eri.c revision 22eb7cb54d8a6bcf6fe2674cb4b1f0cf2d85cfb6
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* SunOS MT STREAMS ERI(PCI) 10/100 Mb Ethernet Device Driver
*/
#include <sys/types.h>
#include <sys/debug.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/kmem.h>
#include <sys/crc32.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsun.h>
#include <sys/stat.h>
#include <sys/cpu.h>
#include <sys/kstat.h>
#include <inet/common.h>
#include <sys/pattr.h>
#include <inet/mi.h>
#include <inet/nd.h>
#include <sys/ethernet.h>
#include <sys/vlan.h>
#include <sys/policy.h>
#include <sys/mac.h>
#include <sys/mac_ether.h>
#include <sys/dlpi.h>
#include <sys/pci.h>
#include "eri_phy.h"
#include "eri_mac.h"
#include "eri.h"
#include "eri_common.h"
#include "eri_msg.h"
/*
* **** Function Prototypes *****
*/
/*
* Entry points (man9e)
*/
static int eri_attach(dev_info_t *, ddi_attach_cmd_t);
static int eri_detach(dev_info_t *, ddi_detach_cmd_t);
static uint_t eri_intr(caddr_t);
/*
* I/O (Input/Output) Functions
*/
static boolean_t eri_send_msg(struct eri *, mblk_t *);
static mblk_t *eri_read_dma(struct eri *, volatile struct rmd *,
volatile int, uint64_t flags);
/*
* Initialization Functions
*/
static boolean_t eri_init(struct eri *);
static int eri_allocthings(struct eri *);
static int eri_init_xfer_params(struct eri *);
static void eri_statinit(struct eri *);
static int eri_burstsize(struct eri *);
static void eri_setup_mac_address(struct eri *, dev_info_t *);
static uint32_t eri_init_rx_channel(struct eri *);
static void eri_init_rx(struct eri *);
static void eri_init_txmac(struct eri *);
/*
* Un-init Functions
*/
static uint32_t eri_txmac_disable(struct eri *);
static uint32_t eri_rxmac_disable(struct eri *);
static int eri_stop(struct eri *);
static void eri_uninit(struct eri *erip);
static int eri_freebufs(struct eri *);
static boolean_t eri_reclaim(struct eri *, uint32_t);
/*
* Transceiver (xcvr) Functions
*/
static int eri_new_xcvr(struct eri *); /* Initializes & detects xcvrs */
static int eri_reset_xcvr(struct eri *);
#ifdef ERI_10_10_FORCE_SPEED_WORKAROUND
static void eri_xcvr_force_mode(struct eri *, uint32_t *);
#endif
static void eri_mif_poll(struct eri *, soft_mif_enable_t);
static void eri_check_link(struct eri *);
static uint32_t eri_check_link_noind(struct eri *);
static link_state_t eri_mif_check(struct eri *, uint16_t, uint16_t);
static void eri_mii_write(struct eri *, uint8_t, uint16_t);
static uint32_t eri_mii_read(struct eri *, uint8_t, uint16_t *);
/*
* Reset Functions
*/
static uint32_t eri_etx_reset(struct eri *);
static uint32_t eri_erx_reset(struct eri *);
/*
* Error Functions
*/
static void eri_fatal_err(struct eri *, uint32_t);
static void eri_nonfatal_err(struct eri *, uint32_t);
#ifdef ERI_TX_HUNG
static int eri_check_txhung(struct eri *);
#endif
/*
* Hardening Functions
*/
static void eri_fault_msg(struct eri *, uint_t, msg_t, const char *, ...);
/*
* Misc Functions
*/
static void eri_savecntrs(struct eri *);
static void eri_stop_timer(struct eri *erip);
static void eri_start_timer(struct eri *erip, fptrv_t func, clock_t msec);
static void eri_bb_force_idle(struct eri *);
/*
* Utility Functions
*/
static mblk_t *eri_allocb(size_t size);
static mblk_t *eri_allocb_sp(size_t size);
static int eri_param_get(queue_t *q, mblk_t *mp, caddr_t cp);
static int eri_param_set(queue_t *, mblk_t *, char *, caddr_t);
/*
* Functions to support ndd
*/
static void eri_nd_free(caddr_t *nd_pparam);
static boolean_t eri_nd_load(caddr_t *nd_pparam, char *name,
pfi_t get_pfi, pfi_t set_pfi, caddr_t data);
static int eri_nd_getset(queue_t *q, caddr_t nd_param, MBLKP mp);
static void eri_param_cleanup(struct eri *);
static int eri_param_register(struct eri *, param_t *, int);
static void eri_process_ndd_ioctl(struct eri *, queue_t *, mblk_t *, int);
static int eri_mk_mblk_tail_space(mblk_t *, mblk_t **, size_t);
static void eri_loopback(struct eri *, queue_t *, mblk_t *);
static uint32_t eri_ladrf_bit(const uint8_t *);
/*
* Nemo (GLDv3) Functions.
*/
static int eri_m_stat(void *, uint_t, uint64_t *);
static int eri_m_start(void *);
static void eri_m_stop(void *);
static int eri_m_promisc(void *, boolean_t);
static int eri_m_multicst(void *, boolean_t, const uint8_t *);
static int eri_m_unicst(void *, const uint8_t *);
static void eri_m_ioctl(void *, queue_t *, mblk_t *);
static boolean_t eri_m_getcapab(void *, mac_capab_t, void *);
static mblk_t *eri_m_tx(void *, mblk_t *);
static mac_callbacks_t eri_m_callbacks = {
MC_IOCTL | MC_GETCAPAB,
eri_m_stat,
eri_m_start,
eri_m_stop,
eri_m_promisc,
eri_m_multicst,
eri_m_unicst,
eri_m_tx,
NULL,
eri_m_ioctl,
eri_m_getcapab
};
/*
* Define PHY Vendors: Matches to IEEE
* Organizationally Unique Identifier (OUI)
*/
/*
* The first two are supported as Internal XCVRs
*/
#define PHY_VENDOR_LUCENT 0x601d
#define PHY_LINK_NONE 0 /* Not attempted yet or retry */
#define PHY_LINK_DOWN 1 /* Not being used */
#define PHY_LINK_UP 2 /* Not being used */
#define AUTO_SPEED 0
#define FORCE_SPEED 1
/*
* MIB II broadcast/multicast packets
*/
#define IS_BROADCAST(pkt) (bcmp(pkt, &etherbroadcastaddr, ETHERADDRL) == 0)
#define IS_MULTICAST(pkt) ((pkt[0] & 01) == 1)
#define BUMP_InNUcast(erip, pkt) \
if (IS_BROADCAST(pkt)) { \
HSTAT(erip, brdcstrcv); \
} else if (IS_MULTICAST(pkt)) { \
HSTAT(erip, multircv); \
}
#define BUMP_OutNUcast(erip, pkt) \
if (IS_BROADCAST(pkt)) { \
HSTAT(erip, brdcstxmt); \
} else if (IS_MULTICAST(pkt)) { \
HSTAT(erip, multixmt); \
}
#define NEXTTMDP(tbasep, tmdlimp, tmdp) (((tmdp) + 1) == tmdlimp \
? tbasep : ((tmdp) + 1))
#define ETHERHEADER_SIZE (sizeof (struct ether_header))
#ifdef ERI_RCV_CKSUM
#define ERI_PROCESS_READ(erip, bp, sum) \
{ \
t_uscalar_t type; \
uint_t start_offset, end_offset; \
\
*(bp->b_wptr) = 0; /* pad byte */ \
\
/* \
* update MIB II statistics \
*/ \
HSTAT(erip, ipackets64); \
HSTATN(erip, rbytes64, len); \
BUMP_InNUcast(erip, bp->b_rptr); \
type = get_ether_type(bp->b_rptr); \
if (type == ETHERTYPE_IP || type == ETHERTYPE_IPV6) { \
start_offset = 0; \
end_offset = MBLKL(bp) - ETHERHEADER_SIZE; \
(void) hcksum_assoc(bp, NULL, NULL, \
start_offset, 0, end_offset, sum, \
HCK_PARTIALCKSUM, 0); \
} else { \
/* \
* Strip the PADS for 802.3 \
*/ \
if (type <= ETHERMTU) \
bp->b_wptr = bp->b_rptr + \
ETHERHEADER_SIZE + type; \
} \
}
#else
#define ERI_PROCESS_READ(erip, bp) \
{ \
t_uscalar_t type; \
type = get_ether_type(bp->b_rptr); \
\
/* \
* update MIB II statistics \
*/ \
HSTAT(erip, ipackets64); \
HSTATN(erip, rbytes64, len); \
BUMP_InNUcast(erip, bp->b_rptr); \
/* \
* Strip the PADS for 802.3 \
*/ \
if (type <= ETHERMTU) \
bp->b_wptr = bp->b_rptr + ETHERHEADER_SIZE + \
type; \
}
#endif /* ERI_RCV_CKSUM */
/*
* TX Interrupt Rate
*/
static int tx_interrupt_rate = 16;
/*
* Ethernet broadcast address definition.
*/
static uint8_t etherbroadcastaddr[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/*
* The following variables are used for configuring various features
*/
#define ERI_DESC_HANDLE_ALLOC 0x0001
#define ERI_DESC_MEM_ALLOC 0x0002
#define ERI_DESC_MEM_MAP 0x0004
#define ERI_XMIT_HANDLE_ALLOC 0x0008
#define ERI_XMIT_HANDLE_BIND 0x0010
#define ERI_RCV_HANDLE_ALLOC 0x0020
#define ERI_RCV_HANDLE_BIND 0x0040
#define ERI_XMIT_DVMA_ALLOC 0x0100
#define ERI_RCV_DVMA_ALLOC 0x0200
#define ERI_XBUFS_HANDLE_ALLOC 0x0400
#define ERI_XBUFS_KMEM_ALLOC 0x0800
#define ERI_XBUFS_KMEM_DMABIND 0x1000
#define ERI_DONT_STRIP_CRC
/*
* Translate a kernel virtual address to i/o address.
*/
#define ERI_IOPBIOADDR(erip, a) \
((erip)->iopbiobase + ((uintptr_t)a - (erip)->iopbkbase))
/*
* ERI Configuration Register Value
* Used to configure parameters that define DMA burst
* and internal arbitration behavior.
* for equal TX and RX bursts, set the following in global
* configuration register.
* static int global_config = 0x42;
*/
/*
* ERI ERX Interrupt Blanking Time
* Each count is about 16 us (2048 clocks) for 66 MHz PCI.
*/
static int intr_blank_time = 6; /* for about 96 us */
static int intr_blank_packets = 8; /* */
/*
* ERX PAUSE Threshold Register value
* The following value is for an OFF Threshold of about 15.5 Kbytes
* and an ON Threshold of 4K bytes.
*/
static int rx_pause_threshold = 0xf8 | (0x40 << 12);
static int eri_reinit_fatal = 0;
#ifdef DEBUG
static int noteri = 0;
#endif
#ifdef ERI_TX_HUNG
static int eri_reinit_txhung = 0;
#endif
#ifdef ERI_HDX_BUG_WORKAROUND
/*
* By default enable padding in hdx mode to 97 bytes.
* To disabled, in /etc/system:
* set eri:eri_hdx_pad_enable=0
*/
static uchar_t eri_hdx_pad_enable = 1;
#endif
/*
* Default values to initialize the cache line size and latency timer
* registers in the PCI configuration space.
* ERI_G_CACHE_LINE_SIZE_16 is defined as 16 since RIO expects in units
* of 4 bytes.
*/
#ifdef ERI_PM_WORKAROUND_PCI
static int eri_pci_cache_line = ERI_G_CACHE_LINE_SIZE_32; /* 128 bytes */
static int eri_pci_latency_timer = 0xff; /* 255 PCI cycles */
#else
static int eri_pci_cache_line = ERI_G_CACHE_LINE_SIZE_16; /* 64 bytes */
static int eri_pci_latency_timer = 0x40; /* 64 PCI cycles */
#endif
#define ERI_CACHE_LINE_SIZE (eri_pci_cache_line << ERI_G_CACHE_BIT)
/*
* Claim the device is ultra-capable of burst in the beginning. Use
* the value returned by ddi_dma_burstsizes() to actually set the ERI
* global configuration register later.
*
* PCI_ERI supports Infinite burst or 64-byte-multiple bursts.
*/
#define ERI_LIMADDRLO ((uint64_t)0x00000000)
#define ERI_LIMADDRHI ((uint64_t)0xffffffff)
static ddi_dma_attr_t dma_attr = {
DMA_ATTR_V0, /* version number. */
(uint64_t)ERI_LIMADDRLO, /* low address */
(uint64_t)ERI_LIMADDRHI, /* high address */
(uint64_t)0x00ffffff, /* address counter max */
(uint64_t)1, /* alignment */
(uint_t)0xe000e0, /* dlim_burstsizes for 32 4 bit xfers */
(uint32_t)0x1, /* minimum transfer size */
(uint64_t)0x7fffffff, /* maximum transfer size */
(uint64_t)0x00ffffff, /* maximum segment size */
1, /* scatter/gather list length */
(uint32_t)1, /* granularity */
(uint_t)0 /* attribute flags */
};
static ddi_dma_attr_t desc_dma_attr = {
DMA_ATTR_V0, /* version number. */
(uint64_t)ERI_LIMADDRLO, /* low address */
(uint64_t)ERI_LIMADDRHI, /* high address */
(uint64_t)0x00ffffff, /* address counter max */
(uint64_t)8, /* alignment */
(uint_t)0xe000e0, /* dlim_burstsizes for 32 4 bit xfers */
(uint32_t)0x1, /* minimum transfer size */
(uint64_t)0x7fffffff, /* maximum transfer size */
(uint64_t)0x00ffffff, /* maximum segment size */
1, /* scatter/gather list length */
16, /* granularity */
0 /* attribute flags */
};
ddi_dma_lim_t eri_dma_limits = {
(uint64_t)ERI_LIMADDRLO, /* dlim_addr_lo */
(uint64_t)ERI_LIMADDRHI, /* dlim_addr_hi */
(uint64_t)ERI_LIMADDRHI, /* dlim_cntr_max */
(uint_t)0x00e000e0, /* dlim_burstsizes for 32 and 64 bit xfers */
(uint32_t)0x1, /* dlim_minxfer */
1024 /* dlim_speed */
};
/*
* Link Configuration variables
*
* On Motherboard implementations, 10/100 Mbps speeds may be supported
* by using both the Serial Link and the MII on Non-serial-link interface.
* When both links are present, the driver automatically tries to bring up
* both. If both are up, the Gigabit Serial Link is selected for use, by
* default. The following configuration variable is used to force the selection
* of one of the links when both are up.
* To change the default selection to the MII link when both the Serial
* Link and the MII link are up, change eri_default_link to 1.
*
* Once a link is in use, the driver will continue to use that link till it
* goes down. When it goes down, the driver will look at the status of both the
* links again for link selection.
*
* Currently the standard is not stable w.r.t. gigabit link configuration
* using auto-negotiation procedures. Meanwhile, the link may be configured
* in "forced" mode using the "autonegotiation enable" bit (bit-12) in the
* PCS MII Command Register. In this mode the PCS sends "idles" until sees
* "idles" as initialization instead of the Link Configuration protocol
* where a Config register is exchanged. In this mode, the ERI is programmed
* for full-duplex operation with both pauseTX and pauseRX (for flow control)
* enabled.
*/
static int select_link = 0; /* automatic selection */
static int default_link = 0; /* Select Serial link if both are up */
/*
* The following variables are used for configuring link-operation
* for all the "eri" interfaces in the system.
* Later these parameters may be changed per interface using "ndd" command
* These parameters may also be specified as properties using the .conf
* file mechanism for each interface.
*/
/*
* The following variable value will be overridden by "link-pulse-disabled"
* property which may be created by OBP or eri.conf file. This property is
* applicable only for 10 Mbps links.
*/
static int link_pulse_disabled = 0; /* link pulse disabled */
/* For MII-based FastEthernet links */
static int adv_autoneg_cap = 1;
static int adv_100T4_cap = 0;
static int adv_100fdx_cap = 1;
static int adv_100hdx_cap = 1;
static int adv_10fdx_cap = 1;
static int adv_10hdx_cap = 1;
static int adv_pauseTX_cap = 0;
static int adv_pauseRX_cap = 0;
/*
* The following gap parameters are in terms of byte times.
*/
static int ipg0 = 8;
static int ipg1 = 8;
static int ipg2 = 4;
static int lance_mode = 1; /* to enable LANCE mode */
static int mifpoll_enable = 0; /* to enable mif poll */
static int ngu_enable = 0; /* to enable Never Give Up mode */
static int eri_force_mlf = 0; /* to enable mif poll */
static int eri_phy_mintrans = 1; /* Lu3X31T mintrans algorithm */
/*
* For the MII interface, the External Transceiver is selected when present.
* The following variable is used to select the Internal Transceiver even
* when the External Transceiver is present.
*/
static int use_int_xcvr = 0;
static int pace_size = 0; /* Do not use pacing for now */
static int eri_use_dvma_rx = 0; /* =1:use dvma */
static int eri_use_dvma_tx = 1; /* =1:use dvma */
static int eri_rx_bcopy_max = RX_BCOPY_MAX; /* =1:use bcopy() */
static int eri_tx_bcopy_max = TX_BCOPY_MAX; /* =1:use bcopy() */
static int eri_overflow_reset = 1; /* global reset if rx_fifo_overflow */
static int eri_tx_ring_size = 2048; /* number of entries in tx ring */
static int eri_rx_ring_size = 1024; /* number of entries in rx ring */
/*
* The following parameters may be configured by the user. If they are not
* configured by the user, the values will be based on the capabilities of
* the transceiver.
* The value "ERI_NOTUSR" is ORed with the parameter value to indicate values
* which are NOT configured by the user.
*/
#define ERI_NOTUSR 0x0f000000
#define ERI_MASK_1BIT 0x1
#define ERI_MASK_2BIT 0x3
#define ERI_MASK_8BIT 0xff
/*
* Note:
* ERI has all of the above capabilities.
* Only when an External Transceiver is selected for MII-based FastEthernet
* link operation, the capabilities depend upon the capabilities of the
* External Transceiver.
*/
/* ------------------------------------------------------------------------- */
static param_t param_arr[] = {
/* min max value r/w/hidden+name */
{ 0, 2, 2, "-transceiver_inuse"},
{ 0, 1, 0, "-link_status"},
{ 0, 1, 0, "-link_speed"},
{ 0, 1, 0, "-link_mode"},
{ 0, 255, 8, "+ipg1"},
{ 0, 255, 4, "+ipg2"},
{ 0, 1, 0, "+use_int_xcvr"},
{ 0, 255, 0, "+pace_size"},
{ 0, 1, 1, "+adv_autoneg_cap"},
{ 0, 1, 1, "+adv_100T4_cap"},
{ 0, 1, 1, "+adv_100fdx_cap"},
{ 0, 1, 1, "+adv_100hdx_cap"},
{ 0, 1, 1, "+adv_10fdx_cap"},
{ 0, 1, 1, "+adv_10hdx_cap"},
{ 0, 1, 1, "-autoneg_cap"},
{ 0, 1, 1, "-100T4_cap"},
{ 0, 1, 1, "-100fdx_cap"},
{ 0, 1, 1, "-100hdx_cap"},
{ 0, 1, 1, "-10fdx_cap"},
{ 0, 1, 1, "-10hdx_cap"},
{ 0, 1, 0, "-lp_autoneg_cap"},
{ 0, 1, 0, "-lp_100T4_cap"},
{ 0, 1, 0, "-lp_100fdx_cap"},
{ 0, 1, 0, "-lp_100hdx_cap"},
{ 0, 1, 0, "-lp_10fdx_cap"},
{ 0, 1, 0, "-lp_10hdx_cap"},
{ 0, 1, 1, "+lance_mode"},
{ 0, 31, 8, "+ipg0"},
{ 0, 127, 6, "+intr_blank_time"},
{ 0, 255, 8, "+intr_blank_packets"},
{ 0, 1, 1, "!serial-link"},
{ 0, 2, 1, "!non-serial-link"},
{ 0, 1, 0, "%select-link"},
{ 0, 1, 0, "%default-link"},
{ 0, 2, 0, "!link-in-use"},
{ 0, 1, 1, "%adv_asm_dir_cap"},
{ 0, 1, 1, "%adv_pause_cap"},
{ 0, 1, 0, "!asm_dir_cap"},
{ 0, 1, 0, "!pause_cap"},
{ 0, 1, 0, "!lp_asm_dir_cap"},
{ 0, 1, 0, "!lp_pause_cap"},
};
DDI_DEFINE_STREAM_OPS(eri_dev_ops, nulldev, nulldev, eri_attach, eri_detach,
nodev, NULL, D_MP, NULL);
/*
* This is the loadable module wrapper.
*/
#include <sys/modctl.h>
/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"Sun RIO 10/100 Mb Ethernet",
&eri_dev_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1, &modldrv, NULL
};
/*
* Hardware Independent Functions
* New Section
*/
int
_init(void)
{
int status;
mac_init_ops(&eri_dev_ops, "eri");
if ((status = mod_install(&modlinkage)) != 0) {
mac_fini_ops(&eri_dev_ops);
}
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == 0) {
mac_fini_ops(&eri_dev_ops);
}
return (status);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
static int
eri_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
struct eri *erip = NULL;
mac_register_t *macp = NULL;
int regno;
boolean_t doinit;
boolean_t mutex_inited = B_FALSE;
boolean_t intr_add = B_FALSE;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
if ((erip = ddi_get_driver_private(dip)) == NULL)
return (DDI_FAILURE);
mutex_enter(&erip->intrlock);
erip->flags &= ~ERI_SUSPENDED;
erip->init_macregs = 1;
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->linkcheck = 0;
doinit = (erip->flags & ERI_STARTED) ? B_TRUE : B_FALSE;
mutex_exit(&erip->intrlock);
if (doinit && !eri_init(erip)) {
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
/*
* Allocate soft device data structure
*/
erip = kmem_zalloc(sizeof (struct eri), KM_SLEEP);
/*
* Initialize as many elements as possible.
*/
ddi_set_driver_private(dip, erip);
erip->dip = dip; /* dip */
erip->instance = ddi_get_instance(dip); /* instance */
erip->flags = 0;
erip->multi_refcnt = 0;
erip->promisc = B_FALSE;
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
ERI_FAULT_MSG1(erip, SEVERITY_HIGH, ERI_VERB_MSG,
"mac_alloc failed");
goto attach_fail;
}
macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
macp->m_driver = erip;
macp->m_dip = dip;
macp->m_src_addr = erip->ouraddr;
macp->m_callbacks = &eri_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = ETHERMTU;
macp->m_margin = VLAN_TAGSZ;
/*
* Map in the device registers.
* Separate pointers will be set up for the following
* register groups within the GEM Register Space:
* Global register set
* ETX register set
* ERX register set
* BigMAC register set.
