hat_sfmmu.c revision a75003d539b0f1ee06eb869b099fafb3126fa4ad
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* VM - Hardware Address Translation management for Spitfire MMU.
*
* This file implements the machine specific hardware translation
* needed by the VM system. The machine independent interface is
* described in <vm/hat.h> while the machine dependent interface
* and data structures are described in <vm/hat_sfmmu.h>.
*
* The hat layer manages the address translation hardware as a cache
* driven by calls from the higher levels in the VM system.
*/
#include <sys/types.h>
#include <sys/kstat.h>
#include <vm/hat.h>
#include <vm/hat_sfmmu.h>
#include <vm/page.h>
#include <sys/pte.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/sysmacros.h>
#include <sys/machparam.h>
#include <sys/vtrace.h>
#include <sys/kmem.h>
#include <sys/mmu.h>
#include <sys/cmn_err.h>
#include <sys/cpu.h>
#include <sys/cpuvar.h>
#include <sys/debug.h>
#include <sys/lgrp.h>
#include <sys/archsystm.h>
#include <sys/machsystm.h>
#include <sys/vmsystm.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/seg_kp.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kpm.h>
#include <vm/rm.h>
#include <sys/t_lock.h>
#include <sys/obpdefs.h>
#include <sys/vm_machparam.h>
#include <sys/var.h>
#include <sys/trap.h>
#include <sys/machtrap.h>
#include <sys/scb.h>
#include <sys/bitmap.h>
#include <sys/machlock.h>
#include <sys/membar.h>
#include <sys/atomic.h>
#include <sys/cpu_module.h>
#include <sys/prom_debug.h>
#include <sys/ksynch.h>
#include <sys/mem_config.h>
#include <sys/mem_cage.h>
#include <sys/dtrace.h>
#include <vm/vm_dep.h>
#include <vm/xhat_sfmmu.h>
#include <sys/fpu/fpusystm.h>
#include <vm/mach_kpm.h>
#if defined(SF_ERRATA_57)
extern caddr_t errata57_limit;
#endif
#define HME8BLK_SZ_RND ((roundup(HME8BLK_SZ, sizeof (int64_t))) / \
(sizeof (int64_t)))
#define HBLK_RESERVE ((struct hme_blk *)hblk_reserve)
#define HBLK_RESERVE_CNT 128
#define HBLK_RESERVE_MIN 20
static struct hme_blk *freehblkp;
static kmutex_t freehblkp_lock;
static int freehblkcnt;
static int64_t hblk_reserve[HME8BLK_SZ_RND];
static kmutex_t hblk_reserve_lock;
static kthread_t *hblk_reserve_thread;
static nucleus_hblk8_info_t nucleus_hblk8;
static nucleus_hblk1_info_t nucleus_hblk1;
/*
* SFMMU specific hat functions
*/
void hat_pagecachectl(struct page *, int);
/* flags for hat_pagecachectl */
#define HAT_CACHE 0x1
#define HAT_UNCACHE 0x2
#define HAT_TMPNC 0x4
/*
* Flag to allow the creation of non-cacheable translations
* to system memory. It is off by default. At the moment this
* flag is used by the ecache error injector. The error injector
* will turn it on when creating such a translation then shut it
* off when it's finished.
*/
int sfmmu_allow_nc_trans = 0;
/*
* Flag to disable large page support.
* value of 1 => disable all large pages.
* bits 1, 2, and 3 are to disable 64K, 512K and 4M pages respectively.
*
* For example, use the value 0x4 to disable 512K pages.
*
*/
#define LARGE_PAGES_OFF 0x1
/*
* WARNING: 512K pages MUST be disabled for ISM/DISM. If not
* a process would page fault indefinitely if it tried to
* access a 512K page.
*/
int disable_ism_large_pages = (1 << TTE512K);
int disable_large_pages = 0;
int disable_auto_large_pages = 0;
/*
* Private sfmmu data structures for hat management
*/
static struct kmem_cache *sfmmuid_cache;
static struct kmem_cache *mmuctxdom_cache;
/*
* Private sfmmu data structures for tsb management
*/
static struct kmem_cache *sfmmu_tsbinfo_cache;
static struct kmem_cache *sfmmu_tsb8k_cache;
static struct kmem_cache *sfmmu_tsb_cache[NLGRPS_MAX];
static vmem_t *kmem_tsb_arena;
/*
* sfmmu static variables for hmeblk resource management.
*/
static vmem_t *hat_memload1_arena; /* HAT translation arena for sfmmu1_cache */
static struct kmem_cache *sfmmu8_cache;
static struct kmem_cache *sfmmu1_cache;
static struct kmem_cache *pa_hment_cache;
static kmutex_t ism_mlist_lock; /* mutex for ism mapping list */
/*
* private data for ism
*/
static struct kmem_cache *ism_blk_cache;
static struct kmem_cache *ism_ment_cache;
#define ISMID_STARTADDR NULL
/*
* Whether to delay TLB flushes and use Cheetah's flush-all support
* when removing contexts from the dirty list.
*/
int delay_tlb_flush;
int disable_delay_tlb_flush;
/*
* ``hat_lock'' is a hashed mutex lock for protecting sfmmu TSB lists,
* HAT flags, synchronizing TLB/TSB coherency, and context management.
* The lock is hashed on the sfmmup since the case where we need to lock
* all processes is rare but does occur (e.g. we need to unload a shared
* mapping from all processes using the mapping). We have a lot of buckets,
* and each slab of sfmmu_t's can use about a quarter of them, giving us
* a fairly good distribution without wasting too much space and overhead
* when we have to grab them all.
*/
#define SFMMU_NUM_LOCK 128 /* must be power of two */
hatlock_t hat_lock[SFMMU_NUM_LOCK];
/*
* Hash algorithm optimized for a small number of slabs.
* 7 is (highbit((sizeof sfmmu_t)) - 1)
* This hash algorithm is based upon the knowledge that sfmmu_t's come from a
* kmem_cache, and thus they will be sequential within that cache. In
* addition, each new slab will have a different "color" up to cache_maxcolor
* which will skew the hashing for each successive slab which is allocated.
* If the size of sfmmu_t changed to a larger size, this algorithm may need
* to be revisited.
*/
#define TSB_HASH_SHIFT_BITS (7)
#define PTR_HASH(x) ((uintptr_t)x >> TSB_HASH_SHIFT_BITS)
#ifdef DEBUG
int tsb_hash_debug = 0;
#define TSB_HASH(sfmmup) \
(tsb_hash_debug ? &hat_lock[0] : \
&hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)])
#else /* DEBUG */
#define TSB_HASH(sfmmup) &hat_lock[PTR_HASH(sfmmup) & (SFMMU_NUM_LOCK-1)]
#endif /* DEBUG */
/* sfmmu_replace_tsb() return codes. */
typedef enum tsb_replace_rc {
TSB_SUCCESS,
TSB_ALLOCFAIL,
TSB_LOSTRACE,
TSB_ALREADY_SWAPPED,
TSB_CANTGROW
} tsb_replace_rc_t;
/*
* Flags for TSB allocation routines.
*/
#define TSB_ALLOC 0x01
#define TSB_FORCEALLOC 0x02
#define TSB_GROW 0x04
#define TSB_SHRINK 0x08
#define TSB_SWAPIN 0x10
/*
* Support for HAT callbacks.
*/
#define SFMMU_MAX_RELOC_CALLBACKS 10
int sfmmu_max_cb_id = SFMMU_MAX_RELOC_CALLBACKS;
static id_t sfmmu_cb_nextid = 0;
static id_t sfmmu_tsb_cb_id;
struct sfmmu_callback *sfmmu_cb_table;
/*
* Kernel page relocation is enabled by default for non-caged
* kernel pages. This has little effect unless segkmem_reloc is
* set, since by default kernel memory comes from inside the
* kernel cage.
*/
int hat_kpr_enabled = 1;
kmutex_t kpr_mutex;
kmutex_t kpr_suspendlock;
kthread_t *kreloc_thread;
/*
* Enable VA->PA translation sanity checking on DEBUG kernels.
* Disabled by default. This is incompatible with some
* drivers (error injector, RSM) so if it breaks you get
* to keep both pieces.
*/
int hat_check_vtop = 0;
/*
* Private sfmmu routines (prototypes)
*/
static struct hme_blk *sfmmu_shadow_hcreate(sfmmu_t *, caddr_t, int, uint_t);
static struct hme_blk *sfmmu_hblk_alloc(sfmmu_t *, caddr_t,
struct hmehash_bucket *, uint_t, hmeblk_tag, uint_t);
static caddr_t sfmmu_hblk_unload(struct hat *, struct hme_blk *, caddr_t,
caddr_t, demap_range_t *, uint_t);
static caddr_t sfmmu_hblk_sync(struct hat *, struct hme_blk *, caddr_t,
caddr_t, int);
static void sfmmu_hblk_free(struct hmehash_bucket *, struct hme_blk *,
uint64_t, struct hme_blk **);
static void sfmmu_hblks_list_purge(struct hme_blk **);
static uint_t sfmmu_get_free_hblk(struct hme_blk **, uint_t);
static uint_t sfmmu_put_free_hblk(struct hme_blk *, uint_t);
static struct hme_blk *sfmmu_hblk_steal(int);
static int sfmmu_steal_this_hblk(struct hmehash_bucket *,
struct hme_blk *, uint64_t, uint64_t,
struct hme_blk *);
static caddr_t sfmmu_hblk_unlock(struct hme_blk *, caddr_t, caddr_t);
static void sfmmu_memload_batchsmall(struct hat *, caddr_t, page_t **,
uint_t, uint_t, pgcnt_t);
void sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,
uint_t);
static int sfmmu_tteload_array(sfmmu_t *, tte_t *, caddr_t, page_t **,
uint_t);
static struct hmehash_bucket *sfmmu_tteload_acquire_hashbucket(sfmmu_t *,
caddr_t, int);
static struct hme_blk *sfmmu_tteload_find_hmeblk(sfmmu_t *,
struct hmehash_bucket *, caddr_t, uint_t, uint_t);
static int sfmmu_tteload_addentry(sfmmu_t *, struct hme_blk *, tte_t *,
caddr_t, page_t **, uint_t);
static void sfmmu_tteload_release_hashbucket(struct hmehash_bucket *);
static int sfmmu_pagearray_setup(caddr_t, page_t **, tte_t *, int);
pfn_t sfmmu_uvatopfn(caddr_t, sfmmu_t *);
void sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
#ifdef VAC
static void sfmmu_vac_conflict(struct hat *, caddr_t, page_t *);
static int sfmmu_vacconflict_array(caddr_t, page_t *, int *);
int tst_tnc(page_t *pp, pgcnt_t);
void conv_tnc(page_t *pp, int);
#endif
static void sfmmu_get_ctx(sfmmu_t *);
static void sfmmu_free_sfmmu(sfmmu_t *);
static void sfmmu_gettte(struct hat *, caddr_t, tte_t *);
static void sfmmu_ttesync(struct hat *, caddr_t, tte_t *, page_t *);
static void sfmmu_chgattr(struct hat *, caddr_t, size_t, uint_t, int);
cpuset_t sfmmu_pageunload(page_t *, struct sf_hment *, int);
static void hat_pagereload(struct page *, struct page *);
static cpuset_t sfmmu_pagesync(page_t *, struct sf_hment *, uint_t);
#ifdef VAC
void sfmmu_page_cache_array(page_t *, int, int, pgcnt_t);
static void sfmmu_page_cache(page_t *, int, int, int);
#endif
static void sfmmu_tlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
pfn_t, int, int, int, int);
static void sfmmu_ismtlbcache_demap(caddr_t, sfmmu_t *, struct hme_blk *,
pfn_t, int);
static void sfmmu_tlb_demap(caddr_t, sfmmu_t *, struct hme_blk *, int, int);
static void sfmmu_tlb_range_demap(demap_range_t *);
static void sfmmu_invalidate_ctx(sfmmu_t *);
static void sfmmu_sync_mmustate(sfmmu_t *);
static void sfmmu_tsbinfo_setup_phys(struct tsb_info *, pfn_t);
static int sfmmu_tsbinfo_alloc(struct tsb_info **, int, int, uint_t,
sfmmu_t *);
static void sfmmu_tsb_free(struct tsb_info *);
static void sfmmu_tsbinfo_free(struct tsb_info *);
static int sfmmu_init_tsbinfo(struct tsb_info *, int, int, uint_t,
sfmmu_t *);
static void sfmmu_tsb_swapin(sfmmu_t *, hatlock_t *);
static int sfmmu_select_tsb_szc(pgcnt_t);
static void sfmmu_mod_tsb(sfmmu_t *, caddr_t, tte_t *, int);
#define sfmmu_load_tsb(sfmmup, vaddr, tte, szc) \
sfmmu_mod_tsb(sfmmup, vaddr, tte, szc)
#define sfmmu_unload_tsb(sfmmup, vaddr, szc) \
sfmmu_mod_tsb(sfmmup, vaddr, NULL, szc)
static void sfmmu_copy_tsb(struct tsb_info *, struct tsb_info *);
static tsb_replace_rc_t sfmmu_replace_tsb(sfmmu_t *, struct tsb_info *, uint_t,
hatlock_t *, uint_t);
static void sfmmu_size_tsb(sfmmu_t *, int, uint64_t, uint64_t, int);
#ifdef VAC
void sfmmu_cache_flush(pfn_t, int);
void sfmmu_cache_flushcolor(int, pfn_t);
#endif
static caddr_t sfmmu_hblk_chgattr(sfmmu_t *, struct hme_blk *, caddr_t,
caddr_t, demap_range_t *, uint_t, int);
static uint64_t sfmmu_vtop_attr(uint_t, int mode, tte_t *);
static uint_t sfmmu_ptov_attr(tte_t *);
static caddr_t sfmmu_hblk_chgprot(sfmmu_t *, struct hme_blk *, caddr_t,
caddr_t, demap_range_t *, uint_t);
static uint_t sfmmu_vtop_prot(uint_t, uint_t *);
static int sfmmu_idcache_constructor(void *, void *, int);
static void sfmmu_idcache_destructor(void *, void *);
static int sfmmu_hblkcache_constructor(void *, void *, int);
static void sfmmu_hblkcache_destructor(void *, void *);
static void sfmmu_hblkcache_reclaim(void *);
static void sfmmu_shadow_hcleanup(sfmmu_t *, struct hme_blk *,
struct hmehash_bucket *);
static void sfmmu_free_hblks(sfmmu_t *, caddr_t, caddr_t, int);
static void sfmmu_rm_large_mappings(page_t *, int);
static void hat_lock_init(void);
static void hat_kstat_init(void);
static int sfmmu_kstat_percpu_update(kstat_t *ksp, int rw);
static void sfmmu_check_page_sizes(sfmmu_t *, int);
int fnd_mapping_sz(page_t *);
static void iment_add(struct ism_ment *, struct hat *);
static void iment_sub(struct ism_ment *, struct hat *);
static pgcnt_t ism_tsb_entries(sfmmu_t *, int szc);
extern void sfmmu_setup_tsbinfo(sfmmu_t *);
extern void sfmmu_clear_utsbinfo(void);
static void sfmmu_ctx_wrap_around(mmu_ctx_t *);
/* kpm globals */
#ifdef DEBUG
/*
* Enable trap level tsbmiss handling
*/
int kpm_tsbmtl = 1;
/*
* Flush the TLB on kpm mapout. Note: Xcalls are used (again) for the
* required TLB shootdowns in this case, so handle w/ care. Off by default.
*/
int kpm_tlb_flush;
#endif /* DEBUG */
static void *sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *, size_t, int);
#ifdef DEBUG
static void sfmmu_check_hblk_flist();
#endif
/*
* Semi-private sfmmu data structures. Some of them are initialize in
* startup or in hat_init. Some of them are private but accessed by
* assembly code or mach_sfmmu.c
*/
struct hmehash_bucket *uhme_hash; /* user hmeblk hash table */
struct hmehash_bucket *khme_hash; /* kernel hmeblk hash table */
uint64_t uhme_hash_pa; /* PA of uhme_hash */
uint64_t khme_hash_pa; /* PA of khme_hash */
int uhmehash_num; /* # of buckets in user hash table */
int khmehash_num; /* # of buckets in kernel hash table */
uint_t max_mmu_ctxdoms = 0; /* max context domains in the system */
mmu_ctx_t **mmu_ctxs_tbl; /* global array of context domains */
uint64_t mmu_saved_gnum = 0; /* to init incoming MMUs' gnums */
#define DEFAULT_NUM_CTXS_PER_MMU 8192
static uint_t nctxs = DEFAULT_NUM_CTXS_PER_MMU;
int cache; /* describes system cache */
caddr_t ktsb_base; /* kernel 8k-indexed tsb base address */
uint64_t ktsb_pbase; /* kernel 8k-indexed tsb phys address */
int ktsb_szcode; /* kernel 8k-indexed tsb size code */
int ktsb_sz; /* kernel 8k-indexed tsb size */
caddr_t ktsb4m_base; /* kernel 4m-indexed tsb base address */
uint64_t ktsb4m_pbase; /* kernel 4m-indexed tsb phys address */
int ktsb4m_szcode; /* kernel 4m-indexed tsb size code */
int ktsb4m_sz; /* kernel 4m-indexed tsb size */
uint64_t kpm_tsbbase; /* kernel seg_kpm 4M TSB base address */
int kpm_tsbsz; /* kernel seg_kpm 4M TSB size code */
uint64_t kpmsm_tsbbase; /* kernel seg_kpm 8K TSB base address */
int kpmsm_tsbsz; /* kernel seg_kpm 8K TSB size code */
#ifndef sun4v
int utsb_dtlb_ttenum = -1; /* index in TLB for utsb locked TTE */
int utsb4m_dtlb_ttenum = -1; /* index in TLB for 4M TSB TTE */
int dtlb_resv_ttenum; /* index in TLB of first reserved TTE */
caddr_t utsb_vabase; /* reserved kernel virtual memory */
caddr_t utsb4m_vabase; /* for trap handler TSB accesses */
#endif /* sun4v */
uint64_t tsb_alloc_bytes = 0; /* bytes allocated to TSBs */
vmem_t *kmem_tsb_default_arena[NLGRPS_MAX]; /* For dynamic TSBs */
/*
* Size to use for TSB slabs. Future platforms that support page sizes
* larger than 4M may wish to change these values, and provide their own
* assembly macros for building and decoding the TSB base register contents.
* Note disable_large_pages will override the value set here.
*/
uint_t tsb_slab_ttesz = TTE4M;
uint_t tsb_slab_size;
uint_t tsb_slab_shift;
uint_t tsb_slab_mask; /* PFN mask for TTE */
/* largest TSB size to grow to, will be smaller on smaller memory systems */
int tsb_max_growsize = UTSB_MAX_SZCODE;
/*
* Tunable parameters dealing with TSB policies.
*/
/*
* This undocumented tunable forces all 8K TSBs to be allocated from
* the kernel heap rather than from the kmem_tsb_default_arena arenas.
*/
#ifdef DEBUG
int tsb_forceheap = 0;
#endif /* DEBUG */
/*
* Decide whether to use per-lgroup arenas, or one global set of
* TSB arenas. The default is not to break up per-lgroup, since
* most platforms don't recognize any tangible benefit from it.
*/
int tsb_lgrp_affinity = 0;
/*
* Used for growing the TSB based on the process RSS.
* tsb_rss_factor is based on the smallest TSB, and is
* shifted by the TSB size to determine if we need to grow.
* The default will grow the TSB if the number of TTEs for
* this page size exceeds 75% of the number of TSB entries,
* which should _almost_ eliminate all conflict misses
* (at the expense of using up lots and lots of memory).
*/
#define TSB_RSS_FACTOR (TSB_ENTRIES(TSB_MIN_SZCODE) * 0.75)
#define SFMMU_RSS_TSBSIZE(tsbszc) (tsb_rss_factor << tsbszc)
#define SELECT_TSB_SIZECODE(pgcnt) ( \
(enable_tsb_rss_sizing)? sfmmu_select_tsb_szc(pgcnt) : \
default_tsb_size)
#define TSB_OK_SHRINK() \
(tsb_alloc_bytes > tsb_alloc_hiwater || freemem < desfree)
#define TSB_OK_GROW() \
(tsb_alloc_bytes < tsb_alloc_hiwater && freemem > desfree)
int enable_tsb_rss_sizing = 1;
int tsb_rss_factor = (int)TSB_RSS_FACTOR;
/* which TSB size code to use for new address spaces or if rss sizing off */
int default_tsb_size = TSB_8K_SZCODE;
static uint64_t tsb_alloc_hiwater; /* limit TSB reserved memory */
uint64_t tsb_alloc_hiwater_factor; /* tsb_alloc_hiwater = physmem / this */
#define TSB_ALLOC_HIWATER_FACTOR_DEFAULT 32
#ifdef DEBUG
static int tsb_random_size = 0; /* set to 1 to test random tsb sizes on alloc */
static int tsb_grow_stress = 0; /* if set to 1, keep replacing TSB w/ random */
static int tsb_alloc_mtbf = 0; /* fail allocation every n attempts */
static int tsb_alloc_fail_mtbf = 0;
static int tsb_alloc_count = 0;
#endif /* DEBUG */
/* if set to 1, will remap valid TTEs when growing TSB. */
int tsb_remap_ttes = 1;
/*
* If we have more than this many mappings, allocate a second TSB.
* This default is chosen because the I/D fully associative TLBs are
* assumed to have at least 8 available entries. Platforms with a
* larger fully-associative TLB could probably override the default.
