fasttrap_isa.c revision 92e807e650499591f2549dc94c6d20b81e94e394
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/fasttrap_isa.h>
#include <sys/fasttrap_impl.h>
#include <sys/dtrace.h>
#include <sys/dtrace_impl.h>
#include <sys/cmn_err.h>
#include <sys/frame.h>
#include <sys/stack.h>
#include <sys/sysmacros.h>
#include <sys/trap.h>
#include <v9/sys/machpcb.h>
#include <v9/sys/privregs.h>
/*
* Lossless User-Land Tracing on SPARC
* -----------------------------------
*
* The Basic Idea
*
* The most important design constraint is, of course, correct execution of
* the user thread above all else. The next most important goal is rapid
* execution. We combine execution of instructions in user-land with
* emulation of certain instructions in the kernel to aim for complete
* correctness and maximal performance.
*
* We take advantage of the split PC/NPC architecture to speed up logical
* single-stepping; when we copy an instruction out to the scratch space in
* the ulwp_t structure (held in the %g7 register on SPARC), we can
* effectively single step by setting the PC to our scratch space and leaving
* the NPC alone. This executes the replaced instruction and then continues
* on without having to reenter the kernel as with single- stepping. The
* obvious caveat is for instructions whose execution is PC dependant --
* branches, call and link instructions (call and jmpl), and the rdpc
* instruction. These instructions cannot be executed in the manner described
* so they must be emulated in the kernel.
*
* Emulation for this small set of instructions if fairly simple; the most
* difficult part being emulating branch conditions.
*
*
* A Cache Heavy Portfolio
*
* It's important to note at this time that copying an instruction out to the
* ulwp_t scratch space in user-land is rather complicated. SPARC has
* separate data and instruction caches so any writes to the D$ (using a
* store instruction for example) aren't necessarily reflected in the I$.
* The flush instruction can be used to synchronize the two and must be used
* for any self-modifying code, but the flush instruction only applies to the
* primary address space (the absence of a flusha analogue to the flush
* instruction that accepts an ASI argument is an obvious omission from SPARC
* v9 where the notion of the alternate address space was introduced on
* SPARC). To correctly copy out the instruction we must use a block store
* that doesn't allocate in the D$ and ensures synchronization with the I$;
* see dtrace_blksuword32() for the implementation (this function uses
* ASI_BLK_COMMIT_S to write a block through the secondary ASI in the manner
* described). Refer to the UltraSPARC I/II manual for details on the
* ASI_BLK_COMMIT_S ASI.
*
*
* Return Subtleties
*
* When we're firing a return probe we need to expose the value returned by
* the function being traced. Since the function can set the return value
* in its last instruction, we need to fire the return probe only _after_
* the effects of the instruction are apparent. For instructions that we
* emulate, we can call dtrace_probe() after we've performed the emulation;
* for instructions that we execute after we return to user-land, we set
* %pc to the instruction we copied out (as described above) and set %npc
* to a trap instruction stashed in the ulwp_t structure. After the traced
* instruction is executed, the trap instruction returns control to the
* kernel where we can fire the return probe.
*
* This need for a second trap in cases where we execute the traced
* instruction makes it all the more important to emulate the most common
* instructions to avoid the second trip in and out of the kernel.
*
*
* Making it Fast
*
* Since copying out an instruction is neither simple nor inexpensive for the
* CPU, we should attempt to avoid doing it in as many cases as possible.
* Since function entry and return are usually the most interesting probe
* sites, we attempt to tune the performance of the fasttrap provider around
* instructions typically in those places.
*
* Looking at a bunch of functions in libraries and executables reveals that
* most functions begin with either a save or a sethi (to setup a larger
* argument to the save) and end with a restore or an or (in the case of leaf
* functions). To try to improve performance, we emulate all of these
* instructions in the kernel.
*
* The save and restore instructions are a little tricky since they perform
* register window maniplulation. Rather than trying to tinker with the
* register windows from the kernel, we emulate the implicit add that takes
* place as part of those instructions and set the %pc to point to a simple
* save or restore we've hidden in the ulwp_t structure. If we're in a return
* probe so want to make it seem as though the tracepoint has been completely
* executed we need to remember that we've pulled this trick with restore and
* pull registers from the previous window (the one that we'll switch to once
* the simple store instruction is executed) rather than the current one. This
* is why in the case of emulating a restore we set the DTrace CPU flag
* CPU_DTRACE_FAKERESTORE before calling dtrace_probe() for the return probes
* (see fasttrap_return_common()).
*/
#define OP(x) ((x) >> 30)
#define OP2(x) (((x) >> 22) & 0x07)
#define OP3(x) (((x) >> 19) & 0x3f)
#define RCOND(x) (((x) >> 25) & 0x07)
#define COND(x) (((x) >> 25) & 0x0f)
#define A(x) (((x) >> 29) & 0x01)
#define I(x) (((x) >> 13) & 0x01)
#define RD(x) (((x) >> 25) & 0x1f)
#define RS1(x) (((x) >> 14) & 0x1f)
#define RS2(x) (((x) >> 0) & 0x1f)
#define CC(x) (((x) >> 20) & 0x03)
#define DISP16(x) ((((x) >> 6) & 0xc000) | ((x) & 0x3fff))
#define DISP22(x) ((x) & 0x3fffff)
#define DISP19(x) ((x) & 0x7ffff)
#define DISP30(x) ((x) & 0x3fffffff)
#define SW_TRAP(x) ((x) & 0x7f)
#define OP3_OR 0x02
#define OP3_RD 0x28
#define OP3_JMPL 0x38
#define OP3_RETURN 0x39
#define OP3_TCC 0x3a
#define OP3_SAVE 0x3c
#define OP3_RESTORE 0x3d
#define OP3_PREFETCH 0x2d
#define OP3_CASA 0x3c
#define OP3_PREFETCHA 0x3d
#define OP3_CASXA 0x3e
#define OP2_ILLTRAP 0x0
#define OP2_BPcc 0x1
#define OP2_Bicc 0x2
#define OP2_BPr 0x3
#define OP2_SETHI 0x4
#define OP2_FBPfcc 0x5
#define OP2_FBfcc 0x6
#define R_G0 0
#define R_O0 8
#define R_SP 14
#define R_I0 24
#define R_I1 25
#define R_I2 26
#define R_I3 27
#define R_I4 28
/*
* Check the comment in fasttrap.h when changing these offsets or adding
* new instructions.
