);
return (PCICFG_FAILURE);
}
if (flags & PCICFG_CONF_INDIRECT_MAP) {
/*
* need to use DDI interfaces as the conf space is
* cannot be directly accessed by the host.
*/
tmp = (int16_t)ddi_get16(*handle, (uint16_t *)virt);
} else {
ret = ddi_peek16(dip, (int16_t *)virt, &tmp);
}
if (ret == DDI_SUCCESS) {
if (tmp == -1) {
DEBUG1("NO DEVICEFOUND, read %x\n", tmp);
ret = PCICFG_NODEVICE;
} else {
/* XXX - Need to check why HV is returning 0 */
if (tmp == 0) {
DEBUG0("Device Not Ready yet ?");
ret = PCICFG_NODEVICE;
} else {
DEBUG1("DEVICEFOUND, read %x\n", tmp);
ret = PCICFG_SUCCESS;
}
}
} else {
DEBUG0("ddi_peek failed, must be NODEVICE\n");
ret = PCICFG_NODEVICE;
}
/*
* A bug in XMITS 3.0 causes us to miss the Master Abort Split
* Completion message. The result is the error message being
* sent back as part of the config data. If the first two words
* of the config space happen to be the same as the Master Abort
* message, then report back that there is no device there.
*/
if ((ret == PCICFG_SUCCESS) && !(flags & PCICFG_CONF_INDIRECT_MAP)) {
int32_t pcix_scm;
#define PCICFG_PCIX_SCM 0x10000004
pcix_scm = 0;
(void) ddi_peek32(dip, (int32_t *)virt, &pcix_scm);
if (pcix_scm == PCICFG_PCIX_SCM) {
pcix_scm = 0;
(void) ddi_peek32(dip,
(int32_t *)(virt + 4), &pcix_scm);
if (pcix_scm == PCICFG_PCIX_SCM)
ret = PCICFG_NODEVICE;
}
}
if (ret == PCICFG_NODEVICE)
#ifdef EFCODE21554
ddi_regs_map_free(handle);
#else
pcicfg_unmap_phys(handle, reg);
#endif
kmem_free((caddr_t)reg, rlen);
return (ret);
}
static void
pcicfg_config_teardown(ddi_acc_handle_t *handle)
{
(void) ddi_regs_map_free(handle);
}
static int
pcicfg_add_config_reg(dev_info_t *dip,
uint_t bus, uint_t device, uint_t func)
{
int reg[10] = { PCI_ADDR_CONFIG, 0, 0, 0, 0};
reg[0] = PCICFG_MAKE_REG_HIGH(bus, device, func, 0);
return (ndi_prop_update_int_array(DDI_DEV_T_NONE, dip,
"reg", reg, 5));
}
static int
pcicfg_dump_assigned(dev_info_t *dip)
{
pci_regspec_t *reg;
int length;
int rcount;
int i;
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&reg,
&length) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read assigned-addresses property\n");
return (PCICFG_FAILURE);
}
rcount = length / sizeof (pci_regspec_t);
for (i = 0; i < rcount; i++) {
DEBUG4("pcicfg_dump_assigned - size=%x low=%x mid=%x high=%x\n",
reg[i].pci_size_low, reg[i].pci_phys_low,
reg[i].pci_phys_mid, reg[i].pci_phys_hi);
}
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)reg, length);
return (PCICFG_SUCCESS);
}
#ifdef PCICFG_INTERPRET_FCODE
static int
pcicfg_load_fcode(dev_info_t *dip, uint_t bus, uint_t device, uint_t func,
uint16_t vendor_id, uint16_t device_id, uchar_t **fcode_addr,
int *fcode_size, int rom_paddr, int rom_size)
{
pci_regspec_t p;
int pci_data;
int start_of_fcode;
int image_length;
int code_type;
ddi_acc_handle_t h;
ddi_device_acc_attr_t acc;
uint8_t *addr;
int8_t image_not_found, indicator;
uint16_t vendor_id_img, device_id_img;
int16_t rom_sig;
#ifdef DEBUG
int i;
#endif
DEBUG4("pcicfg_load_fcode() - "
"bus %x device =%x func=%x rom_paddr=%lx\n",
bus, device, func, rom_paddr);
DEBUG2("pcicfg_load_fcode() - vendor_id=%x device_id=%x\n",
vendor_id, device_id);
*fcode_size = 0;
*fcode_addr = NULL;
acc.devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
p.pci_phys_hi = PCI_ADDR_MEM32 | PCICFG_MAKE_REG_HIGH(bus, device,
func, PCI_CONF_ROM);
p.pci_phys_mid = 0;
p.pci_phys_low = 0;
p.pci_size_low = rom_size;
p.pci_size_hi = 0;
if (pcicfg_map_phys(dip, &p, (caddr_t *)&addr, &acc, &h)) {
DEBUG1("Can Not map in ROM %x\n", p.pci_phys_low);
return (PCICFG_FAILURE);
}
/*
* Walk the ROM to find the proper image for this device.