*/
int tsb_sectsb_threshold = 8;
/*
* kstat data
*/
struct sfmmu_global_stat sfmmu_global_stat;
struct sfmmu_tsbsize_stat sfmmu_tsbsize_stat;
/*
* Global data
*/
sfmmu_t *ksfmmup; /* kernel's hat id */
#ifdef DEBUG
static void chk_tte(tte_t *, tte_t *, tte_t *, struct hme_blk *);
#endif
/* sfmmu locking operations */
static kmutex_t *sfmmu_mlspl_enter(struct page *, int);
static int sfmmu_mlspl_held(struct page *, int);
kmutex_t *sfmmu_page_enter(page_t *);
void sfmmu_page_exit(kmutex_t *);
int sfmmu_page_spl_held(struct page *);
/* sfmmu internal locking operations - accessed directly */
static void sfmmu_mlist_reloc_enter(page_t *, page_t *,
kmutex_t **, kmutex_t **);
static void sfmmu_mlist_reloc_exit(kmutex_t *, kmutex_t *);
static hatlock_t *
sfmmu_hat_enter(sfmmu_t *);
static hatlock_t *
sfmmu_hat_tryenter(sfmmu_t *);
static void sfmmu_hat_exit(hatlock_t *);
static void sfmmu_hat_lock_all(void);
static void sfmmu_hat_unlock_all(void);
static void sfmmu_ismhat_enter(sfmmu_t *, int);
static void sfmmu_ismhat_exit(sfmmu_t *, int);
/*
* Array of mutexes protecting a page's mapping list and p_nrm field.
*
* The hash function looks complicated, but is made up so that:
*
* "pp" not shifted, so adjacent pp values will hash to different cache lines
* (8 byte alignment * 8 bytes/mutes == 64 byte coherency subblock)
*
* "pp" >> mml_shift, incorporates more source bits into the hash result
*
* "& (mml_table_size - 1), should be faster than using remainder "%"
*
* Hopefully, mml_table, mml_table_size and mml_shift are all in the same
* cacheline, since they get declared next to each other below. We'll trust
* ld not to do something random.
*/
#ifdef DEBUG
int mlist_hash_debug = 0;
#define MLIST_HASH(pp) (mlist_hash_debug ? &mml_table[0] : \
&mml_table[((uintptr_t)(pp) + \
((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)])
#else /* !DEBUG */
#define MLIST_HASH(pp) &mml_table[ \
((uintptr_t)(pp) + ((uintptr_t)(pp) >> mml_shift)) & (mml_table_sz - 1)]
#endif /* !DEBUG */
kmutex_t *mml_table;
uint_t mml_table_sz; /* must be a power of 2 */
uint_t mml_shift; /* log2(mml_table_sz) + 3 for align */
kpm_hlk_t *kpmp_table;
uint_t kpmp_table_sz; /* must be a power of 2 */
uchar_t kpmp_shift;
kpm_shlk_t *kpmp_stable;
uint_t kpmp_stable_sz; /* must be a power of 2 */
/*
* SPL_HASH was improved to avoid false cache line sharing
*/
#define SPL_TABLE_SIZE 128
#define SPL_MASK (SPL_TABLE_SIZE - 1)
#define SPL_SHIFT 7 /* log2(SPL_TABLE_SIZE) */
#define SPL_INDEX(pp) \
((((uintptr_t)(pp) >> SPL_SHIFT) ^ \
((uintptr_t)(pp) >> (SPL_SHIFT << 1))) & \
(SPL_TABLE_SIZE - 1))
#define SPL_HASH(pp) \
(&sfmmu_page_lock[SPL_INDEX(pp) & SPL_MASK].pad_mutex)
static pad_mutex_t sfmmu_page_lock[SPL_TABLE_SIZE];
/*
* hat_unload_callback() will group together callbacks in order
* to avoid xt_sync() calls. This is the maximum size of the group.
*/
#define MAX_CB_ADDR 32
tte_t hw_tte;
static ulong_t sfmmu_dmr_maxbit = DMR_MAXBIT;
static char *mmu_ctx_kstat_names[] = {
"mmu_ctx_tsb_exceptions",
"mmu_ctx_tsb_raise_exception",
"mmu_ctx_wrap_around",
};
/*
* Wrapper for vmem_xalloc since vmem_create only allows limited
* parameters for vm_source_alloc functions. This function allows us
* to specify alignment consistent with the size of the object being
* allocated.
*/
static void *
sfmmu_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
{
return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
}
/* Common code for setting tsb_alloc_hiwater. */
#define SFMMU_SET_TSB_ALLOC_HIWATER(pages) tsb_alloc_hiwater = \
ptob(pages) / tsb_alloc_hiwater_factor
/*
* Set tsb_max_growsize to allow at most all of physical memory to be mapped by
* a single TSB. physmem is the number of physical pages so we need physmem 8K
* TTEs to represent all those physical pages. We round this up by using
* 1<<highbit(). To figure out which size code to use, remember that the size
* code is just an amount to shift the smallest TSB size to get the size of
* this TSB. So we subtract that size, TSB_START_SIZE, from highbit() (or
* highbit() - 1) to get the size code for the smallest TSB that can represent
* all of physical memory, while erring on the side of too much.
*
* If the computed size code is less than the current tsb_max_growsize, we set
* tsb_max_growsize to the computed size code. In the case where the computed
* size code is greater than tsb_max_growsize, we have these restrictions that
* apply to increasing tsb_max_growsize:
* 1) TSBs can't grow larger than the TSB slab size
* 2) TSBs can't grow larger than UTSB_MAX_SZCODE.
*/
#define SFMMU_SET_TSB_MAX_GROWSIZE(pages) { \
int i, szc; \
\
i = highbit(pages); \
if ((1 << (i - 1)) == (pages)) \
i--; /* 2^n case, round down */ \
szc = i - TSB_START_SIZE; \
if (szc < tsb_max_growsize) \
tsb_max_growsize = szc; \
else if ((szc > tsb_max_growsize) && \
(szc <= tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT))) \
tsb_max_growsize = MIN(szc, UTSB_MAX_SZCODE); \
}
/*
* Given a pointer to an sfmmu and a TTE size code, return a pointer to the
* tsb_info which handles that TTE size.
*/
#define SFMMU_GET_TSBINFO(tsbinfop, sfmmup, tte_szc) \
(tsbinfop) = (sfmmup)->sfmmu_tsb; \
ASSERT(sfmmu_hat_lock_held(sfmmup)); \
if ((tte_szc) >= TTE4M) \
(tsbinfop) = (tsbinfop)->tsb_next;
/*
* Return the number of mappings present in the HAT
* for a particular process and page size.
*/
#define SFMMU_TTE_CNT(sfmmup, szc) \
(sfmmup)->sfmmu_iblk? \
(sfmmup)->sfmmu_ismttecnt[(szc)] + \
(sfmmup)->sfmmu_ttecnt[(szc)] : \
(sfmmup)->sfmmu_ttecnt[(szc)];
/*
* Macro to use to unload entries from the TSB.
* It has knowledge of which page sizes get replicated in the TSB
* and will call the appropriate unload routine for the appropriate size.
*/
#define SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp) \
{ \
int ttesz = get_hblk_ttesz(hmeblkp); \
if (ttesz == TTE8K || ttesz == TTE4M) { \
sfmmu_unload_tsb(sfmmup, addr, ttesz); \
} else { \
caddr_t sva = (caddr_t)get_hblk_base(hmeblkp); \
caddr_t eva = sva + get_hblk_span(hmeblkp); \
ASSERT(addr >= sva && addr < eva); \
sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz); \
} \
}
/* Update tsb_alloc_hiwater after memory is configured. */
/*ARGSUSED*/
static void
sfmmu_update_tsb_post_add(void *arg, pgcnt_t delta_pages)
{
/* Assumes physmem has already been updated. */
SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
}
/*
* Update tsb_alloc_hiwater before memory is deleted. We'll do nothing here
* and update tsb_alloc_hiwater and tsb_max_growsize after the memory is
* deleted.
*/
/*ARGSUSED*/
static int
sfmmu_update_tsb_pre_del(void *arg, pgcnt_t delta_pages)
{
return (0);
}
/* Update tsb_alloc_hiwater after memory fails to be unconfigured. */
/*ARGSUSED*/
static void
sfmmu_update_tsb_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
{
/*
* Whether the delete was cancelled or not, just go ahead and update
* tsb_alloc_hiwater and tsb_max_growsize.
*/
SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
}
static kphysm_setup_vector_t sfmmu_update_tsb_vec = {
KPHYSM_SETUP_VECTOR_VERSION, /* version */
sfmmu_update_tsb_post_add, /* post_add */
sfmmu_update_tsb_pre_del, /* pre_del */
sfmmu_update_tsb_post_del /* post_del */
};
/*
* HME_BLK HASH PRIMITIVES
*/
/*
* Enter a hme on the mapping list for page pp.
* When large pages are more prevalent in the system we might want to
* keep the mapping list in ascending order by the hment size. For now,
* small pages are more frequent, so don't slow it down.
*/
#define HME_ADD(hme, pp) \
{ \
ASSERT(sfmmu_mlist_held(pp)); \
\
hme->hme_prev = NULL; \
hme->hme_next = pp->p_mapping; \
hme->hme_page = pp; \
if (pp->p_mapping) { \
((struct sf_hment *)(pp->p_mapping))->hme_prev = hme;\
ASSERT(pp->p_share > 0); \
} else { \
/* EMPTY */ \
ASSERT(pp->p_share == 0); \
} \
pp->p_mapping = hme; \
pp->p_share++; \
}
/*
* Enter a hme on the mapping list for page pp.
* If we are unmapping a large translation, we need to make sure that the
* change is reflect in the corresponding bit of the p_index field.
*/
#define HME_SUB(hme, pp) \
{ \
ASSERT(sfmmu_mlist_held(pp)); \
ASSERT(hme->hme_page == pp || IS_PAHME(hme)); \
\
if (pp->p_mapping == NULL) { \
panic("hme_remove - no mappings"); \
} \
\
membar_stst(); /* ensure previous stores finish */ \
\
ASSERT(pp->p_share > 0); \
pp->p_share--; \
\
if (hme->hme_prev) { \
ASSERT(pp->p_mapping != hme); \
ASSERT(hme->hme_prev->hme_page == pp || \
IS_PAHME(hme->hme_prev)); \
hme->hme_prev->hme_next = hme->hme_next; \
} else { \
ASSERT(pp->p_mapping == hme); \
pp->p_mapping = hme->hme_next; \
ASSERT((pp->p_mapping == NULL) ? \
(pp->p_share == 0) : 1); \
} \
\
if (hme->hme_next) { \
ASSERT(hme->hme_next->hme_page == pp || \
IS_PAHME(hme->hme_next)); \
hme->hme_next->hme_prev = hme->hme_prev; \
} \
\
/* zero out the entry */ \
hme->hme_next = NULL; \
hme->hme_prev = NULL; \
hme->hme_page = NULL; \
\
if (hme_size(hme) > TTE8K) { \
/* remove mappings for remainder of large pg */ \
sfmmu_rm_large_mappings(pp, hme_size(hme)); \
} \
}
/*
* This function returns the hment given the hme_blk and a vaddr.
* It assumes addr has already been checked to belong to hme_blk's
* range.
*/
#define HBLKTOHME(hment, hmeblkp, addr) \
{ \
int index; \
HBLKTOHME_IDX(hment, hmeblkp, addr, index) \
}
/*
* Version of HBLKTOHME that also returns the index in hmeblkp
* of the hment.
*/
#define HBLKTOHME_IDX(hment, hmeblkp, addr, idx) \
{ \
ASSERT(in_hblk_range((hmeblkp), (addr))); \
\
if (get_hblk_ttesz(hmeblkp) == TTE8K) { \
idx = (((uintptr_t)(addr) >> MMU_PAGESHIFT) & (NHMENTS-1)); \
} else \
idx = 0; \
\
(hment) = &(hmeblkp)->hblk_hme[idx]; \
}
/*
* Disable any page sizes not supported by the CPU
*/
void
hat_init_pagesizes()
{
int i;
mmu_exported_page_sizes = 0;
for (i = TTE8K; i < max_mmu_page_sizes; i++) {
extern int disable_text_largepages;
extern int disable_initdata_largepages;
szc_2_userszc[i] = (uint_t)-1;
userszc_2_szc[i] = (uint_t)-1;
if ((mmu_exported_pagesize_mask & (1 << i)) == 0) {
disable_large_pages |= (1 << i);
disable_ism_large_pages |= (1 << i);
disable_text_largepages |= (1 << i);
disable_initdata_largepages |= (1 << i);
} else {
szc_2_userszc[i] = mmu_exported_page_sizes;
userszc_2_szc[mmu_exported_page_sizes] = i;
mmu_exported_page_sizes++;
}
}
disable_auto_large_pages = disable_large_pages;
/*
* Initialize mmu-specific large page sizes.
*/
if ((mmu_page_sizes == max_mmu_page_sizes) &&
(&mmu_large_pages_disabled)) {
disable_large_pages |= mmu_large_pages_disabled(HAT_LOAD);
disable_ism_large_pages |=
mmu_large_pages_disabled(HAT_LOAD_SHARE);
disable_auto_large_pages |=
mmu_large_pages_disabled(HAT_LOAD_AUTOLPG);
}
}
/*
* Initialize the hardware address translation structures.
*/
void
hat_init(void)
{
int i;
uint_t sz;
uint_t maxtsb;
size_t size;
hat_lock_init();
hat_kstat_init();
/*
* Hardware-only bits in a TTE
*/
MAKE_TTE_MASK(&hw_tte);
hat_init_pagesizes();
/* Initialize the hash locks */
for (i = 0; i < khmehash_num; i++) {
mutex_init(&khme_hash[i].hmehash_mutex, NULL,
MUTEX_DEFAULT, NULL);
}
for (i = 0; i < uhmehash_num; i++) {
mutex_init(&uhme_hash[i].hmehash_mutex, NULL,
MUTEX_DEFAULT, NULL);
}
khmehash_num--; /* make sure counter starts from 0 */
uhmehash_num--; /* make sure counter starts from 0 */
/*
* Allocate context domain structures.
*
* A platform may choose to modify max_mmu_ctxdoms in
* set_platform_defaults(). If a platform does not define
* a set_platform_defaults() or does not choose to modify
* max_mmu_ctxdoms, it gets one MMU context domain for every CPU.
*
* For sun4v, there will be one global context domain, this is to
* avoid the ldom cpu substitution problem.
*
* For all platforms that have CPUs sharing MMUs, this
* value must be defined.
*/
if (max_mmu_ctxdoms == 0) {
#ifndef sun4v
max_mmu_ctxdoms = max_ncpus;
#else /* sun4v */
max_mmu_ctxdoms = 1;
#endif /* sun4v */
}
size = max_mmu_ctxdoms * sizeof (mmu_ctx_t *);
mmu_ctxs_tbl = kmem_zalloc(size, KM_SLEEP);
/* mmu_ctx_t is 64 bytes aligned */
mmuctxdom_cache = kmem_cache_create("mmuctxdom_cache",
sizeof (mmu_ctx_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
/*
* MMU context domain initialization for the Boot CPU.
* This needs the context domains array allocated above.
*/
mutex_enter(&cpu_lock);
sfmmu_cpu_init(CPU);
mutex_exit(&cpu_lock);
/*
* Intialize ism mapping list lock.
*/
mutex_init(&ism_mlist_lock, NULL, MUTEX_DEFAULT, NULL);
/*
* Each sfmmu structure carries an array of MMU context info
* structures, one per context domain. The size of this array depends
* on the maximum number of context domains. So, the size of the
* sfmmu structure varies per platform.
*
* sfmmu is allocated from static arena, because trap
* handler at TL > 0 is not allowed to touch kernel relocatable
* memory. sfmmu's alignment is changed to 64 bytes from
* default 8 bytes, as the lower 6 bits will be used to pass
* pgcnt to vtag_flush_pgcnt_tl1.
*/
size = sizeof (sfmmu_t) + sizeof (sfmmu_ctx_t) * (max_mmu_ctxdoms - 1);
sfmmuid_cache = kmem_cache_create("sfmmuid_cache", size,
64, sfmmu_idcache_constructor, sfmmu_idcache_destructor,
NULL, NULL, static_arena, 0);
sfmmu_tsbinfo_cache = kmem_cache_create("sfmmu_tsbinfo_cache",
sizeof (struct tsb_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
/*
* Since we only use the tsb8k cache to "borrow" pages for TSBs
* from the heap when low on memory or when TSB_FORCEALLOC is
* specified, don't use magazines to cache them--we want to return
* them to the system as quickly as possible.
*/
sfmmu_tsb8k_cache = kmem_cache_create("sfmmu_tsb8k_cache",
MMU_PAGESIZE, MMU_PAGESIZE, NULL, NULL, NULL, NULL,
static_arena, KMC_NOMAGAZINE);
/*
* Set tsb_alloc_hiwater to 1/tsb_alloc_hiwater_factor of physical
* memory, which corresponds to the old static reserve for TSBs.
* tsb_alloc_hiwater_factor defaults to 32. This caps the amount of
* memory we'll allocate for TSB slabs; beyond this point TSB
* allocations will be taken from the kernel heap (via
* sfmmu_tsb8k_cache) and will be throttled as would any other kmem
* consumer.
*/
if (tsb_alloc_hiwater_factor == 0) {
tsb_alloc_hiwater_factor = TSB_ALLOC_HIWATER_FACTOR_DEFAULT;
}
SFMMU_SET_TSB_ALLOC_HIWATER(physmem);
/* Set tsb_max_growsize. */
SFMMU_SET_TSB_MAX_GROWSIZE(physmem);
/*
* On smaller memory systems, allocate TSB memory in smaller chunks
* than the default 4M slab size. We also honor disable_large_pages
* here.
*
* The trap handlers need to be patched with the final slab shift,
* since they need to be able to construct the TSB pointer at runtime.
*/
if (tsb_max_growsize <= TSB_512K_SZCODE)
tsb_slab_ttesz = TTE512K;
for (sz = tsb_slab_ttesz; sz > 0; sz--) {
if (!(disable_large_pages & (1 << sz)))
break;
}
tsb_slab_ttesz = sz;
tsb_slab_shift = MMU_PAGESHIFT + (sz << 1) + sz;
tsb_slab_size = 1 << tsb_slab_shift;
tsb_slab_mask = (1 << (tsb_slab_shift - MMU_PAGESHIFT)) - 1;
maxtsb = tsb_slab_shift - (TSB_START_SIZE + TSB_ENTRY_SHIFT);
if (tsb_max_growsize > maxtsb)
tsb_max_growsize = maxtsb;
/*
* Set up memory callback to update tsb_alloc_hiwater and
* tsb_max_growsize.
*/
i = kphysm_setup_func_register(&sfmmu_update_tsb_vec, (void *) 0);
ASSERT(i == 0);
/*
* kmem_tsb_arena is the source from which large TSB slabs are
* drawn. The quantum of this arena corresponds to the largest
* TSB size we can dynamically allocate for user processes.
* Currently it must also be a supported page size since we
* use exactly one translation entry to map each slab page.
*
* The per-lgroup kmem_tsb_default_arena arenas are the arenas from
* which most TSBs are allocated. Since most TSB allocations are
* typically 8K we have a kmem cache we stack on top of each
* kmem_tsb_default_arena to speed up those allocations.
*
* Note the two-level scheme of arenas is required only
* because vmem_create doesn't allow us to specify alignment
* requirements. If this ever changes the code could be
* simplified to use only one level of arenas.
*/
kmem_tsb_arena = vmem_create("kmem_tsb", NULL, 0, tsb_slab_size,
sfmmu_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena,
0, VM_SLEEP);
if (tsb_lgrp_affinity) {
char s[50];
for (i = 0; i < NLGRPS_MAX; i++) {
(void) sprintf(s, "kmem_tsb_lgrp%d", i);
kmem_tsb_default_arena[i] =
vmem_create(s, NULL, 0, PAGESIZE,
sfmmu_tsb_segkmem_alloc, sfmmu_tsb_segkmem_free,
kmem_tsb_arena, 0, VM_SLEEP | VM_BESTFIT);
(void) sprintf(s, "sfmmu_tsb_lgrp%d_cache", i);
sfmmu_tsb_cache[i] = kmem_cache_create(s, PAGESIZE,
PAGESIZE, NULL, NULL, NULL, NULL,
kmem_tsb_default_arena[i], 0);
}
} else {
kmem_tsb_default_arena[0] = vmem_create("kmem_tsb_default",
NULL, 0, PAGESIZE, sfmmu_tsb_segkmem_alloc,
sfmmu_tsb_segkmem_free, kmem_tsb_arena, 0,
VM_SLEEP | VM_BESTFIT);
sfmmu_tsb_cache[0] = kmem_cache_create("sfmmu_tsb_cache",
PAGESIZE, PAGESIZE, NULL, NULL, NULL, NULL,
kmem_tsb_default_arena[0], 0);
}
sfmmu8_cache = kmem_cache_create("sfmmu8_cache", HME8BLK_SZ,
HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
sfmmu_hblkcache_destructor,
sfmmu_hblkcache_reclaim, (void *)HME8BLK_SZ,
hat_memload_arena, KMC_NOHASH);
hat_memload1_arena = vmem_create("hat_memload1", NULL, 0, PAGESIZE,
segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
sfmmu1_cache = kmem_cache_create("sfmmu1_cache", HME1BLK_SZ,
HMEBLK_ALIGN, sfmmu_hblkcache_constructor,
sfmmu_hblkcache_destructor,
NULL, (void *)HME1BLK_SZ,
hat_memload1_arena, KMC_NOHASH);
pa_hment_cache = kmem_cache_create("pa_hment_cache", PAHME_SZ,
0, NULL, NULL, NULL, NULL, static_arena, KMC_NOHASH);
ism_blk_cache = kmem_cache_create("ism_blk_cache",
sizeof (ism_blk_t), ecache_alignsize, NULL, NULL,
NULL, NULL, static_arena, KMC_NOHASH);
ism_ment_cache = kmem_cache_create("ism_ment_cache",
sizeof (ism_ment_t), 0, NULL, NULL,
NULL, NULL, NULL, 0);
/*
* We grab the first hat for the kernel,
*/
AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
kas.a_hat = hat_alloc(&kas);
AS_LOCK_EXIT(&kas, &kas.a_lock);
/*
* Initialize hblk_reserve.
*/
((struct hme_blk *)hblk_reserve)->hblk_nextpa =
va_to_pa((caddr_t)hblk_reserve);
#ifndef UTSB_PHYS
/*
* Reserve some kernel virtual address space for the locked TTEs
* that allow us to probe the TSB from TL>0.