* MIF register set
*/
if (ddi_dev_nregs(dip, &regno) != (DDI_SUCCESS)) {
ERI_FAULT_MSG2(erip, SEVERITY_HIGH, ERI_VERB_MSG,
"ddi_dev_nregs failed, returned %d", regno);
goto attach_fail;
}
/*
* Map the PCI config space
*/
if (pci_config_setup(dip, &erip->pci_config_handle) != DDI_SUCCESS) {
ERI_FAULT_MSG2(erip, SEVERITY_HIGH, ERI_VERB_MSG,
"%s pci_config_setup()", config_space_fatal_msg);
goto attach_fail;
}
/*
* Initialize device attributes structure
*/
erip->dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
erip->dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
erip->dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
if (ddi_regs_map_setup(dip, 1, (caddr_t *)&(erip->globregp), 0, 0,
&erip->dev_attr, &erip->globregh)) {
goto attach_fail;
}
erip->etxregh = erip->globregh;
erip->erxregh = erip->globregh;
erip->bmacregh = erip->globregh;
erip->mifregh = erip->globregh;
erip->etxregp = (void *)(((caddr_t)erip->globregp) + 0x2000);
erip->erxregp = (void *)(((caddr_t)erip->globregp) + 0x4000);
erip->bmacregp = (void *)(((caddr_t)erip->globregp) + 0x6000);
erip->mifregp = (void *)(((caddr_t)erip->globregp) + 0x6200);
/*
* Map the software reset register.
*/
if (ddi_regs_map_setup(dip, 1, (caddr_t *)&(erip->sw_reset_reg),
0x1010, 4, &erip->dev_attr, &erip->sw_reset_regh)) {
ERI_FAULT_MSG1(erip, SEVERITY_MID, ERI_VERB_MSG,
mregs_4soft_reset_fail_msg);
goto attach_fail;
}
/*
* Try and stop the device.
* This is done until we want to handle interrupts.
*/
if (eri_stop(erip))
goto attach_fail;
/*
* set PCI latency timer register.
*/
pci_config_put8(erip->pci_config_handle, PCI_CONF_LATENCY_TIMER,
(uchar_t)eri_pci_latency_timer);
if (ddi_intr_hilevel(dip, 0)) {
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
" high-level interrupts are not supported");
goto attach_fail;
}
/*
* Get the interrupt cookie so the mutexes can be
* Initialized.
*/
if (ddi_get_iblock_cookie(dip, 0, &erip->cookie) != DDI_SUCCESS)
goto attach_fail;
/*
* Initialize mutex's for this device.
*/
mutex_init(&erip->xmitlock, NULL, MUTEX_DRIVER, (void *)erip->cookie);
mutex_init(&erip->intrlock, NULL, MUTEX_DRIVER, (void *)erip->cookie);
mutex_init(&erip->linklock, NULL, MUTEX_DRIVER, (void *)erip->cookie);
mutex_init(&erip->xcvrlock, NULL, MUTEX_DRIVER, (void *)erip->cookie);
mutex_inited = B_TRUE;
/*
* Add interrupt to system
*/
if (ddi_add_intr(dip, 0, &erip->cookie, 0, eri_intr, (caddr_t)erip) ==
DDI_SUCCESS)
intr_add = B_TRUE;
else {
goto attach_fail;
}
/*
* Set up the ethernet mac address.
*/
(void) eri_setup_mac_address(erip, dip);
if (eri_init_xfer_params(erip))
goto attach_fail;
if (eri_burstsize(erip) == DDI_FAILURE) {
goto attach_fail;
}
/*
* Setup fewer receive bufers.
*/
ERI_RPENDING = eri_rx_ring_size;
ERI_TPENDING = eri_tx_ring_size;
erip->rpending_mask = ERI_RPENDING - 1;
erip->rmdmax_mask = ERI_RPENDING - 1;
erip->mif_config = (ERI_PHY_BMSR << ERI_MIF_CFGPR_SHIFT);
erip->stats.pmcap = ERI_PMCAP_NONE;
if (pci_report_pmcap(dip, PCI_PM_IDLESPEED, (void *)4000) ==
DDI_SUCCESS)
erip->stats.pmcap = ERI_PMCAP_4MHZ;
if (mac_register(macp, &erip->mh) != 0)
goto attach_fail;
mac_free(macp);
return (DDI_SUCCESS);
attach_fail:
if (erip->pci_config_handle)
(void) pci_config_teardown(&erip->pci_config_handle);
if (mutex_inited) {
mutex_destroy(&erip->xmitlock);
mutex_destroy(&erip->intrlock);
mutex_destroy(&erip->linklock);
mutex_destroy(&erip->xcvrlock);
}
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG, attach_fail_msg);
if (intr_add)
ddi_remove_intr(dip, 0, erip->cookie);
if (erip->globregh)
ddi_regs_map_free(&erip->globregh);
if (macp != NULL)
mac_free(macp);
if (erip != NULL)
kmem_free(erip, sizeof (*erip));
return (DDI_FAILURE);
}
static int
eri_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
struct eri *erip;
int i;
if ((erip = ddi_get_driver_private(dip)) == NULL) {
/*
* No resources allocated.
*/
return (DDI_FAILURE);
}
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
erip->flags |= ERI_SUSPENDED;
eri_uninit(erip);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (erip->flags & (ERI_RUNNING | ERI_SUSPENDED)) {
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG, busy_msg);
return (DDI_FAILURE);
}
if (mac_unregister(erip->mh) != 0) {
return (DDI_FAILURE);
}
/*
* Make the device quiescent
*/
(void) eri_stop(erip);
/*
* Remove instance of the intr
*/
ddi_remove_intr(dip, 0, erip->cookie);
if (erip->pci_config_handle)
(void) pci_config_teardown(&erip->pci_config_handle);
/*
* Destroy all mutexes and data structures allocated during
* attach time.
*/
if (erip->globregh)
ddi_regs_map_free(&erip->globregh);
erip->etxregh = NULL;
erip->erxregh = NULL;
erip->bmacregh = NULL;
erip->mifregh = NULL;
erip->globregh = NULL;
if (erip->sw_reset_regh)
ddi_regs_map_free(&erip->sw_reset_regh);
if (erip->ksp)
kstat_delete(erip->ksp);
eri_stop_timer(erip); /* acquire linklock */
eri_start_timer(erip, eri_check_link, 0);
mutex_destroy(&erip->xmitlock);
mutex_destroy(&erip->intrlock);
mutex_destroy(&erip->linklock);
mutex_destroy(&erip->xcvrlock);
if (erip->md_h) {
if (ddi_dma_unbind_handle(erip->md_h) ==
DDI_FAILURE)
return (DDI_FAILURE);
ddi_dma_mem_free(&erip->mdm_h);
ddi_dma_free_handle(&erip->md_h);
}
if (eri_freebufs(erip))
return (DDI_FAILURE);
/* dvma handle case */
if (erip->eri_dvmaxh) {
(void) dvma_release(erip->eri_dvmaxh);
erip->eri_dvmaxh = NULL;
}
if (erip->eri_dvmarh) {
(void) dvma_release(erip->eri_dvmarh);
erip->eri_dvmarh = NULL;
}
/*
* xmit_dma_mode, erip->ndmaxh[i]=NULL for dvma
*/
else {
for (i = 0; i < ERI_TPENDING; i++)
if (erip->ndmaxh[i])
ddi_dma_free_handle(&erip->ndmaxh[i]);
for (i = 0; i < ERI_RPENDING; i++)
if (erip->ndmarh[i])
ddi_dma_free_handle(&erip->ndmarh[i]);
}
/*
* Release tiny TX buffers
*/
if (erip->tbuf_ioaddr != 0) {
(void) ddi_dma_unbind_handle(erip->tbuf_handle);
erip->tbuf_ioaddr = 0;
}
if (erip->tbuf_kaddr != NULL) {
kmem_free(erip->tbuf_kaddr, ERI_TPENDING * eri_tx_bcopy_max);
erip->tbuf_kaddr = NULL;
}
if (erip->tbuf_handle != NULL) {
ddi_dma_free_handle(&erip->tbuf_handle);
erip->tbuf_handle = NULL;
}
eri_param_cleanup(erip);
ddi_set_driver_private(dip, NULL);
kmem_free((caddr_t)erip, sizeof (struct eri));
return (DDI_SUCCESS);
}
/*
* To set up the mac address for the network interface:
* The adapter card may support a local mac address which is published
* in a device node property "local-mac-address". This mac address is
* treated as the factory-installed mac address for DLPI interface.
* If the adapter firmware has used the device for diskless boot
* operation it publishes a property called "mac-address" for use by
* inetboot and the device driver.
* If "mac-address" is not found, the system options property
* "local-mac-address" is used to select the mac-address. If this option
* is set to "true", and "local-mac-address" has been found, then
* local-mac-address is used; otherwise the system mac address is used
* by calling the "localetheraddr()" function.
*/
static void
eri_setup_mac_address(struct eri *erip, dev_info_t *dip)
{
uchar_t *prop;
char *uselocal;
unsigned prop_len;
uint32_t addrflags = 0;
struct ether_addr factaddr;
/*
* Check if it is an adapter with its own local mac address
* If it is present, save it as the "factory-address"
* for this adapter.
*/
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"local-mac-address", &prop, &prop_len) == DDI_PROP_SUCCESS) {
if (prop_len == ETHERADDRL) {
addrflags = ERI_FACTADDR_PRESENT;
bcopy(prop, &factaddr, ETHERADDRL);
ERI_FAULT_MSG2(erip, SEVERITY_NONE, ERI_VERB_MSG,
lether_addr_msg, ether_sprintf(&factaddr));
}
ddi_prop_free(prop);
}
/*
* Check if the adapter has published "mac-address" property.
* If it is present, use it as the mac address for this device.
*/
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"mac-address", &prop, &prop_len) == DDI_PROP_SUCCESS) {
if (prop_len >= ETHERADDRL) {
bcopy(prop, erip->ouraddr, ETHERADDRL);
ddi_prop_free(prop);
return;
}
ddi_prop_free(prop);
}
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0, "local-mac-address?",
&uselocal) == DDI_PROP_SUCCESS) {
if ((strcmp("true", uselocal) == 0) &&
(addrflags & ERI_FACTADDR_PRESENT)) {
addrflags |= ERI_FACTADDR_USE;
bcopy(&factaddr, erip->ouraddr, ETHERADDRL);
ddi_prop_free(uselocal);
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
lmac_addr_msg);
return;
}
ddi_prop_free(uselocal);
}
/*
* Get the system ethernet address.
*/
(void) localetheraddr(NULL, &factaddr);
bcopy(&factaddr, erip->ouraddr, ETHERADDRL);
}
/*
* Calculate the bit in the multicast address filter that selects the given
* address.
* Note: For ERI, the last 8-bits are used.
*/
static uint32_t
eri_ladrf_bit(const uint8_t *addr)
{
uint32_t crc;
CRC32(crc, addr, ETHERADDRL, -1U, crc32_table);
/*
* Just want the 8 most significant bits.
*/
return ((~crc) >> 24);
}
static void
eri_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
struct eri *erip = arg;
struct iocblk *iocp = (void *)mp->b_rptr;
int err;
ASSERT(erip != NULL);
/*
* Privilege checks.
*/
switch (iocp->ioc_cmd) {
case ERI_SET_LOOP_MODE:
case ERI_ND_SET:
err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
if (err != 0) {
miocnak(wq, mp, 0, err);
return;
}
break;
default:
break;
}
switch (iocp->ioc_cmd) {
case ERI_ND_GET:
case ERI_ND_SET:
eri_process_ndd_ioctl(erip, wq, mp, iocp->ioc_cmd);
break;
case ERI_SET_LOOP_MODE:
case ERI_GET_LOOP_MODE:
/*
* XXX: Consider updating this to the new netlb ioctls.
*/
eri_loopback(erip, wq, mp);
break;
default:
miocnak(wq, mp, 0, EINVAL);
break;
}
ASSERT(!MUTEX_HELD(&erip->linklock));
}
static void
eri_loopback(struct eri *erip, queue_t *wq, mblk_t *mp)
{
struct iocblk *iocp = (void *)mp->b_rptr;
loopback_t *al;
if (mp->b_cont == NULL || MBLKL(mp->b_cont) < sizeof (loopback_t)) {
miocnak(wq, mp, 0, EINVAL);
return;
}
al = (void *)mp->b_cont->b_rptr;
switch (iocp->ioc_cmd) {
case ERI_SET_LOOP_MODE:
switch (al->loopback) {
case ERI_LOOPBACK_OFF:
erip->flags &= (~ERI_MACLOOPBACK & ~ERI_SERLOOPBACK);
/* force link status to go down */
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
(void) eri_init(erip);
break;
case ERI_MAC_LOOPBACK_ON:
erip->flags |= ERI_MACLOOPBACK;
erip->flags &= ~ERI_SERLOOPBACK;
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
(void) eri_init(erip);
break;
case ERI_PCS_LOOPBACK_ON:
break;
case ERI_SER_LOOPBACK_ON:
erip->flags |= ERI_SERLOOPBACK;
erip->flags &= ~ERI_MACLOOPBACK;
/* force link status to go down */
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
(void) eri_init(erip);
break;
default:
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
loopback_val_default);
miocnak(wq, mp, 0, EINVAL);
return;
}
miocnak(wq, mp, 0, 0);
break;
case ERI_GET_LOOP_MODE:
al->loopback = ERI_MAC_LOOPBACK_ON | ERI_PCS_LOOPBACK_ON |
ERI_SER_LOOPBACK_ON;
miocack(wq, mp, sizeof (loopback_t), 0);
break;
default:
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
loopback_cmd_default);
}
}
static int
eri_m_promisc(void *arg, boolean_t on)
{
struct eri *erip = arg;
mutex_enter(&erip->intrlock);
erip->promisc = on;
eri_init_rx(erip);
mutex_exit(&erip->intrlock);
return (0);
}
/*
* This is to support unlimited number of members
* in Multicast.
*/
static int
eri_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
struct eri *erip = arg;
uint32_t ladrf_bit;
/*
* If this address's bit was not already set in the local address
* filter, add it and re-initialize the Hardware.
*/
ladrf_bit = eri_ladrf_bit(mca);
mutex_enter(&erip->intrlock);
if (add) {
erip->ladrf_refcnt[ladrf_bit]++;
if (erip->ladrf_refcnt[ladrf_bit] == 1) {
LADRF_SET(erip, ladrf_bit);
erip->multi_refcnt++;
eri_init_rx(erip);
}
} else {
erip->ladrf_refcnt[ladrf_bit]--;
if (erip->ladrf_refcnt[ladrf_bit] == 0) {
LADRF_CLR(erip, ladrf_bit);
erip->multi_refcnt--;
eri_init_rx(erip);
}
}
mutex_exit(&erip->intrlock);
return (0);
}
static int
eri_m_unicst(void *arg, const uint8_t *macaddr)
{
struct eri *erip = arg;
/*
* Set new interface local address and re-init device.
* This is destructive to any other streams attached
* to this device.
*/
mutex_enter(&erip->intrlock);
bcopy(macaddr, &erip->ouraddr, ETHERADDRL);
eri_init_rx(erip);
mutex_exit(&erip->intrlock);
return (0);
}
/*ARGSUSED*/
static boolean_t
eri_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
{
switch (cap) {
case MAC_CAPAB_HCKSUM: {
uint32_t *hcksum_txflags = cap_data;
*hcksum_txflags = HCKSUM_INET_PARTIAL;
return (B_TRUE);
}
case MAC_CAPAB_POLL:
default:
return (B_FALSE);
}
}
static int
eri_m_start(void *arg)
{
struct eri *erip = arg;
mutex_enter(&erip->intrlock);
erip->flags |= ERI_STARTED;
mutex_exit(&erip->intrlock);
if (!eri_init(erip)) {
mutex_enter(&erip->intrlock);
erip->flags &= ~ERI_STARTED;
mutex_exit(&erip->intrlock);
return (EIO);
}
return (0);
}
static void
eri_m_stop(void *arg)
{
struct eri *erip = arg;
mutex_enter(&erip->intrlock);
erip->flags &= ~ERI_STARTED;
mutex_exit(&erip->intrlock);
eri_uninit(erip);
}
static int
eri_m_stat(void *arg, uint_t stat, uint64_t *val)
{
struct eri *erip = arg;
struct stats *esp;
boolean_t macupdate = B_FALSE;
esp = &erip->stats;
mutex_enter(&erip->xmitlock);
if ((erip->flags & ERI_RUNNING) && (erip->flags & ERI_TXINIT)) {
erip->tx_completion =
GET_ETXREG(tx_completion) & ETX_COMPLETION_MASK;
macupdate |= eri_reclaim(erip, erip->tx_completion);
}
mutex_exit(&erip->xmitlock);
if (macupdate)
mac_tx_update(erip->mh);
eri_savecntrs(erip);
switch (stat) {
case MAC_STAT_IFSPEED:
*val = esp->ifspeed * 1000000ULL;
break;
case MAC_STAT_MULTIRCV:
*val = esp->multircv;
break;
case MAC_STAT_BRDCSTRCV:
*val = esp->brdcstrcv;
break;
case MAC_STAT_IPACKETS:
*val = esp->ipackets64;
break;
case MAC_STAT_RBYTES:
*val = esp->rbytes64;
break;
case MAC_STAT_OBYTES:
*val = esp->obytes64;
break;
case MAC_STAT_OPACKETS:
*val = esp->opackets64;
break;
case MAC_STAT_IERRORS:
*val = esp->ierrors;
break;
case MAC_STAT_OERRORS:
*val = esp->oerrors;
break;
case MAC_STAT_MULTIXMT:
*val = esp->multixmt;
break;
case MAC_STAT_BRDCSTXMT:
*val = esp->brdcstxmt;
break;
case MAC_STAT_NORCVBUF:
*val = esp->norcvbuf;
break;
case MAC_STAT_NOXMTBUF:
*val = esp->noxmtbuf;
break;
case MAC_STAT_UNDERFLOWS:
*val = esp->txmac_urun;
break;
case MAC_STAT_OVERFLOWS:
*val = esp->rx_overflow;
break;
case MAC_STAT_COLLISIONS:
*val = esp->collisions;
break;
case ETHER_STAT_ALIGN_ERRORS:
*val = esp->rx_align_err;
break;
case ETHER_STAT_FCS_ERRORS:
*val = esp->rx_crc_err;
break;
case ETHER_STAT_EX_COLLISIONS:
*val = esp->excessive_coll;
break;
case ETHER_STAT_TX_LATE_COLLISIONS:
*val = esp->late_coll;
break;
case ETHER_STAT_FIRST_COLLISIONS:
*val = esp->first_coll;
break;
case ETHER_STAT_LINK_DUPLEX:
*val = esp->link_duplex;
break;
case ETHER_STAT_TOOLONG_ERRORS:
*val = esp->rx_toolong_pkts;
break;
case ETHER_STAT_TOOSHORT_ERRORS:
*val = esp->rx_runt;
break;
case ETHER_STAT_XCVR_ADDR:
*val = erip->phyad;
break;
case ETHER_STAT_XCVR_INUSE:
*val = XCVR_100X; /* should always be 100X for now */
break;
case ETHER_STAT_CAP_100FDX:
*val = param_bmsr_100fdx;
break;
case ETHER_STAT_CAP_100HDX:
*val = param_bmsr_100hdx;
break;
case ETHER_STAT_CAP_10FDX:
*val = param_bmsr_10fdx;
break;
case ETHER_STAT_CAP_10HDX:
*val = param_bmsr_10hdx;
break;
case ETHER_STAT_CAP_AUTONEG:
*val = param_bmsr_ancap;
break;
case ETHER_STAT_CAP_ASMPAUSE:
*val = param_bmsr_asm_dir;
break;
case ETHER_STAT_CAP_PAUSE:
*val = param_bmsr_pause;
break;
case ETHER_STAT_ADV_CAP_100FDX:
*val = param_anar_100fdx;
break;
case ETHER_STAT_ADV_CAP_100HDX:
*val = param_anar_100hdx;
break;
case ETHER_STAT_ADV_CAP_10FDX:
*val = param_anar_10fdx;
break;
case ETHER_STAT_ADV_CAP_10HDX:
*val = param_anar_10hdx;
break;
case ETHER_STAT_ADV_CAP_AUTONEG:
*val = param_autoneg;
break;
case ETHER_STAT_ADV_CAP_ASMPAUSE:
*val = param_anar_asm_dir;
break;
case ETHER_STAT_ADV_CAP_PAUSE:
*val = param_anar_pause;
break;
case ETHER_STAT_LP_CAP_100FDX:
*val = param_anlpar_100fdx;
break;
case ETHER_STAT_LP_CAP_100HDX:
*val = param_anlpar_100hdx;
break;
case ETHER_STAT_LP_CAP_10FDX:
*val = param_anlpar_10fdx;
break;
case ETHER_STAT_LP_CAP_10HDX:
*val = param_anlpar_10hdx;
break;
case ETHER_STAT_LP_CAP_AUTONEG:
*val = param_aner_lpancap;
break;
case ETHER_STAT_LP_CAP_ASMPAUSE:
*val = param_anlpar_pauseTX;
break;
case ETHER_STAT_LP_CAP_PAUSE:
*val = param_anlpar_pauseRX;
break;
case ETHER_STAT_LINK_PAUSE:
*val = esp->pausing;
break;
case ETHER_STAT_LINK_ASMPAUSE:
*val = param_anar_asm_dir &&
param_anlpar_pauseTX &&
(param_anar_pause != param_anlpar_pauseRX);
break;
case ETHER_STAT_LINK_AUTONEG:
*val = param_autoneg && param_aner_lpancap;
break;
}
return (0);
}
/*
* Hardware Functions
* New Section
*/
/*
* Initialize the MAC registers. Some of of the MAC registers are initialized
* just once since Global Reset or MAC reset doesn't clear them. Others (like
* Host MAC Address Registers) are cleared on every reset and have to be
* reinitialized.
*/
static void
eri_init_macregs_generic(struct eri *erip)
{
/*
* set up the MAC parameter registers once
* after power cycle. SUSPEND/RESUME also requires
* setting these registers.
*/
if ((erip->stats.inits == 1) || (erip->init_macregs)) {
erip->init_macregs = 0;
PUT_MACREG(ipg0, param_ipg0);
PUT_MACREG(ipg1, param_ipg1);
PUT_MACREG(ipg2, param_ipg2);
PUT_MACREG(macmin, BMAC_MIN_FRAME_SIZE);
#ifdef ERI_RX_TAG_ERROR_WORKAROUND
PUT_MACREG(macmax, BMAC_MAX_FRAME_SIZE_TAG | BMAC_MAX_BURST);
#else
PUT_MACREG(macmax, BMAC_MAX_FRAME_SIZE | BMAC_MAX_BURST);
#endif
PUT_MACREG(palen, BMAC_PREAMBLE_SIZE);
PUT_MACREG(jam, BMAC_JAM_SIZE);
PUT_MACREG(alimit, BMAC_ATTEMPT_LIMIT);
PUT_MACREG(macctl_type, BMAC_CONTROL_TYPE);
PUT_MACREG(rseed,
((erip->ouraddr[0] & 0x3) << 8) | erip->ouraddr[1]);
PUT_MACREG(madd3, BMAC_ADDRESS_3);
PUT_MACREG(madd4, BMAC_ADDRESS_4);
PUT_MACREG(madd5, BMAC_ADDRESS_5);
/* Program MAC Control address */
PUT_MACREG(madd6, BMAC_ADDRESS_6);
PUT_MACREG(madd7, BMAC_ADDRESS_7);
PUT_MACREG(madd8, BMAC_ADDRESS_8);
PUT_MACREG(afr0, BMAC_AF_0);
PUT_MACREG(afr1, BMAC_AF_1);
PUT_MACREG(afr2, BMAC_AF_2);
PUT_MACREG(afmr1_2, BMAC_AF21_MASK);
PUT_MACREG(afmr0, BMAC_AF0_MASK);
}
/* The counters need to be zeroed */
PUT_MACREG(nccnt, 0);
PUT_MACREG(fccnt, 0);
PUT_MACREG(excnt, 0);
PUT_MACREG(ltcnt, 0);
PUT_MACREG(dcnt, 0);
PUT_MACREG(frcnt, 0);
PUT_MACREG(lecnt, 0);
PUT_MACREG(aecnt, 0);
PUT_MACREG(fecnt, 0);
PUT_MACREG(rxcv, 0);
if (erip->pauseTX)
PUT_MACREG(spcmd, BMAC_SEND_PAUSE_CMD);
else
PUT_MACREG(spcmd, 0);
/*
* Program BigMAC with local individual ethernet address.