*/
#define FASTTRAP_OFF_SAVE 64
#define FASTTRAP_OFF_RESTORE 68
#define FASTTRAP_OFF_FTRET 72
#define FASTTRAP_OFF_RETURN 76
#define BREAKPOINT_INSTR 0x91d02001 /* ta 1 */
/*
* Tunable to let users turn off the fancy save instruction optimization.
* If a program is non-ABI compliant, there's a possibility that the save
* instruction optimization could cause an error.
*/
int fasttrap_optimize_save = 1;
static uint64_t
fasttrap_anarg(struct regs *rp, int argno)
{
uint64_t value;
if (argno < 6)
return ((&rp->r_o0)[argno]);
if (curproc->p_model == DATAMODEL_NATIVE) {
struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
value = dtrace_fulword(&fr->fr_argd[argno]);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR |
CPU_DTRACE_BADALIGN);
} else {
struct frame32 *fr = (struct frame32 *)rp->r_sp;
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
value = dtrace_fuword32(&fr->fr_argd[argno]);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR |
CPU_DTRACE_BADALIGN);
}
return (value);
}
static ulong_t fasttrap_getreg(struct regs *, uint_t);
static void fasttrap_putreg(struct regs *, uint_t, ulong_t);
static void
fasttrap_usdt_args(fasttrap_probe_t *probe, struct regs *rp,
uint_t fake_restore, int argc, uintptr_t *argv)
{
int i, x, cap = MIN(argc, probe->ftp_nargs);
int inc = (fake_restore ? 16 : 0);
/*
* The only way we'll hit the fake_restore case is if a USDT probe is
* invoked as a tail-call. While it wouldn't be incorrect, we can
* avoid a call to fasttrap_getreg(), and safely use rp->r_sp
* directly since a tail-call can't be made if the invoked function
* would use the argument dump space (i.e. if there were more than
* 6 arguments). We take this shortcut because unconditionally rooting
* around for R_FP (R_SP + 16) would be unnecessarily painful.
*/
if (curproc->p_model == DATAMODEL_NATIVE) {
struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
uintptr_t v;
for (i = 0; i < cap; i++) {
x = probe->ftp_argmap[i];
if (x < 6)
argv[i] = fasttrap_getreg(rp, R_O0 + x + inc);
else if (fasttrap_fulword(&fr->fr_argd[x], &v) != 0)
argv[i] = 0;
}
} else {
struct frame32 *fr = (struct frame32 *)rp->r_sp;
uint32_t v;
for (i = 0; i < cap; i++) {
x = probe->ftp_argmap[i];
if (x < 6)
argv[i] = fasttrap_getreg(rp, R_O0 + x + inc);
else if (fasttrap_fuword32(&fr->fr_argd[x], &v) != 0)
argv[i] = 0;
}
}
for (; i < argc; i++) {
argv[i] = 0;
}
}
static void
fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
uint_t fake_restore)
{
fasttrap_tracepoint_t *tp;
fasttrap_bucket_t *bucket;
fasttrap_id_t *id;
kmutex_t *pid_mtx;
dtrace_icookie_t cookie;
pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
mutex_enter(pid_mtx);
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
!tp->ftt_proc->ftpc_defunct)
break;
}
/*
* Don't sweat it if we can't find the tracepoint again; unlike
* when we're in fasttrap_pid_probe(), finding the tracepoint here
* is not essential to the correct execution of the process.
*/
if (tp == NULL || tp->ftt_retids == NULL) {
mutex_exit(pid_mtx);
return;
}
for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
fasttrap_probe_t *probe = id->fti_probe;
if (id->fti_ptype == DTFTP_POST_OFFSETS) {
if (probe->ftp_argmap != NULL && fake_restore) {
uintptr_t t[5];
fasttrap_usdt_args(probe, rp, fake_restore,
sizeof (t) / sizeof (t[0]), t);
cookie = dtrace_interrupt_disable();
DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
dtrace_probe(probe->ftp_id, t[0], t[1],
t[2], t[3], t[4]);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
dtrace_interrupt_enable(cookie);
} else if (probe->ftp_argmap != NULL) {
uintptr_t t[5];
fasttrap_usdt_args(probe, rp, fake_restore,
sizeof (t) / sizeof (t[0]), t);
dtrace_probe(probe->ftp_id, t[0], t[1],
t[2], t[3], t[4]);
} else if (fake_restore) {
uintptr_t arg0 = fasttrap_getreg(rp, R_I0);
uintptr_t arg1 = fasttrap_getreg(rp, R_I1);
uintptr_t arg2 = fasttrap_getreg(rp, R_I2);
uintptr_t arg3 = fasttrap_getreg(rp, R_I3);
uintptr_t arg4 = fasttrap_getreg(rp, R_I4);
cookie = dtrace_interrupt_disable();
DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
dtrace_probe(probe->ftp_id, arg0, arg1,
arg2, arg3, arg4);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
dtrace_interrupt_enable(cookie);
} else {
dtrace_probe(probe->ftp_id, rp->r_o0, rp->r_o1,
rp->r_o2, rp->r_o3, rp->r_o4);
}
continue;
}
/*
* If this is only a possible return point, we must
* be looking at a potential tail call in leaf context.
* If the %npc is still within this function, then we
* must have misidentified a jmpl as a tail-call when it
* is, in fact, part of a jump table. It would be nice to
* remove this tracepoint, but this is neither the time
* nor the place.
*/
if ((tp->ftt_flags & FASTTRAP_F_RETMAYBE) &&
rp->r_npc - probe->ftp_faddr < probe->ftp_fsize)
continue;
/*
* It's possible for a function to branch to the delay slot
* of an instruction that we've identified as a return site.