*/
utsb_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
0, 0, NULL, NULL, VM_SLEEP);
utsb4m_vabase = vmem_xalloc(heap_arena, tsb_slab_size, tsb_slab_size,
0, 0, NULL, NULL, VM_SLEEP);
#endif
#ifdef VAC
/*
* The big page VAC handling code assumes VAC
* will not be bigger than the smallest big
* page- which is 64K.
*/
if (TTEPAGES(TTE64K) < CACHE_NUM_COLOR) {
cmn_err(CE_PANIC, "VAC too big!");
}
#endif
(void) xhat_init();
uhme_hash_pa = va_to_pa(uhme_hash);
khme_hash_pa = va_to_pa(khme_hash);
/*
* Initialize relocation locks. kpr_suspendlock is held
* at PIL_MAX to prevent interrupts from pinning the holder
* of a suspended TTE which may access it leading to a
* deadlock condition.
*/
mutex_init(&kpr_mutex, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&kpr_suspendlock, NULL, MUTEX_SPIN, (void *)PIL_MAX);
}
/*
* Initialize locking for the hat layer, called early during boot.
*/
static void
hat_lock_init()
{
int i;
/*
* initialize the array of mutexes protecting a page's mapping
* list and p_nrm field.
*/
for (i = 0; i < mml_table_sz; i++)
mutex_init(&mml_table[i], NULL, MUTEX_DEFAULT, NULL);
if (kpm_enable) {
for (i = 0; i < kpmp_table_sz; i++) {
mutex_init(&kpmp_table[i].khl_mutex, NULL,
MUTEX_DEFAULT, NULL);
}
}
/*
* Initialize array of mutex locks that protects sfmmu fields and
* TSB lists.
*/
for (i = 0; i < SFMMU_NUM_LOCK; i++)
mutex_init(HATLOCK_MUTEXP(&hat_lock[i]), NULL, MUTEX_DEFAULT,
NULL);
}
extern caddr_t kmem64_base, kmem64_end;
#define SFMMU_KERNEL_MAXVA \
(kmem64_base ? (uintptr_t)kmem64_end : (SYSLIMIT))
/*
* Allocate a hat structure.
* Called when an address space first uses a hat.
*/
struct hat *
hat_alloc(struct as *as)
{
sfmmu_t *sfmmup;
int i;
uint64_t cnum;
extern uint_t get_color_start(struct as *);
ASSERT(AS_WRITE_HELD(as, &as->a_lock));
sfmmup = kmem_cache_alloc(sfmmuid_cache, KM_SLEEP);
sfmmup->sfmmu_as = as;
sfmmup->sfmmu_flags = 0;
LOCK_INIT_CLEAR(&sfmmup->sfmmu_ctx_lock);
if (as == &kas) {
ksfmmup = sfmmup;
sfmmup->sfmmu_cext = 0;
cnum = KCONTEXT;
sfmmup->sfmmu_clrstart = 0;
sfmmup->sfmmu_tsb = NULL;
/*
* hat_kern_setup() will call sfmmu_init_ktsbinfo()
* to setup tsb_info for ksfmmup.
*/
} else {
/*
* Just set to invalid ctx. When it faults, it will
* get a valid ctx. This would avoid the situation
* where we get a ctx, but it gets stolen and then
* we fault when we try to run and so have to get
* another ctx.
*/
sfmmup->sfmmu_cext = 0;
cnum = INVALID_CONTEXT;
/* initialize original physical page coloring bin */
sfmmup->sfmmu_clrstart = get_color_start(as);
#ifdef DEBUG
if (tsb_random_size) {
uint32_t randval = (uint32_t)gettick() >> 4;
int size = randval % (tsb_max_growsize + 1);
/* chose a random tsb size for stress testing */
(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb, size,
TSB8K|TSB64K|TSB512K, 0, sfmmup);
} else
#endif /* DEBUG */
(void) sfmmu_tsbinfo_alloc(&sfmmup->sfmmu_tsb,
default_tsb_size,
TSB8K|TSB64K|TSB512K, 0, sfmmup);
sfmmup->sfmmu_flags = HAT_SWAPPED;
ASSERT(sfmmup->sfmmu_tsb != NULL);
}
ASSERT(max_mmu_ctxdoms > 0);
for (i = 0; i < max_mmu_ctxdoms; i++) {
sfmmup->sfmmu_ctxs[i].cnum = cnum;
sfmmup->sfmmu_ctxs[i].gnum = 0;
}
sfmmu_setup_tsbinfo(sfmmup);
for (i = 0; i < max_mmu_page_sizes; i++) {
sfmmup->sfmmu_ttecnt[i] = 0;
sfmmup->sfmmu_ismttecnt[i] = 0;
sfmmup->sfmmu_pgsz[i] = TTE8K;
}
sfmmup->sfmmu_iblk = NULL;
sfmmup->sfmmu_ismhat = 0;
sfmmup->sfmmu_ismblkpa = (uint64_t)-1;
if (sfmmup == ksfmmup) {
CPUSET_ALL(sfmmup->sfmmu_cpusran);
} else {
CPUSET_ZERO(sfmmup->sfmmu_cpusran);
}
sfmmup->sfmmu_free = 0;
sfmmup->sfmmu_rmstat = 0;
sfmmup->sfmmu_clrbin = sfmmup->sfmmu_clrstart;
sfmmup->sfmmu_xhat_provider = NULL;
cv_init(&sfmmup->sfmmu_tsb_cv, NULL, CV_DEFAULT, NULL);
return (sfmmup);
}
/*
* Create per-MMU context domain kstats for a given MMU ctx.
*/
static void
sfmmu_mmu_kstat_create(mmu_ctx_t *mmu_ctxp)
{
mmu_ctx_stat_t stat;
kstat_t *mmu_kstat;
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(mmu_ctxp->mmu_kstat == NULL);
mmu_kstat = kstat_create("unix", mmu_ctxp->mmu_idx, "mmu_ctx",
"hat", KSTAT_TYPE_NAMED, MMU_CTX_NUM_STATS, KSTAT_FLAG_VIRTUAL);
if (mmu_kstat == NULL) {
cmn_err(CE_WARN, "kstat_create for MMU %d failed",
mmu_ctxp->mmu_idx);
} else {
mmu_kstat->ks_data = mmu_ctxp->mmu_kstat_data;
for (stat = 0; stat < MMU_CTX_NUM_STATS; stat++)
kstat_named_init(&mmu_ctxp->mmu_kstat_data[stat],
mmu_ctx_kstat_names[stat], KSTAT_DATA_INT64);
mmu_ctxp->mmu_kstat = mmu_kstat;
kstat_install(mmu_kstat);
}
}
/*
* plat_cpuid_to_mmu_ctx_info() is a platform interface that returns MMU
* context domain information for a given CPU. If a platform does not
* specify that interface, then the function below is used instead to return
* default information. The defaults are as follows:
*
* - For sun4u systems there's one MMU context domain per CPU.
* This default is used by all sun4u systems except OPL. OPL systems
* provide platform specific interface to map CPU ids to MMU ids
* because on OPL more than 1 CPU shares a single MMU.
* Note that on sun4v, there is one global context domain for
* the entire system. This is to avoid running into potential problem
* with ldom physical cpu substitution feature.
* - The number of MMU context IDs supported on any CPU in the
* system is 8K.
*/
/*ARGSUSED*/
static void
sfmmu_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *infop)
{
infop->mmu_nctxs = nctxs;
#ifndef sun4v
infop->mmu_idx = cpu[cpuid]->cpu_seqid;
#else /* sun4v */
infop->mmu_idx = 0;
#endif /* sun4v */
}
/*
* Called during CPU initialization to set the MMU context-related information
* for a CPU.
*
* cpu_lock serializes accesses to mmu_ctxs and mmu_saved_gnum.
*/
void
sfmmu_cpu_init(cpu_t *cp)
{
mmu_ctx_info_t info;
mmu_ctx_t *mmu_ctxp;
ASSERT(MUTEX_HELD(&cpu_lock));
if (&plat_cpuid_to_mmu_ctx_info == NULL)
sfmmu_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
else
plat_cpuid_to_mmu_ctx_info(cp->cpu_id, &info);
ASSERT(info.mmu_idx < max_mmu_ctxdoms);
if ((mmu_ctxp = mmu_ctxs_tbl[info.mmu_idx]) == NULL) {
/* Each mmu_ctx is cacheline aligned. */
mmu_ctxp = kmem_cache_alloc(mmuctxdom_cache, KM_SLEEP);
bzero(mmu_ctxp, sizeof (mmu_ctx_t));
mutex_init(&mmu_ctxp->mmu_lock, NULL, MUTEX_SPIN,
(void *)ipltospl(DISP_LEVEL));
mmu_ctxp->mmu_idx = info.mmu_idx;
mmu_ctxp->mmu_nctxs = info.mmu_nctxs;
/*
* Globally for lifetime of a system,
* gnum must always increase.
* mmu_saved_gnum is protected by the cpu_lock.
*/
mmu_ctxp->mmu_gnum = mmu_saved_gnum + 1;
mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
sfmmu_mmu_kstat_create(mmu_ctxp);
mmu_ctxs_tbl[info.mmu_idx] = mmu_ctxp;
} else {
ASSERT(mmu_ctxp->mmu_idx == info.mmu_idx);
}
/*
* The mmu_lock is acquired here to prevent races with
* the wrap-around code.
*/
mutex_enter(&mmu_ctxp->mmu_lock);
mmu_ctxp->mmu_ncpus++;
CPUSET_ADD(mmu_ctxp->mmu_cpuset, cp->cpu_id);
CPU_MMU_IDX(cp) = info.mmu_idx;
CPU_MMU_CTXP(cp) = mmu_ctxp;
mutex_exit(&mmu_ctxp->mmu_lock);
}
/*
* Called to perform MMU context-related cleanup for a CPU.
*/
void
sfmmu_cpu_cleanup(cpu_t *cp)
{
mmu_ctx_t *mmu_ctxp;
ASSERT(MUTEX_HELD(&cpu_lock));
mmu_ctxp = CPU_MMU_CTXP(cp);
ASSERT(mmu_ctxp != NULL);
/*
* The mmu_lock is acquired here to prevent races with
* the wrap-around code.
*/
mutex_enter(&mmu_ctxp->mmu_lock);
CPU_MMU_CTXP(cp) = NULL;
CPUSET_DEL(mmu_ctxp->mmu_cpuset, cp->cpu_id);
if (--mmu_ctxp->mmu_ncpus == 0) {
mmu_ctxs_tbl[mmu_ctxp->mmu_idx] = NULL;
mutex_exit(&mmu_ctxp->mmu_lock);
mutex_destroy(&mmu_ctxp->mmu_lock);
if (mmu_ctxp->mmu_kstat)
kstat_delete(mmu_ctxp->mmu_kstat);
/* mmu_saved_gnum is protected by the cpu_lock. */
if (mmu_saved_gnum < mmu_ctxp->mmu_gnum)
mmu_saved_gnum = mmu_ctxp->mmu_gnum;
kmem_cache_free(mmuctxdom_cache, mmu_ctxp);
return;
}
mutex_exit(&mmu_ctxp->mmu_lock);
}
/*
* Hat_setup, makes an address space context the current active one.
* In sfmmu this translates to setting the secondary context with the
* corresponding context.
*/
void
hat_setup(struct hat *sfmmup, int allocflag)
{
hatlock_t *hatlockp;
/* Init needs some special treatment. */
if (allocflag == HAT_INIT) {
/*
* Make sure that we have
* 1. a TSB
* 2. a valid ctx that doesn't get stolen after this point.
*/
hatlockp = sfmmu_hat_enter(sfmmup);
/*
* Swap in the TSB. hat_init() allocates tsbinfos without
* TSBs, but we need one for init, since the kernel does some
* special things to set up its stack and needs the TSB to
* resolve page faults.
*/
sfmmu_tsb_swapin(sfmmup, hatlockp);
sfmmu_get_ctx(sfmmup);
sfmmu_hat_exit(hatlockp);
} else {
ASSERT(allocflag == HAT_ALLOC);
hatlockp = sfmmu_hat_enter(sfmmup);
kpreempt_disable();
CPUSET_ADD(sfmmup->sfmmu_cpusran, CPU->cpu_id);
/*
* sfmmu_setctx_sec takes <pgsz|cnum> as a parameter,
* pagesize bits don't matter in this case since we are passing
* INVALID_CONTEXT to it.
*/
sfmmu_setctx_sec(INVALID_CONTEXT);
sfmmu_clear_utsbinfo();
kpreempt_enable();
sfmmu_hat_exit(hatlockp);
}
}
/*
* Free all the translation resources for the specified address space.
* Called from as_free when an address space is being destroyed.
*/
void
hat_free_start(struct hat *sfmmup)
{
ASSERT(AS_WRITE_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
ASSERT(sfmmup != ksfmmup);
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
sfmmup->sfmmu_free = 1;
}
void
hat_free_end(struct hat *sfmmup)
{
int i;
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
if (sfmmup->sfmmu_ismhat) {
for (i = 0; i < mmu_page_sizes; i++) {
sfmmup->sfmmu_ttecnt[i] = 0;
sfmmup->sfmmu_ismttecnt[i] = 0;
}
} else {
/* EMPTY */
ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
}
if (sfmmup->sfmmu_rmstat) {
hat_freestat(sfmmup->sfmmu_as, NULL);
}
while (sfmmup->sfmmu_tsb != NULL) {
struct tsb_info *next = sfmmup->sfmmu_tsb->tsb_next;
sfmmu_tsbinfo_free(sfmmup->sfmmu_tsb);
sfmmup->sfmmu_tsb = next;
}
sfmmu_free_sfmmu(sfmmup);
kmem_cache_free(sfmmuid_cache, sfmmup);
}
/*
* Set up any translation structures, for the specified address space,
* that are needed or preferred when the process is being swapped in.
*/
/* ARGSUSED */
void
hat_swapin(struct hat *hat)
{
ASSERT(hat->sfmmu_xhat_provider == NULL);
}
/*
* Free all of the translation resources, for the specified address space,
* that can be freed while the process is swapped out. Called from as_swapout.
* Also, free up the ctx that this process was using.
*/
void
hat_swapout(struct hat *sfmmup)
{
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp;
struct hme_blk *pr_hblk = NULL;
struct hme_blk *nx_hblk;
int i;
uint64_t hblkpa, prevpa, nx_pa;
struct hme_blk *list = NULL;
hatlock_t *hatlockp;
struct tsb_info *tsbinfop;
struct free_tsb {
struct free_tsb *next;
struct tsb_info *tsbinfop;
}; /* free list of TSBs */
struct free_tsb *freelist, *last, *next;
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
SFMMU_STAT(sf_swapout);
/*
* There is no way to go from an as to all its translations in sfmmu.
* Here is one of the times when we take the big hit and traverse
* the hash looking for hme_blks to free up. Not only do we free up
* this as hme_blks but all those that are free. We are obviously
* swapping because we need memory so let's free up as much
* as we can.
*
* Note that we don't flush TLB/TSB here -- it's not necessary
* because:
* 1) we free the ctx we're using and throw away the TSB(s);
* 2) processes aren't runnable while being swapped out.
*/
ASSERT(sfmmup != KHATID);
for (i = 0; i <= UHMEHASH_SZ; i++) {
hmebp = &uhme_hash[i];
SFMMU_HASH_LOCK(hmebp);
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
ASSERT(!hmeblkp->hblk_xhat_bit);
if ((hmeblkp->hblk_tag.htag_id == sfmmup) &&
!hmeblkp->hblk_shw_bit && !hmeblkp->hblk_lckcnt) {
(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
(caddr_t)get_hblk_base(hmeblkp),
get_hblk_endaddr(hmeblkp),
NULL, HAT_UNLOAD);
}
nx_hblk = hmeblkp->hblk_next;
nx_pa = hmeblkp->hblk_nextpa;
if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
ASSERT(!hmeblkp->hblk_lckcnt);
sfmmu_hblk_hash_rm(hmebp, hmeblkp,
prevpa, pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
} else {
pr_hblk = hmeblkp;
prevpa = hblkpa;
}
hmeblkp = nx_hblk;
hblkpa = nx_pa;
}
SFMMU_HASH_UNLOCK(hmebp);
}
sfmmu_hblks_list_purge(&list);
/*
* Now free up the ctx so that others can reuse it.
*/
hatlockp = sfmmu_hat_enter(sfmmup);
sfmmu_invalidate_ctx(sfmmup);
/*
* Free TSBs, but not tsbinfos, and set SWAPPED flag.
* If TSBs were never swapped in, just return.
* This implies that we don't support partial swapping
* of TSBs -- either all are swapped out, or none are.
*
* We must hold the HAT lock here to prevent racing with another
* thread trying to unmap TTEs from the TSB or running the post-
* relocator after relocating the TSB's memory. Unfortunately, we
* can't free memory while holding the HAT lock or we could
* deadlock, so we build a list of TSBs to be freed after marking
* the tsbinfos as swapped out and free them after dropping the
* lock.
*/
if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
sfmmu_hat_exit(hatlockp);
return;
}
SFMMU_FLAGS_SET(sfmmup, HAT_SWAPPED);
last = freelist = NULL;
for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
tsbinfop = tsbinfop->tsb_next) {
ASSERT((tsbinfop->tsb_flags & TSB_SWAPPED) == 0);
/*
* Cast the TSB into a struct free_tsb and put it on the free
* list.
*/
if (freelist == NULL) {
last = freelist = (struct free_tsb *)tsbinfop->tsb_va;
} else {
last->next = (struct free_tsb *)tsbinfop->tsb_va;
last = last->next;
}
last->next = NULL;
last->tsbinfop = tsbinfop;
tsbinfop->tsb_flags |= TSB_SWAPPED;
/*
* Zero out the TTE to clear the valid bit.
* Note we can't use a value like 0xbad because we want to
* ensure diagnostic bits are NEVER set on TTEs that might
* be loaded. The intent is to catch any invalid access
* to the swapped TSB, such as a thread running with a valid
* context without first calling sfmmu_tsb_swapin() to
* allocate TSB memory.
*/
tsbinfop->tsb_tte.ll = 0;
}
/* Now we can drop the lock and free the TSB memory. */
sfmmu_hat_exit(hatlockp);
for (; freelist != NULL; freelist = next) {
next = freelist->next;
sfmmu_tsb_free(freelist->tsbinfop);
}
}
/*
* Duplicate the translations of an as into another newas
*/
/* ARGSUSED */
int
hat_dup(struct hat *hat, struct hat *newhat, caddr_t addr, size_t len,
uint_t flag)
{
ASSERT(hat->sfmmu_xhat_provider == NULL);
ASSERT((flag == 0) || (flag == HAT_DUP_ALL) || (flag == HAT_DUP_COW));
if (flag == HAT_DUP_COW) {
panic("hat_dup: HAT_DUP_COW not supported");
}
return (0);
}
/*
* Set up addr to map to page pp with protection prot.
* As an optimization we also load the TSB with the
* corresponding tte but it is no big deal if the tte gets kicked out.
*/
void
hat_memload(struct hat *hat, caddr_t addr, struct page *pp,
uint_t attr, uint_t flags)
{
tte_t tte;
ASSERT(hat != NULL);
ASSERT(PAGE_LOCKED(pp));
ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
if (PP_ISFREE(pp)) {
panic("hat_memload: loading a mapping to free page %p",
(void *)pp);
}
if (hat->sfmmu_xhat_provider) {
XHAT_MEMLOAD(hat, addr, pp, attr, flags);
return;
}
ASSERT((hat == ksfmmup) ||
AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
if (flags & ~SFMMU_LOAD_ALLFLAG)
cmn_err(CE_NOTE, "hat_memload: unsupported flags %d",
flags & ~SFMMU_LOAD_ALLFLAG);
if (hat->sfmmu_rmstat)
hat_resvstat(MMU_PAGESIZE, hat->sfmmu_as, addr);
#if defined(SF_ERRATA_57)
if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
(addr < errata57_limit) && (attr & PROT_EXEC) &&
!(flags & HAT_LOAD_SHARE)) {
cmn_err(CE_WARN, "hat_memload: illegal attempt to make user "
" page executable");
attr &= ~PROT_EXEC;
}
#endif
sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
(void) sfmmu_tteload_array(hat, &tte, addr, &pp, flags);
/*
* Check TSB and TLB page sizes.
*/
if ((flags & HAT_LOAD_SHARE) == 0) {
sfmmu_check_page_sizes(hat, 1);
}
}
/*
* hat_devload can be called to map real memory (e.g.
* /dev/kmem) and even though hat_devload will determine pf is
* for memory, it will be unable to get a shared lock on the
* page (because someone else has it exclusively) and will
* pass dp = NULL. If tteload doesn't get a non-NULL
* page pointer it can't cache memory.
*/
void
hat_devload(struct hat *hat, caddr_t addr, size_t len, pfn_t pfn,
uint_t attr, int flags)
{
tte_t tte;
struct page *pp = NULL;
int use_lgpg = 0;
ASSERT(hat != NULL);
if (hat->sfmmu_xhat_provider) {
XHAT_DEVLOAD(hat, addr, len, pfn, attr, flags);
return;
}
ASSERT(!(flags & ~SFMMU_LOAD_ALLFLAG));
ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
ASSERT((hat == ksfmmup) ||
AS_LOCK_HELD(hat->sfmmu_as, &hat->sfmmu_as->a_lock));
if (len == 0)
panic("hat_devload: zero len");
if (flags & ~SFMMU_LOAD_ALLFLAG)
cmn_err(CE_NOTE, "hat_devload: unsupported flags %d",
flags & ~SFMMU_LOAD_ALLFLAG);
#if defined(SF_ERRATA_57)
if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
(addr < errata57_limit) && (attr & PROT_EXEC) &&
!(flags & HAT_LOAD_SHARE)) {
cmn_err(CE_WARN, "hat_devload: illegal attempt to make user "
" page executable");
attr &= ~PROT_EXEC;
}
#endif
/*
* If it's a memory page find its pp
*/
if (!(flags & HAT_LOAD_NOCONSIST) && pf_is_memory(pfn)) {
pp = page_numtopp_nolock(pfn);
if (pp == NULL) {
flags |= HAT_LOAD_NOCONSIST;
} else {
if (PP_ISFREE(pp)) {
panic("hat_memload: loading "
"a mapping to free page %p",
(void *)pp);
}
if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
panic("hat_memload: loading a mapping "
"to unlocked relocatable page %p",
(void *)pp);
}
ASSERT(len == MMU_PAGESIZE);
}
}
if (hat->sfmmu_rmstat)
hat_resvstat(len, hat->sfmmu_as, addr);
if (flags & HAT_LOAD_NOCONSIST) {
attr |= SFMMU_UNCACHEVTTE;
use_lgpg = 1;
}
if (!pf_is_memory(pfn)) {
attr |= SFMMU_UNCACHEPTTE | HAT_NOSYNC;
use_lgpg = 1;
switch (attr & HAT_ORDER_MASK) {
case HAT_STRICTORDER:
case HAT_UNORDERED_OK:
/*
* we set the side effect bit for all non
* memory mappings unless merging is ok
*/
attr |= SFMMU_SIDEFFECT;
break;
case HAT_MERGING_OK:
case HAT_LOADCACHING_OK:
case HAT_STORECACHING_OK:
break;
default:
panic("hat_devload: bad attr");
break;
}
}
while (len) {
if (!use_lgpg) {
sfmmu_memtte(&tte, pfn, attr, TTE8K);
(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
flags);
len -= MMU_PAGESIZE;
addr += MMU_PAGESIZE;
pfn++;
continue;
}
/*
* try to use large pages, check va/pa alignments
* Note that 32M/256M page sizes are not (yet) supported.