*/
image_not_found = 1;
while (image_not_found) {
DEBUG1("Expansion ROM maps to %lx\n", addr);
#ifdef DEBUG
if (pcicfg_dump_fcode) {
for (i = 0; i < 100; i++)
DEBUG2("ROM 0x%x --> 0x%x\n", i,
ddi_get8(h, (uint8_t *)(addr + i)));
}
#endif
/*
* Some device say they have an Expansion ROM, but do not, so
* for non-21554 devices use peek so we don't panic due to
* accessing non existent memory.
*/
if (pcicfg_indirect_map(dip) == DDI_SUCCESS) {
rom_sig = ddi_get16(h,
(uint16_t *)(addr + PCI_ROM_SIGNATURE));
} else {
if (ddi_peek16(dip,
(int16_t *)(addr + PCI_ROM_SIGNATURE), &rom_sig)) {
cmn_err(CE_WARN,
"PCI Expansion ROM is not accessible");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
}
/*
* Validate the ROM Signature.
*/
if ((uint16_t)rom_sig != 0xaa55) {
DEBUG1("Invalid ROM Signature %x\n", (uint16_t)rom_sig);
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
DEBUG0("Valid ROM Signature Found\n");
start_of_fcode = ddi_get16(h, (uint16_t *)(addr + 2));
pci_data = ddi_get16(h,
(uint16_t *)(addr + PCI_ROM_PCI_DATA_STRUCT_PTR));
DEBUG2("Pointer To PCI Data Structure %x %x\n", pci_data,
addr);
/*
* Validate the PCI Data Structure Signature.
* 0x52494350 = "PCIR"
*/
if (ddi_get8(h, (uint8_t *)(addr + pci_data)) != 0x50) {
DEBUG0("Invalid PCI Data Structure Signature\n");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
if (ddi_get8(h, (uint8_t *)(addr + pci_data + 1)) != 0x43) {
DEBUG0("Invalid PCI Data Structure Signature\n");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
if (ddi_get8(h, (uint8_t *)(addr + pci_data + 2)) != 0x49) {
DEBUG0("Invalid PCI Data Structure Signature\n");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
if (ddi_get8(h, (uint8_t *)(addr + pci_data + 3)) != 0x52) {
DEBUG0("Invalid PCI Data Structure Signature\n");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
/*
* Is this image for this device?
*/
vendor_id_img = ddi_get16(h,
(uint16_t *)(addr + pci_data + PCI_PDS_VENDOR_ID));
device_id_img = ddi_get16(h,
(uint16_t *)(addr + pci_data + PCI_PDS_DEVICE_ID));
DEBUG2("This image is for vendor_id=%x device_id=%x\n",
vendor_id_img, device_id_img);
code_type = ddi_get8(h, addr + pci_data + PCI_PDS_CODE_TYPE);
switch (code_type) {
case PCI_PDS_CODE_TYPE_PCAT:
DEBUG0("ROM is of x86/PC-AT Type\n");
break;
case PCI_PDS_CODE_TYPE_OPEN_FW:
DEBUG0("ROM is of Open Firmware Type\n");
break;
default:
DEBUG1("ROM is of Unknown Type 0x%x\n", code_type);
break;
}
if ((vendor_id_img != vendor_id) ||
(device_id_img != device_id) ||
(code_type != PCI_PDS_CODE_TYPE_OPEN_FW)) {
DEBUG0("Firmware Image is not for this device..."
"goto next image\n");
/*
* Read indicator byte to see if there is another
* image in the ROM
*/
indicator = ddi_get8(h,
(uint8_t *)(addr + pci_data + PCI_PDS_INDICATOR));
if (indicator != 1) {
/*
* There is another image in the ROM.