*/
PUT_MACREG(madd0, (erip->ouraddr[4] << 8) | erip->ouraddr[5]);
PUT_MACREG(madd1, (erip->ouraddr[2] << 8) | erip->ouraddr[3]);
PUT_MACREG(madd2, (erip->ouraddr[0] << 8) | erip->ouraddr[1]);
/*
* Install multicast address filter.
*/
PUT_MACREG(hash0, erip->ladrf[0]);
PUT_MACREG(hash1, erip->ladrf[1]);
PUT_MACREG(hash2, erip->ladrf[2]);
PUT_MACREG(hash3, erip->ladrf[3]);
PUT_MACREG(hash4, erip->ladrf[4]);
PUT_MACREG(hash5, erip->ladrf[5]);
PUT_MACREG(hash6, erip->ladrf[6]);
PUT_MACREG(hash7, erip->ladrf[7]);
PUT_MACREG(hash8, erip->ladrf[8]);
PUT_MACREG(hash9, erip->ladrf[9]);
PUT_MACREG(hash10, erip->ladrf[10]);
PUT_MACREG(hash11, erip->ladrf[11]);
PUT_MACREG(hash12, erip->ladrf[12]);
PUT_MACREG(hash13, erip->ladrf[13]);
PUT_MACREG(hash14, erip->ladrf[14]);
}
static int
eri_flush_txbufs(struct eri *erip)
{
uint_t i;
int status = 0;
/*
* Free and dvma_unload pending xmit buffers.
* Maintaining the 1-to-1 ordered sequence of
* dvma_load() followed by dvma_unload() is critical.
* Always unload anything before loading it again.
* Never unload anything twice. Always unload
* before freeing the buffer. We satisfy these
* requirements by unloading only those descriptors
* which currently have an mblk associated with them.
*/
for (i = 0; i < ERI_TPENDING; i++) {
if (erip->tmblkp[i]) {
if (erip->eri_dvmaxh)
dvma_unload(erip->eri_dvmaxh, 2*i, DONT_FLUSH);
else if ((ddi_dma_unbind_handle(erip->ndmaxh[i]) ==
DDI_FAILURE))
status = -1;
freeb(erip->tmblkp[i]);
erip->tmblkp[i] = NULL;
}
}
return (status);
}
static int
eri_flush_rxbufs(struct eri *erip)
{
uint_t i;
int status = 0;
/*
* Free and dvma_unload pending recv buffers.
* Maintaining the 1-to-1 ordered sequence of
* dvma_load() followed by dvma_unload() is critical.
* Always unload anything before loading it again.
* Never unload anything twice. Always unload
* before freeing the buffer. We satisfy these
* requirements by unloading only those descriptors
* which currently have an mblk associated with them.
*/
for (i = 0; i < ERI_RPENDING; i++) {
if (erip->rmblkp[i]) {
if (erip->eri_dvmarh)
dvma_unload(erip->eri_dvmarh, 2 * i,
DDI_DMA_SYNC_FORCPU);
else if ((ddi_dma_unbind_handle(erip->ndmarh[i]) ==
DDI_FAILURE))
status = -1;
freeb(erip->rmblkp[i]);
erip->rmblkp[i] = NULL;
}
}
return (status);
}
static void
eri_init_txbufs(struct eri *erip)
{
/*
* Clear TX descriptors.
*/
bzero((caddr_t)erip->eri_tmdp, ERI_TPENDING * sizeof (struct eri_tmd));
/*
* sync TXDMA descriptors.
*/
ERI_SYNCIOPB(erip, erip->eri_tmdp,
(ERI_TPENDING * sizeof (struct eri_tmd)), DDI_DMA_SYNC_FORDEV);
/*
* Reset TMD 'walking' pointers.
*/
erip->tcurp = erip->eri_tmdp;
erip->tnextp = erip->eri_tmdp;
erip->tx_cur_cnt = 0;
erip->tx_kick = 0;
erip->tx_completion = 0;
}
static int
eri_init_rxbufs(struct eri *erip)
{
ddi_dma_cookie_t dma_cookie;
mblk_t *bp;
int i, status = 0;
uint32_t ccnt;
/*
* clear rcv descriptors
*/
bzero((caddr_t)erip->rmdp, ERI_RPENDING * sizeof (struct rmd));
for (i = 0; i < ERI_RPENDING; i++) {
if ((bp = eri_allocb(ERI_BUFSIZE)) == NULL) {
status = -1;
continue;
}
/* Load data buffer to DVMA space */
if (erip->eri_dvmarh)
dvma_kaddr_load(erip->eri_dvmarh,
(caddr_t)bp->b_rptr, ERI_BUFSIZE,
2 * i, &dma_cookie);
/*
* Bind data buffer to DMA handle
*/
else if (ddi_dma_addr_bind_handle(erip->ndmarh[i], NULL,
(caddr_t)bp->b_rptr, ERI_BUFSIZE,
DDI_DMA_READ | DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, 0,
&dma_cookie, &ccnt) != DDI_DMA_MAPPED)
status = -1;
PUT_RMD((&erip->rmdp[i]), dma_cookie);
erip->rmblkp[i] = bp; /* save for later use */
}
/*
* sync RXDMA descriptors.
*/
ERI_SYNCIOPB(erip, erip->rmdp, (ERI_RPENDING * sizeof (struct rmd)),
DDI_DMA_SYNC_FORDEV);
/*
* Reset RMD 'walking' pointers.
*/
erip->rnextp = erip->rmdp;
erip->rx_completion = 0;
erip->rx_kick = ERI_RPENDING - 4;
return (status);
}
static uint32_t
eri_txmac_disable(struct eri *erip)
{
int n;
PUT_MACREG(txcfg, GET_MACREG(txcfg) & ~BMAC_TXCFG_ENAB);
n = (BMACTXRSTDELAY * 10) / ERI_WAITPERIOD;
while (--n > 0) {
drv_usecwait(ERI_WAITPERIOD);
if ((GET_MACREG(txcfg) & 1) == 0)
return (0);
}
return (1);
}
static uint32_t
eri_rxmac_disable(struct eri *erip)
{
int n;
PUT_MACREG(rxcfg, GET_MACREG(rxcfg) & ~BMAC_RXCFG_ENAB);
n = BMACRXRSTDELAY / ERI_WAITPERIOD;
while (--n > 0) {
drv_usecwait(ERI_WAITPERIOD);
if ((GET_MACREG(rxcfg) & 1) == 0)
return (0);
}
return (1);
}
/*
* Return 0 upon success, 1 on failure.
*/
static int
eri_stop(struct eri *erip)
{
(void) eri_erx_reset(erip);
(void) eri_etx_reset(erip);
/*
* set up cache line to 16 for 64 bytes of pci burst size
*/
PUT_SWRSTREG(reset, ERI_G_RESET_GLOBAL | ERI_CACHE_LINE_SIZE);
if (erip->linkcheck) {
erip->linkcheck = 0;
erip->global_reset_issued = 2;
} else {
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
erip->global_reset_issued = -1;
}
ERI_DELAY((GET_SWRSTREG(reset) == ERI_CACHE_LINE_SIZE),
ERI_MAX_RST_DELAY);
erip->rx_reset_issued = -1;
erip->tx_reset_issued = -1;
/*
* workaround for RIO not resetting the interrupt mask
* register to default value 0xffffffff.
*/
PUT_GLOBREG(intmask, ERI_G_MASK_ALL);
if (GET_SWRSTREG(reset) == ERI_CACHE_LINE_SIZE) {
return (0);
} else {
return (1);
}
}
/*
* Reset Just the RX Portion
* Return 0 upon success, 1 on failure.
*
* Resetting the rxdma while there is a rx dma transaction going on the
* bus, will cause bus hang or parity errors. To avoid this, we would first
* disable the rxdma by clearing the ENABLE bit (bit 0). To make sure it is
* disabled, we will poll it until it realy clears. Furthermore, to verify
* any RX DMA activity is subsided, we delay for 5 msec.
*/
static uint32_t
eri_erx_reset(struct eri *erip)
{
(void) eri_rxmac_disable(erip); /* Disable the RX MAC */
/* Disable the RX DMA */
PUT_ERXREG(config, GET_ERXREG(config) & ~GET_CONFIG_RXDMA_EN);
ERI_DELAY(((GET_ERXREG(config) & 1) == 0), ERI_MAX_RST_DELAY);
if ((GET_ERXREG(config) & 1) != 0)
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
disable_erx_msg);
drv_usecwait(5000); /* Delay to insure no RX DMA activity */
PUT_SWRSTREG(reset, ERI_G_RESET_ERX | ERI_CACHE_LINE_SIZE);
/*
* Wait until the reset is completed which is indicated by
* the reset bit cleared or time out..
*/
ERI_DELAY(((GET_SWRSTREG(reset) & (ERI_G_RESET_ERX)) ==
ERI_CACHE_LINE_SIZE), ERI_MAX_RST_DELAY);
erip->rx_reset_issued = -1;
return ((GET_SWRSTREG(reset) & (ERI_G_RESET_ERX)) ? 1 : 0);
}
/*
* Reset Just the TX Portion
* Return 0 upon success, 1 on failure.
* Resetting the txdma while there is a tx dma transaction on the bus, may cause
* bus hang or parity errors. To avoid this we would first disable the txdma by
* clearing the ENABLE bit (bit 0). To make sure it is disabled, we will poll
* it until it realy clears. Furthermore, to any TX DMA activity is subsided,
* we delay for 1 msec.
*/
static uint32_t
eri_etx_reset(struct eri *erip)
{
(void) eri_txmac_disable(erip);
/* Disable the TX DMA */
PUT_ETXREG(config, GET_ETXREG(config) & ~GET_CONFIG_TXDMA_EN);
#ifdef ORIG
ERI_DELAY(((GET_ETXREG(config) & 1) == 0), ERI_MAX_RST_DELAY);
if ((GET_ETXREG(config) & 1) != 0)
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
disable_etx_msg);
drv_usecwait(5000); /* Delay to ensure DMA completed (if any). */
#endif
drv_usecwait(5000); /* Delay to ensure DMA completed (if any). */
ERI_DELAY(((GET_ETXREG(config) & 1) == 0), ERI_MAX_RST_DELAY);
if ((GET_ETXREG(config) & 1) != 0)
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
disable_etx_msg);
PUT_SWRSTREG(reset, ERI_G_RESET_ETX | ERI_CACHE_LINE_SIZE);
/*
* Wait until the reset is completed which is indicated by the reset bit
* cleared or time out..
*/
ERI_DELAY(((GET_SWRSTREG(reset) & (ERI_G_RESET_ETX)) ==
ERI_CACHE_LINE_SIZE), ERI_MAX_RST_DELAY);
erip->tx_reset_issued = -1;
if (GET_SWRSTREG(reset) & (ERI_G_RESET_ETX)) {
return (1);
} else
return (0);
}
/*
* Initialize the TX DMA registers and Enable the TX DMA.
*/
static uint32_t
eri_init_txregs(struct eri *erip)
{
uint32_t i;
uint64_t tx_ring;
/*
* Initialize ETX Registers:
* config, txring_lo, txring_hi
*/
tx_ring = ERI_IOPBIOADDR(erip, erip->eri_tmdp);
PUT_ETXREG(txring_lo, (uint32_t)(tx_ring));
PUT_ETXREG(txring_hi, (uint32_t)(tx_ring >> 32));
/*
* Get TX Ring Size Masks.
* The ring size ERI_TPENDING is defined in eri_mac.h.
*/
switch (ERI_TPENDING) {
case 32: i = ETX_RINGSZ_32;
break;
case 64: i = ETX_RINGSZ_64;
break;
case 128: i = ETX_RINGSZ_128;
break;
case 256: i = ETX_RINGSZ_256;
break;
case 512: i = ETX_RINGSZ_512;
break;
case 1024: i = ETX_RINGSZ_1024;
break;
case 2048: i = ETX_RINGSZ_2048;
break;
case 4096: i = ETX_RINGSZ_4096;
break;
default:
ERI_FAULT_MSG2(erip, SEVERITY_HIGH, ERI_VERB_MSG,
unk_tx_descr_sze_msg, ERI_TPENDING);
return (1);
}
i <<= ERI_TX_RINGSZ_SHIFT;
PUT_ETXREG(config, ETX_CONFIG_THRESHOLD | i);
ENABLE_TXDMA(erip);
ENABLE_MAC(erip);
return (0);
}
/*
* Initialize the RX DMA registers and Enable the RX DMA.
*/
static uint32_t
eri_init_rxregs(struct eri *erip)
{
int i;
uint64_t rx_ring;
/*
* Initialize ERX Registers:
* rxring_lo, rxring_hi, config, rx_blanking, rx_pause_threshold.
* Also, rx_kick
* Read and save rxfifo_size.
* XXX: Use this to properly configure PAUSE threshold values.
*/
rx_ring = ERI_IOPBIOADDR(erip, erip->rmdp);
PUT_ERXREG(rxring_lo, (uint32_t)(rx_ring));
PUT_ERXREG(rxring_hi, (uint32_t)(rx_ring >> 32));
PUT_ERXREG(rx_kick, erip->rx_kick);
/*
* The Max ring size, ERI_RMDMAX is defined in eri_mac.h.
* More ERI_RPENDING will provide better performance but requires more
* system DVMA memory.
* eri_rx_ring_size can be used to tune this value from /etc/system
* eri_rx_ring_size cannot be NDD'able due to non-recoverable errors
* which cannot be detected from NDD operations
*/
/*
* get the rxring size bits
*/
switch (ERI_RPENDING) {
case 32: i = ERX_RINGSZ_32;
break;
case 64: i = ERX_RINGSZ_64;
break;
case 128: i = ERX_RINGSZ_128;
break;
case 256: i = ERX_RINGSZ_256;
break;
case 512: i = ERX_RINGSZ_512;
break;
case 1024: i = ERX_RINGSZ_1024;
break;
case 2048: i = ERX_RINGSZ_2048;
break;
case 4096: i = ERX_RINGSZ_4096;
break;
default:
ERI_FAULT_MSG2(erip, SEVERITY_HIGH, ERI_VERB_MSG,
unk_rx_descr_sze_msg, ERI_RPENDING);
return (1);
}
i <<= ERI_RX_RINGSZ_SHIFT;
i |= (ERI_FSTBYTE_OFFSET << ERI_RX_CONFIG_FBO_SHIFT) |
(ETHERHEADER_SIZE << ERI_RX_CONFIG_RX_CSSTART_SHIFT) |
(ERI_RX_FIFOTH_1024 << ERI_RX_CONFIG_RXFIFOTH_SHIFT);
PUT_ERXREG(config, i);
PUT_ERXREG(rx_blanking,
(param_intr_blank_time << ERI_RX_BLNK_INTR_TIME_SHIFT) |
param_intr_blank_packets);
PUT_ERXREG(rx_pause_threshold, rx_pause_threshold);
erip->rxfifo_size = GET_ERXREG(rxfifo_size);
ENABLE_RXDMA(erip);
return (0);
}
static int
eri_freebufs(struct eri *erip)
{
int status = 0;
status = eri_flush_rxbufs(erip) | eri_flush_txbufs(erip);
return (status);
}
static void
eri_update_rxbufs(struct eri *erip)
{
int i;
volatile struct rmd *rmdp, *rmdpbase;
/*
* Hang out receive buffers.
*/
rmdpbase = erip->rmdp;
for (i = 0; i < ERI_RPENDING; i++) {
rmdp = rmdpbase + i;
UPDATE_RMD(rmdp);
}
/*
* sync RXDMA descriptors.
*/
ERI_SYNCIOPB(erip, erip->rmdp, (ERI_RPENDING * sizeof (struct rmd)),
DDI_DMA_SYNC_FORDEV);
/*
* Reset RMD 'walking' pointers.
*/
erip->rnextp = erip->rmdp;
erip->rx_completion = 0;
erip->rx_kick = ERI_RPENDING - 4;
}
/*
* This routine is used to reset the RX DMA only. In the case of RX
* failures such as RX Tag Error, RX hang etc... we don't want to
* do global reset which takes down the link and clears the FIFO's
* By doing RX only reset, we leave the TX and the link intact.
*/
static uint32_t
eri_init_rx_channel(struct eri *erip)
{
erip->flags &= ~ERI_RXINIT;
(void) eri_erx_reset(erip);
eri_update_rxbufs(erip);
if (eri_init_rxregs(erip))
return (1);
PUT_MACREG(rxmask, BMAC_RXINTR_MASK);
PUT_MACREG(rxcfg, GET_MACREG(rxcfg) | BMAC_RXCFG_ENAB);
erip->rx_reset_issued = 0;
HSTAT(erip, rx_inits);
erip->flags |= ERI_RXINIT;
return (0);
}
static void
eri_init_rx(struct eri *erip)
{
uint16_t *ladrf;
/*
* First of all make sure the Receive MAC is stop.
*/
(void) eri_rxmac_disable(erip); /* Disable the RX MAC */
/*
* Program BigMAC with local individual ethernet address.
*/
PUT_MACREG(madd0, (erip->ouraddr[4] << 8) | erip->ouraddr[5]);
PUT_MACREG(madd1, (erip->ouraddr[2] << 8) | erip->ouraddr[3]);
PUT_MACREG(madd2, (erip->ouraddr[0] << 8) | erip->ouraddr[1]);
/*
* Set up multicast address filter by passing all multicast
* addresses through a crc generator, and then using the
* low order 8 bits as a index into the 256 bit logical
* address filter. The high order four bits select the word,
* while the rest of the bits select the bit within the word.
*/
ladrf = erip->ladrf;
PUT_MACREG(hash0, ladrf[0]);
PUT_MACREG(hash1, ladrf[1]);
PUT_MACREG(hash2, ladrf[2]);
PUT_MACREG(hash3, ladrf[3]);
PUT_MACREG(hash4, ladrf[4]);
PUT_MACREG(hash5, ladrf[5]);
PUT_MACREG(hash6, ladrf[6]);
PUT_MACREG(hash7, ladrf[7]);
PUT_MACREG(hash8, ladrf[8]);
PUT_MACREG(hash9, ladrf[9]);
PUT_MACREG(hash10, ladrf[10]);
PUT_MACREG(hash11, ladrf[11]);
PUT_MACREG(hash12, ladrf[12]);
PUT_MACREG(hash13, ladrf[13]);
PUT_MACREG(hash14, ladrf[14]);
PUT_MACREG(hash15, ladrf[15]);
#ifdef ERI_DONT_STRIP_CRC
PUT_MACREG(rxcfg,
((erip->promisc ? BMAC_RXCFG_PROMIS : 0) |
(erip->multi_refcnt ? BMAC_RXCFG_HASH : 0) |
BMAC_RXCFG_ENAB));
#else
PUT_MACREG(rxcfg,
((erip->promisc ? BMAC_RXCFG_PROMIS : 0) |
(erip->multi_refcnt ? BMAC_RXCFG_HASH : 0) |
BMAC_RXCFG_ENAB | BMAC_RXCFG_STRIP_CRC));
#endif
/* wait after setting Hash Enable bit */
/* drv_usecwait(10); */
HSTAT(erip, rx_inits);
}
/*
* This routine is used to init the TX MAC only.
* &erip->xmitlock is held before calling this routine.
*/
void
eri_init_txmac(struct eri *erip)
{
uint32_t carrier_ext = 0;
erip->flags &= ~ERI_TXINIT;
/*
* Stop the Transmit MAC.
*/
(void) eri_txmac_disable(erip);
/*
* Must be Internal Transceiver
*/
if (param_mode)
PUT_MACREG(xifc, ((param_transceiver == EXTERNAL_XCVR ?
BMAC_XIFC_MIIBUF_OE : 0) | BMAC_XIFC_TX_MII_OE));
else
PUT_MACREG(xifc, ((param_transceiver == EXTERNAL_XCVR ?
BMAC_XIFC_MIIBUF_OE : 0) | BMAC_XIFC_TX_MII_OE |
BMAC_XIFC_DIS_ECHO));
/*
* Initialize the interpacket gap registers
*/
PUT_MACREG(ipg1, param_ipg1);
PUT_MACREG(ipg2, param_ipg2);
if (erip->ngu_enable)
PUT_MACREG(txcfg, ((param_mode ? BMAC_TXCFG_FDX: 0) |
((param_lance_mode && (erip->lance_mode_enable)) ?
BMAC_TXCFG_ENIPG0 : 0) |
(carrier_ext ? BMAC_TXCFG_CARR_EXT : 0) |
BMAC_TXCFG_NGU));
else
PUT_MACREG(txcfg, ((param_mode ? BMAC_TXCFG_FDX: 0) |
((param_lance_mode && (erip->lance_mode_enable)) ?
BMAC_TXCFG_ENIPG0 : 0) |
(carrier_ext ? BMAC_TXCFG_CARR_EXT : 0)));
ENABLE_TXDMA(erip);
ENABLE_TXMAC(erip);
HSTAT(erip, tx_inits);
erip->flags |= ERI_TXINIT;
}
static void
eri_unallocthings(struct eri *erip)
{
uint32_t flag;
uint32_t i;
flag = erip->alloc_flag;
if (flag & ERI_DESC_MEM_MAP)
(void) ddi_dma_unbind_handle(erip->md_h);
if (flag & ERI_DESC_MEM_ALLOC) {
ddi_dma_mem_free(&erip->mdm_h);
erip->rmdp = NULL;
erip->eri_tmdp = NULL;
}
if (flag & ERI_DESC_HANDLE_ALLOC)
ddi_dma_free_handle(&erip->md_h);
(void) eri_freebufs(erip);
if (flag & ERI_XMIT_HANDLE_ALLOC)
for (i = 0; i < erip->xmit_handle_cnt; i++)
ddi_dma_free_handle(&erip->ndmaxh[i]);
if (flag & ERI_XMIT_DVMA_ALLOC) {
(void) dvma_release(erip->eri_dvmaxh);
erip->eri_dvmaxh = NULL;
}
if (flag & ERI_RCV_HANDLE_ALLOC)
for (i = 0; i < erip->rcv_handle_cnt; i++)
ddi_dma_free_handle(&erip->ndmarh[i]);
if (flag & ERI_RCV_DVMA_ALLOC) {
(void) dvma_release(erip->eri_dvmarh);
erip->eri_dvmarh = NULL;
}
if (flag & ERI_XBUFS_KMEM_DMABIND) {
(void) ddi_dma_unbind_handle(erip->tbuf_handle);
erip->tbuf_ioaddr = 0;
}
if (flag & ERI_XBUFS_KMEM_ALLOC) {
kmem_free(erip->tbuf_kaddr, ERI_TPENDING * eri_tx_bcopy_max);
erip->tbuf_kaddr = NULL;
}
if (flag & ERI_XBUFS_HANDLE_ALLOC) {
ddi_dma_free_handle(&erip->tbuf_handle);
erip->tbuf_handle = NULL;
}
}
/*
* Initialize channel.