*/
if ((len >= MMU_PAGESIZE4M) &&
!((uintptr_t)addr & MMU_PAGEOFFSET4M) &&
!(disable_large_pages & (1 << TTE4M)) &&
!(mmu_ptob(pfn) & MMU_PAGEOFFSET4M)) {
sfmmu_memtte(&tte, pfn, attr, TTE4M);
(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
flags);
len -= MMU_PAGESIZE4M;
addr += MMU_PAGESIZE4M;
pfn += MMU_PAGESIZE4M / MMU_PAGESIZE;
} else if ((len >= MMU_PAGESIZE512K) &&
!((uintptr_t)addr & MMU_PAGEOFFSET512K) &&
!(disable_large_pages & (1 << TTE512K)) &&
!(mmu_ptob(pfn) & MMU_PAGEOFFSET512K)) {
sfmmu_memtte(&tte, pfn, attr, TTE512K);
(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
flags);
len -= MMU_PAGESIZE512K;
addr += MMU_PAGESIZE512K;
pfn += MMU_PAGESIZE512K / MMU_PAGESIZE;
} else if ((len >= MMU_PAGESIZE64K) &&
!((uintptr_t)addr & MMU_PAGEOFFSET64K) &&
!(disable_large_pages & (1 << TTE64K)) &&
!(mmu_ptob(pfn) & MMU_PAGEOFFSET64K)) {
sfmmu_memtte(&tte, pfn, attr, TTE64K);
(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
flags);
len -= MMU_PAGESIZE64K;
addr += MMU_PAGESIZE64K;
pfn += MMU_PAGESIZE64K / MMU_PAGESIZE;
} else {
sfmmu_memtte(&tte, pfn, attr, TTE8K);
(void) sfmmu_tteload_array(hat, &tte, addr, &pp,
flags);
len -= MMU_PAGESIZE;
addr += MMU_PAGESIZE;
pfn++;
}
}
/*
* Check TSB and TLB page sizes.
*/
if ((flags & HAT_LOAD_SHARE) == 0) {
sfmmu_check_page_sizes(hat, 1);
}
}
/*
* Map the largest extend possible out of the page array. The array may NOT
* be in order. The largest possible mapping a page can have
* is specified in the p_szc field. The p_szc field
* cannot change as long as there any mappings (large or small)
* to any of the pages that make up the large page. (ie. any
* promotion/demotion of page size is not up to the hat but up to
* the page free list manager). The array
* should consist of properly aligned contigous pages that are
* part of a big page for a large mapping to be created.
*/
void
hat_memload_array(struct hat *hat, caddr_t addr, size_t len,
struct page **pps, uint_t attr, uint_t flags)
{
int ttesz;
size_t mapsz;
pgcnt_t numpg, npgs;
tte_t tte;
page_t *pp;
int large_pages_disable;
ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
if (hat->sfmmu_xhat_provider) {
XHAT_MEMLOAD_ARRAY(hat, addr, len, pps, attr, flags);
return;
}
if (hat->sfmmu_rmstat)
hat_resvstat(len, hat->sfmmu_as, addr);
#if defined(SF_ERRATA_57)
if ((hat != ksfmmup) && AS_TYPE_64BIT(hat->sfmmu_as) &&
(addr < errata57_limit) && (attr & PROT_EXEC) &&
!(flags & HAT_LOAD_SHARE)) {
cmn_err(CE_WARN, "hat_memload_array: illegal attempt to make "
"user page executable");
attr &= ~PROT_EXEC;
}
#endif
/* Get number of pages */
npgs = len >> MMU_PAGESHIFT;
if (flags & HAT_LOAD_SHARE) {
large_pages_disable = disable_ism_large_pages;
} else {
large_pages_disable = disable_large_pages;
}
if (npgs < NHMENTS || large_pages_disable == LARGE_PAGES_OFF) {
sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
return;
}
while (npgs >= NHMENTS) {
pp = *pps;
for (ttesz = pp->p_szc; ttesz != TTE8K; ttesz--) {
/*
* Check if this page size is disabled.
*/
if (large_pages_disable & (1 << ttesz))
continue;
numpg = TTEPAGES(ttesz);
mapsz = numpg << MMU_PAGESHIFT;
if ((npgs >= numpg) &&
IS_P2ALIGNED(addr, mapsz) &&
IS_P2ALIGNED(pp->p_pagenum, numpg)) {
/*
* At this point we have enough pages and
* we know the virtual address and the pfn
* are properly aligned. We still need
* to check for physical contiguity but since
* it is very likely that this is the case
* we will assume they are so and undo
* the request if necessary. It would
* be great if we could get a hint flag
* like HAT_CONTIG which would tell us
* the pages are contigous for sure.
*/
sfmmu_memtte(&tte, (*pps)->p_pagenum,
attr, ttesz);
if (!sfmmu_tteload_array(hat, &tte, addr,
pps, flags)) {
break;
}
}
}
if (ttesz == TTE8K) {
/*
* We were not able to map array using a large page
* batch a hmeblk or fraction at a time.
*/
numpg = ((uintptr_t)addr >> MMU_PAGESHIFT)
& (NHMENTS-1);
numpg = NHMENTS - numpg;
ASSERT(numpg <= npgs);
mapsz = numpg * MMU_PAGESIZE;
sfmmu_memload_batchsmall(hat, addr, pps, attr, flags,
numpg);
}
addr += mapsz;
npgs -= numpg;
pps += numpg;
}
if (npgs) {
sfmmu_memload_batchsmall(hat, addr, pps, attr, flags, npgs);
}
/*
* Check TSB and TLB page sizes.
*/
if ((flags & HAT_LOAD_SHARE) == 0) {
sfmmu_check_page_sizes(hat, 1);
}
}
/*
* Function tries to batch 8K pages into the same hme blk.
*/
static void
sfmmu_memload_batchsmall(struct hat *hat, caddr_t vaddr, page_t **pps,
uint_t attr, uint_t flags, pgcnt_t npgs)
{
tte_t tte;
page_t *pp;
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp;
int index;
while (npgs) {
/*
* Acquire the hash bucket.
*/
hmebp = sfmmu_tteload_acquire_hashbucket(hat, vaddr, TTE8K);
ASSERT(hmebp);
/*
* Find the hment block.
*/
hmeblkp = sfmmu_tteload_find_hmeblk(hat, hmebp, vaddr,
TTE8K, flags);
ASSERT(hmeblkp);
do {
/*
* Make the tte.
*/
pp = *pps;
sfmmu_memtte(&tte, pp->p_pagenum, attr, TTE8K);
/*
* Add the translation.
*/
(void) sfmmu_tteload_addentry(hat, hmeblkp, &tte,
vaddr, pps, flags);
/*
* Goto next page.
*/
pps++;
npgs--;
/*
* Goto next address.
*/
vaddr += MMU_PAGESIZE;
/*
* Don't crossover into a different hmentblk.
*/
index = (int)(((uintptr_t)vaddr >> MMU_PAGESHIFT) &
(NHMENTS-1));
} while (index != 0 && npgs != 0);
/*
* Release the hash bucket.
*/
sfmmu_tteload_release_hashbucket(hmebp);
}
}
/*
* Construct a tte for a page:
*
* tte_valid = 1
* tte_size2 = size & TTE_SZ2_BITS (Panther and Olympus-C only)
* tte_size = size
* tte_nfo = attr & HAT_NOFAULT
* tte_ie = attr & HAT_STRUCTURE_LE
* tte_hmenum = hmenum
* tte_pahi = pp->p_pagenum >> TTE_PASHIFT;
* tte_palo = pp->p_pagenum & TTE_PALOMASK;
* tte_ref = 1 (optimization)
* tte_wr_perm = attr & PROT_WRITE;
* tte_no_sync = attr & HAT_NOSYNC
* tte_lock = attr & SFMMU_LOCKTTE
* tte_cp = !(attr & SFMMU_UNCACHEPTTE)
* tte_cv = !(attr & SFMMU_UNCACHEVTTE)
* tte_e = attr & SFMMU_SIDEFFECT
* tte_priv = !(attr & PROT_USER)
* tte_hwwr = if nosync is set and it is writable we set the mod bit (opt)
* tte_glb = 0
*/
void
sfmmu_memtte(tte_t *ttep, pfn_t pfn, uint_t attr, int tte_sz)
{
ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
ttep->tte_inthi = MAKE_TTE_INTHI(pfn, attr, tte_sz, 0 /* hmenum */);
ttep->tte_intlo = MAKE_TTE_INTLO(pfn, attr, tte_sz, 0 /* hmenum */);
if (TTE_IS_NOSYNC(ttep)) {
TTE_SET_REF(ttep);
if (TTE_IS_WRITABLE(ttep)) {
TTE_SET_MOD(ttep);
}
}
if (TTE_IS_NFO(ttep) && TTE_IS_EXECUTABLE(ttep)) {
panic("sfmmu_memtte: can't set both NFO and EXEC bits");
}
}
/*
* This function will add a translation to the hme_blk and allocate the
* hme_blk if one does not exist.
* If a page structure is specified then it will add the
* corresponding hment to the mapping list.
* It will also update the hmenum field for the tte.
*/
void
sfmmu_tteload(struct hat *sfmmup, tte_t *ttep, caddr_t vaddr, page_t *pp,
uint_t flags)
{
(void) sfmmu_tteload_array(sfmmup, ttep, vaddr, &pp, flags);
}
/*
* Load (ttep != NULL) or unload (ttep == NULL) one entry in the TSB.
* Assumes that a particular page size may only be resident in one TSB.
*/
static void
sfmmu_mod_tsb(sfmmu_t *sfmmup, caddr_t vaddr, tte_t *ttep, int ttesz)
{
struct tsb_info *tsbinfop = NULL;
uint64_t tag;
struct tsbe *tsbe_addr;
uint64_t tsb_base;
uint_t tsb_size;
int vpshift = MMU_PAGESHIFT;
int phys = 0;
if (sfmmup == ksfmmup) { /* No support for 32/256M ksfmmu pages */
phys = ktsb_phys;
if (ttesz >= TTE4M) {
#ifndef sun4v
ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
#endif
tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
tsb_size = ktsb4m_szcode;
} else {
tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
tsb_size = ktsb_szcode;
}
} else {
SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
/*
* If there isn't a TSB for this page size, or the TSB is
* swapped out, there is nothing to do. Note that the latter
* case seems impossible but can occur if hat_pageunload()
* is called on an ISM mapping while the process is swapped
* out.
*/
if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
return;
/*
* If another thread is in the middle of relocating a TSB
* we can't unload the entry so set a flag so that the
* TSB will be flushed before it can be accessed by the
* process.
*/
if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
if (ttep == NULL)
tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
return;
}
#if defined(UTSB_PHYS)
phys = 1;
tsb_base = (uint64_t)tsbinfop->tsb_pa;
#else
tsb_base = (uint64_t)tsbinfop->tsb_va;
#endif
tsb_size = tsbinfop->tsb_szc;
}
if (ttesz >= TTE4M)
vpshift = MMU_PAGESHIFT4M;
tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
tag = sfmmu_make_tsbtag(vaddr);
if (ttep == NULL) {
sfmmu_unload_tsbe(tsbe_addr, tag, phys);
} else {
if (ttesz >= TTE4M) {
SFMMU_STAT(sf_tsb_load4m);
} else {
SFMMU_STAT(sf_tsb_load8k);
}
sfmmu_load_tsbe(tsbe_addr, tag, ttep, phys);
}
}
/*
* Unmap all entries from [start, end) matching the given page size.
*
* This function is used primarily to unmap replicated 64K or 512K entries
* from the TSB that are inserted using the base page size TSB pointer, but
* it may also be called to unmap a range of addresses from the TSB.
*/
void
sfmmu_unload_tsb_range(sfmmu_t *sfmmup, caddr_t start, caddr_t end, int ttesz)
{
struct tsb_info *tsbinfop;
uint64_t tag;
struct tsbe *tsbe_addr;
caddr_t vaddr;
uint64_t tsb_base;
int vpshift, vpgsz;
uint_t tsb_size;
int phys = 0;
/*
* Assumptions:
* If ttesz == 8K, 64K or 512K, we walk through the range 8K
* at a time shooting down any valid entries we encounter.
*
* If ttesz >= 4M we walk the range 4M at a time shooting
* down any valid mappings we find.
*/
if (sfmmup == ksfmmup) {
phys = ktsb_phys;
if (ttesz >= TTE4M) {
#ifndef sun4v
ASSERT((ttesz != TTE32M) && (ttesz != TTE256M));
#endif
tsb_base = (phys)? ktsb4m_pbase : (uint64_t)ktsb4m_base;
tsb_size = ktsb4m_szcode;
} else {
tsb_base = (phys)? ktsb_pbase : (uint64_t)ktsb_base;
tsb_size = ktsb_szcode;
}
} else {
SFMMU_GET_TSBINFO(tsbinfop, sfmmup, ttesz);
/*
* If there isn't a TSB for this page size, or the TSB is
* swapped out, there is nothing to do. Note that the latter
* case seems impossible but can occur if hat_pageunload()
* is called on an ISM mapping while the process is swapped
* out.
*/
if (tsbinfop == NULL || (tsbinfop->tsb_flags & TSB_SWAPPED))
return;
/*
* If another thread is in the middle of relocating a TSB
* we can't unload the entry so set a flag so that the
* TSB will be flushed before it can be accessed by the
* process.
*/
if ((tsbinfop->tsb_flags & TSB_RELOC_FLAG) != 0) {
tsbinfop->tsb_flags |= TSB_FLUSH_NEEDED;
return;
}
#if defined(UTSB_PHYS)
phys = 1;
tsb_base = (uint64_t)tsbinfop->tsb_pa;
#else
tsb_base = (uint64_t)tsbinfop->tsb_va;
#endif
tsb_size = tsbinfop->tsb_szc;
}
if (ttesz >= TTE4M) {
vpshift = MMU_PAGESHIFT4M;
vpgsz = MMU_PAGESIZE4M;
} else {
vpshift = MMU_PAGESHIFT;
vpgsz = MMU_PAGESIZE;
}
for (vaddr = start; vaddr < end; vaddr += vpgsz) {
tag = sfmmu_make_tsbtag(vaddr);
tsbe_addr = sfmmu_get_tsbe(tsb_base, vaddr, vpshift, tsb_size);
sfmmu_unload_tsbe(tsbe_addr, tag, phys);
}
}
/*
* Select the optimum TSB size given the number of mappings
* that need to be cached.
*/
static int
sfmmu_select_tsb_szc(pgcnt_t pgcnt)
{
int szc = 0;
#ifdef DEBUG
if (tsb_grow_stress) {
uint32_t randval = (uint32_t)gettick() >> 4;
return (randval % (tsb_max_growsize + 1));
}
#endif /* DEBUG */
while ((szc < tsb_max_growsize) && (pgcnt > SFMMU_RSS_TSBSIZE(szc)))
szc++;
return (szc);
}
/*
* This function will add a translation to the hme_blk and allocate the
* hme_blk if one does not exist.
* If a page structure is specified then it will add the
* corresponding hment to the mapping list.
* It will also update the hmenum field for the tte.
* Furthermore, it attempts to create a large page translation
* for <addr,hat> at page array pps. It assumes addr and first
* pp is correctly aligned. It returns 0 if successful and 1 otherwise.
*/
static int
sfmmu_tteload_array(sfmmu_t *sfmmup, tte_t *ttep, caddr_t vaddr,
page_t **pps, uint_t flags)
{
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp;
int ret;
uint_t size;
/*
* Get mapping size.
*/
size = TTE_CSZ(ttep);
ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
/*
* Acquire the hash bucket.
*/
hmebp = sfmmu_tteload_acquire_hashbucket(sfmmup, vaddr, size);
ASSERT(hmebp);
/*
* Find the hment block.
*/
hmeblkp = sfmmu_tteload_find_hmeblk(sfmmup, hmebp, vaddr, size, flags);
ASSERT(hmeblkp);
/*
* Add the translation.
*/
ret = sfmmu_tteload_addentry(sfmmup, hmeblkp, ttep, vaddr, pps, flags);
/*
* Release the hash bucket.
*/
sfmmu_tteload_release_hashbucket(hmebp);
return (ret);
}
/*
* Function locks and returns a pointer to the hash bucket for vaddr and size.
*/
static struct hmehash_bucket *
sfmmu_tteload_acquire_hashbucket(sfmmu_t *sfmmup, caddr_t vaddr, int size)
{
struct hmehash_bucket *hmebp;
int hmeshift;
hmeshift = HME_HASH_SHIFT(size);
hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
return (hmebp);
}
/*
* Function returns a pointer to an hmeblk in the hash bucket, hmebp. If the
* hmeblk doesn't exists for the [sfmmup, vaddr & size] signature, a hmeblk is
* allocated.
*/
static struct hme_blk *
sfmmu_tteload_find_hmeblk(sfmmu_t *sfmmup, struct hmehash_bucket *hmebp,
caddr_t vaddr, uint_t size, uint_t flags)
{
hmeblk_tag hblktag;
int hmeshift;
struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
uint64_t hblkpa, prevpa;
struct kmem_cache *sfmmu_cache;
uint_t forcefree;
hblktag.htag_id = sfmmup;
hmeshift = HME_HASH_SHIFT(size);
hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
hblktag.htag_rehash = HME_HASH_REHASH(size);
ttearray_realloc:
HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa,
pr_hblk, prevpa, &list);
/*
* We block until hblk_reserve_lock is released; it's held by
* the thread, temporarily using hblk_reserve, until hblk_reserve is
* replaced by a hblk from sfmmu8_cache.
*/
if (hmeblkp == (struct hme_blk *)hblk_reserve &&
hblk_reserve_thread != curthread) {
SFMMU_HASH_UNLOCK(hmebp);
mutex_enter(&hblk_reserve_lock);
mutex_exit(&hblk_reserve_lock);
SFMMU_STAT(sf_hblk_reserve_hit);
SFMMU_HASH_LOCK(hmebp);
goto ttearray_realloc;
}
if (hmeblkp == NULL) {
hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
hblktag, flags);
} else {
/*
* It is possible for 8k and 64k hblks to collide since they
* have the same rehash value. This is because we
* lazily free hblks and 8K/64K blks could be lingering.
* If we find size mismatch we free the block and & try again.
*/
if (get_hblk_ttesz(hmeblkp) != size) {
ASSERT(!hmeblkp->hblk_vcnt);
ASSERT(!hmeblkp->hblk_hmecnt);
sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
goto ttearray_realloc;
}
if (hmeblkp->hblk_shw_bit) {
/*
* if the hblk was previously used as a shadow hblk then
* we will change it to a normal hblk
*/
if (hmeblkp->hblk_shw_mask) {
sfmmu_shadow_hcleanup(sfmmup, hmeblkp, hmebp);
ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
goto ttearray_realloc;
} else {
hmeblkp->hblk_shw_bit = 0;
}
}
SFMMU_STAT(sf_hblk_hit);
}
/*
* hat_memload() should never call kmem_cache_free(); see block
* comment showing the stacktrace in sfmmu_hblk_alloc();
* enqueue each hblk in the list to reserve list if it's created
* from sfmmu8_cache *and* sfmmup == KHATID.
*/
forcefree = (sfmmup == KHATID) ? 1 : 0;
while ((pr_hblk = list) != NULL) {
list = pr_hblk->hblk_next;
sfmmu_cache = get_hblk_cache(pr_hblk);
if ((sfmmu_cache == sfmmu8_cache) &&
sfmmu_put_free_hblk(pr_hblk, forcefree))
continue;
ASSERT(sfmmup != KHATID);
kmem_cache_free(sfmmu_cache, pr_hblk);
}
ASSERT(get_hblk_ttesz(hmeblkp) == size);
ASSERT(!hmeblkp->hblk_shw_bit);
return (hmeblkp);
}
/*
* Function adds a tte entry into the hmeblk. It returns 0 if successful and 1
* otherwise.
*/
static int
sfmmu_tteload_addentry(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, tte_t *ttep,
caddr_t vaddr, page_t **pps, uint_t flags)
{
page_t *pp = *pps;
int hmenum, size, remap;
tte_t tteold, flush_tte;
#ifdef DEBUG
tte_t orig_old;
#endif /* DEBUG */
struct sf_hment *sfhme;
kmutex_t *pml, *pmtx;
hatlock_t *hatlockp;
/*
* remove this panic when we decide to let user virtual address
* space be >= USERLIMIT.