*/
image_length = ddi_get16(h, (uint16_t *)(addr +
pci_data + PCI_PDS_IMAGE_LENGTH)) * 512;
addr += image_length;
} else {
/*
* There are no more images.
*/
DEBUG0("There are no more images in the ROM\n");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
} else {
DEBUG0("Correct image was found\n");
image_not_found = 0; /* Image was found */
}
}
*fcode_size = (ddi_get8(h, addr + start_of_fcode + 4) << 24) |
(ddi_get8(h, addr + start_of_fcode + 5) << 16) |
(ddi_get8(h, addr + start_of_fcode + 6) << 8) |
(ddi_get8(h, addr + start_of_fcode + 7));
DEBUG1("Fcode Size %x\n", *fcode_size);
/*
* Allocate page aligned buffer space
*/
*fcode_addr = kmem_zalloc(ptob(btopr(*fcode_size)), KM_SLEEP);
if (*fcode_addr == NULL) {
DEBUG0("kmem_zalloc returned NULL\n");
pcicfg_unmap_phys(&h, &p);
return (PCICFG_FAILURE);
}
DEBUG1("Fcode Addr %lx\n", *fcode_addr);
ddi_rep_get8(h, *fcode_addr, addr + start_of_fcode, *fcode_size,
DDI_DEV_AUTOINCR);
pcicfg_unmap_phys(&h, &p);
return (PCICFG_SUCCESS);
}
static int
pcicfg_fcode_assign_bars(ddi_acc_handle_t h, dev_info_t *dip, uint_t bus,
uint_t device, uint_t func, int32_t fc_request, pci_regspec_t *rom_regspec)
{
/*
* Assign values to all BARs so that it is safe to turn on the
* device for accessing the fcode on the PROM. On successful
* exit from this function, "assigned-addresses" are created
* for all BARs and ROM BAR is enabled. Also, rom_regspec is
* filled with the values that can be used to free up this
* resource later.
*/
uint32_t request, hiword, size;
pci_regspec_t phys_spec;
ndi_ra_request_t req;
uint64_t mem_answer, mem_alen;
int i;
DEBUG1("pcicfg_fcode_assign_bars :%s\n", DEVI(dip)->devi_name);
/*
* Process the BARs.
*/
for (i = PCI_CONF_BASE0; i <= PCI_CONF_BASE5; ) {
pci_config_put32(h, i, 0xffffffff);
request = pci_config_get32(h, i);
/*
* Check if implemented
*/
if (request == 0) {
DEBUG1("pcicfg_fcode_assign_bars :"
"BASE register [0x%x] asks for 0(32)\n", i);
i += 4;
continue;
}
/*
* Build the phys_spec for this BAR
*/
hiword = PCICFG_MAKE_REG_HIGH(bus, device, func, i);
size = (~(PCI_BASE_M_ADDR_M & request)) + 1;
DEBUG3("pcicfg_fcode_assign_bars :"
"BASE register [0x%x] asks for [0x%x]=[0x%x]\n",
i, request, size);
if ((PCI_BASE_SPACE_M & request) == PCI_BASE_SPACE_MEM) {
if ((PCI_BASE_TYPE_M & request) == PCI_BASE_TYPE_MEM) {
hiword |= PCI_ADDR_MEM32;
} else if ((PCI_BASE_TYPE_M & request)
== PCI_BASE_TYPE_ALL) {
hiword |= PCI_ADDR_MEM64;
}
if (request & PCI_BASE_PREF_M)
hiword |= PCI_REG_PF_M;
} else {
hiword |= PCI_ADDR_IO;
}
phys_spec.pci_phys_hi = hiword;
phys_spec.pci_phys_mid = 0;
phys_spec.pci_phys_low = 0;
phys_spec.pci_size_hi = 0;
phys_spec.pci_size_low = size;
/*
* The following function
* - allocates address space
* - programs the BAR
* - adds an "assigned-addresses" property
*/
if (pcicfg_alloc_resource(dip, phys_spec)) {
cmn_err(CE_WARN, "failed to allocate %d bytes"
" for dev %s BASE register [0x%x]\n",
size, DEVI(dip)->devi_name, i);
goto failure;
}
if ((PCI_BASE_TYPE_M & request) == PCI_BASE_TYPE_ALL) {
/*
* 64 bit, should be in memory space.
*/
i += 8;
} else {
/*
* 32 bit, either memory or I/O space.