* Return true on success, false on error.
*
* The recommended sequence for initialization is:
* 1. Issue a Global Reset command to the Ethernet Channel.
* 2. Poll the Global_Reset bits until the execution of the reset has been
* completed.
* 2(a). Use the MIF Frame/Output register to reset the transceiver.
* Poll Register 0 to till the Resetbit is 0.
* 2(b). Use the MIF Frame/Output register to set the PHY in in Normal-Op,
* 100Mbps and Non-Isolated mode. The main point here is to bring the
* PHY out of Isolate mode so that it can generate the rx_clk and tx_clk
* to the MII interface so that the Bigmac core can correctly reset
* upon a software reset.
* 2(c). Issue another Global Reset command to the Ethernet Channel and poll
* the Global_Reset bits till completion.
* 3. Set up all the data structures in the host memory.
* 4. Program the TX_MAC registers/counters (excluding the TX_MAC Configuration
* Register).
* 5. Program the RX_MAC registers/counters (excluding the RX_MAC Configuration
* Register).
* 6. Program the Transmit Descriptor Ring Base Address in the ETX.
* 7. Program the Receive Descriptor Ring Base Address in the ERX.
* 8. Program the Global Configuration and the Global Interrupt Mask Registers.
* 9. Program the ETX Configuration register (enable the Transmit DMA channel).
* 10. Program the ERX Configuration register (enable the Receive DMA channel).
* 11. Program the XIF Configuration Register (enable the XIF).
* 12. Program the RX_MAC Configuration Register (Enable the RX_MAC).
* 13. Program the TX_MAC Configuration Register (Enable the TX_MAC).
*/
/*
* lock order:
* intrlock->linklock->xmitlock->xcvrlock
*/
static boolean_t
eri_init(struct eri *erip)
{
uint32_t init_stat = 0;
uint32_t partial_init = 0;
uint32_t carrier_ext = 0;
uint32_t mac_ctl = 0;
boolean_t ret;
uint32_t link_timeout = ERI_LINKCHECK_TIMER;
link_state_t linkupdate = LINK_STATE_UNKNOWN;
/*
* Just return successfully if device is suspended.
* eri_init() will be called again from resume.
*/
ASSERT(erip != NULL);
if (erip->flags & ERI_SUSPENDED) {
ret = B_TRUE;
goto init_exit;
}
mutex_enter(&erip->intrlock);
eri_stop_timer(erip); /* acquire linklock */
mutex_enter(&erip->xmitlock);
erip->flags &= (ERI_DLPI_LINKUP | ERI_STARTED);
erip->wantw = B_FALSE;
HSTAT(erip, inits);
erip->txhung = 0;
if ((erip->stats.inits > 1) && (erip->init_macregs == 0))
eri_savecntrs(erip);
mutex_enter(&erip->xcvrlock);
if (!param_linkup || erip->linkcheck) {
if (!erip->linkcheck)
linkupdate = LINK_STATE_DOWN;
(void) eri_stop(erip);
}
if (!(erip->flags & ERI_DLPI_LINKUP) || !param_linkup) {
erip->flags |= ERI_DLPI_LINKUP;
eri_mif_poll(erip, MIF_POLL_STOP);
(void) eri_new_xcvr(erip);
ERI_DEBUG_MSG1(erip, XCVR_MSG, "New transceiver detected.");
if (param_transceiver != NO_XCVR) {
/*
* Reset the new PHY and bring up the
* link
*/
if (eri_reset_xcvr(erip)) {
ERI_FAULT_MSG1(erip, SEVERITY_NONE,
ERI_VERB_MSG, "In Init after reset");
mutex_exit(&erip->xcvrlock);
link_timeout = 0;
goto done;
}
if (erip->stats.link_up == LINK_STATE_UP)
linkupdate = LINK_STATE_UP;
} else {
erip->flags |= (ERI_RUNNING | ERI_INITIALIZED);
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
linkupdate = LINK_STATE_DOWN;
/*
* Still go on and complete the MAC initialization as
* xcvr might show up later.
* you must return to their mutex ordering.
*/
}
eri_mif_poll(erip, MIF_POLL_START);
}
mutex_exit(&erip->xcvrlock);
/*
* Allocate data structures.
*/
if (erip->global_reset_issued) {
if (erip->global_reset_issued == 2) { /* fast path */
if (eri_flush_txbufs(erip))
goto done;
/*
* Hang out/Initialize descriptors and buffers.
*/
eri_init_txbufs(erip);
eri_update_rxbufs(erip);
} else {
init_stat = eri_allocthings(erip);
if (init_stat)
goto done;
if (eri_freebufs(erip))
goto done;
/*
* Hang out/Initialize descriptors and buffers.
*/
eri_init_txbufs(erip);
if (eri_init_rxbufs(erip))
goto done;
}
}
/*
* BigMAC requires that we confirm that tx, rx and hash are in
* quiescent state.
* MAC will not reset successfully if the transceiver is not reset and
* brought out of Isolate mode correctly. TXMAC reset may fail if the
* ext. transceiver is just disconnected. If it fails, try again by
* checking the transceiver.
*/
if (eri_txmac_disable(erip)) {
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
disable_txmac_msg);
param_linkup = 0; /* force init again */
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
linkupdate = LINK_STATE_DOWN;
goto done;
}
if (eri_rxmac_disable(erip)) {
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
disable_rxmac_msg);
param_linkup = 0; /* force init again */
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
linkupdate = LINK_STATE_DOWN;
goto done;
}
eri_init_macregs_generic(erip);
/*
* Initialize ERI Global registers :
* config
* For PCI : err_mask, bif_cfg
*
* Use user-configurable parameter for enabling 64-bit transfers.
* Note:For PCI, burst sizes are in multiples of 64-bytes.
*/
/*
* Significant performance improvements can be achieved by
* disabling transmit interrupt. Thus TMD's are reclaimed
* only very infrequently.
* The PCS Interrupt is masked here. It is enabled only when
* a PCS link is brought up because there is no second level
* mask for this interrupt..
* Init GLOBAL, TXMAC, RXMAC and MACCTL interrupt masks here.
*/
if (! partial_init) {
PUT_GLOBREG(intmask, ERI_G_MASK_INTR);
erip->tx_int_me = 0;
PUT_MACREG(txmask, BMAC_TXINTR_MASK);
PUT_MACREG(rxmask, BMAC_RXINTR_MASK);
PUT_MACREG(macctl_mask, ERI_MACCTL_INTR_MASK);
}
if (erip->global_reset_issued) {
/*
* Initialize ETX Registers:
* config, txring_lo, txring_hi
*/
if (eri_init_txregs(erip))
goto done;
/*
* Initialize ERX Registers:
* rxring_lo, rxring_hi, config, rx_blanking,
* rx_pause_threshold. Also, rx_kick
* Read and save rxfifo_size.
*/
if (eri_init_rxregs(erip))
goto done;
}
PUT_MACREG(macctl_mask, ERI_MACCTL_INTR_MASK);
/*
* Set up the slottime,and rxconfig, txconfig without enabling
* the latter two at this time
*/
PUT_MACREG(slot, BMAC_SLOT_TIME);
carrier_ext = 0;
#ifdef ERI_DONT_STRIP_CRC
PUT_MACREG(rxcfg,
((erip->promisc ? BMAC_RXCFG_PROMIS : 0) |
(erip->multi_refcnt ? BMAC_RXCFG_HASH : 0) |
(carrier_ext ? BMAC_RXCFG_CARR_EXT : 0)));
#else
PUT_MACREG(rxcfg,
((erip->promisc ? BMAC_RXCFG_PROMIS : 0) |
(erip->multi_refcnt ? BMAC_RXCFG_HASH : 0) |
BMAC_RXCFG_STRIP_CRC |
(carrier_ext ? BMAC_RXCFG_CARR_EXT : 0)));
#endif
drv_usecwait(10); /* wait after setting Hash Enable bit */
if (erip->ngu_enable)
PUT_MACREG(txcfg,
((param_mode ? BMAC_TXCFG_FDX: 0) |
((param_lance_mode && (erip->lance_mode_enable)) ?
BMAC_TXCFG_ENIPG0 : 0) |
(carrier_ext ? BMAC_TXCFG_CARR_EXT : 0) |
BMAC_TXCFG_NGU));
else
PUT_MACREG(txcfg,
((param_mode ? BMAC_TXCFG_FDX: 0) |
((param_lance_mode && (erip->lance_mode_enable)) ?
BMAC_TXCFG_ENIPG0 : 0) |
(carrier_ext ? BMAC_TXCFG_CARR_EXT : 0)));
if (erip->pauseRX)
mac_ctl = ERI_MCTLCFG_RXPAUSE;
if (erip->pauseTX)
mac_ctl |= ERI_MCTLCFG_TXPAUSE;
PUT_MACREG(macctl_cfg, mac_ctl);
/*
* Must be Internal Transceiver
*/
if (param_mode)
PUT_MACREG(xifc, ((param_transceiver == EXTERNAL_XCVR ?
BMAC_XIFC_MIIBUF_OE : 0) | BMAC_XIFC_TX_MII_OE));
else {
PUT_MACREG(xifc, ((param_transceiver == EXTERNAL_XCVR ?
BMAC_XIFC_MIIBUF_OE : 0) | BMAC_XIFC_TX_MII_OE |
BMAC_XIFC_DIS_ECHO));
link_timeout = ERI_CHECK_HANG_TIMER;
}
/*
* if MAC int loopback flag is set, put xifc reg in mii loopback
* mode {DIAG}
*/
if (erip->flags & ERI_MACLOOPBACK) {
PUT_MACREG(xifc, GET_MACREG(xifc) | BMAC_XIFC_MIILPBK);
}
/*
* Enable TX and RX MACs.
*/
ENABLE_MAC(erip);
erip->flags |= (ERI_RUNNING | ERI_INITIALIZED |
ERI_TXINIT | ERI_RXINIT);
mac_tx_update(erip->mh);
erip->global_reset_issued = 0;
#ifdef ERI_10_10_FORCE_SPEED_WORKAROUND
eri_xcvr_force_mode(erip, &link_timeout);
#endif
done:
if (init_stat)
eri_unallocthings(erip);
mutex_exit(&erip->xmitlock);
eri_start_timer(erip, eri_check_link, link_timeout);
mutex_exit(&erip->intrlock);
if (linkupdate != LINK_STATE_UNKNOWN)
mac_link_update(erip->mh, linkupdate);
ret = (erip->flags & ERI_RUNNING) ? B_TRUE : B_FALSE;
if (!ret) {
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
"eri_init failed");
}
init_exit:
ASSERT(!MUTEX_HELD(&erip->linklock));
return (ret);
}
/*
* 0 as burstsize upon failure as it signifies no burst size.
*/
static int
eri_burstsize(struct eri *erip)
{
ddi_dma_handle_t handle;
if (ddi_dma_alloc_handle(erip->dip, &dma_attr, DDI_DMA_DONTWAIT,
NULL, &handle))
return (DDI_FAILURE);
erip->burstsizes = ddi_dma_burstsizes(handle);
ddi_dma_free_handle(&handle);
if (erip->burstsizes)
return (DDI_SUCCESS);
return (DDI_FAILURE);
}
/*
* Un-initialize (STOP) ERI channel.
*/
static void
eri_uninit(struct eri *erip)
{
boolean_t needind;
/*
* Allow up to 'ERI_DRAINTIME' for pending xmit's to complete.
*/
ERI_DELAY((erip->tcurp == erip->tnextp), ERI_DRAINTIME);
mutex_enter(&erip->intrlock);
eri_stop_timer(erip); /* acquire linklock */
mutex_enter(&erip->xmitlock);
mutex_enter(&erip->xcvrlock);
eri_mif_poll(erip, MIF_POLL_STOP);
erip->flags &= ~ERI_DLPI_LINKUP;
mutex_exit(&erip->xcvrlock);
needind = !erip->linkcheck;
(void) eri_stop(erip);
erip->flags &= ~ERI_RUNNING;
mutex_exit(&erip->xmitlock);
eri_start_timer(erip, eri_check_link, 0);
mutex_exit(&erip->intrlock);
if (needind)
mac_link_update(erip->mh, LINK_STATE_DOWN);
}
/*
* Allocate CONSISTENT memory for rmds and tmds with appropriate alignment and
* map it in IO space.
*
* The driver allocates STREAMS buffers which will be mapped in DVMA
* space using DDI DMA resources.
*
*/
static int
eri_allocthings(struct eri *erip)
{
uintptr_t a;
int size;
uint32_t rval;
int i;
size_t real_len;
uint32_t cookiec;
int alloc_stat = 0;
ddi_dma_cookie_t dma_cookie;
/*
* Return if resources are already allocated.
*/
if (erip->rmdp)
return (alloc_stat);
erip->alloc_flag = 0;
/*
* Allocate the TMD and RMD descriptors and extra for alignments.
*/
size = (ERI_RPENDING * sizeof (struct rmd) +
ERI_TPENDING * sizeof (struct eri_tmd)) + ERI_GMDALIGN;
rval = ddi_dma_alloc_handle(erip->dip, &desc_dma_attr,
DDI_DMA_DONTWAIT, 0, &erip->md_h);
if (rval != DDI_SUCCESS) {
return (++alloc_stat);
}
erip->alloc_flag |= ERI_DESC_HANDLE_ALLOC;
rval = ddi_dma_mem_alloc(erip->md_h, size, &erip->dev_attr,
DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, 0,
(caddr_t *)&erip->iopbkbase, &real_len, &erip->mdm_h);
if (rval != DDI_SUCCESS) {
return (++alloc_stat);
}
erip->alloc_flag |= ERI_DESC_MEM_ALLOC;
rval = ddi_dma_addr_bind_handle(erip->md_h, NULL,
(caddr_t)erip->iopbkbase, size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
DDI_DMA_DONTWAIT, 0, &erip->md_c, &cookiec);
if (rval != DDI_DMA_MAPPED)
return (++alloc_stat);
erip->alloc_flag |= ERI_DESC_MEM_MAP;
if (cookiec != 1)
return (++alloc_stat);
erip->iopbiobase = erip->md_c.dmac_address;
a = erip->iopbkbase;
a = ROUNDUP(a, ERI_GMDALIGN);
erip->rmdp = (struct rmd *)a;
a += ERI_RPENDING * sizeof (struct rmd);
erip->eri_tmdp = (struct eri_tmd *)a;
/*
* Specifically we reserve n (ERI_TPENDING + ERI_RPENDING)
* pagetable entries. Therefore we have 2 ptes for each
* descriptor. Since the ethernet buffers are 1518 bytes
* so they can at most use 2 ptes.
* Will do a ddi_dma_addr_setup for each bufer
*/
/*
* In the current implementation, we use the ddi compliant
* dma interface. We allocate ERI_TPENDING dma handles for
* Transmit activity and ERI_RPENDING dma handles for receive
* activity. The actual dma mapping is done in the io functions
* eri_start() and eri_read_dma(),
* by calling the ddi_dma_addr_bind_handle.
* Dma resources are deallocated by calling ddi_dma_unbind_handle
* in eri_reclaim() for transmit and eri_read_dma(), for receive io.
*/
if (eri_use_dvma_tx &&
(dvma_reserve(erip->dip, &eri_dma_limits, (ERI_TPENDING * 2),
&erip->eri_dvmaxh)) == DDI_SUCCESS) {
erip->alloc_flag |= ERI_XMIT_DVMA_ALLOC;
} else {
erip->eri_dvmaxh = NULL;
for (i = 0; i < ERI_TPENDING; i++) {
rval = ddi_dma_alloc_handle(erip->dip,
&dma_attr, DDI_DMA_DONTWAIT, 0,
&erip->ndmaxh[i]);
if (rval != DDI_SUCCESS) {
ERI_FAULT_MSG1(erip, SEVERITY_HIGH,
ERI_VERB_MSG, alloc_tx_dmah_msg);
alloc_stat++;
break;
}
}
erip->xmit_handle_cnt = i;
if (i)
erip->alloc_flag |= ERI_XMIT_HANDLE_ALLOC;
if (alloc_stat)
return (alloc_stat);
}
if (eri_use_dvma_rx &&
(dvma_reserve(erip->dip, &eri_dma_limits, (ERI_RPENDING * 2),
&erip->eri_dvmarh)) == DDI_SUCCESS) {
erip->alloc_flag |= ERI_RCV_DVMA_ALLOC;
} else {
erip->eri_dvmarh = NULL;
for (i = 0; i < ERI_RPENDING; i++) {
rval = ddi_dma_alloc_handle(erip->dip,
&dma_attr, DDI_DMA_DONTWAIT,
0, &erip->ndmarh[i]);
if (rval != DDI_SUCCESS) {
ERI_FAULT_MSG1(erip, SEVERITY_HIGH,
ERI_VERB_MSG, alloc_rx_dmah_msg);
alloc_stat++;
break;
}
}
erip->rcv_handle_cnt = i;
if (i)
erip->alloc_flag |= ERI_RCV_HANDLE_ALLOC;
if (alloc_stat)
return (alloc_stat);
}
/*
* Allocate tiny TX buffers
* Note: tinybufs must always be allocated in the native
* ordering of the CPU (always big-endian for Sparc).
* ddi_dma_mem_alloc returns memory in the native ordering
* of the bus (big endian for SBus, little endian for PCI).
* So we cannot use ddi_dma_mem_alloc(, &erip->ge_dev_attr)
* because we'll get little endian memory on PCI.
*/
if (ddi_dma_alloc_handle(erip->dip, &desc_dma_attr, DDI_DMA_DONTWAIT,
0, &erip->tbuf_handle) != DDI_SUCCESS) {
ERI_FAULT_MSG1(erip, SEVERITY_HIGH, ERI_VERB_MSG,
alloc_tx_dmah_msg);
return (++alloc_stat);
}
erip->alloc_flag |= ERI_XBUFS_HANDLE_ALLOC;
size = ERI_TPENDING * eri_tx_bcopy_max;
erip->tbuf_kaddr = (caddr_t)kmem_alloc(size, KM_NOSLEEP);
if (erip->tbuf_kaddr == NULL) {
ERI_FAULT_MSG1(erip, SEVERITY_HIGH, ERI_VERB_MSG,
alloc_tx_dmah_msg);
return (++alloc_stat);
}
erip->alloc_flag |= ERI_XBUFS_KMEM_ALLOC;
if (ddi_dma_addr_bind_handle(erip->tbuf_handle, NULL,
erip->tbuf_kaddr, size, DDI_DMA_WRITE | DDI_DMA_CONSISTENT,
DDI_DMA_DONTWAIT, 0, &dma_cookie, &cookiec) != DDI_DMA_MAPPED) {
return (++alloc_stat);
}
erip->tbuf_ioaddr = dma_cookie.dmac_address;
erip->alloc_flag |= ERI_XBUFS_KMEM_DMABIND;
if (cookiec != 1)
return (++alloc_stat);
/*
* Keep handy limit values for RMD, TMD, and Buffers.
*/
erip->rmdlimp = &((erip->rmdp)[ERI_RPENDING]);
erip->eri_tmdlimp = &((erip->eri_tmdp)[ERI_TPENDING]);
/*
* Zero out xmit and RCV holders.
*/
bzero((caddr_t)erip->tmblkp, sizeof (erip->tmblkp));
bzero((caddr_t)erip->rmblkp, sizeof (erip->rmblkp));
return (alloc_stat);
}
/* <<<<<<<<<<<<<<<<< INTERRUPT HANDLING FUNCTION >>>>>>>>>>>>>>>>>>>> */
/*
* First check to see if it is our device interrupting.
*/
static uint_t
eri_intr(caddr_t arg)
{
struct eri *erip = (void *)arg;
uint32_t erisbits;
uint32_t mif_status;
uint32_t serviced = DDI_INTR_UNCLAIMED;
link_state_t linkupdate = LINK_STATE_UNKNOWN;
boolean_t macupdate = B_FALSE;
mblk_t *mp;
mblk_t *head;
mblk_t **tail;
head = NULL;
tail = &head;
mutex_enter(&erip->intrlock);
erisbits = GET_GLOBREG(status);
/*
* Check if it is only the RX_DONE interrupt, which is
* the most frequent one.
*/
if (((erisbits & ERI_G_STATUS_RX_INT) == ERI_G_STATUS_RX_DONE) &&
(erip->flags & ERI_RUNNING)) {
serviced = DDI_INTR_CLAIMED;
goto rx_done_int;
}
/* Claim the first interrupt after initialization */
if (erip->flags & ERI_INITIALIZED) {
erip->flags &= ~ERI_INITIALIZED;
serviced = DDI_INTR_CLAIMED;
}
/* Check for interesting events */
if ((erisbits & ERI_G_STATUS_INTR) == 0) {
#ifdef ESTAR_WORKAROUND
uint32_t linkupdate;
#endif
ERI_DEBUG_MSG2(erip, DIAG_MSG,
"eri_intr: Interrupt Not Claimed gsbits %X", erisbits);
#ifdef DEBUG
noteri++;
#endif
ERI_DEBUG_MSG2(erip, DIAG_MSG, "eri_intr:MIF Config = 0x%X",
GET_MIFREG(mif_cfg));
ERI_DEBUG_MSG2(erip, DIAG_MSG, "eri_intr:MIF imask = 0x%X",
GET_MIFREG(mif_imask));
ERI_DEBUG_MSG2(erip, DIAG_MSG, "eri_intr:INT imask = 0x%X",
GET_GLOBREG(intmask));
ERI_DEBUG_MSG2(erip, DIAG_MSG, "eri_intr:alias %X",
GET_GLOBREG(status_alias));
#ifdef ESTAR_WORKAROUND
linkupdate = eri_check_link_noind(erip);
#endif
mutex_exit(&erip->intrlock);
#ifdef ESTAR_WORKAROUND
if (linkupdate != LINK_STATE_UNKNOWN)
mac_link_update(erip->mh, linkupdate);
#endif
return (serviced);
}
serviced = DDI_INTR_CLAIMED;
if (!(erip->flags & ERI_RUNNING)) {
mutex_exit(&erip->intrlock);
eri_uninit(erip);
return (serviced);
}
if (erisbits & ERI_G_STATUS_FATAL_ERR) {
ERI_DEBUG_MSG2(erip, INTR_MSG,
"eri_intr: fatal error: erisbits = %X", erisbits);
(void) eri_fatal_err(erip, erisbits);
eri_reinit_fatal++;
if (erip->rx_reset_issued) {
erip->rx_reset_issued = 0;
(void) eri_init_rx_channel(erip);
mutex_exit(&erip->intrlock);
} else {
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
DISABLE_MAC(erip);
mutex_exit(&erip->intrlock);
(void) eri_init(erip);
}
return (serviced);
}
if (erisbits & ERI_G_STATUS_NONFATAL_ERR) {
ERI_DEBUG_MSG2(erip, INTR_MSG,
"eri_intr: non-fatal error: erisbits = %X", erisbits);
(void) eri_nonfatal_err(erip, erisbits);
if (erip->linkcheck) {
mutex_exit(&erip->intrlock);
(void) eri_init(erip);
return (serviced);
}
}
if (erisbits & ERI_G_STATUS_MIF_INT) {
uint16_t stat;
ERI_DEBUG_MSG2(erip, XCVR_MSG,
"eri_intr:MIF Interrupt:mii_status %X", erip->mii_status);
eri_stop_timer(erip); /* acquire linklock */
mutex_enter(&erip->xmitlock);
mutex_enter(&erip->xcvrlock);
#ifdef ERI_MIF_POLL_STATUS_WORKAROUND
mif_status = GET_MIFREG(mif_bsts);
eri_mif_poll(erip, MIF_POLL_STOP);
ERI_DEBUG_MSG3(erip, XCVR_MSG,
"eri_intr: new MIF interrupt status %X XCVR status %X",
mif_status, erip->mii_status);
(void) eri_mii_read(erip, ERI_PHY_BMSR, &stat);
linkupdate = eri_mif_check(erip, stat, stat);
#else
mif_status = GET_MIFREG(mif_bsts);
eri_mif_poll(erip, MIF_POLL_STOP);
linkupdate = eri_mif_check(erip, (uint16_t)mif_status,
(uint16_t)(mif_status >> 16));
#endif
eri_mif_poll(erip, MIF_POLL_START);
mutex_exit(&erip->xcvrlock);
mutex_exit(&erip->xmitlock);
if (!erip->openloop_autoneg)
eri_start_timer(erip, eri_check_link,
ERI_LINKCHECK_TIMER);
else
eri_start_timer(erip, eri_check_link,
ERI_P_FAULT_TIMER);
}
ERI_DEBUG_MSG2(erip, INTR_MSG,
"eri_intr:May have Read Interrupt status:status %X", erisbits);
rx_done_int:
if ((erisbits & (ERI_G_STATUS_TX_INT_ME)) ||
(erip->tx_cur_cnt >= tx_interrupt_rate)) {
mutex_enter(&erip->xmitlock);
erip->tx_completion = (uint32_t)(GET_ETXREG(tx_completion) &
ETX_COMPLETION_MASK);
macupdate |= eri_reclaim(erip, erip->tx_completion);
mutex_exit(&erip->xmitlock);
}
if (erisbits & ERI_G_STATUS_RX_DONE) {
volatile struct rmd *rmdp, *rmdpbase;
volatile uint32_t rmdi;
uint8_t loop_limit = 0x20;
uint64_t flags;
uint32_t rmdmax_mask = erip->rmdmax_mask;
rmdpbase = erip->rmdp;
rmdi = erip->rx_completion;
rmdp = rmdpbase + rmdi;
/*
* Sync RMD before looking at it.