*/
if (!TTE_IS_PRIVILEGED(ttep) && vaddr >= (caddr_t)USERLIMIT)
panic("user addr %p in kernel space", vaddr);
#if defined(TTE_IS_GLOBAL)
if (TTE_IS_GLOBAL(ttep))
panic("sfmmu_tteload: creating global tte");
#endif
#ifdef DEBUG
if (pf_is_memory(sfmmu_ttetopfn(ttep, vaddr)) &&
!TTE_IS_PCACHEABLE(ttep) && !sfmmu_allow_nc_trans)
panic("sfmmu_tteload: non cacheable memory tte");
#endif /* DEBUG */
if ((flags & HAT_LOAD_SHARE) || !TTE_IS_REF(ttep) ||
!TTE_IS_MOD(ttep)) {
/*
* Don't load TSB for dummy as in ISM. Also don't preload
* the TSB if the TTE isn't writable since we're likely to
* fault on it again -- preloading can be fairly expensive.
*/
flags |= SFMMU_NO_TSBLOAD;
}
size = TTE_CSZ(ttep);
switch (size) {
case TTE8K:
SFMMU_STAT(sf_tteload8k);
break;
case TTE64K:
SFMMU_STAT(sf_tteload64k);
break;
case TTE512K:
SFMMU_STAT(sf_tteload512k);
break;
case TTE4M:
SFMMU_STAT(sf_tteload4m);
break;
case (TTE32M):
SFMMU_STAT(sf_tteload32m);
ASSERT(mmu_page_sizes == max_mmu_page_sizes);
break;
case (TTE256M):
SFMMU_STAT(sf_tteload256m);
ASSERT(mmu_page_sizes == max_mmu_page_sizes);
break;
}
ASSERT(!((uintptr_t)vaddr & TTE_PAGE_OFFSET(size)));
HBLKTOHME_IDX(sfhme, hmeblkp, vaddr, hmenum);
/*
* Need to grab mlist lock here so that pageunload
* will not change tte behind us.
*/
if (pp) {
pml = sfmmu_mlist_enter(pp);
}
sfmmu_copytte(&sfhme->hme_tte, &tteold);
/*
* Look for corresponding hment and if valid verify
* pfns are equal.
*/
remap = TTE_IS_VALID(&tteold);
if (remap) {
pfn_t new_pfn, old_pfn;
old_pfn = TTE_TO_PFN(vaddr, &tteold);
new_pfn = TTE_TO_PFN(vaddr, ttep);
if (flags & HAT_LOAD_REMAP) {
/* make sure we are remapping same type of pages */
if (pf_is_memory(old_pfn) != pf_is_memory(new_pfn)) {
panic("sfmmu_tteload - tte remap io<->memory");
}
if (old_pfn != new_pfn &&
(pp != NULL || sfhme->hme_page != NULL)) {
panic("sfmmu_tteload - tte remap pp != NULL");
}
} else if (old_pfn != new_pfn) {
panic("sfmmu_tteload - tte remap, hmeblkp 0x%p",
(void *)hmeblkp);
}
ASSERT(TTE_CSZ(&tteold) == TTE_CSZ(ttep));
}
if (pp) {
if (size == TTE8K) {
#ifdef VAC
/*
* Handle VAC consistency
*/
if (!remap && (cache & CACHE_VAC) && !PP_ISNC(pp)) {
sfmmu_vac_conflict(sfmmup, vaddr, pp);
}
#endif
if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
pmtx = sfmmu_page_enter(pp);
PP_CLRRO(pp);
sfmmu_page_exit(pmtx);
} else if (!PP_ISMAPPED(pp) &&
(!TTE_IS_WRITABLE(ttep)) && !(PP_ISMOD(pp))) {
pmtx = sfmmu_page_enter(pp);
if (!(PP_ISMOD(pp))) {
PP_SETRO(pp);
}
sfmmu_page_exit(pmtx);
}
} else if (sfmmu_pagearray_setup(vaddr, pps, ttep, remap)) {
/*
* sfmmu_pagearray_setup failed so return
*/
sfmmu_mlist_exit(pml);
return (1);
}
}
/*
* Make sure hment is not on a mapping list.
*/
ASSERT(remap || (sfhme->hme_page == NULL));
/* if it is not a remap then hme->next better be NULL */
ASSERT((!remap) ? sfhme->hme_next == NULL : 1);
if (flags & HAT_LOAD_LOCK) {
if (((int)hmeblkp->hblk_lckcnt + 1) >= MAX_HBLK_LCKCNT) {
panic("too high lckcnt-hmeblk %p",
(void *)hmeblkp);
}
atomic_add_16(&hmeblkp->hblk_lckcnt, 1);
HBLK_STACK_TRACE(hmeblkp, HBLK_LOCK);
}
#ifdef VAC
if (pp && PP_ISNC(pp)) {
/*
* If the physical page is marked to be uncacheable, like
* by a vac conflict, make sure the new mapping is also
* uncacheable.
*/
TTE_CLR_VCACHEABLE(ttep);
ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
}
#endif
ttep->tte_hmenum = hmenum;
#ifdef DEBUG
orig_old = tteold;
#endif /* DEBUG */
while (sfmmu_modifytte_try(&tteold, ttep, &sfhme->hme_tte) < 0) {
if ((sfmmup == KHATID) &&
(flags & (HAT_LOAD_LOCK | HAT_LOAD_REMAP))) {
sfmmu_copytte(&sfhme->hme_tte, &tteold);
}
#ifdef DEBUG
chk_tte(&orig_old, &tteold, ttep, hmeblkp);
#endif /* DEBUG */
}
if (!TTE_IS_VALID(&tteold)) {
atomic_add_16(&hmeblkp->hblk_vcnt, 1);
atomic_add_long(&sfmmup->sfmmu_ttecnt[size], 1);
/*
* HAT_RELOAD_SHARE has been deprecated with lpg DISM.
*/
if (size > TTE8K && (flags & HAT_LOAD_SHARE) == 0 &&
sfmmup != ksfmmup) {
/*
* If this is the first large mapping for the process
* we must force any CPUs running this process to TL=0
* where they will reload the HAT flags from the
* tsbmiss area. This is necessary to make the large
* mappings we are about to load visible to those CPUs;
* otherwise they'll loop forever calling pagefault()
* since we don't search large hash chains by default.
*/
hatlockp = sfmmu_hat_enter(sfmmup);
if (size == TTE512K &&
!SFMMU_FLAGS_ISSET(sfmmup, HAT_512K_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_512K_FLAG);
sfmmu_sync_mmustate(sfmmup);
} else if (size == TTE4M &&
!SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
sfmmu_sync_mmustate(sfmmup);
} else if (size == TTE64K &&
!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
/* no sync mmustate; 64K shares 8K hashes */
} else if (mmu_page_sizes == max_mmu_page_sizes) {
if (size == TTE32M &&
!SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
sfmmu_sync_mmustate(sfmmup);
} else if (size == TTE256M &&
!SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
sfmmu_sync_mmustate(sfmmup);
}
}
if (size >= TTE4M && (flags & HAT_LOAD_TEXT) &&
!SFMMU_FLAGS_ISSET(sfmmup, HAT_4MTEXT_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_4MTEXT_FLAG);
}
sfmmu_hat_exit(hatlockp);
}
}
ASSERT(TTE_IS_VALID(&sfhme->hme_tte));
flush_tte.tte_intlo = (tteold.tte_intlo ^ ttep->tte_intlo) &
hw_tte.tte_intlo;
flush_tte.tte_inthi = (tteold.tte_inthi ^ ttep->tte_inthi) &
hw_tte.tte_inthi;
if (remap && (flush_tte.tte_inthi || flush_tte.tte_intlo)) {
/*
* If remap and new tte differs from old tte we need
* to sync the mod bit and flush TLB/TSB. We don't
* need to sync ref bit because we currently always set
* ref bit in tteload.
*/
ASSERT(TTE_IS_REF(ttep));
if (TTE_IS_MOD(&tteold)) {
sfmmu_ttesync(sfmmup, vaddr, &tteold, pp);
}
sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 0);
xt_sync(sfmmup->sfmmu_cpusran);
}
if ((flags & SFMMU_NO_TSBLOAD) == 0) {
/*
* We only preload 8K and 4M mappings into the TSB, since
* 64K and 512K mappings are replicated and hence don't
* have a single, unique TSB entry. Ditto for 32M/256M.
*/
if (size == TTE8K || size == TTE4M) {
hatlockp = sfmmu_hat_enter(sfmmup);
sfmmu_load_tsb(sfmmup, vaddr, &sfhme->hme_tte, size);
sfmmu_hat_exit(hatlockp);
}
}
if (pp) {
if (!remap) {
HME_ADD(sfhme, pp);
atomic_add_16(&hmeblkp->hblk_hmecnt, 1);
ASSERT(hmeblkp->hblk_hmecnt > 0);
/*
* Cannot ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
* see pageunload() for comment.
*/
}
sfmmu_mlist_exit(pml);
}
return (0);
}
/*
* Function unlocks hash bucket.
*/
static void
sfmmu_tteload_release_hashbucket(struct hmehash_bucket *hmebp)
{
ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
SFMMU_HASH_UNLOCK(hmebp);
}
/*
* function which checks and sets up page array for a large
* translation. Will set p_vcolor, p_index, p_ro fields.
* Assumes addr and pfnum of first page are properly aligned.
* Will check for physical contiguity. If check fails it return
* non null.
*/
static int
sfmmu_pagearray_setup(caddr_t addr, page_t **pps, tte_t *ttep, int remap)
{
int i, index, ttesz;
pfn_t pfnum;
pgcnt_t npgs;
page_t *pp, *pp1;
kmutex_t *pmtx;
#ifdef VAC
int osz;
int cflags = 0;
int vac_err = 0;
#endif
int newidx = 0;
ttesz = TTE_CSZ(ttep);
ASSERT(ttesz > TTE8K);
npgs = TTEPAGES(ttesz);
index = PAGESZ_TO_INDEX(ttesz);
pfnum = (*pps)->p_pagenum;
ASSERT(IS_P2ALIGNED(pfnum, npgs));
/*
* Save the first pp so we can do HAT_TMPNC at the end.
*/
pp1 = *pps;
#ifdef VAC
osz = fnd_mapping_sz(pp1);
#endif
for (i = 0; i < npgs; i++, pps++) {
pp = *pps;
ASSERT(PAGE_LOCKED(pp));
ASSERT(pp->p_szc >= ttesz);
ASSERT(pp->p_szc == pp1->p_szc);
ASSERT(sfmmu_mlist_held(pp));
/*
* XXX is it possible to maintain P_RO on the root only?
*/
if (TTE_IS_WRITABLE(ttep) && PP_ISRO(pp)) {
pmtx = sfmmu_page_enter(pp);
PP_CLRRO(pp);
sfmmu_page_exit(pmtx);
} else if (!PP_ISMAPPED(pp) && !TTE_IS_WRITABLE(ttep) &&
!PP_ISMOD(pp)) {
pmtx = sfmmu_page_enter(pp);
if (!(PP_ISMOD(pp))) {
PP_SETRO(pp);
}
sfmmu_page_exit(pmtx);
}
/*
* If this is a remap we skip vac & contiguity checks.
*/
if (remap)
continue;
/*
* set p_vcolor and detect any vac conflicts.
*/
#ifdef VAC
if (vac_err == 0) {
vac_err = sfmmu_vacconflict_array(addr, pp, &cflags);
}
#endif
/*
* Save current index in case we need to undo it.
* Note: "PAGESZ_TO_INDEX(sz) (1 << (sz))"
* "SFMMU_INDEX_SHIFT 6"
* "SFMMU_INDEX_MASK ((1 << SFMMU_INDEX_SHIFT) - 1)"
* "PP_MAPINDEX(p_index) (p_index & SFMMU_INDEX_MASK)"
*
* So: index = PAGESZ_TO_INDEX(ttesz);
* if ttesz == 1 then index = 0x2
* 2 then index = 0x4
* 3 then index = 0x8
* 4 then index = 0x10
* 5 then index = 0x20
* The code below checks if it's a new pagesize (ie, newidx)
* in case we need to take it back out of p_index,
* and then or's the new index into the existing index.
*/
if ((PP_MAPINDEX(pp) & index) == 0)
newidx = 1;
pp->p_index = (PP_MAPINDEX(pp) | index);
/*
* contiguity check
*/
if (pp->p_pagenum != pfnum) {
/*
* If we fail the contiguity test then
* the only thing we need to fix is the p_index field.
* We might get a few extra flushes but since this
* path is rare that is ok. The p_ro field will
* get automatically fixed on the next tteload to
* the page. NO TNC bit is set yet.
*/
while (i >= 0) {
pp = *pps;
if (newidx)
pp->p_index = (PP_MAPINDEX(pp) &
~index);
pps--;
i--;
}
return (1);
}
pfnum++;
addr += MMU_PAGESIZE;
}
#ifdef VAC
if (vac_err) {
if (ttesz > osz) {
/*
* There are some smaller mappings that causes vac
* conflicts. Convert all existing small mappings to
* TNC.
*/
SFMMU_STAT_ADD(sf_uncache_conflict, npgs);
sfmmu_page_cache_array(pp1, HAT_TMPNC, CACHE_FLUSH,
npgs);
} else {
/* EMPTY */
/*
* If there exists an big page mapping,
* that means the whole existing big page
* has TNC setting already. No need to covert to
* TNC again.
*/
ASSERT(PP_ISTNC(pp1));
}
}
#endif /* VAC */
return (0);
}
#ifdef VAC
/*
* Routine that detects vac consistency for a large page. It also
* sets virtual color for all pp's for this big mapping.
*/
static int
sfmmu_vacconflict_array(caddr_t addr, page_t *pp, int *cflags)
{
int vcolor, ocolor;
ASSERT(sfmmu_mlist_held(pp));
if (PP_ISNC(pp)) {
return (HAT_TMPNC);
}
vcolor = addr_to_vcolor(addr);
if (PP_NEWPAGE(pp)) {
PP_SET_VCOLOR(pp, vcolor);
return (0);
}
ocolor = PP_GET_VCOLOR(pp);
if (ocolor == vcolor) {
return (0);
}
if (!PP_ISMAPPED(pp)) {
/*
* Previous user of page had a differnet color
* but since there are no current users
* we just flush the cache and change the color.
* As an optimization for large pages we flush the
* entire cache of that color and set a flag.
*/
SFMMU_STAT(sf_pgcolor_conflict);
if (!CacheColor_IsFlushed(*cflags, ocolor)) {
CacheColor_SetFlushed(*cflags, ocolor);
sfmmu_cache_flushcolor(ocolor, pp->p_pagenum);
}
PP_SET_VCOLOR(pp, vcolor);
return (0);
}
/*
* We got a real conflict with a current mapping.
* set flags to start unencaching all mappings
* and return failure so we restart looping
* the pp array from the beginning.
*/
return (HAT_TMPNC);
}
#endif /* VAC */
/*
* creates a large page shadow hmeblk for a tte.
* The purpose of this routine is to allow us to do quick unloads because
* the vm layer can easily pass a very large but sparsely populated range.
*/
static struct hme_blk *
sfmmu_shadow_hcreate(sfmmu_t *sfmmup, caddr_t vaddr, int ttesz, uint_t flags)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, size, vshift;
uint_t shw_mask, newshw_mask;
struct hme_blk *hmeblkp;
ASSERT(sfmmup != KHATID);
if (mmu_page_sizes == max_mmu_page_sizes) {
ASSERT(ttesz < TTE256M);
} else {
ASSERT(ttesz < TTE4M);
ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
}
if (ttesz == TTE8K) {
size = TTE512K;
} else {
size = ++ttesz;
}
hblktag.htag_id = sfmmup;
hmeshift = HME_HASH_SHIFT(size);
hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
hblktag.htag_rehash = HME_HASH_REHASH(size);
hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
if (hmeblkp == NULL) {
hmeblkp = sfmmu_hblk_alloc(sfmmup, vaddr, hmebp, size,
hblktag, flags);
}
ASSERT(hmeblkp);
if (!hmeblkp->hblk_shw_mask) {
/*
* if this is a unused hblk it was just allocated or could
* potentially be a previous large page hblk so we need to
* set the shadow bit.
*/
hmeblkp->hblk_shw_bit = 1;
}
ASSERT(hmeblkp->hblk_shw_bit == 1);
vshift = vaddr_to_vshift(hblktag, vaddr, size);
ASSERT(vshift < 8);
/*
* Atomically set shw mask bit
*/
do {
shw_mask = hmeblkp->hblk_shw_mask;
newshw_mask = shw_mask | (1 << vshift);
newshw_mask = cas32(&hmeblkp->hblk_shw_mask, shw_mask,
newshw_mask);
} while (newshw_mask != shw_mask);
SFMMU_HASH_UNLOCK(hmebp);
return (hmeblkp);
}
/*
* This routine cleanup a previous shadow hmeblk and changes it to
* a regular hblk. This happens rarely but it is possible
* when a process wants to use large pages and there are hblks still
* lying around from the previous as that used these hmeblks.
* The alternative was to cleanup the shadow hblks at unload time
* but since so few user processes actually use large pages, it is
* better to be lazy and cleanup at this time.
*/
static void
sfmmu_shadow_hcleanup(sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
struct hmehash_bucket *hmebp)
{
caddr_t addr, endaddr;
int hashno, size;
ASSERT(hmeblkp->hblk_shw_bit);
ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
if (!hmeblkp->hblk_shw_mask) {
hmeblkp->hblk_shw_bit = 0;
return;
}
addr = (caddr_t)get_hblk_base(hmeblkp);
endaddr = get_hblk_endaddr(hmeblkp);
size = get_hblk_ttesz(hmeblkp);
hashno = size - 1;
ASSERT(hashno > 0);
SFMMU_HASH_UNLOCK(hmebp);
sfmmu_free_hblks(sfmmup, addr, endaddr, hashno);
SFMMU_HASH_LOCK(hmebp);
}
static void
sfmmu_free_hblks(sfmmu_t *sfmmup, caddr_t addr, caddr_t endaddr,
int hashno)
{
int hmeshift, shadow = 0;
hmeblk_tag hblktag;
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp;
struct hme_blk *nx_hblk, *pr_hblk, *list = NULL;
uint64_t hblkpa, prevpa, nx_pa;
ASSERT(hashno > 0);
hblktag.htag_id = sfmmup;
hblktag.htag_rehash = hashno;
hmeshift = HME_HASH_SHIFT(hashno);
while (addr < endaddr) {
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
/* inline HME_HASH_SEARCH */
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
if (HTAGS_EQ(hmeblkp->hblk_tag, hblktag)) {
/* found hme_blk */
if (hmeblkp->hblk_shw_bit) {
if (hmeblkp->hblk_shw_mask) {
shadow = 1;
sfmmu_shadow_hcleanup(sfmmup,
hmeblkp, hmebp);
break;
} else {
hmeblkp->hblk_shw_bit = 0;
}
}
/*
* Hblk_hmecnt and hblk_vcnt could be non zero
* since hblk_unload() does not gurantee that.
*
* XXX - this could cause tteload() to spin
* where sfmmu_shadow_hcleanup() is called.
*/
}
nx_hblk = hmeblkp->hblk_next;
nx_pa = hmeblkp->hblk_nextpa;
if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
} else {
pr_hblk = hmeblkp;
prevpa = hblkpa;
}
hmeblkp = nx_hblk;
hblkpa = nx_pa;
}
SFMMU_HASH_UNLOCK(hmebp);
if (shadow) {
/*
* We found another shadow hblk so cleaned its
* children. We need to go back and cleanup
* the original hblk so we don't change the
* addr.
*/
shadow = 0;
} else {
addr = (caddr_t)roundup((uintptr_t)addr + 1,
(1 << hmeshift));
}
}
sfmmu_hblks_list_purge(&list);
}
/*
* Release one hardware address translation lock on the given address range.
*/
void
hat_unlock(struct hat *sfmmup, caddr_t addr, size_t len)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno = 1;
struct hme_blk *hmeblkp, *list = NULL;
caddr_t endaddr;
ASSERT(sfmmup != NULL);
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
ASSERT((sfmmup == ksfmmup) ||
AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
ASSERT((len & MMU_PAGEOFFSET) == 0);
endaddr = addr + len;
hblktag.htag_id = sfmmup;
/*
* Spitfire supports 4 page sizes.
* Most pages are expected to be of the smallest page size (8K) and
* these will not need to be rehashed. 64K pages also don't need to be
* rehashed because an hmeblk spans 64K of address space. 512K pages
* might need 1 rehash and and 4M pages might need 2 rehashes.
*/
while (addr < endaddr) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
if (hmeblkp != NULL) {
/*
* If we encounter a shadow hmeblk then
* we know there are no valid hmeblks mapping
* this address at this size or larger.
* Just increment address by the smallest
* page size.
*/
if (hmeblkp->hblk_shw_bit) {
addr += MMU_PAGESIZE;
} else {
addr = sfmmu_hblk_unlock(hmeblkp, addr,
endaddr);
}
SFMMU_HASH_UNLOCK(hmebp);
hashno = 1;
continue;
}
SFMMU_HASH_UNLOCK(hmebp);
if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
/*
* We have traversed the whole list and rehashed
* if necessary without finding the address to unlock
* which should never happen.
*/
panic("sfmmu_unlock: addr not found. "
"addr %p hat %p", (void *)addr, (void *)sfmmup);
} else {
hashno++;
}
}
sfmmu_hblks_list_purge(&list);
}
/*
* Function to unlock a range of addresses in an hmeblk. It returns the
* next address that needs to be unlocked.
* Should be called with the hash lock held.
*/
static caddr_t
sfmmu_hblk_unlock(struct hme_blk *hmeblkp, caddr_t addr, caddr_t endaddr)
{
struct sf_hment *sfhme;
tte_t tteold, ttemod;
int ttesz, ret;
ASSERT(in_hblk_range(hmeblkp, addr));
ASSERT(hmeblkp->hblk_shw_bit == 0);
endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
ttesz = get_hblk_ttesz(hmeblkp);
HBLKTOHME(sfhme, hmeblkp, addr);
while (addr < endaddr) {
readtte:
sfmmu_copytte(&sfhme->hme_tte, &tteold);
if (TTE_IS_VALID(&tteold)) {
ttemod = tteold;
ret = sfmmu_modifytte_try(&tteold, &ttemod,
&sfhme->hme_tte);
if (ret < 0)
goto readtte;
if (hmeblkp->hblk_lckcnt == 0)
panic("zero hblk lckcnt");
if (((uintptr_t)addr + TTEBYTES(ttesz)) >
(uintptr_t)endaddr)
panic("can't unlock large tte");
ASSERT(hmeblkp->hblk_lckcnt > 0);
atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
} else {
panic("sfmmu_hblk_unlock: invalid tte");
}
addr += TTEBYTES(ttesz);
sfhme++;
}
return (addr);
}
/*
* Physical Address Mapping Framework
*
* General rules:
*
* (1) Applies only to seg_kmem memory pages. To make things easier,
* seg_kpm addresses are also accepted by the routines, but nothing
* is done with them since by definition their PA mappings are static.