*/
i += 4;
}
}
/*
* Handle ROM BAR. We do not use the common
* resource allocator function because we need to
* return reg spec to the caller.
*/
size = (~(PCI_BASE_ROM_ADDR_M & fc_request)) + 1;
DEBUG3("BASE register [0x%x] asks for "
"[0x%x]=[0x%x]\n", PCI_CONF_ROM, fc_request, size);
bzero((caddr_t)&req, sizeof (ndi_ra_request_t));
req.ra_boundbase = 0;
req.ra_boundlen = PCICFG_4GIG_LIMIT;
req.ra_len = size;
req.ra_flags = (NDI_RA_ALIGN_SIZE | NDI_RA_ALLOC_BOUNDED);
if (ndi_ra_alloc(ddi_get_parent(dip),
&req, &mem_answer, &mem_alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)) {
cmn_err(CE_WARN, "failed to allocate %d bytes"
" for dev %s ROM BASE register\n",
size, DEVI(dip)->devi_name);
goto failure;
}
DEBUG3("ROM addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(mem_answer),
PCICFG_LOADDR(mem_answer), mem_alen);
/*
* Assign address space and enable ROM.
*/
pci_config_put32(h, PCI_CONF_ROM,
PCICFG_LOADDR(mem_answer) | PCI_BASE_ROM_ENABLE);
/*
* Add resource to assigned-addresses.
*/
phys_spec.pci_phys_hi = PCICFG_MAKE_REG_HIGH(bus, device, func, \
PCI_CONF_ROM) | PCI_ADDR_MEM32;
if (fc_request & PCI_BASE_PREF_M)
phys_spec.pci_phys_hi |= PCI_REG_PF_M;
phys_spec.pci_phys_mid = 0;
phys_spec.pci_phys_low = PCICFG_LOADDR(mem_answer);
phys_spec.pci_size_hi = 0;
phys_spec.pci_size_low = size;
if (pcicfg_update_assigned_prop(dip, &phys_spec)
!= PCICFG_SUCCESS) {
cmn_err(CE_WARN, "failed to update"
" assigned-address property for dev %s\n",
DEVI(dip)->devi_name);
goto failure;
}
/*
* Copy out the reg spec.
*/
*rom_regspec = phys_spec;
return (PCICFG_SUCCESS);
failure:
/*
* We came in with no "assigned-addresses".
* Free up the resources we may have allocated.
*/
(void) pcicfg_free_device_resources(dip, 0);
return (PCICFG_FAILURE);
}
#endif /* PCICFG_INTERPRET_FCODE */
static int
pcicfg_free_all_resources(dev_info_t *dip)
{
pci_regspec_t *assigned;
int assigned_len;
int acount;
int i;
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&assigned,
&assigned_len) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read assigned-addresses property\n");
return (PCICFG_FAILURE);
}
acount = assigned_len / sizeof (pci_regspec_t);
for (i = 0; i < acount; i++) {
if (pcicfg_free_resource(dip, assigned[i], 0)) {
/*
* Dont forget to free mem from ddi_getlongprop
*/
kmem_free((caddr_t)assigned, assigned_len);
return (PCICFG_FAILURE);
}
}
/*
* Don't forget to free up memory from ddi_getlongprop
*/
if (assigned_len)
kmem_free((caddr_t)assigned, assigned_len);
return (PCICFG_SUCCESS);
}
static int
pcicfg_alloc_new_resources(dev_info_t *dip)
{
pci_regspec_t *assigned, *reg;
int assigned_len, reg_len;
int acount, rcount;
int i, j, alloc_size;
boolean_t alloc;
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (caddr_t)&reg,
&reg_len) != DDI_PROP_SUCCESS) {
DEBUG0("Failed to read reg property\n");
return (PCICFG_FAILURE);
}
rcount = reg_len / sizeof (pci_regspec_t);
DEBUG2("pcicfg_alloc_new_resources() reg size=%x entries=%x\n",
reg_len, rcount);
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&assigned,
&assigned_len) != DDI_PROP_SUCCESS) {
acount = 0;
} else {
acount = assigned_len / sizeof (pci_regspec_t);
}
DEBUG1("assigned-addresses property len=%x\n", acount);
/*
* For each address described by reg, search for it in the
* assigned-addresses property. If it does not exist, allocate
* resources for it. If it does exist, check the size in both.
* The size needs to be bigger of the two.