*/
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORCPU);
/*
* Loop through each RMD.
*/
flags = GET_RMD_FLAGS(rmdp);
while (((flags & ERI_RMD_OWN) == 0) && (loop_limit)) {
/* process one packet */
mp = eri_read_dma(erip, rmdp, rmdi, flags);
rmdi = (rmdi + 1) & rmdmax_mask;
rmdp = rmdpbase + rmdi;
if (mp != NULL) {
*tail = mp;
tail = &mp->b_next;
}
/*
* ERI RCV DMA fetches or updates four descriptors
* a time. Also we don't want to update the desc.
* batch we just received packet on. So we update
* descriptors for every 4 packets and we update
* the group of 4 after the current batch.
*/
if (!(rmdi % 4)) {
if (eri_overflow_reset &&
(GET_GLOBREG(status_alias) &
ERI_G_STATUS_NONFATAL_ERR)) {
loop_limit = 1;
} else {
erip->rx_kick =
(rmdi + ERI_RPENDING - 4) &
rmdmax_mask;
PUT_ERXREG(rx_kick, erip->rx_kick);
}
}
/*
* Sync the next RMD before looking at it.
*/
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORCPU);
flags = GET_RMD_FLAGS(rmdp);
loop_limit--;
}
erip->rx_completion = rmdi;
}
erip->wantw = B_FALSE;
mutex_exit(&erip->intrlock);
if (head)
mac_rx(erip->mh, NULL, head);
if (macupdate)
mac_tx_update(erip->mh);
if (linkupdate != LINK_STATE_UNKNOWN)
mac_link_update(erip->mh, linkupdate);
return (serviced);
}
/*
* Handle interrupts for fatal errors
* Need reinitialization.
*/
#define PCI_DATA_PARITY_REP (1 << 8)
#define PCI_SING_TARGET_ABORT (1 << 11)
#define PCI_RCV_TARGET_ABORT (1 << 12)
#define PCI_RCV_MASTER_ABORT (1 << 13)
#define PCI_SING_SYSTEM_ERR (1 << 14)
#define PCI_DATA_PARITY_ERR (1 << 15)
/* called with intrlock held */
static void
eri_fatal_err(struct eri *erip, uint32_t erisbits)
{
uint16_t pci_status;
uint32_t pci_error_int = 0;
if (erisbits & ERI_G_STATUS_RX_TAG_ERR) {
erip->rx_reset_issued = 1;
HSTAT(erip, rxtag_err);
} else {
erip->global_reset_issued = 1;
if (erisbits & ERI_G_STATUS_BUS_ERR_INT) {
pci_error_int = 1;
HSTAT(erip, pci_error_int);
} else if (erisbits & ERI_G_STATUS_PERR_INT) {
HSTAT(erip, parity_error);
} else {
HSTAT(erip, unknown_fatal);
}
}
/*
* PCI bus error
*/
if (pci_error_int && erip->pci_config_handle) {
pci_status = pci_config_get16(erip->pci_config_handle,
PCI_CONF_STAT);
ERI_DEBUG_MSG2(erip, FATAL_ERR_MSG, "Bus Error Status %x",
pci_status);
if (pci_status & PCI_DATA_PARITY_REP)
HSTAT(erip, pci_data_parity_err);
if (pci_status & PCI_SING_TARGET_ABORT)
HSTAT(erip, pci_signal_target_abort);
if (pci_status & PCI_RCV_TARGET_ABORT)
HSTAT(erip, pci_rcvd_target_abort);
if (pci_status & PCI_RCV_MASTER_ABORT)
HSTAT(erip, pci_rcvd_master_abort);
if (pci_status & PCI_SING_SYSTEM_ERR)
HSTAT(erip, pci_signal_system_err);
if (pci_status & PCI_DATA_PARITY_ERR)
HSTAT(erip, pci_signal_system_err);
/*
* clear it by writing the value that was read back.
*/
pci_config_put16(erip->pci_config_handle, PCI_CONF_STAT,
pci_status);
}
}
/*
* Handle interrupts regarding non-fatal events.
* TXMAC, RXMAC and MACCTL events
*/
static void
eri_nonfatal_err(struct eri *erip, uint32_t erisbits)
{
uint32_t txmac_sts, rxmac_sts, macctl_sts, pause_time;
#ifdef ERI_PM_WORKAROUND
if (pci_report_pmcap(erip->dip, PCI_PM_IDLESPEED,
PCI_PM_IDLESPEED_NONE) == DDI_SUCCESS)
erip->stats.pmcap = ERI_PMCAP_NONE;
#endif
if (erisbits & ERI_G_STATUS_TX_MAC_INT) {
txmac_sts = GET_MACREG(txsts);
if (txmac_sts & BMAC_TXSTS_TX_URUN) {
erip->linkcheck = 1;
HSTAT(erip, txmac_urun);
HSTAT(erip, oerrors);
}
if (txmac_sts & BMAC_TXSTS_MAXPKT_ERR) {
erip->linkcheck = 1;
HSTAT(erip, txmac_maxpkt_err);
HSTAT(erip, oerrors);
}
if (txmac_sts & BMAC_TXSTS_NCC_EXP) {
erip->stats.collisions += 0x10000;
}
if (txmac_sts & BMAC_TXSTS_ECC_EXP) {
erip->stats.excessive_coll += 0x10000;
}
if (txmac_sts & BMAC_TXSTS_LCC_EXP) {
erip->stats.late_coll += 0x10000;
}
if (txmac_sts & BMAC_TXSTS_FCC_EXP) {
erip->stats.first_coll += 0x10000;
}
if (txmac_sts & BMAC_TXSTS_DEFER_EXP) {
HSTAT(erip, defer_timer_exp);
}
if (txmac_sts & BMAC_TXSTS_PEAK_EXP) {
erip->stats.peak_attempt_cnt += 0x100;
}
}
if (erisbits & ERI_G_STATUS_RX_NO_BUF) {
ERI_DEBUG_MSG1(erip, NONFATAL_MSG, "rx dropped/no free desc");
if (eri_overflow_reset)
erip->linkcheck = 1;
HSTAT(erip, no_free_rx_desc);
HSTAT(erip, ierrors);
}
if (erisbits & ERI_G_STATUS_RX_MAC_INT) {
rxmac_sts = GET_MACREG(rxsts);
if (rxmac_sts & BMAC_RXSTS_RX_OVF) {
#ifndef ERI_RMAC_HANG_WORKAROUND
eri_stop_timer(erip); /* acquire linklock */
erip->check_rmac_hang ++;
erip->check2_rmac_hang = 0;
erip->rxfifo_wr_ptr = GET_ERXREG(rxfifo_wr_ptr);
erip->rxfifo_rd_ptr = GET_ERXREG(rxfifo_rd_ptr);
ERI_DEBUG_MSG5(erip, NONFATAL_MSG,
"overflow intr %d: %8x wr:%2x rd:%2x",
erip->check_rmac_hang,
GET_MACREG(macsm),
GET_ERXREG(rxfifo_wr_ptr),
GET_ERXREG(rxfifo_rd_ptr));
eri_start_timer(erip, eri_check_link,
ERI_CHECK_HANG_TIMER);
#endif
if (eri_overflow_reset)
erip->linkcheck = 1;
HSTAT(erip, rx_overflow);
HSTAT(erip, ierrors);
}
if (rxmac_sts & BMAC_RXSTS_ALE_EXP) {
erip->stats.rx_align_err += 0x10000;
erip->stats.ierrors += 0x10000;
}
if (rxmac_sts & BMAC_RXSTS_CRC_EXP) {
erip->stats.rx_crc_err += 0x10000;
erip->stats.ierrors += 0x10000;
}
if (rxmac_sts & BMAC_RXSTS_LEN_EXP) {
erip->stats.rx_length_err += 0x10000;
erip->stats.ierrors += 0x10000;
}
if (rxmac_sts & BMAC_RXSTS_CVI_EXP) {
erip->stats.rx_code_viol_err += 0x10000;
erip->stats.ierrors += 0x10000;
}
}
if (erisbits & ERI_G_STATUS_MAC_CTRL_INT) {
macctl_sts = GET_MACREG(macctl_sts);
if (macctl_sts & ERI_MCTLSTS_PAUSE_RCVD) {
pause_time = ((macctl_sts &
ERI_MCTLSTS_PAUSE_TIME) >> 16);
ERI_DEBUG_MSG2(erip, NONFATAL_MSG,
"PAUSE Received. pause time = %X slot_times",
pause_time);
HSTAT(erip, pause_rxcount);
erip->stats.pause_time_count += pause_time;
}
if (macctl_sts & ERI_MCTLSTS_PAUSE_STATE) {
HSTAT(erip, pause_oncount);
erip->stats.pausing = 1;
}
if (macctl_sts & ERI_MCTLSTS_NONPAUSE) {
HSTAT(erip, pause_offcount);
erip->stats.pausing = 0;
}
}
}
/*
* if this is the first init do not bother to save the
* counters.
*/
static void
eri_savecntrs(struct eri *erip)
{
uint32_t fecnt, aecnt, lecnt, rxcv;
uint32_t ltcnt, excnt, fccnt;
/* XXX What all gets added in ierrors and oerrors? */
fecnt = GET_MACREG(fecnt);
HSTATN(erip, rx_crc_err, fecnt);
PUT_MACREG(fecnt, 0);
aecnt = GET_MACREG(aecnt);
HSTATN(erip, rx_align_err, aecnt);
PUT_MACREG(aecnt, 0);
lecnt = GET_MACREG(lecnt);
HSTATN(erip, rx_length_err, lecnt);
PUT_MACREG(lecnt, 0);
rxcv = GET_MACREG(rxcv);
HSTATN(erip, rx_code_viol_err, rxcv);
PUT_MACREG(rxcv, 0);
ltcnt = GET_MACREG(ltcnt);
HSTATN(erip, late_coll, ltcnt);
PUT_MACREG(ltcnt, 0);
erip->stats.collisions += (GET_MACREG(nccnt) + ltcnt);
PUT_MACREG(nccnt, 0);
excnt = GET_MACREG(excnt);
HSTATN(erip, excessive_coll, excnt);
PUT_MACREG(excnt, 0);
fccnt = GET_MACREG(fccnt);
HSTATN(erip, first_coll, fccnt);
PUT_MACREG(fccnt, 0);
/*
* Do not add code violations to input errors.
* They are already counted in CRC errors
*/
HSTATN(erip, ierrors, (fecnt + aecnt + lecnt));
HSTATN(erip, oerrors, (ltcnt + excnt));
}
mblk_t *
eri_allocb_sp(size_t size)
{
mblk_t *mp;
size += 128;
if ((mp = allocb(size + 3 * ERI_BURSTSIZE, BPRI_HI)) == NULL) {
return (NULL);
}
mp->b_wptr += 128;
mp->b_wptr = (uint8_t *)ROUNDUP2(mp->b_wptr, ERI_BURSTSIZE);
mp->b_rptr = mp->b_wptr;
return (mp);
}
mblk_t *
eri_allocb(size_t size)
{
mblk_t *mp;
if ((mp = allocb(size + 3 * ERI_BURSTSIZE, BPRI_HI)) == NULL) {
return (NULL);
}
mp->b_wptr = (uint8_t *)ROUNDUP2(mp->b_wptr, ERI_BURSTSIZE);
mp->b_rptr = mp->b_wptr;
return (mp);
}
/*
* Hardware Dependent Functions
* New Section.
*/
/* <<<<<<<<<<<<<<<< Fast Ethernet PHY Bit Bang Operations >>>>>>>>>>>>>>>>>> */
static void
send_bit(struct eri *erip, uint32_t x)
{
PUT_MIFREG(mif_bbdata, x);
PUT_MIFREG(mif_bbclk, ERI_BBCLK_LOW);
PUT_MIFREG(mif_bbclk, ERI_BBCLK_HIGH);
}
/*
* To read the MII register bits according to the IEEE Standard
*/
static uint32_t
get_bit_std(struct eri *erip)
{
uint32_t x;
PUT_MIFREG(mif_bbclk, ERI_BBCLK_LOW);
drv_usecwait(1); /* wait for >330 ns for stable data */
if (param_transceiver == INTERNAL_XCVR)
x = (GET_MIFREG(mif_cfg) & ERI_MIF_CFGM0) ? 1 : 0;
else
x = (GET_MIFREG(mif_cfg) & ERI_MIF_CFGM1) ? 1 : 0;
PUT_MIFREG(mif_bbclk, ERI_BBCLK_HIGH);
return (x);
}
#define SEND_BIT(x) send_bit(erip, x)
#define GET_BIT_STD(x) x = get_bit_std(erip)
static void
eri_bb_mii_write(struct eri *erip, uint8_t regad, uint16_t data)
{
uint8_t phyad;
int i;
PUT_MIFREG(mif_bbopenb, 1); /* Enable the MII driver */
phyad = erip->phyad;
(void) eri_bb_force_idle(erip);
SEND_BIT(0); SEND_BIT(1); /* <ST> */
SEND_BIT(0); SEND_BIT(1); /* <OP> */
for (i = 4; i >= 0; i--) { /* <AAAAA> */
SEND_BIT((phyad >> i) & 1);
}
for (i = 4; i >= 0; i--) { /* <RRRRR> */
SEND_BIT((regad >> i) & 1);
}
SEND_BIT(1); SEND_BIT(0); /* <TA> */
for (i = 0xf; i >= 0; i--) { /* <DDDDDDDDDDDDDDDD> */
SEND_BIT((data >> i) & 1);
}
PUT_MIFREG(mif_bbopenb, 0); /* Disable the MII driver */
}
/* Return 0 if OK, 1 if error (Transceiver does not talk management) */
static uint32_t
eri_bb_mii_read(struct eri *erip, uint8_t regad, uint16_t *datap)
{
uint8_t phyad;
int i;
uint32_t x;
uint32_t y;
*datap = 0;
PUT_MIFREG(mif_bbopenb, 1); /* Enable the MII driver */
phyad = erip->phyad;
(void) eri_bb_force_idle(erip);
SEND_BIT(0); SEND_BIT(1); /* <ST> */
SEND_BIT(1); SEND_BIT(0); /* <OP> */
for (i = 4; i >= 0; i--) { /* <AAAAA> */
SEND_BIT((phyad >> i) & 1);
}
for (i = 4; i >= 0; i--) { /* <RRRRR> */
SEND_BIT((regad >> i) & 1);
}
PUT_MIFREG(mif_bbopenb, 0); /* Disable the MII driver */
GET_BIT_STD(x);
GET_BIT_STD(y); /* <TA> */
for (i = 0xf; i >= 0; i--) { /* <DDDDDDDDDDDDDDDD> */
GET_BIT_STD(x);
*datap += (x << i);
}
/* Kludge to get the Transceiver out of hung mode */
/* XXX: Test if this is still needed */
GET_BIT_STD(x);
GET_BIT_STD(x);
GET_BIT_STD(x);
return (y);
}
static void
eri_bb_force_idle(struct eri *erip)
{
int i;
for (i = 0; i < 33; i++) {
SEND_BIT(1);
}
}
/* <<<<<<<<<<<<<<<<<<<<End of Bit Bang Operations >>>>>>>>>>>>>>>>>>>>>>>> */
/* <<<<<<<<<<<<< Frame Register used for MII operations >>>>>>>>>>>>>>>>>>>> */
#ifdef ERI_FRM_DEBUG
int frame_flag = 0;
#endif
/* Return 0 if OK, 1 if error (Transceiver does not talk management) */
static uint32_t
eri_mii_read(struct eri *erip, uint8_t regad, uint16_t *datap)
{
uint32_t frame;
uint8_t phyad;
if (param_transceiver == NO_XCVR)
return (1); /* No xcvr present */
if (!erip->frame_enable)
return (eri_bb_mii_read(erip, regad, datap));
phyad = erip->phyad;
#ifdef ERI_FRM_DEBUG
if (!frame_flag) {
eri_errror(erip->dip, "Frame Register used for MII");
frame_flag = 1;
}
#endif
ERI_DEBUG_MSG3(erip, FRM_MSG,
"Frame Reg :mii_read: phyad = %X reg = %X ", phyad, regad);
PUT_MIFREG(mif_frame, ERI_MIF_FRREAD |
(phyad << ERI_MIF_FRPHYAD_SHIFT) |
(regad << ERI_MIF_FRREGAD_SHIFT));
MIF_ERIDELAY(300, phyad, regad);
frame = GET_MIFREG(mif_frame);
if ((frame & ERI_MIF_FRTA0) == 0) {
return (1);
} else {
*datap = (uint16_t)(frame & ERI_MIF_FRDATA);
return (0);
}
}
static void
eri_mii_write(struct eri *erip, uint8_t regad, uint16_t data)
{
uint8_t phyad;
if (!erip->frame_enable) {
eri_bb_mii_write(erip, regad, data);
return;
}
phyad = erip->phyad;
PUT_MIFREG(mif_frame, (ERI_MIF_FRWRITE |
(phyad << ERI_MIF_FRPHYAD_SHIFT) |
(regad << ERI_MIF_FRREGAD_SHIFT) | data));
MIF_ERIDELAY(300, phyad, regad);
(void) GET_MIFREG(mif_frame);
}
/* <<<<<<<<<<<<<<<<< PACKET TRANSMIT FUNCTIONS >>>>>>>>>>>>>>>>>>>> */
#define ERI_CROSS_PAGE_BOUNDRY(i, size, pagesize) \
((i & pagesize) != ((i + size) & pagesize))
/*
* Send a single mblk. Returns B_TRUE if the packet is sent, or disposed of
* by freemsg. Returns B_FALSE if the packet was not sent or queued, and
* should be retried later (due to tx resource exhaustion.)
*/
static boolean_t
eri_send_msg(struct eri *erip, mblk_t *mp)
{
volatile struct eri_tmd *tmdp = NULL;
volatile struct eri_tmd *tbasep = NULL;
mblk_t *nmp;
uint32_t len = 0, len_msg = 0, xover_len = TX_STREAM_MIN;
uint32_t nmblks = 0;
uint32_t i, j;
uint64_t int_me = 0;
uint_t tmdcsum = 0;
uint_t start_offset = 0;
uint_t stuff_offset = 0;
uint_t flags = 0;
boolean_t macupdate = B_FALSE;
caddr_t ptr;
uint32_t offset;
uint64_t ctrl;
uint32_t count;
uint32_t flag_dma;
ddi_dma_cookie_t c;
if (!param_linkup) {
freemsg(mp);
HSTAT(erip, tnocar);
HSTAT(erip, oerrors);
return (B_TRUE);
}
nmp = mp;
#ifdef ERI_HWCSUM
hcksum_retrieve(mp, NULL, NULL, &start_offset, &stuff_offset,
NULL, NULL, &flags);
if (flags & HCK_PARTIALCKSUM) {
if (get_ether_type(mp->b_rptr) == ETHERTYPE_VLAN) {
start_offset += ETHERHEADER_SIZE + 4;
stuff_offset += ETHERHEADER_SIZE + 4;
} else {
start_offset += ETHERHEADER_SIZE;
stuff_offset += ETHERHEADER_SIZE;
}
tmdcsum = ERI_TMD_CSENABL;
}
#endif /* ERI_HWCSUM */
while (nmp != NULL) {
ASSERT(nmp->b_wptr >= nmp->b_rptr);
nmblks++; /* # of mbs */
nmp = nmp->b_cont;
}
len_msg = msgsize(mp);
/*
* update MIB II statistics
*/
BUMP_OutNUcast(erip, mp->b_rptr);
/*
* ----------------------------------------------------------------------
* here we deal with 3 cases.
* 1. pkt has exactly one mblk
* 2. pkt has exactly two mblks
* 3. pkt has more than 2 mblks. Since this almost
* always never happens, we copy all of them into
* a msh with one mblk.
* for each mblk in the message, we allocate a tmd and
* figure out the tmd index and tmblkp index.