* (2) hat_add_callback() may only be called while holding the page lock
* SE_SHARED or SE_EXCL of the underlying page (e.g., as_pagelock()),
* or passing HAC_PAGELOCK flag.
* (3) prehandler() and posthandler() may not call hat_add_callback() or
* hat_delete_callback(), nor should they allocate memory. Post quiesce
* callbacks may not sleep or acquire adaptive mutex locks.
* (4) Either prehandler() or posthandler() (but not both) may be specified
* as being NULL. Specifying an errhandler() is optional.
*
* Details of using the framework:
*
* registering a callback (hat_register_callback())
*
* Pass prehandler, posthandler, errhandler addresses
* as described below. If capture_cpus argument is nonzero,
* suspend callback to the prehandler will occur with CPUs
* captured and executing xc_loop() and CPUs will remain
* captured until after the posthandler suspend callback
* occurs.
*
* adding a callback (hat_add_callback())
*
* as_pagelock();
* hat_add_callback();
* save returned pfn in private data structures or program registers;
* as_pageunlock();
*
* prehandler()
*
* Stop all accesses by physical address to this memory page.
* Called twice: the first, PRESUSPEND, is a context safe to acquire
* adaptive locks. The second, SUSPEND, is called at high PIL with
* CPUs captured so adaptive locks may NOT be acquired (and all spin
* locks must be XCALL_PIL or higher locks).
*
* May return the following errors:
* EIO: A fatal error has occurred. This will result in panic.
* EAGAIN: The page cannot be suspended. This will fail the
* relocation.
* 0: Success.
*
* posthandler()
*
* Save new pfn in private data structures or program registers;
* not allowed to fail (non-zero return values will result in panic).
*
* errhandler()
*
* called when an error occurs related to the callback. Currently
* the only such error is HAT_CB_ERR_LEAKED which indicates that
* a page is being freed, but there are still outstanding callback(s)
* registered on the page.
*
* removing a callback (hat_delete_callback(); e.g., prior to freeing memory)
*
* stop using physical address
* hat_delete_callback();
*
*/
/*
* Register a callback class. Each subsystem should do this once and
* cache the id_t returned for use in setting up and tearing down callbacks.
*
* There is no facility for removing callback IDs once they are created;
* the "key" should be unique for each module, so in case a module is unloaded
* and subsequently re-loaded, we can recycle the module's previous entry.
*/
id_t
hat_register_callback(int key,
int (*prehandler)(caddr_t, uint_t, uint_t, void *),
int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t),
int (*errhandler)(caddr_t, uint_t, uint_t, void *),
int capture_cpus)
{
id_t id;
/*
* Search the table for a pre-existing callback associated with
* the identifier "key". If one exists, we re-use that entry in
* the table for this instance, otherwise we assign the next
* available table slot.
*/
for (id = 0; id < sfmmu_max_cb_id; id++) {
if (sfmmu_cb_table[id].key == key)
break;
}
if (id == sfmmu_max_cb_id) {
id = sfmmu_cb_nextid++;
if (id >= sfmmu_max_cb_id)
panic("hat_register_callback: out of callback IDs");
}
ASSERT(prehandler != NULL || posthandler != NULL);
sfmmu_cb_table[id].key = key;
sfmmu_cb_table[id].prehandler = prehandler;
sfmmu_cb_table[id].posthandler = posthandler;
sfmmu_cb_table[id].errhandler = errhandler;
sfmmu_cb_table[id].capture_cpus = capture_cpus;
return (id);
}
#define HAC_COOKIE_NONE (void *)-1
/*
* Add relocation callbacks to the specified addr/len which will be called
* when relocating the associated page. See the description of pre and
* posthandler above for more details.
*
* If HAC_PAGELOCK is included in flags, the underlying memory page is
* locked internally so the caller must be able to deal with the callback
* running even before this function has returned. If HAC_PAGELOCK is not
* set, it is assumed that the underlying memory pages are locked.
*
* Since the caller must track the individual page boundaries anyway,
* we only allow a callback to be added to a single page (large
* or small). Thus [addr, addr + len) MUST be contained within a single
* page.
*
* Registering multiple callbacks on the same [addr, addr+len) is supported,
* _provided_that_ a unique parameter is specified for each callback.
* If multiple callbacks are registered on the same range the callback will
* be invoked with each unique parameter. Registering the same callback with
* the same argument more than once will result in corrupted kernel state.
*
* Returns the pfn of the underlying kernel page in *rpfn
* on success, or PFN_INVALID on failure.
*
* cookiep (if passed) provides storage space for an opaque cookie
* to return later to hat_delete_callback(). This cookie makes the callback
* deletion significantly quicker by avoiding a potentially lengthy hash
* search.
*
* Returns values:
* 0: success
* ENOMEM: memory allocation failure (e.g. flags was passed as HAC_NOSLEEP)
* EINVAL: callback ID is not valid
* ENXIO: ["vaddr", "vaddr" + len) is not mapped in the kernel's address
* space
* ERANGE: ["vaddr", "vaddr" + len) crosses a page boundary
*/
int
hat_add_callback(id_t callback_id, caddr_t vaddr, uint_t len, uint_t flags,
void *pvt, pfn_t *rpfn, void **cookiep)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
struct hme_blk *hmeblkp;
int hmeshift, hashno;
caddr_t saddr, eaddr, baseaddr;
struct pa_hment *pahmep;
struct sf_hment *sfhmep, *osfhmep;
kmutex_t *pml;
tte_t tte;
page_t *pp;
vnode_t *vp;
u_offset_t off;
pfn_t pfn;
int kmflags = (flags & HAC_SLEEP)? KM_SLEEP : KM_NOSLEEP;
int locked = 0;
/*
* For KPM mappings, just return the physical address since we
* don't need to register any callbacks.
*/
if (IS_KPM_ADDR(vaddr)) {
uint64_t paddr;
SFMMU_KPM_VTOP(vaddr, paddr);
*rpfn = btop(paddr);
if (cookiep != NULL)
*cookiep = HAC_COOKIE_NONE;
return (0);
}
if (callback_id < (id_t)0 || callback_id >= sfmmu_cb_nextid) {
*rpfn = PFN_INVALID;
return (EINVAL);
}
if ((pahmep = kmem_cache_alloc(pa_hment_cache, kmflags)) == NULL) {
*rpfn = PFN_INVALID;
return (ENOMEM);
}
sfhmep = &pahmep->sfment;
saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
eaddr = saddr + len;
rehash:
/* Find the mapping(s) for this page */
for (hashno = TTE64K, hmeblkp = NULL;
hmeblkp == NULL && hashno <= mmu_hashcnt;
hashno++) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_id = ksfmmup;
hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
if (hmeblkp == NULL)
SFMMU_HASH_UNLOCK(hmebp);
}
if (hmeblkp == NULL) {
kmem_cache_free(pa_hment_cache, pahmep);
*rpfn = PFN_INVALID;
return (ENXIO);
}
HBLKTOHME(osfhmep, hmeblkp, saddr);
sfmmu_copytte(&osfhmep->hme_tte, &tte);
if (!TTE_IS_VALID(&tte)) {
SFMMU_HASH_UNLOCK(hmebp);
kmem_cache_free(pa_hment_cache, pahmep);
*rpfn = PFN_INVALID;
return (ENXIO);
}
/*
* Make sure the boundaries for the callback fall within this
* single mapping.
*/
baseaddr = (caddr_t)get_hblk_base(hmeblkp);
ASSERT(saddr >= baseaddr);
if (eaddr > saddr + TTEBYTES(TTE_CSZ(&tte))) {
SFMMU_HASH_UNLOCK(hmebp);
kmem_cache_free(pa_hment_cache, pahmep);
*rpfn = PFN_INVALID;
return (ERANGE);
}
pfn = sfmmu_ttetopfn(&tte, vaddr);
/*
* The pfn may not have a page_t underneath in which case we
* just return it. This can happen if we are doing I/O to a
* static portion of the kernel's address space, for instance.
*/
pp = osfhmep->hme_page;
if (pp == NULL) {
SFMMU_HASH_UNLOCK(hmebp);
kmem_cache_free(pa_hment_cache, pahmep);
*rpfn = pfn;
if (cookiep)
*cookiep = HAC_COOKIE_NONE;
return (0);
}
ASSERT(pp == PP_PAGEROOT(pp));
vp = pp->p_vnode;
off = pp->p_offset;
pml = sfmmu_mlist_enter(pp);
if (flags & HAC_PAGELOCK) {
if (!page_trylock(pp, SE_SHARED)) {
/*
* Somebody is holding SE_EXCL lock. Might
* even be hat_page_relocate(). Drop all
* our locks, lookup the page in &kvp, and
* retry. If it doesn't exist in &kvp, then
* we must be dealing with a kernel mapped
* page which doesn't actually belong to
* segkmem so we punt.
*/
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
if (pp == NULL) {
kmem_cache_free(pa_hment_cache, pahmep);
*rpfn = pfn;
if (cookiep)
*cookiep = HAC_COOKIE_NONE;
return (0);
}
page_unlock(pp);
goto rehash;
}
locked = 1;
}
if (!PAGE_LOCKED(pp) && !panicstr)
panic("hat_add_callback: page 0x%p not locked", pp);
if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
pp->p_offset != off) {
/*
* The page moved before we got our hands on it. Drop
* all the locks and try again.
*/
ASSERT((flags & HAC_PAGELOCK) != 0);
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
page_unlock(pp);
locked = 0;
goto rehash;
}
if (vp != &kvp) {
/*
* This is not a segkmem page but another page which
* has been kernel mapped. It had better have at least
* a share lock on it. Return the pfn.
*/
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
if (locked)
page_unlock(pp);
kmem_cache_free(pa_hment_cache, pahmep);
ASSERT(PAGE_LOCKED(pp));
*rpfn = pfn;
if (cookiep)
*cookiep = HAC_COOKIE_NONE;
return (0);
}
/*
* Setup this pa_hment and link its embedded dummy sf_hment into
* the mapping list.
*/
pp->p_share++;
pahmep->cb_id = callback_id;
pahmep->addr = vaddr;
pahmep->len = len;
pahmep->refcnt = 1;
pahmep->flags = 0;
pahmep->pvt = pvt;
sfhmep->hme_tte.ll = 0;
sfhmep->hme_data = pahmep;
sfhmep->hme_prev = osfhmep;
sfhmep->hme_next = osfhmep->hme_next;
if (osfhmep->hme_next)
osfhmep->hme_next->hme_prev = sfhmep;
osfhmep->hme_next = sfhmep;
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
if (locked)
page_unlock(pp);
*rpfn = pfn;
if (cookiep)
*cookiep = (void *)pahmep;
return (0);
}
/*
* Remove the relocation callbacks from the specified addr/len.
*/
void
hat_delete_callback(caddr_t vaddr, uint_t len, void *pvt, uint_t flags,
void *cookie)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
struct hme_blk *hmeblkp;
int hmeshift, hashno;
caddr_t saddr;
struct pa_hment *pahmep;
struct sf_hment *sfhmep, *osfhmep;
kmutex_t *pml;
tte_t tte;
page_t *pp;
vnode_t *vp;
u_offset_t off;
int locked = 0;
/*
* If the cookie is HAC_COOKIE_NONE then there is no pa_hment to
* remove so just return.
*/
if (cookie == HAC_COOKIE_NONE || IS_KPM_ADDR(vaddr))
return;
saddr = (caddr_t)((uintptr_t)vaddr & MMU_PAGEMASK);
rehash:
/* Find the mapping(s) for this page */
for (hashno = TTE64K, hmeblkp = NULL;
hmeblkp == NULL && hashno <= mmu_hashcnt;
hashno++) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_id = ksfmmup;
hblktag.htag_bspage = HME_HASH_BSPAGE(saddr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(ksfmmup, saddr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
if (hmeblkp == NULL)
SFMMU_HASH_UNLOCK(hmebp);
}
if (hmeblkp == NULL)
return;
HBLKTOHME(osfhmep, hmeblkp, saddr);
sfmmu_copytte(&osfhmep->hme_tte, &tte);
if (!TTE_IS_VALID(&tte)) {
SFMMU_HASH_UNLOCK(hmebp);
return;
}
pp = osfhmep->hme_page;
if (pp == NULL) {
SFMMU_HASH_UNLOCK(hmebp);
ASSERT(cookie == NULL);
return;
}
vp = pp->p_vnode;
off = pp->p_offset;
pml = sfmmu_mlist_enter(pp);
if (flags & HAC_PAGELOCK) {
if (!page_trylock(pp, SE_SHARED)) {
/*
* Somebody is holding SE_EXCL lock. Might
* even be hat_page_relocate(). Drop all
* our locks, lookup the page in &kvp, and
* retry. If it doesn't exist in &kvp, then
* we must be dealing with a kernel mapped
* page which doesn't actually belong to
* segkmem so we punt.
*/
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
pp = page_lookup(&kvp, (u_offset_t)saddr, SE_SHARED);
if (pp == NULL) {
ASSERT(cookie == NULL);
return;
}
page_unlock(pp);
goto rehash;
}
locked = 1;
}
ASSERT(PAGE_LOCKED(pp));
if (osfhmep->hme_page != pp || pp->p_vnode != vp ||
pp->p_offset != off) {
/*
* The page moved before we got our hands on it. Drop
* all the locks and try again.
*/
ASSERT((flags & HAC_PAGELOCK) != 0);
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
page_unlock(pp);
locked = 0;
goto rehash;
}
if (vp != &kvp) {
/*
* This is not a segkmem page but another page which
* has been kernel mapped.
*/
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
if (locked)
page_unlock(pp);
ASSERT(cookie == NULL);
return;
}
if (cookie != NULL) {
pahmep = (struct pa_hment *)cookie;
sfhmep = &pahmep->sfment;
} else {
for (sfhmep = pp->p_mapping; sfhmep != NULL;
sfhmep = sfhmep->hme_next) {
/*
* skip va<->pa mappings
*/
if (!IS_PAHME(sfhmep))
continue;
pahmep = sfhmep->hme_data;
ASSERT(pahmep != NULL);
/*
* if pa_hment matches, remove it
*/
if ((pahmep->pvt == pvt) &&
(pahmep->addr == vaddr) &&
(pahmep->len == len)) {
break;
}
}
}
if (sfhmep == NULL) {
if (!panicstr) {
panic("hat_delete_callback: pa_hment not found, pp %p",
(void *)pp);
}
return;
}
/*
* Note: at this point a valid kernel mapping must still be
* present on this page.
*/
pp->p_share--;
if (pp->p_share <= 0)
panic("hat_delete_callback: zero p_share");
if (--pahmep->refcnt == 0) {
if (pahmep->flags != 0)
panic("hat_delete_callback: pa_hment is busy");
/*
* Remove sfhmep from the mapping list for the page.
*/
if (sfhmep->hme_prev) {
sfhmep->hme_prev->hme_next = sfhmep->hme_next;
} else {
pp->p_mapping = sfhmep->hme_next;
}
if (sfhmep->hme_next)
sfhmep->hme_next->hme_prev = sfhmep->hme_prev;
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
if (locked)
page_unlock(pp);
kmem_cache_free(pa_hment_cache, pahmep);
return;
}
sfmmu_mlist_exit(pml);
SFMMU_HASH_UNLOCK(hmebp);
if (locked)
page_unlock(pp);
}
/*
* hat_probe returns 1 if the translation for the address 'addr' is
* loaded, zero otherwise.
*
* hat_probe should be used only for advisorary purposes because it may
* occasionally return the wrong value. The implementation must guarantee that
* returning the wrong value is a very rare event. hat_probe is used
* to implement optimizations in the segment drivers.
*
*/
int
hat_probe(struct hat *sfmmup, caddr_t addr)
{
pfn_t pfn;
tte_t tte;
ASSERT(sfmmup != NULL);
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
ASSERT((sfmmup == ksfmmup) ||
AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
if (sfmmup == ksfmmup) {
while ((pfn = sfmmu_vatopfn(addr, sfmmup, &tte))
== PFN_SUSPENDED) {
sfmmu_vatopfn_suspended(addr, sfmmup, &tte);
}
} else {
pfn = sfmmu_uvatopfn(addr, sfmmup);
}
if (pfn != PFN_INVALID)
return (1);
else
return (0);
}
ssize_t
hat_getpagesize(struct hat *sfmmup, caddr_t addr)
{
tte_t tte;
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
sfmmu_gettte(sfmmup, addr, &tte);
if (TTE_IS_VALID(&tte)) {
return (TTEBYTES(TTE_CSZ(&tte)));
}
return (-1);
}
static void
sfmmu_gettte(struct hat *sfmmup, caddr_t addr, tte_t *ttep)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno = 1;
struct hme_blk *hmeblkp, *list = NULL;
struct sf_hment *sfhmep;
/* support for ISM */
ism_map_t *ism_map;
ism_blk_t *ism_blkp;
int i;
sfmmu_t *ism_hatid = NULL;
sfmmu_t *locked_hatid = NULL;
ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
ism_blkp = sfmmup->sfmmu_iblk;
if (ism_blkp) {
sfmmu_ismhat_enter(sfmmup, 0);
locked_hatid = sfmmup;
}
while (ism_blkp && ism_hatid == NULL) {
ism_map = ism_blkp->iblk_maps;
for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
if (addr >= ism_start(ism_map[i]) &&
addr < ism_end(ism_map[i])) {
sfmmup = ism_hatid = ism_map[i].imap_ismhat;
addr = (caddr_t)(addr -
ism_start(ism_map[i]));
break;
}
}
ism_blkp = ism_blkp->iblk_next;
}
if (locked_hatid) {
sfmmu_ismhat_exit(locked_hatid, 0);
}
hblktag.htag_id = sfmmup;
ttep->ll = 0;
do {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
if (hmeblkp != NULL) {
HBLKTOHME(sfhmep, hmeblkp, addr);
sfmmu_copytte(&sfhmep->hme_tte, ttep);
SFMMU_HASH_UNLOCK(hmebp);
break;
}
SFMMU_HASH_UNLOCK(hmebp);
hashno++;
} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
sfmmu_hblks_list_purge(&list);
}
uint_t
hat_getattr(struct hat *sfmmup, caddr_t addr, uint_t *attr)
{
tte_t tte;
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
sfmmu_gettte(sfmmup, addr, &tte);
if (TTE_IS_VALID(&tte)) {
*attr = sfmmu_ptov_attr(&tte);
return (0);
}
*attr = 0;
return ((uint_t)0xffffffff);
}
/*
* Enables more attributes on specified address range (ie. logical OR)
*/
void
hat_setattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
{
if (hat->sfmmu_xhat_provider) {
XHAT_SETATTR(hat, addr, len, attr);
return;
} else {
/*
* This must be a CPU HAT. If the address space has
* XHATs attached, change attributes for all of them,
* just in case
*/
ASSERT(hat->sfmmu_as != NULL);
if (hat->sfmmu_as->a_xhat != NULL)
xhat_setattr_all(hat->sfmmu_as, addr, len, attr);
}
sfmmu_chgattr(hat, addr, len, attr, SFMMU_SETATTR);
}
/*
* Assigns attributes to the specified address range. All the attributes
* are specified.
*/
void
hat_chgattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
{
if (hat->sfmmu_xhat_provider) {
XHAT_CHGATTR(hat, addr, len, attr);
return;
} else {
/*
* This must be a CPU HAT. If the address space has
* XHATs attached, change attributes for all of them,
* just in case
*/
ASSERT(hat->sfmmu_as != NULL);
if (hat->sfmmu_as->a_xhat != NULL)
xhat_chgattr_all(hat->sfmmu_as, addr, len, attr);
}
sfmmu_chgattr(hat, addr, len, attr, SFMMU_CHGATTR);
}
/*
* Remove attributes on the specified address range (ie. loginal NAND)
*/
void
hat_clrattr(struct hat *hat, caddr_t addr, size_t len, uint_t attr)
{
if (hat->sfmmu_xhat_provider) {
XHAT_CLRATTR(hat, addr, len, attr);
return;
} else {
/*
* This must be a CPU HAT. If the address space has
* XHATs attached, change attributes for all of them,
* just in case
*/
ASSERT(hat->sfmmu_as != NULL);
if (hat->sfmmu_as->a_xhat != NULL)
xhat_clrattr_all(hat->sfmmu_as, addr, len, attr);
}
sfmmu_chgattr(hat, addr, len, attr, SFMMU_CLRATTR);
}
/*
* Change attributes on an address range to that specified by attr and mode.
*/
static void
sfmmu_chgattr(struct hat *sfmmup, caddr_t addr, size_t len, uint_t attr,
int mode)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno = 1;
struct hme_blk *hmeblkp, *list = NULL;
caddr_t endaddr;
cpuset_t cpuset;
demap_range_t dmr;
CPUSET_ZERO(cpuset);
ASSERT((sfmmup == ksfmmup) ||
AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
ASSERT((len & MMU_PAGEOFFSET) == 0);
ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
if ((attr & PROT_USER) && (mode != SFMMU_CLRATTR) &&
((addr + len) > (caddr_t)USERLIMIT)) {
panic("user addr %p in kernel space",
(void *)addr);
}
endaddr = addr + len;
hblktag.htag_id = sfmmup;
DEMAP_RANGE_INIT(sfmmup, &dmr);
while (addr < endaddr) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
if (hmeblkp != NULL) {
/*
* We've encountered a shadow hmeblk so skip the range
* of the next smaller mapping size.