*/
for (i = 1; i < rcount; i++) {
alloc = B_TRUE;
alloc_size = reg[i].pci_size_low;
for (j = 0; j < acount; j++) {
if (assigned[j].pci_phys_hi == reg[i].pci_phys_hi) {
/*
* There is an exact match. Check size.
*/
DEBUG1("pcicfg_alloc_new_resources "
"- %x - MATCH\n",
reg[i].pci_phys_hi);
if (reg[i].pci_size_low >
assigned[j].pci_size_low) {
/*
* Fcode wants more.
*/
DEBUG3("pcicfg_alloc_new_resources"
" - %x - RESIZE"
" assigned 0x%x reg 0x%x\n",
assigned[j].pci_phys_hi,
assigned[j].pci_size_low,
reg[i].pci_size_low);
/*
* Free the old resource.
*/
(void) pcicfg_free_resource(dip,
assigned[j], 0);
} else {
DEBUG3("pcicfg_alloc_new_resources"
" - %x - ENOUGH"
" assigned 0x%x reg 0x%x\n",
assigned[j].pci_phys_hi,
assigned[j].pci_size_low,
reg[i].pci_size_low);
alloc = B_FALSE;
}
break;
}
/*
* Fcode may have set one or more of the
* NPT bits in phys.hi.
*/
if (PCI_REG_BDFR_G(assigned[j].pci_phys_hi) ==
PCI_REG_BDFR_G(reg[i].pci_phys_hi)) {
DEBUG2("pcicfg_alloc_new_resources "
"- PARTIAL MATCH assigned 0x%x "
"reg 0x%x\n", assigned[j].pci_phys_hi,
reg[i].pci_phys_hi);
/*
* Changing the SS bits is an error
*/
if (PCI_REG_ADDR_G(
assigned[j].pci_phys_hi) !=
PCI_REG_ADDR_G(reg[i].pci_phys_hi)) {
DEBUG2("Fcode changing"
" SS bits of - 0x%x -"
" on %s\n", reg[i].pci_phys_hi,
DEVI(dip)->devi_name);
}
/*
* We are going to allocate new resource.
* Free the old resource. Again, adjust
* the size to be safe.
*/
(void) pcicfg_free_resource(dip,
assigned[j], 0);
alloc_size = MAX(reg[i].pci_size_low,
assigned[j].pci_size_low);
break;
}
}
/*
* We are allocating resources for one of three reasons -
* - Fcode wants a larger address space
* - Fcode has set changed/set n, p, t bits.
* - It is a new "reg", it should be only ROM bar, but
* we don't do the checking.
*/
if (alloc == B_TRUE) {
DEBUG1("pcicfg_alloc_new_resources : creating 0x%x\n",
reg[i].pci_phys_hi);
reg[i].pci_size_low = alloc_size;
if (pcicfg_alloc_resource(dip, reg[i])) {
/*
* Dont forget to free mem from
* ddi_getlongprop
*/
if (acount != 0)
kmem_free((caddr_t)assigned,
assigned_len);
kmem_free((caddr_t)reg, reg_len);
return (PCICFG_FAILURE);
}
}
}
/*
* Don't forget to free up memory from ddi_getlongprop
*/
if (acount != 0)
kmem_free((caddr_t)assigned, assigned_len);
kmem_free((caddr_t)reg, reg_len);
return (PCICFG_SUCCESS);
}
static int
pcicfg_alloc_resource(dev_info_t *dip, pci_regspec_t phys_spec)
{
uint64_t answer;
uint64_t alen;
int offset;
pci_regspec_t config;
caddr_t virt, v;
ddi_device_acc_attr_t acc;
ddi_acc_handle_t h;
ndi_ra_request_t request;
pci_regspec_t *assigned;
int assigned_len, entries, i;
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses", (caddr_t)&assigned,
&assigned_len) == DDI_PROP_SUCCESS) {
DEBUG0("pcicfg_alloc_resource - "
"searching assigned-addresses\n");
entries = assigned_len / (sizeof (pci_regspec_t));
/*
* Walk through the assigned-addresses entries. If there is
* a match, there is no need to allocate the resource.