* ----------------------------------------------------------------------
*/
if (nmblks > 2) { /* more than 2 mbs */
if ((nmp = eri_allocb(len_msg)) == NULL) {
HSTAT(erip, allocbfail);
HSTAT(erip, noxmtbuf);
freemsg(mp);
return (B_TRUE); /* bad case */
}
mcopymsg(mp, nmp->b_rptr);
nmp->b_wptr = nmp->b_rptr + len_msg;
mp = nmp;
nmblks = 1; /* make it one mb */
} else
nmp = mp;
mutex_enter(&erip->xmitlock);
tbasep = erip->eri_tmdp;
/* Check if there are enough descriptors for this packet */
tmdp = erip->tnextp;
if (tmdp >= erip->tcurp) /* check notmds */
i = tmdp - erip->tcurp;
else
i = tmdp + ERI_TPENDING - erip->tcurp;
if (i > (ERI_TPENDING - 4))
goto notmds;
if (i >= (ERI_TPENDING >> 1) && !(erip->starts & 0x7))
int_me = ERI_TMD_INTME;
for (j = 0; j < nmblks; j++) { /* for one or two mb cases */
len = MBLKL(nmp);
i = tmdp - tbasep; /* index */
if (len_msg < eri_tx_bcopy_max) { /* tb-all mb */
offset = (i * eri_tx_bcopy_max);
ptr = erip->tbuf_kaddr + offset;
mcopymsg(mp, ptr);
#ifdef ERI_HDX_BUG_WORKAROUND
if ((param_mode) || (eri_hdx_pad_enable == 0)) {
if (len_msg < ETHERMIN) {
bzero((ptr + len_msg),
(ETHERMIN - len_msg));
len_msg = ETHERMIN;
}
} else {
if (len_msg < 97) {
bzero((ptr + len_msg), (97 - len_msg));
len_msg = 97;
}
}
#endif
len = len_msg;
c.dmac_address = erip->tbuf_ioaddr + offset;
(void) ddi_dma_sync(erip->tbuf_handle,
(off_t)offset, len_msg, DDI_DMA_SYNC_FORDEV);
nmblks = 1; /* exit this for loop */
} else if ((!j) && (len < eri_tx_bcopy_max)) { /* tb-1st mb */
offset = (i * eri_tx_bcopy_max);
ptr = erip->tbuf_kaddr + offset;
bcopy(mp->b_rptr, ptr, len);
c.dmac_address = erip->tbuf_ioaddr + offset;
(void) ddi_dma_sync(erip->tbuf_handle,
(off_t)offset, len, DDI_DMA_SYNC_FORDEV);
nmp = mp->b_cont;
mp->b_cont = NULL;
freeb(mp);
} else if (erip->eri_dvmaxh != NULL) { /* fast DVMA */
dvma_kaddr_load(erip->eri_dvmaxh,
(caddr_t)nmp->b_rptr, len, 2 * i, &c);
dvma_sync(erip->eri_dvmaxh,
2 * i, DDI_DMA_SYNC_FORDEV);
erip->tmblkp[i] = nmp;
if (!j) {
nmp = mp->b_cont;
mp->b_cont = NULL;
}
} else { /* DDI DMA */
if (len < xover_len)
flag_dma = DDI_DMA_WRITE | DDI_DMA_CONSISTENT;
else
flag_dma = DDI_DMA_WRITE | DDI_DMA_STREAMING;
if (ddi_dma_addr_bind_handle(erip->ndmaxh[i],
NULL, (caddr_t)nmp->b_rptr, len,
flag_dma, DDI_DMA_DONTWAIT, NULL, &c,
&count) != DDI_DMA_MAPPED) {
if (j) { /* free previous DMV resources */
i = erip->tnextp - tbasep;
if (erip->ndmaxh[i]) { /* DDI DMA */
(void) ddi_dma_unbind_handle(
erip->ndmaxh[i]);
erip->ndmaxh[i] = NULL;
freeb(mp);
}
freeb(nmp);
} else {
freemsg(mp);
}
mutex_exit(&erip->xmitlock);
HSTAT(erip, noxmtbuf);
return (B_TRUE); /* bad case */
}
erip->tmblkp[i] = nmp;
if (!j) {
nmp = mp->b_cont;
mp->b_cont = NULL;
}
}
ctrl = 0;
/* first descr of packet */
if (!j) {
ctrl = ERI_TMD_SOP| int_me | tmdcsum |
(start_offset << ERI_TMD_CSSTART_SHIFT) |
(stuff_offset << ERI_TMD_CSSTUFF_SHIFT);
}
/* last descr of packet */
if ((j + 1) == nmblks) {
ctrl |= ERI_TMD_EOP;
}
PUT_TMD(tmdp, c, len, ctrl);
ERI_SYNCIOPB(erip, tmdp, sizeof (struct eri_tmd),
DDI_DMA_SYNC_FORDEV);
tmdp = NEXTTMD(erip, tmdp);
erip->tx_cur_cnt++;
} /* for each nmp */
erip->tx_kick = tmdp - tbasep;
PUT_ETXREG(tx_kick, erip->tx_kick);
erip->tnextp = tmdp;
erip->starts++;
if (erip->tx_cur_cnt >= tx_interrupt_rate) {
erip->tx_completion = (uint32_t)(GET_ETXREG(tx_completion) &
ETX_COMPLETION_MASK);
macupdate |= eri_reclaim(erip, erip->tx_completion);
}
mutex_exit(&erip->xmitlock);
if (macupdate)
mac_tx_update(erip->mh);
return (B_TRUE);
notmds:
HSTAT(erip, notmds);
erip->wantw = B_TRUE;
if (!erip->tx_int_me) {
PUT_GLOBREG(intmask, GET_GLOBREG(intmask) &
~(ERI_G_MASK_TX_INT_ME));
erip->tx_int_me = 1;
}
if (erip->tx_cur_cnt >= tx_interrupt_rate) {
erip->tx_completion = (uint32_t)(GET_ETXREG(tx_completion) &
ETX_COMPLETION_MASK);
macupdate |= eri_reclaim(erip, erip->tx_completion);
}
mutex_exit(&erip->xmitlock);
if (macupdate)
mac_tx_update(erip->mh);
return (B_FALSE);
}
static mblk_t *
eri_m_tx(void *arg, mblk_t *mp)
{
struct eri *erip = arg;
mblk_t *next;
while (mp != NULL) {
next = mp->b_next;
mp->b_next = NULL;
if (!eri_send_msg(erip, mp)) {
mp->b_next = next;
break;
}
mp = next;
}
return (mp);
}
/*
* Transmit completion reclaiming.
*/
static boolean_t
eri_reclaim(struct eri *erip, uint32_t tx_completion)
{
volatile struct eri_tmd *tmdp;
struct eri_tmd *tcomp;
struct eri_tmd *tbasep;
struct eri_tmd *tlimp;
mblk_t *bp;
int i;
uint64_t flags;
uint_t reclaimed = 0;
tbasep = erip->eri_tmdp;
tlimp = erip->eri_tmdlimp;
tmdp = erip->tcurp;
tcomp = tbasep + tx_completion; /* pointer to completion tmd */
/*
* Loop through each TMD starting from tcurp and upto tcomp.
*/
while (tmdp != tcomp) {
flags = GET_TMD_FLAGS(tmdp);
if (flags & (ERI_TMD_SOP))
HSTAT(erip, opackets64);
HSTATN(erip, obytes64, (flags & ERI_TMD_BUFSIZE));
i = tmdp - tbasep;
bp = erip->tmblkp[i];
/* dvma handle case */
if (bp) {
if (erip->eri_dvmaxh) {
dvma_unload(erip->eri_dvmaxh, 2 * i,
(uint_t)DONT_FLUSH);
} else {
/* dma handle case. */
(void) ddi_dma_unbind_handle(erip->ndmaxh[i]);
}
freeb(bp);
erip->tmblkp[i] = NULL;
}
tmdp = NEXTTMDP(tbasep, tlimp, tmdp);
reclaimed++;
}
erip->tcurp = tmdp;
erip->tx_cur_cnt -= reclaimed;
return (erip->wantw && reclaimed ? B_TRUE : B_FALSE);
}
/* <<<<<<<<<<<<<<<<<<< PACKET RECEIVE FUNCTIONS >>>>>>>>>>>>>>>>>>> */
static mblk_t *
eri_read_dma(struct eri *erip, volatile struct rmd *rmdp,
int rmdi, uint64_t flags)
{
mblk_t *bp, *nbp;
int len;
uint_t ccnt;
ddi_dma_cookie_t c;
#ifdef ERI_RCV_CKSUM
ushort_t sum;
#endif /* ERI_RCV_CKSUM */
mblk_t *retmp = NULL;
bp = erip->rmblkp[rmdi];
len = (flags & ERI_RMD_BUFSIZE) >> ERI_RMD_BUFSIZE_SHIFT;
#ifdef ERI_DONT_STRIP_CRC
len -= 4;
#endif
/*
* In the event of RX FIFO overflow error, ERI REV 1.0 ASIC can
* corrupt packets following the descriptor corresponding the
* overflow. To detect the corrupted packets, we disable the
* dropping of the "bad" packets at the MAC. The descriptor
* then would have the "BAD" bit set. We drop the overflowing
* packet and the packet following it. We could have done some sort
* of checking to determine if the second packet was indeed bad
* (using CRC or checksum) but it would be expensive in this
* routine, since it is run in interrupt context.
*/
if ((flags & ERI_RMD_BAD) || (len < ETHERMIN) || (len > ETHERMAX+4)) {
HSTAT(erip, rx_bad_pkts);
if ((flags & ERI_RMD_BAD) == 0)
HSTAT(erip, ierrors);
if (len < ETHERMIN) {
HSTAT(erip, rx_runt);
} else if (len > ETHERMAX+4) {
HSTAT(erip, rx_toolong_pkts);
}
HSTAT(erip, drop);
UPDATE_RMD(rmdp);
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORDEV);
return (NULL);
}
#ifdef ERI_DONT_STRIP_CRC
{
uint32_t hw_fcs, tail_fcs;
/*
* since we don't let the hardware strip the CRC in hdx
* then the driver needs to do it.
* this is to workaround a hardware bug
*/
bp->b_wptr = bp->b_rptr + ERI_FSTBYTE_OFFSET + len;
/*
* Get the Checksum calculated by the hardware.
*/
hw_fcs = flags & ERI_RMD_CKSUM;
/*
* Catch the case when the CRC starts on an odd
* boundary.
*/
tail_fcs = bp->b_wptr[0] << 8 | bp->b_wptr[1];
tail_fcs += bp->b_wptr[2] << 8 | bp->b_wptr[3];
tail_fcs = (tail_fcs & 0xffff) + (tail_fcs >> 16);
if ((uintptr_t)(bp->b_wptr) & 1) {
tail_fcs = (tail_fcs << 8) & 0xffff | (tail_fcs >> 8);
}
hw_fcs += tail_fcs;
hw_fcs = (hw_fcs & 0xffff) + (hw_fcs >> 16);
hw_fcs &= 0xffff;
/*
* Now we can replace what the hardware wrote, make believe
* it got it right in the first place.
*/
flags = (flags & ~(uint64_t)ERI_RMD_CKSUM) | hw_fcs;
}
#endif
/*
* Packet Processing
* Once we get a packet bp, we try allocate a new mblk, nbp
* to replace this one. If we succeed, we map it to the current
* dma handle and update the descriptor with the new cookie. We
* then put bp in our read service queue erip->ipq, if it exists
* or we just bp to the streams expecting it.
* If allocation of the new mblk fails, we implicitly drop the
* current packet, i.e do not pass up the mblk and re-use it.
* Re-mapping is not required.
*/
if (len < eri_rx_bcopy_max) {
if ((nbp = eri_allocb_sp(len + ERI_FSTBYTE_OFFSET))) {
(void) ddi_dma_sync(erip->ndmarh[rmdi], 0,
len + ERI_FSTBYTE_OFFSET, DDI_DMA_SYNC_FORCPU);
DB_TYPE(nbp) = M_DATA;
bcopy(bp->b_rptr, nbp->b_rptr,
len + ERI_FSTBYTE_OFFSET);
UPDATE_RMD(rmdp);
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORDEV);
/* Add the First Byte offset to the b_rptr */
nbp->b_rptr += ERI_FSTBYTE_OFFSET;
nbp->b_wptr = nbp->b_rptr + len;
#ifdef ERI_RCV_CKSUM
sum = ~(uint16_t)(flags & ERI_RMD_CKSUM);
ERI_PROCESS_READ(erip, nbp, sum);
#else
ERI_PROCESS_READ(erip, nbp);
#endif
retmp = nbp;
} else {
/*
* mblk allocation has failed. Re-use the old mblk for
* the next packet. Re-mapping is not required since
* the same mblk and dma cookie is to be used again.
*/
HSTAT(erip, ierrors);
HSTAT(erip, allocbfail);
HSTAT(erip, norcvbuf);
UPDATE_RMD(rmdp);
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORDEV);
ERI_DEBUG_MSG1(erip, RESOURCE_MSG, "allocb fail");
}
} else {
/* Use dma unmap/map */
if ((nbp = eri_allocb_sp(ERI_BUFSIZE))) {
/*
* How do we harden this, specially if unbind
* succeeds and then bind fails?
* If Unbind fails, we can leave without updating
* the descriptor but would it continue to work on
* next round?
*/
(void) ddi_dma_unbind_handle(erip->ndmarh[rmdi]);
(void) ddi_dma_addr_bind_handle(erip->ndmarh[rmdi],
NULL, (caddr_t)nbp->b_rptr, ERI_BUFSIZE,
DDI_DMA_READ | DDI_DMA_CONSISTENT,
DDI_DMA_DONTWAIT, 0, &c, &ccnt);
erip->rmblkp[rmdi] = nbp;
PUT_RMD(rmdp, c);
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORDEV);
/* Add the First Byte offset to the b_rptr */
bp->b_rptr += ERI_FSTBYTE_OFFSET;
bp->b_wptr = bp->b_rptr + len;
#ifdef ERI_RCV_CKSUM
sum = ~(uint16_t)(flags & ERI_RMD_CKSUM);
ERI_PROCESS_READ(erip, bp, sum);
#else
ERI_PROCESS_READ(erip, bp);
#endif
retmp = bp;
} else {
/*
* mblk allocation has failed. Re-use the old mblk for
* the next packet. Re-mapping is not required since
* the same mblk and dma cookie is to be used again.
*/
HSTAT(erip, ierrors);
HSTAT(erip, allocbfail);
HSTAT(erip, norcvbuf);
UPDATE_RMD(rmdp);
ERI_SYNCIOPB(erip, rmdp, sizeof (struct rmd),
DDI_DMA_SYNC_FORDEV);
ERI_DEBUG_MSG1(erip, RESOURCE_MSG, "allocb fail");
}
}
return (retmp);
}
#define LINK_STAT_DISPLAY_TIME 20
static int
eri_init_xfer_params(struct eri *erip)
{
int i;
dev_info_t *dip;
dip = erip->dip;
for (i = 0; i < A_CNT(param_arr); i++)
erip->param_arr[i] = param_arr[i];
erip->xmit_dma_mode = 0;
erip->rcv_dma_mode = 0;
erip->mifpoll_enable = mifpoll_enable;
erip->lance_mode_enable = lance_mode;
erip->frame_enable = 1;
erip->ngu_enable = ngu_enable;
if (!erip->g_nd && !eri_param_register(erip,
erip->param_arr, A_CNT(param_arr))) {
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
param_reg_fail_msg);
return (-1);
}
/*
* Set up the start-up values for user-configurable parameters
* Get the values from the global variables first.
* Use the MASK to limit the value to allowed maximum.
*/
param_transceiver = NO_XCVR;
/*
* The link speed may be forced to either 10 Mbps or 100 Mbps using the
* property "transfer-speed". This may be done in OBP by using the command
* "apply transfer-speed=<speed> <device>". The speed may be either 10 or 100.
*/
i = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "transfer-speed", 0);
if (i != 0) {
param_autoneg = 0; /* force speed */
param_anar_100T4 = 0;
param_anar_10fdx = 0;
param_anar_10hdx = 0;
param_anar_100fdx = 0;
param_anar_100hdx = 0;
param_anar_asm_dir = 0;
param_anar_pause = 0;
if (i == 10)
param_anar_10hdx = 1;
else if (i == 100)
param_anar_100hdx = 1;
}
/*
* Get the parameter values configured in .conf file.
*/
param_ipg1 = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "ipg1", ipg1) &
ERI_MASK_8BIT;
param_ipg2 = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "ipg2", ipg2) &
ERI_MASK_8BIT;
param_use_intphy = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"use_int_xcvr", use_int_xcvr) & ERI_MASK_1BIT;
param_use_intphy = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"pace_size", pace_size) & ERI_MASK_8BIT;
param_autoneg = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_autoneg_cap", adv_autoneg_cap) & ERI_MASK_1BIT;
param_autoneg = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_autoneg_cap", adv_autoneg_cap) & ERI_MASK_1BIT;
param_anar_100T4 = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_100T4_cap", adv_100T4_cap) & ERI_MASK_1BIT;
param_anar_100fdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_100fdx_cap", adv_100fdx_cap) & ERI_MASK_1BIT;
param_anar_100hdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_100hdx_cap", adv_100hdx_cap) & ERI_MASK_1BIT;
param_anar_10fdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_10fdx_cap", adv_10fdx_cap) & ERI_MASK_1BIT;
param_anar_10hdx = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_10hdx_cap", adv_10hdx_cap) & ERI_MASK_1BIT;
param_ipg0 = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "ipg0", ipg0) &
ERI_MASK_8BIT;
param_intr_blank_time = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"intr_blank_time", intr_blank_time) & ERI_MASK_8BIT;
param_intr_blank_packets = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"intr_blank_packets", intr_blank_packets) & ERI_MASK_8BIT;
param_lance_mode = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"lance_mode", lance_mode) & ERI_MASK_1BIT;
param_select_link = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"select_link", select_link) & ERI_MASK_1BIT;
param_default_link = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"default_link", default_link) & ERI_MASK_1BIT;
param_anar_asm_dir = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_asm_dir_cap", adv_pauseTX_cap) & ERI_MASK_1BIT;
param_anar_pause = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
"adv_pause_cap", adv_pauseRX_cap) & ERI_MASK_1BIT;
if (link_pulse_disabled)
erip->link_pulse_disabled = 1;
if (ddi_prop_exists(DDI_DEV_T_ANY, dip, 0, "link-pulse-disabled"))
erip->link_pulse_disabled = 1;
eri_statinit(erip);
return (0);
}
static void
eri_process_ndd_ioctl(struct eri *erip, queue_t *wq, mblk_t *mp, int cmd)
{
uint32_t old_ipg1, old_ipg2, old_use_int_xcvr, old_autoneg;
uint32_t old_100T4;
uint32_t old_100fdx, old_100hdx, old_10fdx, old_10hdx;
uint32_t old_ipg0, old_lance_mode;
uint32_t old_intr_blank_time, old_intr_blank_packets;
uint32_t old_asm_dir, old_pause;
uint32_t old_select_link, old_default_link;
switch (cmd) {
case ERI_ND_GET:
old_autoneg = param_autoneg;
old_100T4 = param_anar_100T4;
old_100fdx = param_anar_100fdx;
old_100hdx = param_anar_100hdx;
old_10fdx = param_anar_10fdx;
old_10hdx = param_anar_10hdx;
old_asm_dir = param_anar_asm_dir;
old_pause = param_anar_pause;
param_autoneg = old_autoneg & ~ERI_NOTUSR;
param_anar_100T4 = old_100T4 & ~ERI_NOTUSR;
param_anar_100fdx = old_100fdx & ~ERI_NOTUSR;
param_anar_100hdx = old_100hdx & ~ERI_NOTUSR;
param_anar_10fdx = old_10fdx & ~ERI_NOTUSR;
param_anar_10hdx = old_10hdx & ~ERI_NOTUSR;
param_anar_asm_dir = old_asm_dir & ~ERI_NOTUSR;
param_anar_pause = old_pause & ~ERI_NOTUSR;
if (!eri_nd_getset(wq, erip->g_nd, mp)) {
param_autoneg = old_autoneg;
param_anar_100T4 = old_100T4;
param_anar_100fdx = old_100fdx;
param_anar_100hdx = old_100hdx;
param_anar_10fdx = old_10fdx;
param_anar_10hdx = old_10hdx;
param_anar_asm_dir = old_asm_dir;
param_anar_pause = old_pause;
miocnak(wq, mp, 0, EINVAL);
return;
}
param_autoneg = old_autoneg;
param_anar_100T4 = old_100T4;
param_anar_100fdx = old_100fdx;
param_anar_100hdx = old_100hdx;
param_anar_10fdx = old_10fdx;
param_anar_10hdx = old_10hdx;
param_anar_asm_dir = old_asm_dir;
param_anar_pause = old_pause;
qreply(wq, mp);
break;
case ERI_ND_SET:
old_ipg0 = param_ipg0;
old_intr_blank_time = param_intr_blank_time;
old_intr_blank_packets = param_intr_blank_packets;
old_lance_mode = param_lance_mode;
old_ipg1 = param_ipg1;
old_ipg2 = param_ipg2;
old_use_int_xcvr = param_use_intphy;
old_autoneg = param_autoneg;
old_100T4 = param_anar_100T4;
old_100fdx = param_anar_100fdx;
old_100hdx = param_anar_100hdx;
old_10fdx = param_anar_10fdx;
old_10hdx = param_anar_10hdx;
param_autoneg = 0xff;
old_asm_dir = param_anar_asm_dir;
param_anar_asm_dir = 0xff;
old_pause = param_anar_pause;
param_anar_pause = 0xff;
old_select_link = param_select_link;
old_default_link = param_default_link;
if (!eri_nd_getset(wq, erip->g_nd, mp)) {
param_autoneg = old_autoneg;
miocnak(wq, mp, 0, EINVAL);
return;
}
qreply(wq, mp);
if (param_autoneg != 0xff) {
ERI_DEBUG_MSG2(erip, NDD_MSG,
"ndd_ioctl: new param_autoneg %d", param_autoneg);
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
(void) eri_init(erip);
} else {
param_autoneg = old_autoneg;
if ((old_use_int_xcvr != param_use_intphy) ||
(old_default_link != param_default_link) ||
(old_select_link != param_select_link)) {
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
(void) eri_init(erip);
} else if ((old_ipg1 != param_ipg1) ||
(old_ipg2 != param_ipg2) ||
(old_ipg0 != param_ipg0) ||
(old_intr_blank_time != param_intr_blank_time) ||
(old_intr_blank_packets !=
param_intr_blank_packets) ||
(old_lance_mode != param_lance_mode)) {
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
(void) eri_init(erip);
}
}
break;
}
}
static int
eri_stat_kstat_update(kstat_t *ksp, int rw)
{
struct eri *erip;
struct erikstat *erikp;
struct stats *esp;
boolean_t macupdate = B_FALSE;
erip = (struct eri *)ksp->ks_private;
erikp = (struct erikstat *)ksp->ks_data;
if (rw != KSTAT_READ)
return (EACCES);
/*
* Update all the stats by reading all the counter registers.
* Counter register stats are not updated till they overflow
* and interrupt.