* We can dectect this spurious return probe activation by
* observing that in this case %npc will be %pc + 4 and %npc
* will be inside the current function (unless the user is
* doing _crazy_ instruction picking in which case there's
* very little we can do). The second check is important
* in case the last instructions of a function make a tail-
* call to the function located immediately subsequent.
*/
if (rp->r_npc == rp->r_pc + 4 &&
rp->r_npc - probe->ftp_faddr < probe->ftp_fsize)
continue;
/*
* The first argument is the offset of return tracepoint
* in the function; the remaining arguments are the return
* values.
*
* If fake_restore is set, we need to pull the return values
* out of the %i's rather than the %o's -- a little trickier.
*/
if (!fake_restore) {
dtrace_probe(probe->ftp_id, pc - probe->ftp_faddr,
rp->r_o0, rp->r_o1, rp->r_o2, rp->r_o3);
} else {
uintptr_t arg0 = fasttrap_getreg(rp, R_I0);
uintptr_t arg1 = fasttrap_getreg(rp, R_I1);
uintptr_t arg2 = fasttrap_getreg(rp, R_I2);
uintptr_t arg3 = fasttrap_getreg(rp, R_I3);
cookie = dtrace_interrupt_disable();
DTRACE_CPUFLAG_SET(CPU_DTRACE_FAKERESTORE);
dtrace_probe(probe->ftp_id, pc - probe->ftp_faddr,
arg0, arg1, arg2, arg3);
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_FAKERESTORE);
dtrace_interrupt_enable(cookie);
}
}
mutex_exit(pid_mtx);
}
int
fasttrap_pid_probe(struct regs *rp)
{
proc_t *p = curproc;
fasttrap_tracepoint_t *tp, tp_local;
fasttrap_id_t *id;
pid_t pid;
uintptr_t pc = rp->r_pc;
uintptr_t npc = rp->r_npc;
uintptr_t orig_pc = pc;
fasttrap_bucket_t *bucket;
kmutex_t *pid_mtx;
uint_t fake_restore = 0, is_enabled = 0;
dtrace_icookie_t cookie;
/*
* It's possible that a user (in a veritable orgy of bad planning)
* could redirect this thread's flow of control before it reached the
* return probe fasttrap. In this case we need to kill the process
* since it's in a unrecoverable state.
*/
if (curthread->t_dtrace_step) {
ASSERT(curthread->t_dtrace_on);
fasttrap_sigtrap(p, curthread, pc);
return (0);
}
/*
* Clear all user tracing flags.
*/
curthread->t_dtrace_ft = 0;
curthread->t_dtrace_pc = 0;
curthread->t_dtrace_npc = 0;
curthread->t_dtrace_scrpc = 0;
curthread->t_dtrace_astpc = 0;
/*
* Treat a child created by a call to vfork(2) as if it were its
* parent. We know that there's only one thread of control in such a
* process: this one.
*/
while (p->p_flag & SVFORK) {
p = p->p_parent;
}
pid = p->p_pid;
pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
mutex_enter(pid_mtx);
bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
/*
* Lookup the tracepoint that the process just hit.
*/
for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
!tp->ftt_proc->ftpc_defunct)
break;
}
/*
* If we couldn't find a matching tracepoint, either a tracepoint has
* been inserted without using the pid<pid> ioctl interface (see
* fasttrap_ioctl), or somehow we have mislaid this tracepoint.
*/
if (tp == NULL) {
mutex_exit(pid_mtx);
return (-1);
}
for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
fasttrap_probe_t *probe = id->fti_probe;
int isentry = (id->fti_ptype == DTFTP_ENTRY);
if (id->fti_ptype == DTFTP_IS_ENABLED) {
is_enabled = 1;
continue;
}
/*
* We note that this was an entry probe to help ustack() find
* the first caller.
*/
if (isentry) {
cookie = dtrace_interrupt_disable();
DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
}
dtrace_probe(probe->ftp_id, rp->r_o0, rp->r_o1, rp->r_o2,
rp->r_o3, rp->r_o4);
if (isentry) {
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
dtrace_interrupt_enable(cookie);
}
}
/*
* We're about to do a bunch of work so we cache a local copy of
* the tracepoint to emulate the instruction, and then find the
* tracepoint again later if we need to light up any return probes.
*/
tp_local = *tp;
mutex_exit(pid_mtx);
tp = &tp_local;
/*
* If there's an is-enabled probe conntected to this tracepoint it
* means that there was a 'mov %g0, %o0' instruction that was placed
* there by DTrace when the binary was linked. As this probe is, in
* fact, enabled, we need to stuff 1 into %o0. Accordingly, we can
* bypass all the instruction emulation logic since we know the
* inevitable result. It's possible that a user could construct a
* scenario where the 'is-enabled' probe was on some other
* instruction, but that would be a rather exotic way to shoot oneself
* in the foot.
*/
if (is_enabled) {
rp->r_o0 = 1;
pc = rp->r_npc;
npc = pc + 4;
goto done;
}
/*
* We emulate certain types of instructions to ensure correctness
* (in the case of position dependent instructions) or optimize
* common cases. The rest we have the thread execute back in user-
* land.
*/
switch (tp->ftt_type) {
case FASTTRAP_T_SAVE:
{
int32_t imm;
/*
* This an optimization to let us handle function entry
* probes more efficiently. Many functions begin with a save
* instruction that follows the pattern:
* save %sp, <imm>, %sp
*
* Meanwhile, we've stashed the instruction:
* save %g1, %g0, %sp
*
* off of %g7, so all we have to do is stick the right value
* into %g1 and reset %pc to point to the instruction we've
* cleverly hidden (%npc should not be touched).