*/
if (hmeblkp->hblk_shw_bit) {
ASSERT(sfmmup != ksfmmup);
ASSERT(hashno > 1);
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(hashno - 1));
} else {
addr = sfmmu_hblk_chgattr(sfmmup,
hmeblkp, addr, endaddr, &dmr, attr, mode);
}
SFMMU_HASH_UNLOCK(hmebp);
hashno = 1;
continue;
}
SFMMU_HASH_UNLOCK(hmebp);
if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
/*
* We have traversed the whole list and rehashed
* if necessary without finding the address to chgattr.
* This is ok, so we increment the address by the
* smallest hmeblk range for kernel mappings or for
* user mappings with no large pages, and the largest
* hmeblk range, to account for shadow hmeblks, for
* user mappings with large pages and continue.
*/
if (sfmmup == ksfmmup)
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(1));
else
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(hashno));
hashno = 1;
} else {
hashno++;
}
}
sfmmu_hblks_list_purge(&list);
DEMAP_RANGE_FLUSH(&dmr);
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
/*
* This function chgattr on a range of addresses in an hmeblk. It returns the
* next addres that needs to be chgattr.
* It should be called with the hash lock held.
* XXX It should be possible to optimize chgattr by not flushing every time but
* on the other hand:
* 1. do one flush crosscall.
* 2. only flush if we are increasing permissions (make sure this will work)
*/
static caddr_t
sfmmu_hblk_chgattr(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
caddr_t endaddr, demap_range_t *dmrp, uint_t attr, int mode)
{
tte_t tte, tteattr, tteflags, ttemod;
struct sf_hment *sfhmep;
int ttesz;
struct page *pp = NULL;
kmutex_t *pml, *pmtx;
int ret;
int use_demap_range;
#if defined(SF_ERRATA_57)
int check_exec;
#endif
ASSERT(in_hblk_range(hmeblkp, addr));
ASSERT(hmeblkp->hblk_shw_bit == 0);
endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
ttesz = get_hblk_ttesz(hmeblkp);
/*
* Flush the current demap region if addresses have been
* skipped or the page size doesn't match.
*/
use_demap_range = (TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp));
if (use_demap_range) {
DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
} else {
DEMAP_RANGE_FLUSH(dmrp);
}
tteattr.ll = sfmmu_vtop_attr(attr, mode, &tteflags);
#if defined(SF_ERRATA_57)
check_exec = (sfmmup != ksfmmup) &&
AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
TTE_IS_EXECUTABLE(&tteattr);
#endif
HBLKTOHME(sfhmep, hmeblkp, addr);
while (addr < endaddr) {
sfmmu_copytte(&sfhmep->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
if ((tte.ll & tteflags.ll) == tteattr.ll) {
/*
* if the new attr is the same as old
* continue
*/
goto next_addr;
}
if (!TTE_IS_WRITABLE(&tteattr)) {
/*
* make sure we clear hw modify bit if we
* removing write protections
*/
tteflags.tte_intlo |= TTE_HWWR_INT;
}
pml = NULL;
pp = sfhmep->hme_page;
if (pp) {
pml = sfmmu_mlist_enter(pp);
}
if (pp != sfhmep->hme_page) {
/*
* tte must have been unloaded.
*/
ASSERT(pml);
sfmmu_mlist_exit(pml);
continue;
}
ASSERT(pp == NULL || sfmmu_mlist_held(pp));
ttemod = tte;
ttemod.ll = (ttemod.ll & ~tteflags.ll) | tteattr.ll;
ASSERT(TTE_TO_TTEPFN(&ttemod) == TTE_TO_TTEPFN(&tte));
#if defined(SF_ERRATA_57)
if (check_exec && addr < errata57_limit)
ttemod.tte_exec_perm = 0;
#endif
ret = sfmmu_modifytte_try(&tte, &ttemod,
&sfhmep->hme_tte);
if (ret < 0) {
/* tte changed underneath us */
if (pml) {
sfmmu_mlist_exit(pml);
}
continue;
}
if (tteflags.tte_intlo & TTE_HWWR_INT) {
/*
* need to sync if we are clearing modify bit.
*/
sfmmu_ttesync(sfmmup, addr, &tte, pp);
}
if (pp && PP_ISRO(pp)) {
if (tteattr.tte_intlo & TTE_WRPRM_INT) {
pmtx = sfmmu_page_enter(pp);
PP_CLRRO(pp);
sfmmu_page_exit(pmtx);
}
}
if (ret > 0 && use_demap_range) {
DEMAP_RANGE_MARKPG(dmrp, addr);
} else if (ret > 0) {
sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
}
if (pml) {
sfmmu_mlist_exit(pml);
}
}
next_addr:
addr += TTEBYTES(ttesz);
sfhmep++;
DEMAP_RANGE_NEXTPG(dmrp);
}
return (addr);
}
/*
* This routine converts virtual attributes to physical ones. It will
* update the tteflags field with the tte mask corresponding to the attributes
* affected and it returns the new attributes. It will also clear the modify
* bit if we are taking away write permission. This is necessary since the
* modify bit is the hardware permission bit and we need to clear it in order
* to detect write faults.
*/
static uint64_t
sfmmu_vtop_attr(uint_t attr, int mode, tte_t *ttemaskp)
{
tte_t ttevalue;
ASSERT(!(attr & ~SFMMU_LOAD_ALLATTR));
switch (mode) {
case SFMMU_CHGATTR:
/* all attributes specified */
ttevalue.tte_inthi = MAKE_TTEATTR_INTHI(attr);
ttevalue.tte_intlo = MAKE_TTEATTR_INTLO(attr);
ttemaskp->tte_inthi = TTEINTHI_ATTR;
ttemaskp->tte_intlo = TTEINTLO_ATTR;
break;
case SFMMU_SETATTR:
ASSERT(!(attr & ~HAT_PROT_MASK));
ttemaskp->ll = 0;
ttevalue.ll = 0;
/*
* a valid tte implies exec and read for sfmmu
* so no need to do anything about them.
* since priviledged access implies user access
* PROT_USER doesn't make sense either.
*/
if (attr & PROT_WRITE) {
ttemaskp->tte_intlo |= TTE_WRPRM_INT;
ttevalue.tte_intlo |= TTE_WRPRM_INT;
}
break;
case SFMMU_CLRATTR:
/* attributes will be nand with current ones */
if (attr & ~(PROT_WRITE | PROT_USER)) {
panic("sfmmu: attr %x not supported", attr);
}
ttemaskp->ll = 0;
ttevalue.ll = 0;
if (attr & PROT_WRITE) {
/* clear both writable and modify bit */
ttemaskp->tte_intlo |= TTE_WRPRM_INT | TTE_HWWR_INT;
}
if (attr & PROT_USER) {
ttemaskp->tte_intlo |= TTE_PRIV_INT;
ttevalue.tte_intlo |= TTE_PRIV_INT;
}
break;
default:
panic("sfmmu_vtop_attr: bad mode %x", mode);
}
ASSERT(TTE_TO_TTEPFN(&ttevalue) == 0);
return (ttevalue.ll);
}
static uint_t
sfmmu_ptov_attr(tte_t *ttep)
{
uint_t attr;
ASSERT(TTE_IS_VALID(ttep));
attr = PROT_READ;
if (TTE_IS_WRITABLE(ttep)) {
attr |= PROT_WRITE;
}
if (TTE_IS_EXECUTABLE(ttep)) {
attr |= PROT_EXEC;
}
if (!TTE_IS_PRIVILEGED(ttep)) {
attr |= PROT_USER;
}
if (TTE_IS_NFO(ttep)) {
attr |= HAT_NOFAULT;
}
if (TTE_IS_NOSYNC(ttep)) {
attr |= HAT_NOSYNC;
}
if (TTE_IS_SIDEFFECT(ttep)) {
attr |= SFMMU_SIDEFFECT;
}
if (!TTE_IS_VCACHEABLE(ttep)) {
attr |= SFMMU_UNCACHEVTTE;
}
if (!TTE_IS_PCACHEABLE(ttep)) {
attr |= SFMMU_UNCACHEPTTE;
}
return (attr);
}
/*
* hat_chgprot is a deprecated hat call. New segment drivers
* should store all attributes and use hat_*attr calls.
*
* Change the protections in the virtual address range
* given to the specified virtual protection. If vprot is ~PROT_WRITE,
* then remove write permission, leaving the other
* permissions unchanged. If vprot is ~PROT_USER, remove user permissions.
*
*/
void
hat_chgprot(struct hat *sfmmup, caddr_t addr, size_t len, uint_t vprot)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno = 1;
struct hme_blk *hmeblkp, *list = NULL;
caddr_t endaddr;
cpuset_t cpuset;
demap_range_t dmr;
ASSERT((len & MMU_PAGEOFFSET) == 0);
ASSERT(((uintptr_t)addr & MMU_PAGEOFFSET) == 0);
if (sfmmup->sfmmu_xhat_provider) {
XHAT_CHGPROT(sfmmup, addr, len, vprot);
return;
} else {
/*
* This must be a CPU HAT. If the address space has
* XHATs attached, change attributes for all of them,
* just in case
*/
ASSERT(sfmmup->sfmmu_as != NULL);
if (sfmmup->sfmmu_as->a_xhat != NULL)
xhat_chgprot_all(sfmmup->sfmmu_as, addr, len, vprot);
}
CPUSET_ZERO(cpuset);
if ((vprot != (uint_t)~PROT_WRITE) && (vprot & PROT_USER) &&
((addr + len) > (caddr_t)USERLIMIT)) {
panic("user addr %p vprot %x in kernel space",
(void *)addr, vprot);
}
endaddr = addr + len;
hblktag.htag_id = sfmmup;
DEMAP_RANGE_INIT(sfmmup, &dmr);
while (addr < endaddr) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
if (hmeblkp != NULL) {
/*
* We've encountered a shadow hmeblk so skip the range
* of the next smaller mapping size.
*/
if (hmeblkp->hblk_shw_bit) {
ASSERT(sfmmup != ksfmmup);
ASSERT(hashno > 1);
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(hashno - 1));
} else {
addr = sfmmu_hblk_chgprot(sfmmup, hmeblkp,
addr, endaddr, &dmr, vprot);
}
SFMMU_HASH_UNLOCK(hmebp);
hashno = 1;
continue;
}
SFMMU_HASH_UNLOCK(hmebp);
if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
/*
* We have traversed the whole list and rehashed
* if necessary without finding the address to chgprot.
* This is ok so we increment the address by the
* smallest hmeblk range for kernel mappings and the
* largest hmeblk range, to account for shadow hmeblks,
* for user mappings and continue.
*/
if (sfmmup == ksfmmup)
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(1));
else
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(hashno));
hashno = 1;
} else {
hashno++;
}
}
sfmmu_hblks_list_purge(&list);
DEMAP_RANGE_FLUSH(&dmr);
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
/*
* This function chgprots a range of addresses in an hmeblk. It returns the
* next addres that needs to be chgprot.
* It should be called with the hash lock held.
* XXX It shold be possible to optimize chgprot by not flushing every time but
* on the other hand:
* 1. do one flush crosscall.
* 2. only flush if we are increasing permissions (make sure this will work)
*/
static caddr_t
sfmmu_hblk_chgprot(sfmmu_t *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
caddr_t endaddr, demap_range_t *dmrp, uint_t vprot)
{
uint_t pprot;
tte_t tte, ttemod;
struct sf_hment *sfhmep;
uint_t tteflags;
int ttesz;
struct page *pp = NULL;
kmutex_t *pml, *pmtx;
int ret;
int use_demap_range;
#if defined(SF_ERRATA_57)
int check_exec;
#endif
ASSERT(in_hblk_range(hmeblkp, addr));
ASSERT(hmeblkp->hblk_shw_bit == 0);
#ifdef DEBUG
if (get_hblk_ttesz(hmeblkp) != TTE8K &&
(endaddr < get_hblk_endaddr(hmeblkp))) {
panic("sfmmu_hblk_chgprot: partial chgprot of large page");
}
#endif /* DEBUG */
endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
ttesz = get_hblk_ttesz(hmeblkp);
pprot = sfmmu_vtop_prot(vprot, &tteflags);
#if defined(SF_ERRATA_57)
check_exec = (sfmmup != ksfmmup) &&
AS_TYPE_64BIT(sfmmup->sfmmu_as) &&
((vprot & PROT_EXEC) == PROT_EXEC);
#endif
HBLKTOHME(sfhmep, hmeblkp, addr);
/*
* Flush the current demap region if addresses have been
* skipped or the page size doesn't match.
*/
use_demap_range = (TTEBYTES(ttesz) == MMU_PAGESIZE);
if (use_demap_range) {
DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
} else {
DEMAP_RANGE_FLUSH(dmrp);
}
while (addr < endaddr) {
sfmmu_copytte(&sfhmep->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
if (TTE_GET_LOFLAGS(&tte, tteflags) == pprot) {
/*
* if the new protection is the same as old
* continue
*/
goto next_addr;
}
pml = NULL;
pp = sfhmep->hme_page;
if (pp) {
pml = sfmmu_mlist_enter(pp);
}
if (pp != sfhmep->hme_page) {
/*
* tte most have been unloaded
* underneath us. Recheck
*/
ASSERT(pml);
sfmmu_mlist_exit(pml);
continue;
}
ASSERT(pp == NULL || sfmmu_mlist_held(pp));
ttemod = tte;
TTE_SET_LOFLAGS(&ttemod, tteflags, pprot);
#if defined(SF_ERRATA_57)
if (check_exec && addr < errata57_limit)
ttemod.tte_exec_perm = 0;
#endif
ret = sfmmu_modifytte_try(&tte, &ttemod,
&sfhmep->hme_tte);
if (ret < 0) {
/* tte changed underneath us */
if (pml) {
sfmmu_mlist_exit(pml);
}
continue;
}
if (tteflags & TTE_HWWR_INT) {
/*
* need to sync if we are clearing modify bit.
*/
sfmmu_ttesync(sfmmup, addr, &tte, pp);
}
if (pp && PP_ISRO(pp)) {
if (pprot & TTE_WRPRM_INT) {
pmtx = sfmmu_page_enter(pp);
PP_CLRRO(pp);
sfmmu_page_exit(pmtx);
}
}
if (ret > 0 && use_demap_range) {
DEMAP_RANGE_MARKPG(dmrp, addr);
} else if (ret > 0) {
sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
}
if (pml) {
sfmmu_mlist_exit(pml);
}
}
next_addr:
addr += TTEBYTES(ttesz);
sfhmep++;
DEMAP_RANGE_NEXTPG(dmrp);
}
return (addr);
}
/*
* This routine is deprecated and should only be used by hat_chgprot.
* The correct routine is sfmmu_vtop_attr.
* This routine converts virtual page protections to physical ones. It will
* update the tteflags field with the tte mask corresponding to the protections
* affected and it returns the new protections. It will also clear the modify
* bit if we are taking away write permission. This is necessary since the
* modify bit is the hardware permission bit and we need to clear it in order
* to detect write faults.
* It accepts the following special protections:
* ~PROT_WRITE = remove write permissions.
* ~PROT_USER = remove user permissions.
*/
static uint_t
sfmmu_vtop_prot(uint_t vprot, uint_t *tteflagsp)
{
if (vprot == (uint_t)~PROT_WRITE) {
*tteflagsp = TTE_WRPRM_INT | TTE_HWWR_INT;
return (0); /* will cause wrprm to be cleared */
}
if (vprot == (uint_t)~PROT_USER) {
*tteflagsp = TTE_PRIV_INT;
return (0); /* will cause privprm to be cleared */
}
if ((vprot == 0) || (vprot == PROT_USER) ||
((vprot & PROT_ALL) != vprot)) {
panic("sfmmu_vtop_prot -- bad prot %x", vprot);
}
switch (vprot) {
case (PROT_READ):
case (PROT_EXEC):
case (PROT_EXEC | PROT_READ):
*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
return (TTE_PRIV_INT); /* set prv and clr wrt */
case (PROT_WRITE):
case (PROT_WRITE | PROT_READ):
case (PROT_EXEC | PROT_WRITE):
case (PROT_EXEC | PROT_WRITE | PROT_READ):
*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
return (TTE_PRIV_INT | TTE_WRPRM_INT); /* set prv and wrt */
case (PROT_USER | PROT_READ):
case (PROT_USER | PROT_EXEC):
case (PROT_USER | PROT_EXEC | PROT_READ):
*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT | TTE_HWWR_INT;
return (0); /* clr prv and wrt */
case (PROT_USER | PROT_WRITE):
case (PROT_USER | PROT_WRITE | PROT_READ):
case (PROT_USER | PROT_EXEC | PROT_WRITE):
case (PROT_USER | PROT_EXEC | PROT_WRITE | PROT_READ):
*tteflagsp = TTE_PRIV_INT | TTE_WRPRM_INT;
return (TTE_WRPRM_INT); /* clr prv and set wrt */
default:
panic("sfmmu_vtop_prot -- bad prot %x", vprot);
}
return (0);
}
/*
* Alternate unload for very large virtual ranges. With a true 64 bit VA,
* the normal algorithm would take too long for a very large VA range with
* few real mappings. This routine just walks thru all HMEs in the global
* hash table to find and remove mappings.
*/
static void
hat_unload_large_virtual(
struct hat *sfmmup,
caddr_t startaddr,
size_t len,
uint_t flags,
hat_callback_t *callback)
{
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp;
struct hme_blk *pr_hblk = NULL;
struct hme_blk *nx_hblk;
struct hme_blk *list = NULL;
int i;
uint64_t hblkpa, prevpa, nx_pa;
demap_range_t dmr, *dmrp;
cpuset_t cpuset;
caddr_t endaddr = startaddr + len;
caddr_t sa;
caddr_t ea;
caddr_t cb_sa[MAX_CB_ADDR];
caddr_t cb_ea[MAX_CB_ADDR];
int addr_cnt = 0;
int a = 0;
if (sfmmup->sfmmu_free) {
dmrp = NULL;
} else {
dmrp = &dmr;
DEMAP_RANGE_INIT(sfmmup, dmrp);
}
/*
* Loop through all the hash buckets of HME blocks looking for matches.
*/
for (i = 0; i <= UHMEHASH_SZ; i++) {
hmebp = &uhme_hash[i];
SFMMU_HASH_LOCK(hmebp);
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
nx_hblk = hmeblkp->hblk_next;
nx_pa = hmeblkp->hblk_nextpa;
/*
* skip if not this context, if a shadow block or
* if the mapping is not in the requested range
*/
if (hmeblkp->hblk_tag.htag_id != sfmmup ||
hmeblkp->hblk_shw_bit ||
(sa = (caddr_t)get_hblk_base(hmeblkp)) >= endaddr ||
(ea = get_hblk_endaddr(hmeblkp)) <= startaddr) {
pr_hblk = hmeblkp;
prevpa = hblkpa;
goto next_block;
}
/*
* unload if there are any current valid mappings
*/
if (hmeblkp->hblk_vcnt != 0 ||
hmeblkp->hblk_hmecnt != 0)
(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
sa, ea, dmrp, flags);
/*
* on unmap we also release the HME block itself, once
* all mappings are gone.
*/
if ((flags & HAT_UNLOAD_UNMAP) != 0 &&
!hmeblkp->hblk_vcnt &&
!hmeblkp->hblk_hmecnt) {
ASSERT(!hmeblkp->hblk_lckcnt);
sfmmu_hblk_hash_rm(hmebp, hmeblkp,
prevpa, pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
} else {
pr_hblk = hmeblkp;
prevpa = hblkpa;
}
if (callback == NULL)
goto next_block;
/*
* HME blocks may span more than one page, but we may be
* unmapping only one page, so check for a smaller range
* for the callback
*/
if (sa < startaddr)
sa = startaddr;
if (--ea > endaddr)
ea = endaddr - 1;
cb_sa[addr_cnt] = sa;
cb_ea[addr_cnt] = ea;
if (++addr_cnt == MAX_CB_ADDR) {
if (dmrp != NULL) {
DEMAP_RANGE_FLUSH(dmrp);
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
for (a = 0; a < MAX_CB_ADDR; ++a) {
callback->hcb_start_addr = cb_sa[a];
callback->hcb_end_addr = cb_ea[a];
callback->hcb_function(callback);
}
addr_cnt = 0;
}
next_block:
hmeblkp = nx_hblk;
hblkpa = nx_pa;
}
SFMMU_HASH_UNLOCK(hmebp);
}
sfmmu_hblks_list_purge(&list);
if (dmrp != NULL) {
DEMAP_RANGE_FLUSH(dmrp);
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
for (a = 0; a < addr_cnt; ++a) {
callback->hcb_start_addr = cb_sa[a];
callback->hcb_end_addr = cb_ea[a];
callback->hcb_function(callback);
}
/*
* Check TSB and TLB page sizes if the process isn't exiting.
*/
if (!sfmmup->sfmmu_free)
sfmmu_check_page_sizes(sfmmup, 0);
}
/*
* Unload all the mappings in the range [addr..addr+len). addr and len must
* be MMU_PAGESIZE aligned.
*/
extern struct seg *segkmap;
#define ISSEGKMAP(sfmmup, addr) (sfmmup == ksfmmup && \
segkmap->s_base <= (addr) && (addr) < (segkmap->s_base + segkmap->s_size))
void
hat_unload_callback(
struct hat *sfmmup,
caddr_t addr,
size_t len,
uint_t flags,
hat_callback_t *callback)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno, iskernel;
struct hme_blk *hmeblkp, *pr_hblk, *list = NULL;
caddr_t endaddr;
cpuset_t cpuset;
uint64_t hblkpa, prevpa;
int addr_count = 0;
int a;
caddr_t cb_start_addr[MAX_CB_ADDR];
caddr_t cb_end_addr[MAX_CB_ADDR];
int issegkmap = ISSEGKMAP(sfmmup, addr);
demap_range_t dmr, *dmrp;
if (sfmmup->sfmmu_xhat_provider) {
XHAT_UNLOAD_CALLBACK(sfmmup, addr, len, flags, callback);
return;
} else {
/*
* This must be a CPU HAT. If the address space has
* XHATs attached, unload the mappings for all of them,
* just in case
*/
ASSERT(sfmmup->sfmmu_as != NULL);
if (sfmmup->sfmmu_as->a_xhat != NULL)
xhat_unload_callback_all(sfmmup->sfmmu_as, addr,
len, flags, callback);
}
ASSERT((sfmmup == ksfmmup) || (flags & HAT_UNLOAD_OTHER) || \
AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
ASSERT(sfmmup != NULL);
ASSERT((len & MMU_PAGEOFFSET) == 0);
ASSERT(!((uintptr_t)addr & MMU_PAGEOFFSET));
/*
* Probing through a large VA range (say 63 bits) will be slow, even
* at 4 Meg steps between the probes. So, when the virtual address range
* is very large, search the HME entries for what to unload.