*/
mutex_enter(&erip->xmitlock);
if ((erip->flags & ERI_RUNNING) && (erip->flags & ERI_TXINIT)) {
erip->tx_completion =
GET_ETXREG(tx_completion) & ETX_COMPLETION_MASK;
macupdate |= eri_reclaim(erip, erip->tx_completion);
}
mutex_exit(&erip->xmitlock);
if (macupdate)
mac_tx_update(erip->mh);
eri_savecntrs(erip);
esp = &erip->stats;
erikp->erik_txmac_maxpkt_err.value.ul = esp->txmac_maxpkt_err;
erikp->erik_defer_timer_exp.value.ul = esp->defer_timer_exp;
erikp->erik_peak_attempt_cnt.value.ul = esp->peak_attempt_cnt;
erikp->erik_tx_hang.value.ul = esp->tx_hang;
erikp->erik_no_free_rx_desc.value.ul = esp->no_free_rx_desc;
erikp->erik_rx_hang.value.ul = esp->rx_hang;
erikp->erik_rx_length_err.value.ul = esp->rx_length_err;
erikp->erik_rx_code_viol_err.value.ul = esp->rx_code_viol_err;
erikp->erik_pause_rxcount.value.ul = esp->pause_rxcount;
erikp->erik_pause_oncount.value.ul = esp->pause_oncount;
erikp->erik_pause_offcount.value.ul = esp->pause_offcount;
erikp->erik_pause_time_count.value.ul = esp->pause_time_count;
erikp->erik_inits.value.ul = esp->inits;
erikp->erik_jab.value.ul = esp->jab;
erikp->erik_notmds.value.ul = esp->notmds;
erikp->erik_allocbfail.value.ul = esp->allocbfail;
erikp->erik_drop.value.ul = esp->drop;
erikp->erik_rx_bad_pkts.value.ul = esp->rx_bad_pkts;
erikp->erik_rx_inits.value.ul = esp->rx_inits;
erikp->erik_tx_inits.value.ul = esp->tx_inits;
erikp->erik_rxtag_err.value.ul = esp->rxtag_err;
erikp->erik_parity_error.value.ul = esp->parity_error;
erikp->erik_pci_error_int.value.ul = esp->pci_error_int;
erikp->erik_unknown_fatal.value.ul = esp->unknown_fatal;
erikp->erik_pci_data_parity_err.value.ul = esp->pci_data_parity_err;
erikp->erik_pci_signal_target_abort.value.ul =
esp->pci_signal_target_abort;
erikp->erik_pci_rcvd_target_abort.value.ul =
esp->pci_rcvd_target_abort;
erikp->erik_pci_rcvd_master_abort.value.ul =
esp->pci_rcvd_master_abort;
erikp->erik_pci_signal_system_err.value.ul =
esp->pci_signal_system_err;
erikp->erik_pci_det_parity_err.value.ul = esp->pci_det_parity_err;
erikp->erik_pmcap.value.ul = esp->pmcap;
return (0);
}
static void
eri_statinit(struct eri *erip)
{
struct kstat *ksp;
struct erikstat *erikp;
if ((ksp = kstat_create("eri", erip->instance, "driver_info", "net",
KSTAT_TYPE_NAMED,
sizeof (struct erikstat) / sizeof (kstat_named_t), 0)) == NULL) {
ERI_FAULT_MSG1(erip, SEVERITY_LOW, ERI_VERB_MSG,
kstat_create_fail_msg);
return;
}
erip->ksp = ksp;
erikp = (struct erikstat *)(ksp->ks_data);
/*
* MIB II kstat variables
*/
kstat_named_init(&erikp->erik_inits, "inits", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_txmac_maxpkt_err, "txmac_maxpkt_err",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_defer_timer_exp, "defer_timer_exp",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_peak_attempt_cnt, "peak_attempt_cnt",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_tx_hang, "tx_hang", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_no_free_rx_desc, "no_free_rx_desc",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_rx_hang, "rx_hang", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_rx_length_err, "rx_length_err",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_rx_code_viol_err, "rx_code_viol_err",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pause_rxcount, "pause_rcv_cnt",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pause_oncount, "pause_on_cnt",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pause_offcount, "pause_off_cnt",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pause_time_count, "pause_time_cnt",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_jab, "jabber", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_notmds, "no_tmds", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_allocbfail, "allocbfail",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_drop, "drop", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_rx_bad_pkts, "bad_pkts",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_rx_inits, "rx_inits", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_tx_inits, "tx_inits", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_rxtag_err, "rxtag_error",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_parity_error, "parity_error",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_error_int, "pci_error_interrupt",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_unknown_fatal, "unknown_fatal",
KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_data_parity_err,
"pci_data_parity_err", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_signal_target_abort,
"pci_signal_target_abort", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_rcvd_target_abort,
"pci_rcvd_target_abort", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_rcvd_master_abort,
"pci_rcvd_master_abort", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_signal_system_err,
"pci_signal_system_err", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pci_det_parity_err,
"pci_det_parity_err", KSTAT_DATA_ULONG);
kstat_named_init(&erikp->erik_pmcap, "pmcap", KSTAT_DATA_ULONG);
ksp->ks_update = eri_stat_kstat_update;
ksp->ks_private = (void *) erip;
kstat_install(ksp);
}
/* <<<<<<<<<<<<<<<<<<<<<<< NDD SUPPORT FUNCTIONS >>>>>>>>>>>>>>>>>>> */
/*
* ndd support functions to get/set parameters
*/
/* Free the Named Dispatch Table by calling eri_nd_free */
static void
eri_param_cleanup(struct eri *erip)
{
if (erip->g_nd)
(void) eri_nd_free(&erip->g_nd);
}
/*
* Extracts the value from the eri parameter array and prints the
* parameter value. cp points to the required parameter.
*/
/* ARGSUSED */
static int
eri_param_get(queue_t *q, mblk_t *mp, caddr_t cp)
{
param_t *eripa = (void *)cp;
int param_len = 1;
uint32_t param_val;
mblk_t *nmp;
int ok;
param_val = eripa->param_val;
/*
* Calculate space required in mblk.
* Remember to include NULL terminator.
*/
do {
param_len++;
param_val /= 10;
} while (param_val);
ok = eri_mk_mblk_tail_space(mp, &nmp, param_len);
if (ok == 0) {
(void) sprintf((char *)nmp->b_wptr, "%d", eripa->param_val);
nmp->b_wptr += param_len;
}
return (ok);
}
/*
* Check if there is space for p_val at the end if mblk.
* If not, allocate new 1k mblk.
*/
static int
eri_mk_mblk_tail_space(mblk_t *mp, mblk_t **nmp, size_t sz)
{
mblk_t *tmp = mp;
while (tmp->b_cont)
tmp = tmp->b_cont;
if (MBLKTAIL(tmp) < sz) {
if ((tmp->b_cont = allocb(1024, BPRI_HI)) == NULL)
return (ENOMEM);
tmp = tmp->b_cont;
}
*nmp = tmp;
return (0);
}
/*
* Register each element of the parameter array with the
* named dispatch handler. Each element is loaded using
* eri_nd_load()
*/
static int
eri_param_register(struct eri *erip, param_t *eripa, int cnt)
{
/* cnt gives the count of the number of */
/* elements present in the parameter array */
int i;
for (i = 0; i < cnt; i++, eripa++) {
pfi_t setter = (pfi_t)eri_param_set;
switch (eripa->param_name[0]) {
case '+': /* read-write */
setter = (pfi_t)eri_param_set;
break;
case '-': /* read-only */
setter = NULL;
break;
case '!': /* read-only, not displayed */
case '%': /* read-write, not displayed */
continue;
}
if (!eri_nd_load(&erip->g_nd, eripa->param_name + 1,
(pfi_t)eri_param_get, setter, (caddr_t)eripa)) {
(void) eri_nd_free(&erip->g_nd);
return (B_FALSE);
}
}
return (B_TRUE);
}
/*
* Sets the eri parameter to the value in the param_register using
* eri_nd_load().
*/
/* ARGSUSED */
static int
eri_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp)
{
char *end;
long new_value;
param_t *eripa = (void *)cp;
if (ddi_strtol(value, &end, 10, &new_value) != 0)
return (EINVAL);
if (end == value || new_value < eripa->param_min ||
new_value > eripa->param_max) {
return (EINVAL);
}
eripa->param_val = (uint32_t)new_value;
return (0);
}
/* Free the table pointed to by 'ndp' */
static void
eri_nd_free(caddr_t *nd_pparam)
{
ND *nd;
if ((nd = (void *)(*nd_pparam)) != NULL) {
if (nd->nd_tbl)
kmem_free(nd->nd_tbl, nd->nd_size);
kmem_free(nd, sizeof (ND));
*nd_pparam = NULL;
}
}
static int
eri_nd_getset(queue_t *q, caddr_t nd_param, MBLKP mp)
{
int err;
IOCP iocp;
MBLKP mp1;
ND *nd;
NDE *nde;
char *valp;
size_t avail;
mblk_t *nmp;
if (!nd_param)
return (B_FALSE);
nd = (void *)nd_param;
iocp = (void *)mp->b_rptr;
if ((iocp->ioc_count == 0) || !(mp1 = mp->b_cont)) {
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
iocp->ioc_error = EINVAL;
return (B_TRUE);
}
/*
* NOTE - logic throughout nd_xxx assumes single data block for ioctl.
* However, existing code sends in some big buffers.
*/
avail = iocp->ioc_count;
if (mp1->b_cont) {
freemsg(mp1->b_cont);
mp1->b_cont = NULL;
}
mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */
valp = (char *)mp1->b_rptr;
for (nde = nd->nd_tbl; /* */; nde++) {
if (!nde->nde_name)
return (B_FALSE);
if (strcmp(nde->nde_name, valp) == 0)
break;
}
err = EINVAL;
while (*valp++)
;
if (!*valp || valp >= (char *)mp1->b_wptr)
valp = NULL;
switch (iocp->ioc_cmd) {
case ND_GET:
/*
* (XXX) hack: "*valp" is size of user buffer for copyout. If result
* of action routine is too big, free excess and return ioc_rval as buf
* size needed. Return as many mblocks as will fit, free the rest. For
* backward compatibility, assume size of orig ioctl buffer if "*valp"
* bad or not given.
*/
if (valp)
(void) ddi_strtol(valp, NULL, 10, (long *)&avail);
/* We overwrite the name/value with the reply data */
{
mblk_t *mp2 = mp1;
while (mp2) {
mp2->b_wptr = mp2->b_rptr;
mp2 = mp2->b_cont;
}
}
err = (*nde->nde_get_pfi)(q, mp1, nde->nde_data, iocp->ioc_cr);
if (!err) {
size_t size_out;
ssize_t excess;
iocp->ioc_rval = 0;
/* Tack on the null */
err = eri_mk_mblk_tail_space(mp1, &nmp, 1);
if (!err) {
*nmp->b_wptr++ = '\0';
size_out = msgdsize(mp1);
excess = size_out - avail;
if (excess > 0) {
iocp->ioc_rval = (unsigned)size_out;
size_out -= excess;
(void) adjmsg(mp1, -(excess + 1));
err = eri_mk_mblk_tail_space(mp1,
&nmp, 1);
if (!err)
*nmp->b_wptr++ = '\0';
else
size_out = 0;
}
} else
size_out = 0;
iocp->ioc_count = size_out;
}
break;
case ND_SET:
if (valp) {
err = (*nde->nde_set_pfi)(q, mp1, valp,
nde->nde_data, iocp->ioc_cr);
iocp->ioc_count = 0;
freemsg(mp1);
mp->b_cont = NULL;
}
break;
}
iocp->ioc_error = err;
mp->b_datap->db_type = M_IOCACK;
return (B_TRUE);
}
/*
* Load 'name' into the named dispatch table pointed to by 'ndp'.
* 'ndp' should be the address of a char pointer cell. If the table
* does not exist (*ndp == 0), a new table is allocated and 'ndp'
* is stuffed. If there is not enough space in the table for a new
* entry, more space is allocated.
*/
static boolean_t
eri_nd_load(caddr_t *nd_pparam, char *name, pfi_t get_pfi,
pfi_t set_pfi, caddr_t data)
{
ND *nd;
NDE *nde;
if (!nd_pparam)
return (B_FALSE);
if ((nd = (void *)(*nd_pparam)) == NULL) {
if ((nd = (ND *)kmem_zalloc(sizeof (ND), KM_NOSLEEP))
== NULL)
return (B_FALSE);
*nd_pparam = (caddr_t)nd;
}
if (nd->nd_tbl) {
for (nde = nd->nd_tbl; nde->nde_name; nde++) {
if (strcmp(name, nde->nde_name) == 0)
goto fill_it;
}
}
if (nd->nd_free_count <= 1) {
if ((nde = (NDE *)kmem_zalloc(nd->nd_size +
NDE_ALLOC_SIZE, KM_NOSLEEP)) == NULL)
return (B_FALSE);
nd->nd_free_count += NDE_ALLOC_COUNT;
if (nd->nd_tbl) {
bcopy((char *)nd->nd_tbl, (char *)nde, nd->nd_size);
kmem_free((char *)nd->nd_tbl, nd->nd_size);
} else {
nd->nd_free_count--;
nde->nde_name = "?";
nde->nde_get_pfi = nd_get_names;
nde->nde_set_pfi = nd_set_default;
}
nde->nde_data = (caddr_t)nd;
nd->nd_tbl = nde;
nd->nd_size += NDE_ALLOC_SIZE;
}
for (nde = nd->nd_tbl; nde->nde_name; nde++)
;
nd->nd_free_count--;
fill_it:
nde->nde_name = name;
nde->nde_get_pfi = get_pfi ? get_pfi : nd_get_default;
nde->nde_set_pfi = set_pfi ? set_pfi : nd_set_default;
nde->nde_data = data;
return (B_TRUE);
}
/*
* Hardening Functions
* New Section
*/
#ifdef DEBUG
/*PRINTFLIKE5*/
static void
eri_debug_msg(const char *file, int line, struct eri *erip,
debug_msg_t type, const char *fmt, ...)
{
char msg_buffer[255];
va_list ap;
va_start(ap, fmt);
(void) vsprintf(msg_buffer, fmt, ap);
va_end(ap);
if (eri_msg_out & ERI_CON_MSG) {
if (((type <= eri_debug_level) && eri_debug_all) ||
((type == eri_debug_level) && !eri_debug_all)) {
if (erip)
cmn_err(CE_CONT, "D: %s %s%d:(%s%d) %s\n",
debug_msg_string[type], file, line,
ddi_driver_name(erip->dip), erip->instance,
msg_buffer);
else
cmn_err(CE_CONT, "D: %s %s(%d): %s\n",
debug_msg_string[type], file,
line, msg_buffer);
}
}
}
#endif
/*PRINTFLIKE4*/
static void
eri_fault_msg(struct eri *erip, uint_t severity, msg_t type,
const char *fmt, ...)
{
char msg_buffer[255];
va_list ap;
va_start(ap, fmt);
(void) vsprintf(msg_buffer, fmt, ap);
va_end(ap);
if (erip == NULL) {
cmn_err(CE_NOTE, "eri : %s", msg_buffer);
return;
}
if (severity == SEVERITY_HIGH) {
cmn_err(CE_WARN, "%s%d : %s", ddi_driver_name(erip->dip),
erip->instance, msg_buffer);
} else switch (type) {
case ERI_VERB_MSG:
cmn_err(CE_CONT, "?%s%d : %s", ddi_driver_name(erip->dip),
erip->instance, msg_buffer);
break;
case ERI_LOG_MSG:
cmn_err(CE_NOTE, "^%s%d : %s", ddi_driver_name(erip->dip),
erip->instance, msg_buffer);
break;
case ERI_BUF_MSG:
cmn_err(CE_NOTE, "!%s%d : %s", ddi_driver_name(erip->dip),
erip->instance, msg_buffer);
break;
case ERI_CON_MSG:
cmn_err(CE_CONT, "%s%d : %s", ddi_driver_name(erip->dip),
erip->instance, msg_buffer);
default:
break;
}
}
/*
* Transceiver (xcvr) Functions
* New Section
*/
/*
* eri_stop_timer function is used by a function before doing link-related
* processing. It locks the "linklock" to protect the link-related data
* structures. This lock will be subsequently released in eri_start_timer().
*/
static void
eri_stop_timer(struct eri *erip)
{
timeout_id_t id;
mutex_enter(&erip->linklock);
if (erip->timerid) {
erip->flags |= ERI_NOTIMEOUTS; /* prevent multiple timeout */
id = erip->timerid;
erip->timerid = 0; /* prevent other thread do untimeout */
mutex_exit(&erip->linklock); /* no mutex across untimeout() */
(void) untimeout(id);
mutex_enter(&erip->linklock); /* acquire mutex again */
erip->flags &= ~ERI_NOTIMEOUTS;
}
}
/*
* If msec parameter is zero, just release "linklock".
*/
static void
eri_start_timer(struct eri *erip, fptrv_t func, clock_t msec)
{
if (msec) {
if (!(erip->flags & ERI_NOTIMEOUTS) &&
(erip->flags & ERI_RUNNING)) {
erip->timerid = timeout(func, (caddr_t)erip,
drv_usectohz(1000*msec));
}
}
mutex_exit(&erip->linklock);
}
static int
eri_new_xcvr(struct eri *erip)
{
int status;
uint32_t cfg;
int old_transceiver;
if (pci_report_pmcap(erip->dip, PCI_PM_IDLESPEED,
PCI_PM_IDLESPEED_NONE) == DDI_SUCCESS)
erip->stats.pmcap = ERI_PMCAP_NONE;
status = B_FALSE; /* no change */
cfg = GET_MIFREG(mif_cfg);
ERI_DEBUG_MSG2(erip, MIF_MSG, "cfg value = %X", cfg);
old_transceiver = param_transceiver;
if ((cfg & ERI_MIF_CFGM1) && !use_int_xcvr) {
ERI_DEBUG_MSG1(erip, PHY_MSG, "Found External XCVR");
/*
* An External Transceiver was found and it takes priority
* over an internal, given the use_int_xcvr flag
* is false.
*/
if (old_transceiver != EXTERNAL_XCVR) {
/*
* External transceiver has just been plugged
* in. Isolate the internal Transceiver.
*/
if (old_transceiver == INTERNAL_XCVR) {
eri_mii_write(erip, ERI_PHY_BMCR,
(PHY_BMCR_ISOLATE | PHY_BMCR_PWRDN |
PHY_BMCR_LPBK));
}
status = B_TRUE;
}
/*
* Select the external Transceiver.
*/
erip->phyad = ERI_EXTERNAL_PHYAD;
param_transceiver = EXTERNAL_XCVR;
erip->mif_config &= ~ERI_MIF_CFGPD;
erip->mif_config |= (erip->phyad << ERI_MIF_CFGPD_SHIFT);
erip->mif_config |= ERI_MIF_CFGPS;
PUT_MIFREG(mif_cfg, erip->mif_config);
PUT_MACREG(xifc, GET_MACREG(xifc) | BMAC_XIFC_MIIBUF_OE);
drv_usecwait(ERI_MIF_POLL_DELAY);
} else if (cfg & ERI_MIF_CFGM0) {
ERI_DEBUG_MSG1(erip, PHY_MSG, "Found Internal XCVR");
/*
* An Internal Transceiver was found or the
* use_int_xcvr flag is true.
*/
if (old_transceiver != INTERNAL_XCVR) {
/*
* The external transceiver has just been
* disconnected or we're moving from a no
* transceiver state.
*/
if ((old_transceiver == EXTERNAL_XCVR) &&
(cfg & ERI_MIF_CFGM0)) {
eri_mii_write(erip, ERI_PHY_BMCR,
(PHY_BMCR_ISOLATE | PHY_BMCR_PWRDN |
PHY_BMCR_LPBK));
}
status = B_TRUE;
}
/*
* Select the internal transceiver.
*/
erip->phyad = ERI_INTERNAL_PHYAD;
param_transceiver = INTERNAL_XCVR;
erip->mif_config &= ~ERI_MIF_CFGPD;
erip->mif_config |= (erip->phyad << ERI_MIF_CFGPD_SHIFT);
erip->mif_config &= ~ERI_MIF_CFGPS;
PUT_MIFREG(mif_cfg, erip->mif_config);
PUT_MACREG(xifc, GET_MACREG(xifc) & ~ BMAC_XIFC_MIIBUF_OE);
drv_usecwait(ERI_MIF_POLL_DELAY);
} else {
/*
* Did not find a valid xcvr.
*/
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
"Eri_new_xcvr : Select None");
param_transceiver = NO_XCVR;
erip->xcvr_status = PHY_LINK_DOWN;
}
if (erip->stats.pmcap == ERI_PMCAP_NONE) {
if (pci_report_pmcap(erip->dip, PCI_PM_IDLESPEED,
(void *)4000) == DDI_SUCCESS)
erip->stats.pmcap = ERI_PMCAP_4MHZ;
}
return (status);
}
/*
* This function is used for timers. No locks are held on timer expiry.
*/
static void
eri_check_link(struct eri *erip)
{
link_state_t linkupdate = eri_check_link_noind(erip);
if (linkupdate != LINK_STATE_UNKNOWN)
mac_link_update(erip->mh, linkupdate);
}
/*
* Compare our xcvr in our structure to the xcvr that we get from
* eri_check_mii_xcvr(). If they are different then mark the
* link down, reset xcvr, and return.
*
* Note without the MII connector, conditions can not change that
* will then use a external phy, thus this code has been cleaned
* to not even call the function or to possibly change the xcvr.
*/
static uint32_t
eri_check_link_noind(struct eri *erip)
{
uint16_t stat, control, mif_ints;
uint32_t link_timeout = ERI_LINKCHECK_TIMER;
uint32_t linkupdate = 0;
eri_stop_timer(erip); /* acquire linklock */
mutex_enter(&erip->xmitlock);
mutex_enter(&erip->xcvrlock);
eri_mif_poll(erip, MIF_POLL_STOP);
(void) eri_mii_read(erip, ERI_PHY_BMSR, &stat);
mif_ints = erip->mii_status ^ stat;
if (erip->openloop_autoneg) {
(void) eri_mii_read(erip, ERI_PHY_BMSR, &stat);
ERI_DEBUG_MSG3(erip, XCVR_MSG,
"eri_check_link:openloop stat %X mii_status %X",
stat, erip->mii_status);
(void) eri_mii_read(erip, ERI_PHY_BMCR, &control);
if (!(stat & PHY_BMSR_LNKSTS) &&
(erip->openloop_autoneg < 2)) {
if (param_speed) {
control &= ~PHY_BMCR_100M;
param_anlpar_100hdx = 0;
param_anlpar_10hdx = 1;
param_speed = 0;
erip->stats.ifspeed = 10;
} else {
control |= PHY_BMCR_100M;
param_anlpar_100hdx = 1;
param_anlpar_10hdx = 0;
param_speed = 1;
erip->stats.ifspeed = 100;
}
ERI_DEBUG_MSG3(erip, XCVR_MSG,
"eri_check_link: trying speed %X stat %X",
param_speed, stat);
erip->openloop_autoneg ++;
eri_mii_write(erip, ERI_PHY_BMCR, control);
link_timeout = ERI_P_FAULT_TIMER;
} else {
erip->openloop_autoneg = 0;
linkupdate = eri_mif_check(erip, stat, stat);
if (erip->openloop_autoneg)
link_timeout = ERI_P_FAULT_TIMER;
}
eri_mif_poll(erip, MIF_POLL_START);
mutex_exit(&erip->xcvrlock);
mutex_exit(&erip->xmitlock);
eri_start_timer(erip, eri_check_link, link_timeout);
return (linkupdate);
}
linkupdate = eri_mif_check(erip, mif_ints, stat);
eri_mif_poll(erip, MIF_POLL_START);
mutex_exit(&erip->xcvrlock);
mutex_exit(&erip->xmitlock);
#ifdef ERI_RMAC_HANG_WORKAROUND
/*
* Check if rx hung.
*/
if ((erip->flags & ERI_RUNNING) && param_linkup) {
if (erip->check_rmac_hang) {
ERI_DEBUG_MSG5(erip,
NONFATAL_MSG,
"check1 %d: macsm:%8x wr:%2x rd:%2x",
erip->check_rmac_hang,
GET_MACREG(macsm),
GET_ERXREG(rxfifo_wr_ptr),
GET_ERXREG(rxfifo_rd_ptr));
erip->check_rmac_hang = 0;
erip->check2_rmac_hang ++;
erip->rxfifo_wr_ptr_c = GET_ERXREG(rxfifo_wr_ptr);
erip->rxfifo_rd_ptr_c = GET_ERXREG(rxfifo_rd_ptr);
eri_start_timer(erip, eri_check_link,
ERI_CHECK_HANG_TIMER);
return (linkupdate);
}
if (erip->check2_rmac_hang) {
ERI_DEBUG_MSG5(erip,
NONFATAL_MSG,
"check2 %d: macsm:%8x wr:%2x rd:%2x",
erip->check2_rmac_hang,
GET_MACREG(macsm),
GET_ERXREG(rxfifo_wr_ptr),
GET_ERXREG(rxfifo_rd_ptr));
erip->check2_rmac_hang = 0;
erip->rxfifo_wr_ptr = GET_ERXREG(rxfifo_wr_ptr);
erip->rxfifo_rd_ptr = GET_ERXREG(rxfifo_rd_ptr);
if (((GET_MACREG(macsm) & BMAC_OVERFLOW_STATE) ==
BMAC_OVERFLOW_STATE) &&
((erip->rxfifo_wr_ptr_c == erip->rxfifo_rd_ptr_c) ||
((erip->rxfifo_rd_ptr == erip->rxfifo_rd_ptr_c) &&
(erip->rxfifo_wr_ptr == erip->rxfifo_wr_ptr_c)))) {
ERI_DEBUG_MSG1(erip,
NONFATAL_MSG,
"RX hang: Reset mac");
HSTAT(erip, rx_hang);
erip->linkcheck = 1;
eri_start_timer(erip, eri_check_link,
ERI_LINKCHECK_TIMER);
(void) eri_init(erip);
return (linkupdate);
}
}
}
#endif
/*
* Check if tx hung.