*/
for (i = 0; i < entries; i++) {
if (assigned[i].pci_phys_hi == phys_spec.pci_phys_hi) {
DEBUG1("pcicfg_alloc_resource - MATCH %x\n",
assigned[i].pci_phys_hi);
kmem_free(assigned, assigned_len);
return (0);
}
}
kmem_free(assigned, assigned_len);
}
bzero((caddr_t)&request, sizeof (ndi_ra_request_t));
config.pci_phys_hi = PCI_CONF_ADDR_MASK & phys_spec.pci_phys_hi;
config.pci_phys_hi &= ~PCI_REG_REG_M;
config.pci_phys_mid = config.pci_phys_low = 0;
config.pci_size_hi = config.pci_size_low = 0;
/*
* Map in configuration space (temporarily)
*/
acc.devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
if (pcicfg_map_phys(dip, &config, &virt, &acc, &h)) {
DEBUG0("Can not map in config space\n");
return (1);
}
request.ra_flags = NDI_RA_ALIGN_SIZE;
request.ra_boundbase = 0;
request.ra_boundlen = PCICFG_4GIG_LIMIT;
/*
* Use size stored in phys_spec parameter.
*/
request.ra_len = phys_spec.pci_size_low;
offset = PCI_REG_REG_G(phys_spec.pci_phys_hi);
v = virt + offset;
if (PCI_REG_REG_G(phys_spec.pci_phys_hi) == PCI_CONF_ROM) {
request.ra_flags |= NDI_RA_ALLOC_BOUNDED;
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("(ROM)Failed to allocate 32b mem");
pcicfg_unmap_phys(&h, &config);
return (1);
}
DEBUG3("ROM addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
/* program the low word */
ddi_put32(h, (uint32_t *)v, (uint32_t)PCICFG_LOADDR(answer));
phys_spec.pci_phys_low = PCICFG_LOADDR(answer);
phys_spec.pci_phys_mid = PCICFG_HIADDR(answer);
} else {
switch (PCI_REG_ADDR_G(phys_spec.pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
request.ra_flags &= ~NDI_RA_ALLOC_BOUNDED;
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate 64b mem\n");
pcicfg_unmap_phys(&h, &config);
return (1);
}
DEBUG3("64 addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
/* program the low word */
ddi_put32(h, (uint32_t *)v,
(uint32_t)PCICFG_LOADDR(answer));
/* program the high word with value zero */
v += 4;
ddi_put32(h, (uint32_t *)v,
(uint32_t)PCICFG_HIADDR(answer));
phys_spec.pci_phys_low = PCICFG_LOADDR(answer);
phys_spec.pci_phys_mid = PCICFG_HIADDR(answer);
/*
* currently support 32b address space
* assignments only.
*/
phys_spec.pci_phys_hi ^= PCI_ADDR_MEM64 ^
PCI_ADDR_MEM32;
break;
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
request.ra_flags |= NDI_RA_ALLOC_BOUNDED;
/* allocate memory space from the allocator */
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_MEM, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate 32b mem\n");
pcicfg_unmap_phys(&h, &config);
return (1);
}
DEBUG3("32 addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
/* program the low word */
ddi_put32(h, (uint32_t *)v,
(uint32_t)PCICFG_LOADDR(answer));
phys_spec.pci_phys_low = PCICFG_LOADDR(answer);
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
/* allocate I/O space from the allocator */
request.ra_flags |= NDI_RA_ALLOC_BOUNDED;
if (ndi_ra_alloc(ddi_get_parent(dip),
&request, &answer, &alen,
NDI_RA_TYPE_IO, NDI_RA_PASS)
!= NDI_SUCCESS) {
DEBUG0("Failed to allocate I/O\n");
pcicfg_unmap_phys(&h, &config);
return (1);
}
DEBUG3("I/O addr = [0x%x.%x] len [0x%x]\n",
PCICFG_HIADDR(answer),
PCICFG_LOADDR(answer),
alen);
ddi_put32(h, (uint32_t *)v,
(uint32_t)PCICFG_LOADDR(answer));
phys_spec.pci_phys_low = PCICFG_LOADDR(answer);
break;
default:
DEBUG0("Unknown register type\n");
pcicfg_unmap_phys(&h, &config);
return (1);
} /* switch */
}
/*
* Now that memory locations are assigned,
* update the assigned address property.