*/
imm = tp->ftt_instr << 19;
imm >>= 19;
rp->r_g1 = rp->r_sp + imm;
pc = rp->r_g7 + FASTTRAP_OFF_SAVE;
break;
}
case FASTTRAP_T_RESTORE:
{
ulong_t value;
uint_t rd;
/*
* This is an optimization to let us handle function
* return probes more efficiently. Most non-leaf functions
* end with the sequence:
* ret
* restore <reg>, <reg_or_imm>, %oX
*
* We've stashed the instruction:
* restore %g0, %g0, %g0
*
* off of %g7 so we just need to place the correct value
* in the right %i register (since after our fake-o
* restore, the %i's will become the %o's) and set the %pc
* to point to our hidden restore. We also set fake_restore to
* let fasttrap_return_common() know that it will find the
* return values in the %i's rather than the %o's.
*/
if (I(tp->ftt_instr)) {
int32_t imm;
imm = tp->ftt_instr << 19;
imm >>= 19;
value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) + imm;
} else {
value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) +
fasttrap_getreg(rp, RS2(tp->ftt_instr));
}
/*
* Convert %o's to %i's; leave %g's as they are.
*/
rd = RD(tp->ftt_instr);
fasttrap_putreg(rp, ((rd & 0x18) == 0x8) ? rd + 16 : rd, value);
pc = rp->r_g7 + FASTTRAP_OFF_RESTORE;
fake_restore = 1;
break;
}
case FASTTRAP_T_RETURN:
{
uintptr_t target;
/*
* A return instruction is like a jmpl (without the link
* part) that executes an implicit restore. We've stashed
* the instruction:
* return %o0
*
* off of %g7 so we just need to place the target in %o0
* and set the %pc to point to the stashed return instruction.
* We use %o0 since that register disappears after the return
* executes, erasing any evidence of this tampering.
*/
if (I(tp->ftt_instr)) {
int32_t imm;
imm = tp->ftt_instr << 19;
imm >>= 19;
target = fasttrap_getreg(rp, RS1(tp->ftt_instr)) + imm;
} else {
target = fasttrap_getreg(rp, RS1(tp->ftt_instr)) +
fasttrap_getreg(rp, RS2(tp->ftt_instr));
}
fasttrap_putreg(rp, R_O0, target);
pc = rp->r_g7 + FASTTRAP_OFF_RETURN;
fake_restore = 1;
break;
}
case FASTTRAP_T_OR:
{
ulong_t value;
if (I(tp->ftt_instr)) {
int32_t imm;
imm = tp->ftt_instr << 19;
imm >>= 19;
value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) | imm;
} else {
value = fasttrap_getreg(rp, RS1(tp->ftt_instr)) |
fasttrap_getreg(rp, RS2(tp->ftt_instr));
}
fasttrap_putreg(rp, RD(tp->ftt_instr), value);
pc = rp->r_npc;
npc = pc + 4;
break;
}
case FASTTRAP_T_SETHI:
if (RD(tp->ftt_instr) != R_G0) {
uint32_t imm32 = tp->ftt_instr << 10;
fasttrap_putreg(rp, RD(tp->ftt_instr), (ulong_t)imm32);
}
pc = rp->r_npc;
npc = pc + 4;
break;
case FASTTRAP_T_CCR:
{
uint_t c, v, z, n, taken;
uint_t ccr = rp->r_tstate >> TSTATE_CCR_SHIFT;
if (tp->ftt_cc != 0)
ccr >>= 4;
c = (ccr >> 0) & 1;
v = (ccr >> 1) & 1;
z = (ccr >> 2) & 1;
n = (ccr >> 3) & 1;
switch (tp->ftt_code) {
case 0x0: /* BN */
taken = 0; break;
case 0x1: /* BE */
taken = z; break;
case 0x2: /* BLE */
taken = z | (n ^ v); break;
case 0x3: /* BL */
taken = n ^ v; break;
case 0x4: /* BLEU */
taken = c | z; break;
case 0x5: /* BCS (BLU) */
taken = c; break;
case 0x6: /* BNEG */
taken = n; break;
case 0x7: /* BVS */
taken = v; break;
case 0x8: /* BA */
/*
* We handle the BA case differently since the annul
* bit means something slightly different.
*/
panic("fasttrap: mishandled a branch");
taken = 1; break;
case 0x9: /* BNE */
taken = ~z; break;
case 0xa: /* BG */
taken = ~(z | (n ^ v)); break;
case 0xb: /* BGE */
taken = ~(n ^ v); break;
case 0xc: /* BGU */
taken = ~(c | z); break;
case 0xd: /* BCC (BGEU) */
taken = ~c; break;
case 0xe: /* BPOS */
taken = ~n; break;
case 0xf: /* BVC */
taken = ~v; break;
}
if (taken & 1) {
pc = rp->r_npc;
npc = tp->ftt_dest;
} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
/*
* Untaken annulled branches don't execute the
* instruction in the delay slot.
*/
pc = rp->r_npc + 4;
npc = pc + 4;
} else {
pc = rp->r_npc;
npc = pc + 4;
}
break;
}
case FASTTRAP_T_FCC:
{
uint_t fcc;
uint_t taken;
uint64_t fsr;
dtrace_getfsr(&fsr);
if (tp->ftt_cc == 0) {
fcc = (fsr >> 10) & 0x3;
} else {
uint_t shift;
ASSERT(tp->ftt_cc <= 3);
shift = 30 + tp->ftt_cc * 2;
fcc = (fsr >> shift) & 0x3;
}
switch (tp->ftt_code) {
case 0x0: /* FBN */
taken = (1 << fcc) & (0|0|0|0); break;
case 0x1: /* FBNE */
taken = (1 << fcc) & (8|4|2|0); break;
case 0x2: /* FBLG */
taken = (1 << fcc) & (0|4|2|0); break;
case 0x3: /* FBUL */
taken = (1 << fcc) & (8|0|2|0); break;
case 0x4: /* FBL */
taken = (1 << fcc) & (0|0|2|0); break;
case 0x5: /* FBUG */
taken = (1 << fcc) & (8|4|0|0); break;
case 0x6: /* FBG */
taken = (1 << fcc) & (0|4|0|0); break;
case 0x7: /* FBU */
taken = (1 << fcc) & (8|0|0|0); break;
case 0x8: /* FBA */
/*
* We handle the FBA case differently since the annul
* bit means something slightly different.