*/
#ifdef ERI_TX_HUNG
if ((erip->flags & ERI_RUNNING) && param_linkup &&
(eri_check_txhung(erip))) {
HSTAT(erip, tx_hang);
eri_reinit_txhung++;
erip->linkcheck = 1;
eri_start_timer(erip, eri_check_link, ERI_CHECK_HANG_TIMER);
(void) eri_init(erip);
return (linkupdate);
}
#endif
#ifdef ERI_PM_WORKAROUND
if (erip->stats.pmcap == ERI_PMCAP_NONE) {
if (pci_report_pmcap(erip->dip, PCI_PM_IDLESPEED,
(void *)4000) == DDI_SUCCESS)
erip->stats.pmcap = ERI_PMCAP_4MHZ;
ERI_DEBUG_MSG2(erip, NONFATAL_MSG,
"eri_check_link: PMCAP %d", erip->stats.pmcap);
}
#endif
if ((!param_mode) && (param_transceiver != NO_XCVR))
eri_start_timer(erip, eri_check_link, ERI_CHECK_HANG_TIMER);
else
eri_start_timer(erip, eri_check_link, ERI_LINKCHECK_TIMER);
return (linkupdate);
}
static link_state_t
eri_mif_check(struct eri *erip, uint16_t mif_ints, uint16_t mif_data)
{
uint16_t control, aner, anlpar, anar, an_common;
uint16_t old_mintrans;
int restart_autoneg = 0;
link_state_t retv;
ERI_DEBUG_MSG4(erip, XCVR_MSG, "eri_mif_check: mif_mask: %X, %X, %X",
erip->mif_mask, mif_ints, mif_data);
mif_ints &= ~erip->mif_mask;
erip->mii_status = mif_data;
/*
* Now check if someone has pulled the xcvr or
* a new xcvr has shown up
* If so try to find out what the new xcvr setup is.
*/
if (((mif_ints & PHY_BMSR_RES1) && (mif_data == 0xFFFF)) ||
(param_transceiver == NO_XCVR)) {
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
"No status transceiver gone");
if (eri_new_xcvr(erip)) {
if (param_transceiver != NO_XCVR) {
/*
* Reset the new PHY and bring up the link
*/
(void) eri_reset_xcvr(erip);
}
}
return (LINK_STATE_UNKNOWN);
}
if (param_autoneg && (mif_ints & PHY_BMSR_LNKSTS) &&
(mif_data & PHY_BMSR_LNKSTS) && (mif_data & PHY_BMSR_ANC)) {
mif_ints |= PHY_BMSR_ANC;
ERI_DEBUG_MSG3(erip, PHY_MSG,
"eri_mif_check: Set ANC bit mif_data %X mig_ints %X",
mif_data, mif_ints);
}
if ((mif_ints & PHY_BMSR_ANC) && (mif_data & PHY_BMSR_ANC)) {
ERI_DEBUG_MSG1(erip, PHY_MSG, "Auto-negotiation interrupt.");
/*
* Switch off Auto-negotiation interrupts and switch on
* Link ststus interrupts.
*/
erip->mif_mask |= PHY_BMSR_ANC;
erip->mif_mask &= ~PHY_BMSR_LNKSTS;
(void) eri_mii_read(erip, ERI_PHY_ANER, &aner);
param_aner_lpancap = 1 && (aner & PHY_ANER_LPNW);
if ((aner & PHY_ANER_MLF) || (eri_force_mlf)) {
ERI_DEBUG_MSG1(erip, XCVR_MSG,
"parallel detection fault");
/*
* Consider doing open loop auto-negotiation.
*/
ERI_DEBUG_MSG1(erip, XCVR_MSG,
"Going into Open loop Auto-neg");
(void) eri_mii_read(erip, ERI_PHY_BMCR, &control);
control &= ~(PHY_BMCR_ANE | PHY_BMCR_RAN |
PHY_BMCR_FDX);
if (param_anar_100fdx || param_anar_100hdx) {
control |= PHY_BMCR_100M;
param_anlpar_100hdx = 1;
param_anlpar_10hdx = 0;
param_speed = 1;
erip->stats.ifspeed = 100;
} else if (param_anar_10fdx || param_anar_10hdx) {
control &= ~PHY_BMCR_100M;
param_anlpar_100hdx = 0;
param_anlpar_10hdx = 1;
param_speed = 0;
erip->stats.ifspeed = 10;
} else {
ERI_FAULT_MSG1(erip, SEVERITY_NONE,
ERI_VERB_MSG,
"Transceiver speed set incorrectly.");
return (0);
}
(void) eri_mii_write(erip, ERI_PHY_BMCR, control);
param_anlpar_100fdx = 0;
param_anlpar_10fdx = 0;
param_mode = 0;
erip->openloop_autoneg = 1;
return (0);
}
(void) eri_mii_read(erip, ERI_PHY_ANLPAR, &anlpar);
(void) eri_mii_read(erip, ERI_PHY_ANAR, &anar);
an_common = anar & anlpar;
ERI_DEBUG_MSG2(erip, XCVR_MSG, "an_common = 0x%X", an_common);
if (an_common & (PHY_ANLPAR_TXFDX | PHY_ANLPAR_TX)) {
param_speed = 1;
erip->stats.ifspeed = 100;
param_mode = 1 && (an_common & PHY_ANLPAR_TXFDX);
} else if (an_common & (PHY_ANLPAR_10FDX | PHY_ANLPAR_10)) {
param_speed = 0;
erip->stats.ifspeed = 10;
param_mode = 1 && (an_common & PHY_ANLPAR_10FDX);
} else an_common = 0x0;
if (!an_common) {
ERI_FAULT_MSG1(erip, SEVERITY_MID, ERI_VERB_MSG,
"Transceiver: anar not set with speed selection");
}
param_anlpar_100T4 = 1 && (anlpar & PHY_ANLPAR_T4);
param_anlpar_100fdx = 1 && (anlpar & PHY_ANLPAR_TXFDX);
param_anlpar_100hdx = 1 && (anlpar & PHY_ANLPAR_TX);
param_anlpar_10fdx = 1 && (anlpar & PHY_ANLPAR_10FDX);
param_anlpar_10hdx = 1 && (anlpar & PHY_ANLPAR_10);
ERI_DEBUG_MSG2(erip, PHY_MSG,
"Link duplex = 0x%X", param_mode);
ERI_DEBUG_MSG2(erip, PHY_MSG,
"Link speed = 0x%X", param_speed);
/* mif_ints |= PHY_BMSR_LNKSTS; prevent double msg */
/* mif_data |= PHY_BMSR_LNKSTS; prevent double msg */
}
retv = LINK_STATE_UNKNOWN;
if (mif_ints & PHY_BMSR_LNKSTS) {
if (mif_data & PHY_BMSR_LNKSTS) {
ERI_DEBUG_MSG1(erip, PHY_MSG, "Link Up");
/*
* Program Lu3X31T for mininum transition
*/
if (eri_phy_mintrans) {
eri_mii_write(erip, 31, 0x8000);
(void) eri_mii_read(erip, 0, &old_mintrans);
eri_mii_write(erip, 0, 0x00F1);
eri_mii_write(erip, 31, 0x0000);
}
/*
* The link is up.
*/
eri_init_txmac(erip);
param_linkup = 1;
erip->stats.link_up = LINK_STATE_UP;
if (param_mode)
erip->stats.link_duplex = LINK_DUPLEX_FULL;
else
erip->stats.link_duplex = LINK_DUPLEX_HALF;
retv = LINK_STATE_UP;
} else {
ERI_DEBUG_MSG1(erip, PHY_MSG, "Link down.");
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
retv = LINK_STATE_DOWN;
if (param_autoneg) {
restart_autoneg = 1;
}
}
} else {
if (mif_data & PHY_BMSR_LNKSTS) {
if (!param_linkup) {
ERI_DEBUG_MSG1(erip, PHY_MSG,
"eri_mif_check: MIF data link up");
/*
* Program Lu3X31T for minimum transition
*/
if (eri_phy_mintrans) {
eri_mii_write(erip, 31, 0x8000);
(void) eri_mii_read(erip, 0,
&old_mintrans);
eri_mii_write(erip, 0, 0x00F1);
eri_mii_write(erip, 31, 0x0000);
}
/*
* The link is up.
*/
eri_init_txmac(erip);
param_linkup = 1;
erip->stats.link_up = LINK_STATE_UP;
if (param_mode)
erip->stats.link_duplex =
LINK_DUPLEX_FULL;
else
erip->stats.link_duplex =
LINK_DUPLEX_HALF;
retv = LINK_STATE_UP;
}
} else if (param_linkup) {
/*
* The link is down now.
*/
ERI_DEBUG_MSG1(erip, PHY_MSG,
"eri_mif_check:Link was up and went down");
param_linkup = 0;
erip->stats.link_up = LINK_STATE_DOWN;
erip->stats.link_duplex = LINK_DUPLEX_UNKNOWN;
retv = LINK_STATE_DOWN;
if (param_autoneg)
restart_autoneg = 1;
}
}
if (restart_autoneg) {
/*
* Restart normal auto-negotiation.
*/
ERI_DEBUG_MSG1(erip, PHY_MSG,
"eri_mif_check:Restart AUto Negotiation");
erip->openloop_autoneg = 0;
param_mode = 0;
param_speed = 0;
param_anlpar_100T4 = 0;
param_anlpar_100fdx = 0;
param_anlpar_100hdx = 0;
param_anlpar_10fdx = 0;
param_anlpar_10hdx = 0;
param_aner_lpancap = 0;
(void) eri_mii_read(erip, ERI_PHY_BMCR, &control);
control |= (PHY_BMCR_ANE | PHY_BMCR_RAN);
eri_mii_write(erip, ERI_PHY_BMCR, control);
}
if (mif_ints & PHY_BMSR_JABDET) {
if (mif_data & PHY_BMSR_JABDET) {
ERI_DEBUG_MSG1(erip, PHY_MSG, "Jabber detected.");
HSTAT(erip, jab);
/*
* Reset the new PHY and bring up the link
* (Check for failure?)
*/
(void) eri_reset_xcvr(erip);
}
}
return (retv);
}
#define PHYRST_PERIOD 500
static int
eri_reset_xcvr(struct eri *erip)
{
uint16_t stat;
uint16_t anar;
uint16_t control;
uint16_t idr1;
uint16_t idr2;
uint16_t nicr;
uint32_t speed_100;
uint32_t speed_10;
int n;
#ifdef ERI_10_10_FORCE_SPEED_WORKAROUND
erip->ifspeed_old = erip->stats.ifspeed;
#endif
/*
* Reset Open loop auto-negotiation this means you can try
* Normal auto-negotiation, until you get a Multiple Link fault
* at which point you try 100M half duplex then 10M half duplex
* until you get a Link up.
*/
erip->openloop_autoneg = 0;
/*
* Reset the xcvr.
*/
eri_mii_write(erip, ERI_PHY_BMCR, PHY_BMCR_RESET);
/* Check for transceiver reset completion */
n = 1000;
while (--n > 0) {
drv_usecwait((clock_t)PHYRST_PERIOD);
if (eri_mii_read(erip, ERI_PHY_BMCR, &control) == 1) {
/* Transceiver does not talk MII */
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
"eri_reset_xcvr: no mii");
}
if ((control & PHY_BMCR_RESET) == 0)
goto reset_done;
}
ERI_FAULT_MSG2(erip, SEVERITY_NONE, ERI_VERB_MSG,
"eri_reset_xcvr:reset_failed n == 0, control %x", control);
goto eri_reset_xcvr_failed;
reset_done:
ERI_DEBUG_MSG2(erip, AUTOCONFIG_MSG,
"eri_reset_xcvr: reset complete in %d us",
(1000 - n) * PHYRST_PERIOD);
(void) eri_mii_read(erip, ERI_PHY_BMSR, &stat);
(void) eri_mii_read(erip, ERI_PHY_ANAR, &anar);
(void) eri_mii_read(erip, ERI_PHY_IDR1, &idr1);
(void) eri_mii_read(erip, ERI_PHY_IDR2, &idr2);
ERI_DEBUG_MSG4(erip, XCVR_MSG,
"eri_reset_xcvr: control %x stat %x anar %x", control, stat, anar);
/*
* Initialize the read only transceiver ndd information
* the values are either 0 or 1.
*/
param_bmsr_ancap = 1 && (stat & PHY_BMSR_ACFG);
param_bmsr_100T4 = 1 && (stat & PHY_BMSR_100T4);
param_bmsr_100fdx = 1 && (stat & PHY_BMSR_100FDX);
param_bmsr_100hdx = 1 && (stat & PHY_BMSR_100HDX);
param_bmsr_10fdx = 1 && (stat & PHY_BMSR_10FDX);
param_bmsr_10hdx = 1 && (stat & PHY_BMSR_10HDX);
/*
* Match up the ndd capabilities with the transceiver.
*/
param_autoneg &= param_bmsr_ancap;
param_anar_100fdx &= param_bmsr_100fdx;
param_anar_100hdx &= param_bmsr_100hdx;
param_anar_10fdx &= param_bmsr_10fdx;
param_anar_10hdx &= param_bmsr_10hdx;
/*
* Select the operation mode of the transceiver.
*/
if (param_autoneg) {
/*
* Initialize our auto-negotiation capabilities.
*/
anar = PHY_SELECTOR;
if (param_anar_100T4)
anar |= PHY_ANAR_T4;
if (param_anar_100fdx)
anar |= PHY_ANAR_TXFDX;
if (param_anar_100hdx)
anar |= PHY_ANAR_TX;
if (param_anar_10fdx)
anar |= PHY_ANAR_10FDX;
if (param_anar_10hdx)
anar |= PHY_ANAR_10;
ERI_DEBUG_MSG2(erip, XCVR_MSG, "anar = %x", anar);
eri_mii_write(erip, ERI_PHY_ANAR, anar);
}
/* Place the Transceiver in normal operation mode */
if ((control & PHY_BMCR_ISOLATE) || (control & PHY_BMCR_LPBK)) {
control &= ~(PHY_BMCR_ISOLATE | PHY_BMCR_LPBK);
eri_mii_write(erip, ERI_PHY_BMCR,
(control & ~PHY_BMCR_ISOLATE));
}
/*
* If Lu3X31T then allow nonzero eri_phy_mintrans
*/
if (eri_phy_mintrans &&
(idr1 != 0x43 || (idr2 & 0xFFF0) != 0x7420)) {
eri_phy_mintrans = 0;
}
/*
* Initialize the mif interrupt mask.
*/
erip->mif_mask = (uint16_t)(~PHY_BMSR_RES1);
/*
* Establish link speeds and do necessary special stuff based
* in the speed.
*/
speed_100 = param_anar_100fdx | param_anar_100hdx;
speed_10 = param_anar_10fdx | param_anar_10hdx;
ERI_DEBUG_MSG5(erip, XCVR_MSG, "eri_reset_xcvr: %d %d %d %d",
param_anar_100fdx, param_anar_100hdx, param_anar_10fdx,
param_anar_10hdx);
ERI_DEBUG_MSG3(erip, XCVR_MSG,
"eri_reset_xcvr: speed_100 %d speed_10 %d", speed_100, speed_10);
if ((!speed_100) && (speed_10)) {
erip->mif_mask &= ~PHY_BMSR_JABDET;
if (!(param_anar_10fdx) &&
(param_anar_10hdx) &&
(erip->link_pulse_disabled)) {
param_speed = 0;
param_mode = 0;
(void) eri_mii_read(erip, ERI_PHY_NICR, &nicr);
nicr &= ~PHY_NICR_LD;
eri_mii_write(erip, ERI_PHY_NICR, nicr);
param_linkup = 1;
erip->stats.link_up = LINK_STATE_UP;
if (param_mode)
erip->stats.link_duplex = LINK_DUPLEX_FULL;
else
erip->stats.link_duplex = LINK_DUPLEX_HALF;
}
}
/*
* Clear the autonegotitation before re-starting
*/
control = PHY_BMCR_100M | PHY_BMCR_FDX;
/* eri_mii_write(erip, ERI_PHY_BMCR, control); */
if (param_autoneg) {
/*
* Setup the transceiver for autonegotiation.
*/
erip->mif_mask &= ~PHY_BMSR_ANC;
/*
* Clear the Auto-negotiation before re-starting
*/
eri_mii_write(erip, ERI_PHY_BMCR, control & ~PHY_BMCR_ANE);
/*
* Switch on auto-negotiation.
*/
control |= (PHY_BMCR_ANE | PHY_BMCR_RAN);
eri_mii_write(erip, ERI_PHY_BMCR, control);
} else {
/*
* Force the transceiver.
*/
erip->mif_mask &= ~PHY_BMSR_LNKSTS;
/*
* Switch off auto-negotiation.
*/
control &= ~(PHY_BMCR_FDX | PHY_BMCR_ANE | PHY_BMCR_RAN);
if (speed_100) {
control |= PHY_BMCR_100M;
param_aner_lpancap = 0; /* Clear LP nway */
param_anlpar_10fdx = 0;
param_anlpar_10hdx = 0;
param_anlpar_100T4 = param_anar_100T4;
param_anlpar_100fdx = param_anar_100fdx;
param_anlpar_100hdx = param_anar_100hdx;
param_speed = 1;
erip->stats.ifspeed = 100;
param_mode = param_anar_100fdx;
if (param_mode) {
param_anlpar_100hdx = 0;
erip->stats.link_duplex = LINK_DUPLEX_FULL;
} else {
erip->stats.link_duplex = LINK_DUPLEX_HALF;
}
} else if (speed_10) {
control &= ~PHY_BMCR_100M;
param_aner_lpancap = 0; /* Clear LP nway */
param_anlpar_100fdx = 0;
param_anlpar_100hdx = 0;
param_anlpar_100T4 = 0;
param_anlpar_10fdx = param_anar_10fdx;
param_anlpar_10hdx = param_anar_10hdx;
param_speed = 0;
erip->stats.ifspeed = 10;
param_mode = param_anar_10fdx;
if (param_mode) {
param_anlpar_10hdx = 0;
erip->stats.link_duplex = LINK_DUPLEX_FULL;
} else {
erip->stats.link_duplex = LINK_DUPLEX_HALF;
}
} else {
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_VERB_MSG,
"Transceiver speed set incorrectly.");
}
if (param_mode) {
control |= PHY_BMCR_FDX;
}
ERI_DEBUG_MSG4(erip, PHY_MSG,
"control = %x status = %x param_mode %d",
control, stat, param_mode);
eri_mii_write(erip, ERI_PHY_BMCR, control);
/*
* if (param_mode) {
* control |= PHY_BMCR_FDX;
* }
* control &= ~(PHY_BMCR_FDX | PHY_BMCR_ANE | PHY_BMCR_RAN);
* eri_mii_write(erip, ERI_PHY_BMCR, control);
*/
}
#ifdef DEBUG
(void) eri_mii_read(erip, ERI_PHY_BMCR, &control);
(void) eri_mii_read(erip, ERI_PHY_BMSR, &stat);
(void) eri_mii_read(erip, ERI_PHY_ANAR, &anar);
#endif
ERI_DEBUG_MSG4(erip, PHY_MSG,
"control %X status %X anar %X", control, stat, anar);
eri_reset_xcvr_exit:
return (0);
eri_reset_xcvr_failed:
return (1);
}
#ifdef ERI_10_10_FORCE_SPEED_WORKAROUND
static void
eri_xcvr_force_mode(struct eri *erip, uint32_t *link_timeout)
{
if (!param_autoneg && !param_linkup && (erip->stats.ifspeed == 10) &&
(param_anar_10fdx | param_anar_10hdx)) {
*link_timeout = SECOND(1);
return;
}
if (!param_autoneg && !param_linkup && (erip->ifspeed_old == 10) &&
(param_anar_100fdx | param_anar_100hdx)) {
/*
* May have to set link partner's speed and mode.
*/
ERI_FAULT_MSG1(erip, SEVERITY_NONE, ERI_LOG_MSG,
"May have to set link partner's speed and duplex mode.");
}
}
#endif
static void
eri_mif_poll(struct eri *erip, soft_mif_enable_t enable)
{
if (enable == MIF_POLL_START) {
if (erip->mifpoll_enable && !erip->openloop_autoneg) {
erip->mif_config |= ERI_MIF_CFGPE;
PUT_MIFREG(mif_cfg, erip->mif_config);
drv_usecwait(ERI_MIF_POLL_DELAY);
PUT_GLOBREG(intmask, GET_GLOBREG(intmask) &
~ERI_G_MASK_MIF_INT);
PUT_MIFREG(mif_imask, erip->mif_mask);
}
} else if (enable == MIF_POLL_STOP) {
erip->mif_config &= ~ERI_MIF_CFGPE;
PUT_MIFREG(mif_cfg, erip->mif_config);
drv_usecwait(ERI_MIF_POLL_DELAY);
PUT_GLOBREG(intmask, GET_GLOBREG(intmask) |
ERI_G_MASK_MIF_INT);
PUT_MIFREG(mif_imask, ERI_MIF_INTMASK);
}
ERI_DEBUG_MSG2(erip, XCVR_MSG, "MIF Config = 0x%X",
GET_MIFREG(mif_cfg));
ERI_DEBUG_MSG2(erip, XCVR_MSG, "MIF imask = 0x%X",
GET_MIFREG(mif_imask));
ERI_DEBUG_MSG2(erip, XCVR_MSG, "INT imask = 0x%X",
GET_GLOBREG(intmask));
ERI_DEBUG_MSG1(erip, XCVR_MSG, "<== mif_poll");
}
/* Decide if transmitter went dead and reinitialize everything */
#ifdef ERI_TX_HUNG
static int eri_txhung_limit = 2;
static int
eri_check_txhung(struct eri *erip)
{
boolean_t macupdate = B_FALSE;
mutex_enter(&erip->xmitlock);
if (erip->flags & ERI_RUNNING)
erip->tx_completion = (uint32_t)(GET_ETXREG(tx_completion) &
ETX_COMPLETION_MASK);
macupdate |= eri_reclaim(erip, erip->tx_completion);
/* Something needs to be sent out but it is not going out */
if ((erip->tcurp != erip->tnextp) &&
(erip->stats.opackets64 == erip->erisave.reclaim_opackets) &&
(erip->stats.collisions == erip->erisave.starts))
erip->txhung++;
else
erip->txhung = 0;
erip->erisave.reclaim_opackets = erip->stats.opackets64;
erip->erisave.starts = erip->stats.collisions;
mutex_exit(&erip->xmitlock);
if (macupdate)
mac_tx_update(erip->mh);
return (erip->txhung >= eri_txhung_limit);
}
#endif