*/
DEBUG1("updating assigned-addresss for %x\n", phys_spec.pci_phys_hi);
if (pcicfg_update_assigned_prop(dip, &phys_spec)) {
pcicfg_unmap_phys(&h, &config);
return (1);
}
pcicfg_unmap_phys(&h, &config);
return (0);
}
static int
pcicfg_free_resource(dev_info_t *dip, pci_regspec_t phys_spec,
pcicfg_flags_t flags)
{
int offset;
pci_regspec_t config;
caddr_t virt, v;
ddi_device_acc_attr_t acc;
ddi_acc_handle_t h;
ndi_ra_request_t request;
int l;
bzero((caddr_t)&request, sizeof (ndi_ra_request_t));
config.pci_phys_hi = PCI_CONF_ADDR_MASK & phys_spec.pci_phys_hi;
config.pci_phys_hi &= ~PCI_REG_REG_M;
config.pci_phys_mid = config.pci_phys_low = 0;
config.pci_size_hi = config.pci_size_low = 0;
/*
* Map in configuration space (temporarily)
*/
acc.devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
if (pcicfg_map_phys(dip, &config, &virt, &acc, &h)) {
DEBUG0("Can not map in config space\n");
return (1);
}
offset = PCI_REG_REG_G(phys_spec.pci_phys_hi);
v = virt + offset;
/*
* Use size stored in phys_spec parameter.
*/
l = phys_spec.pci_size_low;
if (PCI_REG_REG_G(phys_spec.pci_phys_hi) == PCI_CONF_ROM) {
/* free memory back to the allocator */
if (ndi_ra_free(ddi_get_parent(dip), phys_spec.pci_phys_low,
l, NDI_RA_TYPE_MEM, NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("(ROM)Can not free 32b mem");
pcicfg_unmap_phys(&h, &config);
return (1);
}
/* Unmap the BAR by writing a zero */
if ((flags & PCICFG_FLAG_READ_ONLY) == 0)
ddi_put32(h, (uint32_t *)v, (uint32_t)0);
} else {
switch (PCI_REG_ADDR_G(phys_spec.pci_phys_hi)) {
case PCI_REG_ADDR_G(PCI_ADDR_MEM64):
case PCI_REG_ADDR_G(PCI_ADDR_MEM32):
/* free memory back to the allocator */
if (ndi_ra_free(ddi_get_parent(dip),
PCICFG_LADDR(phys_spec.pci_phys_low,
phys_spec.pci_phys_mid),
l, NDI_RA_TYPE_MEM,
NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Cannot free mem");
pcicfg_unmap_phys(&h, &config);
return (1);
}
break;
case PCI_REG_ADDR_G(PCI_ADDR_IO):
/* free I/O space back to the allocator */
if (ndi_ra_free(ddi_get_parent(dip),
phys_spec.pci_phys_low,
l, NDI_RA_TYPE_IO,
NDI_RA_PASS) != NDI_SUCCESS) {
DEBUG0("Can not free I/O space");
pcicfg_unmap_phys(&h, &config);
return (1);
}
break;
default:
DEBUG0("Unknown register type\n");
pcicfg_unmap_phys(&h, &config);
return (1);
} /* switch */
}
/*
* Now that memory locations are assigned,
* update the assigned address property.
*/
DEBUG1("updating assigned-addresss for %x\n", phys_spec.pci_phys_hi);
if (pcicfg_remove_assigned_prop(dip, &phys_spec)) {
pcicfg_unmap_phys(&h, &config);
return (1);
}
pcicfg_unmap_phys(&h, &config);
return (0);
}
static int
pcicfg_remove_assigned_prop(dev_info_t *dip, pci_regspec_t *oldone)
{
int alen, num_entries, i;
pci_regspec_t *assigned, *assigned_copy;
uint_t status;
status = ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"assigned-addresses", (caddr_t)&assigned, &alen);
switch (status) {
case DDI_PROP_SUCCESS:
break;
case DDI_PROP_NO_MEMORY:
DEBUG0("no memory for assigned-addresses property\n");
return (1);
default:
DEBUG0("assigned-addresses property does not exist\n");
return (0);
}
/*
* Make a copy of old assigned-addresses property.
*/
assigned_copy = kmem_alloc(alen, KM_SLEEP);
bcopy(assigned, assigned_copy, alen);
status = ndi_prop_remove(DDI_DEV_T_NONE, dip, "assigned-addresses");
if (status != DDI_PROP_SUCCESS) {
/*
* If "assigned-addresses" is retrieved from PROM, the
* ndi_prop_remove() will fail.