*/
panic("fasttrap: mishandled a branch");
taken = (1 << fcc) & (8|4|2|1); break;
case 0x9: /* FBE */
taken = (1 << fcc) & (0|0|0|1); break;
case 0xa: /* FBUE */
taken = (1 << fcc) & (8|0|0|1); break;
case 0xb: /* FBGE */
taken = (1 << fcc) & (0|4|0|1); break;
case 0xc: /* FBUGE */
taken = (1 << fcc) & (8|4|0|1); break;
case 0xd: /* FBLE */
taken = (1 << fcc) & (0|0|2|1); break;
case 0xe: /* FBULE */
taken = (1 << fcc) & (8|0|2|1); break;
case 0xf: /* FBO */
taken = (1 << fcc) & (0|4|2|1); break;
}
if (taken) {
pc = rp->r_npc;
npc = tp->ftt_dest;
} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
/*
* Untaken annulled branches don't execute the
* instruction in the delay slot.
*/
pc = rp->r_npc + 4;
npc = pc + 4;
} else {
pc = rp->r_npc;
npc = pc + 4;
}
break;
}
case FASTTRAP_T_REG:
{
int64_t value;
uint_t taken;
uint_t reg = RS1(tp->ftt_instr);
/*
* An ILP32 process shouldn't be using a branch predicated on
* an %i or an %l since it would violate the ABI. It's a
* violation of the ABI because we can't ensure deterministic
* behavior. We should have identified this case when we
* enabled the probe.
*/
ASSERT(p->p_model == DATAMODEL_LP64 || reg < 16);
value = (int64_t)fasttrap_getreg(rp, reg);
switch (tp->ftt_code) {
case 0x1: /* BRZ */
taken = (value == 0); break;
case 0x2: /* BRLEZ */
taken = (value <= 0); break;
case 0x3: /* BRLZ */
taken = (value < 0); break;
case 0x5: /* BRNZ */
taken = (value != 0); break;
case 0x6: /* BRGZ */
taken = (value > 0); break;
case 0x7: /* BRGEZ */
taken = (value >= 0); break;
default:
case 0x0:
case 0x4:
panic("fasttrap: mishandled a branch");
}
if (taken) {
pc = rp->r_npc;
npc = tp->ftt_dest;
} else if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
/*
* Untaken annulled branches don't execute the
* instruction in the delay slot.
*/
pc = rp->r_npc + 4;
npc = pc + 4;
} else {
pc = rp->r_npc;
npc = pc + 4;
}
break;
}
case FASTTRAP_T_ALWAYS:
/*
* BAs, BA,As...
*/
if (tp->ftt_flags & FASTTRAP_F_ANNUL) {
/*
* Annulled branch always instructions never execute
* the instruction in the delay slot.
*/
pc = tp->ftt_dest;
npc = tp->ftt_dest + 4;
} else {
pc = rp->r_npc;
npc = tp->ftt_dest;
}
break;
case FASTTRAP_T_RDPC:
fasttrap_putreg(rp, RD(tp->ftt_instr), rp->r_pc);
pc = rp->r_npc;
npc = pc + 4;
break;
case FASTTRAP_T_CALL:
/*
* It's a call _and_ link remember...
*/
rp->r_o7 = rp->r_pc;
pc = rp->r_npc;
npc = tp->ftt_dest;
break;
case FASTTRAP_T_JMPL:
pc = rp->r_npc;
if (I(tp->ftt_instr)) {
uint_t rs1 = RS1(tp->ftt_instr);
int32_t imm;
imm = tp->ftt_instr << 19;
imm >>= 19;
npc = fasttrap_getreg(rp, rs1) + imm;
} else {
uint_t rs1 = RS1(tp->ftt_instr);
uint_t rs2 = RS2(tp->ftt_instr);
npc = fasttrap_getreg(rp, rs1) +
fasttrap_getreg(rp, rs2);
}
/*
* Do the link part of the jump-and-link instruction.
*/
fasttrap_putreg(rp, RD(tp->ftt_instr), rp->r_pc);
break;
case FASTTRAP_T_COMMON:
{
curthread->t_dtrace_scrpc = rp->r_g7;
curthread->t_dtrace_astpc = rp->r_g7 + FASTTRAP_OFF_FTRET;
/*
* Copy the instruction to a reserved location in the
* user-land thread structure, then set the PC to that
* location and leave the NPC alone. We take pains to ensure
* consistency in the instruction stream (See SPARC
* Architecture Manual Version 9, sections 8.4.7, A.20, and
* H.1.6; UltraSPARC I/II User's Manual, sections 3.1.1.1,
* and 13.6.4) by using the ASI ASI_BLK_COMMIT_S to copy the
* instruction into the user's address space without
* bypassing the I$. There's no AS_USER version of this ASI
* (as exist for other ASIs) so we use the lofault
* mechanism to catch faults.
*/
if (dtrace_blksuword32(rp->r_g7, &tp->ftt_instr, 1) == -1) {
/*
* If the copyout fails, then the process's state
* is not consistent (the effects of the traced
* instruction will never be seen). This process
* cannot be allowed to continue execution.
*/
fasttrap_sigtrap(curproc, curthread, pc);
return (0);
}
curthread->t_dtrace_pc = pc;
curthread->t_dtrace_npc = npc;
curthread->t_dtrace_on = 1;
pc = curthread->t_dtrace_scrpc;
if (tp->ftt_retids != NULL) {
curthread->t_dtrace_step = 1;
curthread->t_dtrace_ret = 1;
npc = curthread->t_dtrace_astpc;
}
break;
}
default:
panic("fasttrap: mishandled an instruction");
}
/*
* This bit me in the ass a couple of times, so lets toss this
* in as a cursory sanity check.
*/
ASSERT(pc != rp->r_g7 + 4);
ASSERT(pc != rp->r_g7 + 8);
done:
/*
* If there were no return probes when we first found the tracepoint,
* we should feel no obligation to honor any return probes that were
* subsequently enabled -- they'll just have to wait until the next
* time around.
*/
if (tp->ftt_retids != NULL) {
/*
* We need to wait until the results of the instruction are
* apparent before invoking any return probes. If this
* instruction was emulated we can just call
* fasttrap_return_common(); if it needs to be executed, we
* need to wait until we return to the kernel.
*/
if (tp->ftt_type != FASTTRAP_T_COMMON) {
fasttrap_return_common(rp, orig_pc, pid, fake_restore);
} else {
ASSERT(curthread->t_dtrace_ret != 0);
ASSERT(curthread->t_dtrace_pc == orig_pc);
ASSERT(curthread->t_dtrace_scrpc == rp->r_g7);
ASSERT(npc == curthread->t_dtrace_astpc);
}
}
ASSERT(pc != 0);
rp->r_pc = pc;
rp->r_npc = npc;
return (0);
}
int
fasttrap_return_probe(struct regs *rp)
{
proc_t *p = ttoproc(curthread);
pid_t pid;
uintptr_t pc = curthread->t_dtrace_pc;
uintptr_t npc = curthread->t_dtrace_npc;
curthread->t_dtrace_pc = 0;
curthread->t_dtrace_npc = 0;
curthread->t_dtrace_scrpc = 0;
curthread->t_dtrace_astpc = 0;
/*
* Treat a child created by a call to vfork(2) as if it were its
* parent. We know there's only one thread of control in such a
* process: this one.
*/
while (p->p_flag & SVFORK) {
p = p->p_parent;
}
/*
* We set the %pc and %npc to their values when the traced
* instruction was initially executed so that it appears to
* dtrace_probe() that we're on the original instruction, and so that
* the user can't easily detect our complex web of lies.
* dtrace_return_probe() (our caller) will correctly set %pc and %npc
* after we return.
*/
rp->r_pc = pc;
rp->r_npc = npc;
pid = p->p_pid;
fasttrap_return_common(rp, pc, pid, 0);
return (0);
}
int
fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
{
fasttrap_instr_t instr = FASTTRAP_INSTR;
if (uwrite(p, &instr, 4, tp->ftt_pc) != 0)
return (-1);
return (0);
}
int
fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
{
fasttrap_instr_t instr;
/*
* Distinguish between read or write failures and a changed
* instruction.
*/
if (uread(p, &instr, 4, tp->ftt_pc) != 0)
return (0);
if (instr != FASTTRAP_INSTR && instr != BREAKPOINT_INSTR)
return (0);
if (uwrite(p, &tp->ftt_instr, 4, tp->ftt_pc) != 0)
return (-1);
return (0);
}
int
fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
fasttrap_probe_type_t type)
{
uint32_t instr;
int32_t disp;
/*
* Read the instruction at the given address out of the process's
* address space. We don't have to worry about a debugger
* changing this instruction before we overwrite it with our trap
* instruction since P_PR_LOCK is set.
*/
if (uread(p, &instr, 4, pc) != 0)
return (-1);
/*
* Decode the instruction to fill in the probe flags. We can have
* the process execute most instructions on its own using a pc/npc
* trick, but pc-relative control transfer present a problem since
* we're relocating the instruction. We emulate these instructions
* in the kernel. We assume a default type and over-write that as
* needed.
*
* pc-relative instructions must be emulated for correctness;
* other instructions (which represent a large set of commonly traced
* instructions) are emulated or otherwise optimized for performance.
*/
tp->ftt_type = FASTTRAP_T_COMMON;
if (OP(instr) == 1) {
/*
* Call instructions.
*/
tp->ftt_type = FASTTRAP_T_CALL;
disp = DISP30(instr) << 2;
tp->ftt_dest = pc + (intptr_t)disp;
} else if (OP(instr) == 0) {
/*
* Branch instructions.
*
* Unconditional branches need careful attention when they're
* annulled: annulled unconditional branches never execute
* the instruction in the delay slot.
*/
switch (OP2(instr)) {
case OP2_ILLTRAP:
case 0x7:
/*
* The compiler may place an illtrap after a call to
* a function that returns a structure. In the case of
* a returned structure, the compiler places an illtrap
* whose const22 field is the size of the returned
* structure immediately following the delay slot of
* the call. To stay out of the way, we refuse to
* place tracepoints on top of illtrap instructions.
*
* This is one of the dumbest architectural decisions
* I've ever had to work around.
*
* We also identify the only illegal op2 value (See
* SPARC Architecture Manual Version 9, E.2 table 31).
*/
return (-1);
case OP2_BPcc:
if (COND(instr) == 8) {
tp->ftt_type = FASTTRAP_T_ALWAYS;
} else {
/*
* Check for an illegal instruction.
*/
if (CC(instr) & 1)
return (-1);
tp->ftt_type = FASTTRAP_T_CCR;
tp->ftt_cc = CC(instr);
tp->ftt_code = COND(instr);
}
if (A(instr) != 0)
tp->ftt_flags |= FASTTRAP_F_ANNUL;
disp = DISP19(instr);
disp <<= 13;
disp >>= 11;
tp->ftt_dest = pc + (intptr_t)disp;
break;
case OP2_Bicc:
if (COND(instr) == 8) {
tp->ftt_type = FASTTRAP_T_ALWAYS;
} else {
tp->ftt_type = FASTTRAP_T_CCR;
tp->ftt_cc = 0;
tp->ftt_code = COND(instr);
}
if (A(instr) != 0)
tp->ftt_flags |= FASTTRAP_F_ANNUL;
disp = DISP22(instr);
disp <<= 10;
disp >>= 8;
tp->ftt_dest = pc + (intptr_t)disp;
break;
case OP2_BPr:
/*
* Check for an illegal instruction.