*/
DEBUG1("pcicfg_remove_assigned_prop: 0x%x not removed\n",
oldone->pci_phys_hi);
/*
* Free up allocated memory
*/
kmem_free(assigned_copy, alen);
kmem_free((caddr_t)assigned, alen);
return (0);
}
num_entries = alen / sizeof (pci_regspec_t);
/*
* Rebuild the assigned-addresses property.
*/
for (i = 0; i < num_entries; i++) {
if (assigned_copy[i].pci_phys_hi != oldone->pci_phys_hi) {
(void) pcicfg_update_assigned_prop(dip,
&assigned_copy[i]);
}
}
/*
* Free the copy of the original assigned-addresses.
*/
kmem_free(assigned_copy, alen);
/*
* Don't forget to free up memory from ddi_getlongprop
*/
kmem_free((caddr_t)assigned, alen);
return (0);
}
static int
pcicfg_map_phys(dev_info_t *dip, pci_regspec_t *phys_spec,
caddr_t *addrp, ddi_device_acc_attr_t *accattrp,
ddi_acc_handle_t *handlep)
{
ddi_map_req_t mr;
ddi_acc_hdl_t *hp;
int result;
*handlep = impl_acc_hdl_alloc(KM_SLEEP, NULL);
hp = impl_acc_hdl_get(*handlep);
hp->ah_vers = VERS_ACCHDL;
hp->ah_dip = dip;
hp->ah_rnumber = 0;
hp->ah_offset = 0;
hp->ah_len = 0;
hp->ah_acc = *accattrp;
mr.map_op = DDI_MO_MAP_LOCKED;
mr.map_type = DDI_MT_REGSPEC;
mr.map_obj.rp = (struct regspec *)phys_spec;
mr.map_prot = PROT_READ | PROT_WRITE;
mr.map_flags = DDI_MF_KERNEL_MAPPING;
mr.map_handlep = hp;
mr.map_vers = DDI_MAP_VERSION;
result = ddi_map(dip, &mr, 0, 0, addrp);
if (result != DDI_SUCCESS) {
impl_acc_hdl_free(*handlep);
*handlep = (ddi_acc_handle_t)NULL;
} else {
hp->ah_addr = *addrp;
}
return (result);
}
void
pcicfg_unmap_phys(ddi_acc_handle_t *handlep, pci_regspec_t *ph)
{
ddi_map_req_t mr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(*handlep);
ASSERT(hp);
mr.map_op = DDI_MO_UNMAP;
mr.map_type = DDI_MT_REGSPEC;
mr.map_obj.rp = (struct regspec *)ph;
mr.map_prot = PROT_READ | PROT_WRITE;
mr.map_flags = DDI_MF_KERNEL_MAPPING;
mr.map_handlep = hp;
mr.map_vers = DDI_MAP_VERSION;
(void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
hp->ah_len, &hp->ah_addr);
impl_acc_hdl_free(*handlep);
*handlep = (ddi_acc_handle_t)NULL;
}
static int
pcicfg_ari_configure(dev_info_t *dip)
{
if (pcie_ari_supported(dip) == PCIE_ARI_FORW_NOT_SUPPORTED)
return (DDI_FAILURE);
/*
* Until we have resource balancing, dynamically configure
* ARI functions without firmware assistamce.
*/
return (DDI_FAILURE);
}
#ifdef DEBUG
static void
debug(char *fmt, uintptr_t a1, uintptr_t a2, uintptr_t a3,
uintptr_t a4, uintptr_t a5)
{
if (pcicfg_debug == 1) {
prom_printf("pcicfg: ");
prom_printf(fmt, a1, a2, a3, a4, a5);
} else
if (pcicfg_debug)
cmn_err(CE_CONT, fmt, a1, a2, a3, a4, a5);
}
#endif
/*
* Return true if the devinfo node is in a PCI Express hierarchy.
*/
static boolean_t
is_pcie_fabric(dev_info_t *dip)
{
dev_info_t *root = ddi_root_node();
dev_info_t *pdip;
boolean_t found = B_FALSE;
char *bus;
/*
* Does this device reside in a pcie fabric ?
*/
for (pdip = dip; pdip && (pdip != root) && !found;
pdip = ddi_get_parent(pdip)) {
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip,
DDI_PROP_DONTPASS, "device_type", &bus) !=
DDI_PROP_SUCCESS)
break;
if (strcmp(bus, "pciex") == 0)
found = B_TRUE;
ddi_prop_free(bus);
}
return (found);
}