*/
if ((RCOND(instr) & 3) == 0)
return (-1);
/*
* It's a violation of the v8plus ABI to use a
* register-predicated branch in a 32-bit app if
* the register used is an %l or an %i (%gs and %os
* are legit because they're not saved to the stack
* in 32-bit words when we take a trap).
*/
if (p->p_model == DATAMODEL_ILP32 && RS1(instr) >= 16)
return (-1);
tp->ftt_type = FASTTRAP_T_REG;
if (A(instr) != 0)
tp->ftt_flags |= FASTTRAP_F_ANNUL;
disp = DISP16(instr);
disp <<= 16;
disp >>= 14;
tp->ftt_dest = pc + (intptr_t)disp;
tp->ftt_code = RCOND(instr);
break;
case OP2_SETHI:
tp->ftt_type = FASTTRAP_T_SETHI;
break;
case OP2_FBPfcc:
if (COND(instr) == 8) {
tp->ftt_type = FASTTRAP_T_ALWAYS;
} else {
tp->ftt_type = FASTTRAP_T_FCC;
tp->ftt_cc = CC(instr);
tp->ftt_code = COND(instr);
}
if (A(instr) != 0)
tp->ftt_flags |= FASTTRAP_F_ANNUL;
disp = DISP19(instr);
disp <<= 13;
disp >>= 11;
tp->ftt_dest = pc + (intptr_t)disp;
break;
case OP2_FBfcc:
if (COND(instr) == 8) {
tp->ftt_type = FASTTRAP_T_ALWAYS;
} else {
tp->ftt_type = FASTTRAP_T_FCC;
tp->ftt_cc = 0;
tp->ftt_code = COND(instr);
}
if (A(instr) != 0)
tp->ftt_flags |= FASTTRAP_F_ANNUL;
disp = DISP22(instr);
disp <<= 10;
disp >>= 8;
tp->ftt_dest = pc + (intptr_t)disp;
break;
}
} else if (OP(instr) == 2) {
switch (OP3(instr)) {
case OP3_RETURN:
tp->ftt_type = FASTTRAP_T_RETURN;
break;
case OP3_JMPL:
tp->ftt_type = FASTTRAP_T_JMPL;
break;
case OP3_RD:
if (RS1(instr) == 5)
tp->ftt_type = FASTTRAP_T_RDPC;
break;
case OP3_SAVE:
/*
* We optimize for save instructions at function
* entry; see the comment in fasttrap_pid_probe()
* (near FASTTRAP_T_SAVE) for details.
*/
if (fasttrap_optimize_save != 0 &&
type == DTFTP_ENTRY &&
I(instr) == 1 && RD(instr) == R_SP)
tp->ftt_type = FASTTRAP_T_SAVE;
break;
case OP3_RESTORE:
/*
* We optimize restore instructions at function
* return; see the comment in fasttrap_pid_probe()
* (near FASTTRAP_T_RESTORE) for details.
*
* rd must be an %o or %g register.
*/
if ((RD(instr) & 0x10) == 0)
tp->ftt_type = FASTTRAP_T_RESTORE;
break;
case OP3_OR:
/*
* A large proportion of instructions in the delay
* slot of retl instructions are or's so we emulate
* these downstairs as an optimization.
*/
tp->ftt_type = FASTTRAP_T_OR;
break;
case OP3_TCC:
/*
* Breakpoint instructions are effectively position-
* dependent since the debugger uses the %pc value
* to lookup which breakpoint was executed. As a
* result, we can't actually instrument breakpoints.
*/
if (SW_TRAP(instr) == ST_BREAKPOINT)
return (-1);
break;
case 0x19:
case 0x1d:
case 0x29:
case 0x33:
case 0x3f:
/*
* Identify illegal instructions (See SPARC
* Architecture Manual Version 9, E.2 table 32).
*/
return (-1);
}
} else if (OP(instr) == 3) {
uint32_t op3 = OP3(instr);
/*
* Identify illegal instructions (See SPARC Architecture
* Manual Version 9, E.2 table 33).
*/
if ((op3 & 0x28) == 0x28) {
if (op3 != OP3_PREFETCH && op3 != OP3_CASA &&
op3 != OP3_PREFETCHA && op3 != OP3_CASXA)
return (-1);
} else {
if ((op3 & 0x0f) == 0x0c || (op3 & 0x3b) == 0x31)
return (-1);
}
}
tp->ftt_instr = instr;
/*
* We don't know how this tracepoint is going to be used, but in case
* it's used as part of a function return probe, we need to indicate
* whether it's always a return site or only potentially a return
* site. If it's part of a return probe, it's always going to be a
* return from that function if it's a restore instruction or if
* the previous instruction was a return. If we could reliably
* distinguish jump tables from return sites, this wouldn't be
* necessary.
*/
if (tp->ftt_type != FASTTRAP_T_RESTORE &&
(uread(p, &instr, 4, pc - sizeof (instr)) != 0 ||
!(OP(instr) == 2 && OP3(instr) == OP3_RETURN)))
tp->ftt_flags |= FASTTRAP_F_RETMAYBE;
return (0);
}
/*ARGSUSED*/
uint64_t
fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
int aframes)
{
return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, argno));
}
/*ARGSUSED*/
uint64_t
fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
int aframes)
{
return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, argno));
}
static uint64_t fasttrap_getreg_fast_cnt;
static uint64_t fasttrap_getreg_mpcb_cnt;
static uint64_t fasttrap_getreg_slow_cnt;
static ulong_t
fasttrap_getreg(struct regs *rp, uint_t reg)
{
ulong_t value;
dtrace_icookie_t cookie;
struct machpcb *mpcb;
extern ulong_t dtrace_getreg_win(uint_t, uint_t);
/*
* We have the %os and %gs in our struct regs, but if we need to
* snag a %l or %i we need to go scrounging around in the process's
* address space.
*/
if (reg == 0)
return (0);
if (reg < 16)
return ((&rp->r_g1)[reg - 1]);
/*
* Before we look at the user's stack, we'll check the register
* windows to see if the information we want is in there.
*/
cookie = dtrace_interrupt_disable();
if (dtrace_getotherwin() > 0) {
value = dtrace_getreg_win(reg, 1);
dtrace_interrupt_enable(cookie);
atomic_add_64(&fasttrap_getreg_fast_cnt, 1);
return (value);
}
dtrace_interrupt_enable(cookie);
/*
* First check the machpcb structure to see if we've already read
* in the register window we're looking for; if we haven't, (and
* we probably haven't) try to copy in the value of the register.
*/
/* LINTED - alignment */
mpcb = (struct machpcb *)((caddr_t)rp - REGOFF);
if (get_udatamodel() == DATAMODEL_NATIVE) {
struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
if (mpcb->mpcb_wbcnt > 0) {
struct rwindow *rwin = (void *)mpcb->mpcb_wbuf;
int i = mpcb->mpcb_wbcnt;
do {
i--;
if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
continue;
atomic_add_64(&fasttrap_getreg_mpcb_cnt, 1);
return (rwin[i].rw_local[reg - 16]);
} while (i > 0);
}
if (fasttrap_fulword(&fr->fr_local[reg - 16], &value) != 0)
goto err;
} else {
struct frame32 *fr =
(struct frame32 *)(uintptr_t)(caddr32_t)rp->r_sp;
uint32_t *v32 = (uint32_t *)&value;
if (mpcb->mpcb_wbcnt > 0) {
struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf;
int i = mpcb->mpcb_wbcnt;
do {
i--;
if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
continue;
atomic_add_64(&fasttrap_getreg_mpcb_cnt, 1);
return (rwin[i].rw_local[reg - 16]);
} while (i > 0);
}
if (fasttrap_fuword32(&fr->fr_local[reg - 16], &v32[1]) != 0)
goto err;
v32[0] = 0;
}
atomic_add_64(&fasttrap_getreg_slow_cnt, 1);
return (value);
err:
/*
* If the copy in failed, the process will be in a irrecoverable
* state, and we have no choice but to kill it.
*/
psignal(ttoproc(curthread), SIGILL);
return (0);
}
static uint64_t fasttrap_putreg_fast_cnt;
static uint64_t fasttrap_putreg_mpcb_cnt;
static uint64_t fasttrap_putreg_slow_cnt;
static void
fasttrap_putreg(struct regs *rp, uint_t reg, ulong_t value)
{
dtrace_icookie_t cookie;
struct machpcb *mpcb;
extern void dtrace_putreg_win(uint_t, ulong_t);
if (reg == 0)
return;
if (reg < 16) {
(&rp->r_g1)[reg - 1] = value;
return;
}
/*
* If the user process is still using some register windows, we
* can just place the value in the correct window.
*/
cookie = dtrace_interrupt_disable();
if (dtrace_getotherwin() > 0) {
dtrace_putreg_win(reg, value);
dtrace_interrupt_enable(cookie);
atomic_add_64(&fasttrap_putreg_fast_cnt, 1);
return;
}
dtrace_interrupt_enable(cookie);
/*
* First see if there's a copy of the register window in the
* machpcb structure that we can modify; if there isn't try to
* copy out the value. If that fails, we try to create a new
* register window in the machpcb structure. While this isn't
* _precisely_ the intended use of the machpcb structure, it
* can't cause any problems since we know at this point in the
* code that all of the user's data have been flushed out of the
* register file (since %otherwin is 0).
*/
/* LINTED - alignment */
mpcb = (struct machpcb *)((caddr_t)rp - REGOFF);
if (get_udatamodel() == DATAMODEL_NATIVE) {
struct frame *fr = (struct frame *)(rp->r_sp + STACK_BIAS);
/* LINTED - alignment */
struct rwindow *rwin = (struct rwindow *)mpcb->mpcb_wbuf;
if (mpcb->mpcb_wbcnt > 0) {
int i = mpcb->mpcb_wbcnt;
do {
i--;
if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
continue;
rwin[i].rw_local[reg - 16] = value;
atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
return;
} while (i > 0);
}
if (fasttrap_sulword(&fr->fr_local[reg - 16], value) != 0) {
if (mpcb->mpcb_wbcnt >= MAXWIN || copyin(fr,
&rwin[mpcb->mpcb_wbcnt], sizeof (*rwin)) != 0)
goto err;
rwin[mpcb->mpcb_wbcnt].rw_local[reg - 16] = value;
mpcb->mpcb_spbuf[mpcb->mpcb_wbcnt] = (caddr_t)rp->r_sp;
mpcb->mpcb_wbcnt++;
atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
return;
}
} else {
struct frame32 *fr =
(struct frame32 *)(uintptr_t)(caddr32_t)rp->r_sp;
/* LINTED - alignment */
struct rwindow32 *rwin = (struct rwindow32 *)mpcb->mpcb_wbuf;
uint32_t v32 = (uint32_t)value;
if (mpcb->mpcb_wbcnt > 0) {
int i = mpcb->mpcb_wbcnt;
do {
i--;
if ((long)mpcb->mpcb_spbuf[i] != rp->r_sp)
continue;
rwin[i].rw_local[reg - 16] = v32;
atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
return;
} while (i > 0);
}
if (fasttrap_suword32(&fr->fr_local[reg - 16], v32) != 0) {
if (mpcb->mpcb_wbcnt >= MAXWIN || copyin(fr,
&rwin[mpcb->mpcb_wbcnt], sizeof (*rwin)) != 0)
goto err;
rwin[mpcb->mpcb_wbcnt].rw_local[reg - 16] = v32;
mpcb->mpcb_spbuf[mpcb->mpcb_wbcnt] = (caddr_t)rp->r_sp;
mpcb->mpcb_wbcnt++;
atomic_add_64(&fasttrap_putreg_mpcb_cnt, 1);
return;
}
}
atomic_add_64(&fasttrap_putreg_slow_cnt, 1);
return;
err:
/*
* If we couldn't record this register's value, the process is in an
* irrecoverable state and we have no choice but to euthanize it.
*/
psignal(ttoproc(curthread), SIGILL);
}