*
* len >> TTE_PAGE_SHIFT(TTE4M) is the # of 4Meg probes we'd need
*
* UHMEHASH_SZ is number of hash buckets to examine
*
*/
if (sfmmup != KHATID && (len >> TTE_PAGE_SHIFT(TTE4M)) > UHMEHASH_SZ) {
hat_unload_large_virtual(sfmmup, addr, len, flags, callback);
return;
}
CPUSET_ZERO(cpuset);
/*
* If the process is exiting, we can save a lot of fuss since
* we'll flush the TLB when we free the ctx anyway.
*/
if (sfmmup->sfmmu_free)
dmrp = NULL;
else
dmrp = &dmr;
DEMAP_RANGE_INIT(sfmmup, dmrp);
endaddr = addr + len;
hblktag.htag_id = sfmmup;
/*
* It is likely for the vm to call unload over a wide range of
* addresses that are actually very sparsely populated by
* translations. In order to speed this up the sfmmu hat supports
* the concept of shadow hmeblks. Dummy large page hmeblks that
* correspond to actual small translations are allocated at tteload
* time and are referred to as shadow hmeblks. Now, during unload
* time, we first check if we have a shadow hmeblk for that
* translation. The absence of one means the corresponding address
* range is empty and can be skipped.
*
* The kernel is an exception to above statement and that is why
* we don't use shadow hmeblks and hash starting from the smallest
* page size.
*/
if (sfmmup == KHATID) {
iskernel = 1;
hashno = TTE64K;
} else {
iskernel = 0;
if (mmu_page_sizes == max_mmu_page_sizes) {
hashno = TTE256M;
} else {
hashno = TTE4M;
}
}
while (addr < endaddr) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_SEARCH_PREV(hmebp, hblktag, hmeblkp, hblkpa, pr_hblk,
prevpa, &list);
if (hmeblkp == NULL) {
/*
* didn't find an hmeblk. skip the appropiate
* address range.
*/
SFMMU_HASH_UNLOCK(hmebp);
if (iskernel) {
if (hashno < mmu_hashcnt) {
hashno++;
continue;
} else {
hashno = TTE64K;
addr = (caddr_t)roundup((uintptr_t)addr
+ 1, MMU_PAGESIZE64K);
continue;
}
}
addr = (caddr_t)roundup((uintptr_t)addr + 1,
(1 << hmeshift));
if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
ASSERT(hashno == TTE64K);
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
hashno = TTE512K;
continue;
}
if (mmu_page_sizes == max_mmu_page_sizes) {
if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
hashno = TTE4M;
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
hashno = TTE32M;
continue;
}
hashno = TTE256M;
continue;
} else {
hashno = TTE4M;
continue;
}
}
ASSERT(hmeblkp);
if (!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
/*
* If the valid count is zero we can skip the range
* mapped by this hmeblk.
* We free hblks in the case of HAT_UNMAP. HAT_UNMAP
* is used by segment drivers as a hint
* that the mapping resource won't be used any longer.
* The best example of this is during exit().
*/
addr = (caddr_t)roundup((uintptr_t)addr + 1,
get_hblk_span(hmeblkp));
if ((flags & HAT_UNLOAD_UNMAP) ||
(iskernel && !issegkmap)) {
sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
}
SFMMU_HASH_UNLOCK(hmebp);
if (iskernel) {
hashno = TTE64K;
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
ASSERT(hashno == TTE64K);
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
hashno = TTE512K;
continue;
}
if (mmu_page_sizes == max_mmu_page_sizes) {
if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
hashno = TTE4M;
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
hashno = TTE32M;
continue;
}
hashno = TTE256M;
continue;
} else {
hashno = TTE4M;
continue;
}
}
if (hmeblkp->hblk_shw_bit) {
/*
* If we encounter a shadow hmeblk we know there is
* smaller sized hmeblks mapping the same address space.
* Decrement the hash size and rehash.
*/
ASSERT(sfmmup != KHATID);
hashno--;
SFMMU_HASH_UNLOCK(hmebp);
continue;
}
/*
* track callback address ranges.
* only start a new range when it's not contiguous
*/
if (callback != NULL) {
if (addr_count > 0 &&
addr == cb_end_addr[addr_count - 1])
--addr_count;
else
cb_start_addr[addr_count] = addr;
}
addr = sfmmu_hblk_unload(sfmmup, hmeblkp, addr, endaddr,
dmrp, flags);
if (callback != NULL)
cb_end_addr[addr_count++] = addr;
if (((flags & HAT_UNLOAD_UNMAP) || (iskernel && !issegkmap)) &&
!hmeblkp->hblk_vcnt && !hmeblkp->hblk_hmecnt) {
sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa,
pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp, hblkpa, &list);
}
SFMMU_HASH_UNLOCK(hmebp);
/*
* Notify our caller as to exactly which pages
* have been unloaded. We do these in clumps,
* to minimize the number of xt_sync()s that need to occur.
*/
if (callback != NULL && addr_count == MAX_CB_ADDR) {
DEMAP_RANGE_FLUSH(dmrp);
if (dmrp != NULL) {
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
for (a = 0; a < MAX_CB_ADDR; ++a) {
callback->hcb_start_addr = cb_start_addr[a];
callback->hcb_end_addr = cb_end_addr[a];
callback->hcb_function(callback);
}
addr_count = 0;
}
if (iskernel) {
hashno = TTE64K;
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET512K) {
ASSERT(hashno == TTE64K);
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET4M) {
hashno = TTE512K;
continue;
}
if (mmu_page_sizes == max_mmu_page_sizes) {
if ((uintptr_t)addr & MMU_PAGEOFFSET32M) {
hashno = TTE4M;
continue;
}
if ((uintptr_t)addr & MMU_PAGEOFFSET256M) {
hashno = TTE32M;
continue;
}
hashno = TTE256M;
} else {
hashno = TTE4M;
}
}
sfmmu_hblks_list_purge(&list);
DEMAP_RANGE_FLUSH(dmrp);
if (dmrp != NULL) {
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
if (callback && addr_count != 0) {
for (a = 0; a < addr_count; ++a) {
callback->hcb_start_addr = cb_start_addr[a];
callback->hcb_end_addr = cb_end_addr[a];
callback->hcb_function(callback);
}
}
/*
* Check TSB and TLB page sizes if the process isn't exiting.
*/
if (!sfmmup->sfmmu_free)
sfmmu_check_page_sizes(sfmmup, 0);
}
/*
* Unload all the mappings in the range [addr..addr+len). addr and len must
* be MMU_PAGESIZE aligned.
*/
void
hat_unload(struct hat *sfmmup, caddr_t addr, size_t len, uint_t flags)
{
if (sfmmup->sfmmu_xhat_provider) {
XHAT_UNLOAD(sfmmup, addr, len, flags);
return;
}
hat_unload_callback(sfmmup, addr, len, flags, NULL);
}
/*
* Find the largest mapping size for this page.
*/
int
fnd_mapping_sz(page_t *pp)
{
int sz;
int p_index;
p_index = PP_MAPINDEX(pp);
sz = 0;
p_index >>= 1; /* don't care about 8K bit */
for (; p_index; p_index >>= 1) {
sz++;
}
return (sz);
}
/*
* This function unloads a range of addresses for an hmeblk.
* It returns the next address to be unloaded.
* It should be called with the hash lock held.
*/
static caddr_t
sfmmu_hblk_unload(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
caddr_t endaddr, demap_range_t *dmrp, uint_t flags)
{
tte_t tte, ttemod;
struct sf_hment *sfhmep;
int ttesz;
long ttecnt;
page_t *pp;
kmutex_t *pml;
int ret;
int use_demap_range;
ASSERT(in_hblk_range(hmeblkp, addr));
ASSERT(!hmeblkp->hblk_shw_bit);
#ifdef DEBUG
if (get_hblk_ttesz(hmeblkp) != TTE8K &&
(endaddr < get_hblk_endaddr(hmeblkp))) {
panic("sfmmu_hblk_unload: partial unload of large page");
}
#endif /* DEBUG */
endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
ttesz = get_hblk_ttesz(hmeblkp);
use_demap_range = (do_virtual_coloring &&
((dmrp == NULL) || TTEBYTES(ttesz) == DEMAP_RANGE_PGSZ(dmrp)));
if (use_demap_range) {
DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr);
} else {
DEMAP_RANGE_FLUSH(dmrp);
}
ttecnt = 0;
HBLKTOHME(sfhmep, hmeblkp, addr);
while (addr < endaddr) {
pml = NULL;
again:
sfmmu_copytte(&sfhmep->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
pp = sfhmep->hme_page;
if (pp && pml == NULL) {
pml = sfmmu_mlist_enter(pp);
}
/*
* Verify if hme still points to 'pp' now that
* we have p_mapping lock.
*/
if (sfhmep->hme_page != pp) {
if (pp != NULL && sfhmep->hme_page != NULL) {
if (pml) {
sfmmu_mlist_exit(pml);
}
/* Re-start this iteration. */
continue;
}
ASSERT((pp != NULL) &&
(sfhmep->hme_page == NULL));
goto tte_unloaded;
}
/*
* This point on we have both HASH and p_mapping
* lock.
*/
ASSERT(pp == sfhmep->hme_page);
ASSERT(pp == NULL || sfmmu_mlist_held(pp));
/*
* We need to loop on modify tte because it is
* possible for pagesync to come along and
* change the software bits beneath us.
*
* Page_unload can also invalidate the tte after
* we read tte outside of p_mapping lock.
*/
ttemod = tte;
TTE_SET_INVALID(&ttemod);
ret = sfmmu_modifytte_try(&tte, &ttemod,
&sfhmep->hme_tte);
if (ret <= 0) {
if (TTE_IS_VALID(&tte)) {
goto again;
} else {
/*
* We read in a valid pte, but it
* is unloaded by page_unload.
* hme_page has become NULL and
* we hold no p_mapping lock.
*/
ASSERT(pp == NULL && pml == NULL);
goto tte_unloaded;
}
}
if (!(flags & HAT_UNLOAD_NOSYNC)) {
sfmmu_ttesync(sfmmup, addr, &tte, pp);
}
/*
* Ok- we invalidated the tte. Do the rest of the job.
*/
ttecnt++;
if (flags & HAT_UNLOAD_UNLOCK) {
ASSERT(hmeblkp->hblk_lckcnt > 0);
atomic_add_16(&hmeblkp->hblk_lckcnt, -1);
HBLK_STACK_TRACE(hmeblkp, HBLK_UNLOCK);
}
/*
* Normally we would need to flush the page
* from the virtual cache at this point in
* order to prevent a potential cache alias
* inconsistency.
* The particular scenario we need to worry
* about is:
* Given: va1 and va2 are two virtual address
* that alias and map the same physical
* address.
* 1. mapping exists from va1 to pa and data
* has been read into the cache.
* 2. unload va1.
* 3. load va2 and modify data using va2.
* 4 unload va2.
* 5. load va1 and reference data. Unless we
* flush the data cache when we unload we will
* get stale data.
* Fortunately, page coloring eliminates the
* above scenario by remembering the color a
* physical page was last or is currently
* mapped to. Now, we delay the flush until
* the loading of translations. Only when the
* new translation is of a different color
* are we forced to flush.
*/
if (use_demap_range) {
/*
* Mark this page as needing a demap.
*/
DEMAP_RANGE_MARKPG(dmrp, addr);
} else {
if (do_virtual_coloring) {
sfmmu_tlb_demap(addr, sfmmup, hmeblkp,
sfmmup->sfmmu_free, 0);
} else {
pfn_t pfnum;
pfnum = TTE_TO_PFN(addr, &tte);
sfmmu_tlbcache_demap(addr, sfmmup,
hmeblkp, pfnum, sfmmup->sfmmu_free,
FLUSH_NECESSARY_CPUS,
CACHE_FLUSH, 0);
}
}
if (pp) {
/*
* Remove the hment from the mapping list
*/
ASSERT(hmeblkp->hblk_hmecnt > 0);
/*
* Again, we cannot
* ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS);
*/
HME_SUB(sfhmep, pp);
membar_stst();
atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
}
ASSERT(hmeblkp->hblk_vcnt > 0);
atomic_add_16(&hmeblkp->hblk_vcnt, -1);
ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
!hmeblkp->hblk_lckcnt);
#ifdef VAC
if (pp && (pp->p_nrm & (P_KPMC | P_KPMS | P_TNC))) {
if (PP_ISTNC(pp)) {
/*
* If page was temporary
* uncached, try to recache
* it. Note that HME_SUB() was
* called above so p_index and
* mlist had been updated.
*/
conv_tnc(pp, ttesz);
} else if (pp->p_mapping == NULL) {
ASSERT(kpm_enable);
/*
* Page is marked to be in VAC conflict
* to an existing kpm mapping and/or is
* kpm mapped using only the regular
* pagesize.
*/
sfmmu_kpm_hme_unload(pp);
}
}
#endif /* VAC */
} else if ((pp = sfhmep->hme_page) != NULL) {
/*
* TTE is invalid but the hme
* still exists. let pageunload
* complete its job.
*/
ASSERT(pml == NULL);
pml = sfmmu_mlist_enter(pp);
if (sfhmep->hme_page != NULL) {
sfmmu_mlist_exit(pml);
pml = NULL;
goto again;
}
ASSERT(sfhmep->hme_page == NULL);
} else if (hmeblkp->hblk_hmecnt != 0) {
/*
* pageunload may have not finished decrementing
* hblk_vcnt and hblk_hmecnt. Find page_t if any and
* wait for pageunload to finish. Rely on pageunload
* to decrement hblk_hmecnt after hblk_vcnt.
*/
pfn_t pfn = TTE_TO_TTEPFN(&tte);
ASSERT(pml == NULL);
if (pf_is_memory(pfn)) {
pp = page_numtopp_nolock(pfn);
if (pp != NULL) {
pml = sfmmu_mlist_enter(pp);
sfmmu_mlist_exit(pml);
pml = NULL;
}
}
}
tte_unloaded:
/*
* At this point, the tte we are looking at
* should be unloaded, and hme has been unlinked
* from page too. This is important because in
* pageunload, it does ttesync() then HME_SUB.
* We need to make sure HME_SUB has been completed
* so we know ttesync() has been completed. Otherwise,
* at exit time, after return from hat layer, VM will
* release as structure which hat_setstat() (called
* by ttesync()) needs.
*/
#ifdef DEBUG
{
tte_t dtte;
ASSERT(sfhmep->hme_page == NULL);
sfmmu_copytte(&sfhmep->hme_tte, &dtte);
ASSERT(!TTE_IS_VALID(&dtte));
}
#endif
if (pml) {
sfmmu_mlist_exit(pml);
}
addr += TTEBYTES(ttesz);
sfhmep++;
DEMAP_RANGE_NEXTPG(dmrp);
}
if (ttecnt > 0)
atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -ttecnt);
return (addr);
}
/*
* Synchronize all the mappings in the range [addr..addr+len).
* Can be called with clearflag having two states:
* HAT_SYNC_DONTZERO means just return the rm stats
* HAT_SYNC_ZERORM means zero rm bits in the tte and return the stats
*/
void
hat_sync(struct hat *sfmmup, caddr_t addr, size_t len, uint_t clearflag)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno = 1;
struct hme_blk *hmeblkp, *list = NULL;
caddr_t endaddr;
cpuset_t cpuset;
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
ASSERT((sfmmup == ksfmmup) ||
AS_LOCK_HELD(sfmmup->sfmmu_as, &sfmmup->sfmmu_as->a_lock));
ASSERT((len & MMU_PAGEOFFSET) == 0);
ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
(clearflag == HAT_SYNC_ZERORM));
CPUSET_ZERO(cpuset);
endaddr = addr + len;
hblktag.htag_id = sfmmup;
/*
* Spitfire supports 4 page sizes.
* Most pages are expected to be of the smallest page
* size (8K) and these will not need to be rehashed. 64K
* pages also don't need to be rehashed because the an hmeblk
* spans 64K of address space. 512K pages might need 1 rehash and
* and 4M pages 2 rehashes.
*/
while (addr < endaddr) {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(addr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, addr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_SEARCH(hmebp, hblktag, hmeblkp, &list);
if (hmeblkp != NULL) {
/*
* We've encountered a shadow hmeblk so skip the range
* of the next smaller mapping size.
*/
if (hmeblkp->hblk_shw_bit) {
ASSERT(sfmmup != ksfmmup);
ASSERT(hashno > 1);
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(hashno - 1));
} else {
addr = sfmmu_hblk_sync(sfmmup, hmeblkp,
addr, endaddr, clearflag);
}
SFMMU_HASH_UNLOCK(hmebp);
hashno = 1;
continue;
}
SFMMU_HASH_UNLOCK(hmebp);
if (!HME_REHASH(sfmmup) || (hashno >= mmu_hashcnt)) {
/*
* We have traversed the whole list and rehashed
* if necessary without finding the address to sync.
* This is ok so we increment the address by the
* smallest hmeblk range for kernel mappings and the
* largest hmeblk range, to account for shadow hmeblks,
* for user mappings and continue.
*/
if (sfmmup == ksfmmup)
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(1));
else
addr = (caddr_t)P2END((uintptr_t)addr,
TTEBYTES(hashno));
hashno = 1;
} else {
hashno++;
}
}
sfmmu_hblks_list_purge(&list);
cpuset = sfmmup->sfmmu_cpusran;
xt_sync(cpuset);
}
static caddr_t
sfmmu_hblk_sync(struct hat *sfmmup, struct hme_blk *hmeblkp, caddr_t addr,
caddr_t endaddr, int clearflag)
{
tte_t tte, ttemod;
struct sf_hment *sfhmep;
int ttesz;
struct page *pp;
kmutex_t *pml;
int ret;
ASSERT(hmeblkp->hblk_shw_bit == 0);
endaddr = MIN(endaddr, get_hblk_endaddr(hmeblkp));
ttesz = get_hblk_ttesz(hmeblkp);
HBLKTOHME(sfhmep, hmeblkp, addr);
while (addr < endaddr) {
sfmmu_copytte(&sfhmep->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
pml = NULL;
pp = sfhmep->hme_page;
if (pp) {
pml = sfmmu_mlist_enter(pp);
}
if (pp != sfhmep->hme_page) {
/*
* tte most have been unloaded
* underneath us. Recheck
*/
ASSERT(pml);
sfmmu_mlist_exit(pml);
continue;
}
ASSERT(pp == NULL || sfmmu_mlist_held(pp));
if (clearflag == HAT_SYNC_ZERORM) {
ttemod = tte;
TTE_CLR_RM(&ttemod);
ret = sfmmu_modifytte_try(&tte, &ttemod,
&sfhmep->hme_tte);
if (ret < 0) {
if (pml) {
sfmmu_mlist_exit(pml);
}
continue;
}
if (ret > 0) {
sfmmu_tlb_demap(addr, sfmmup,
hmeblkp, 0, 0);
}
}
sfmmu_ttesync(sfmmup, addr, &tte, pp);
if (pml) {
sfmmu_mlist_exit(pml);
}
}
addr += TTEBYTES(ttesz);
sfhmep++;
}
return (addr);
}
/*
* This function will sync a tte to the page struct and it will
* update the hat stats. Currently it allows us to pass a NULL pp
* and we will simply update the stats. We may want to change this
* so we only keep stats for pages backed by pp's.
*/
static void
sfmmu_ttesync(struct hat *sfmmup, caddr_t addr, tte_t *ttep, page_t *pp)
{
uint_t rm = 0;
int sz;
pgcnt_t npgs;
ASSERT(TTE_IS_VALID(ttep));
if (TTE_IS_NOSYNC(ttep)) {
return;
}
if (TTE_IS_REF(ttep)) {
rm = P_REF;
}
if (TTE_IS_MOD(ttep)) {
rm |= P_MOD;
}
if (rm == 0) {
return;
}
sz = TTE_CSZ(ttep);
if (sfmmup->sfmmu_rmstat) {
int i;
caddr_t vaddr = addr;
for (i = 0; i < TTEPAGES(sz); i++, vaddr += MMU_PAGESIZE) {
hat_setstat(sfmmup->sfmmu_as, vaddr, MMU_PAGESIZE, rm);
}
}
/*
* XXX I want to use cas to update nrm bits but they
* currently belong in common/vm and not in hat where
* they should be.
* The nrm bits are protected by the same mutex as
* the one that protects the page's mapping list.
*/
if (!pp)
return;
ASSERT(sfmmu_mlist_held(pp));
/*
* If the tte is for a large page, we need to sync all the
* pages covered by the tte.
*/
if (sz != TTE8K) {
ASSERT(pp->p_szc != 0);
pp = PP_GROUPLEADER(pp, sz);
ASSERT(sfmmu_mlist_held(pp));
}
/* Get number of pages from tte size. */
npgs = TTEPAGES(sz);
do {
ASSERT(pp);
ASSERT(sfmmu_mlist_held(pp));
if (((rm & P_REF) != 0 && !PP_ISREF(pp)) ||
((rm & P_MOD) != 0 && !PP_ISMOD(pp)))
hat_page_setattr(pp, rm);
/*
* Are we done? If not, we must have a large mapping.
* For large mappings we need to sync the rest of the pages
* covered by this tte; goto the next page.
*/
} while (--npgs > 0 && (pp = PP_PAGENEXT(pp)));
}
/*
* Execute pre-callback handler of each pa_hment linked to pp
*
* Inputs:
* flag: either HAT_PRESUSPEND or HAT_SUSPEND.
* capture_cpus: pointer to return value (below)
*
* Returns:
* Propagates the subsystem callback return values back to the caller;
* returns 0 on success. If capture_cpus is non-NULL, the value returned
* is zero if all of the pa_hments are of a type that do not require
* capturing CPUs prior to suspending the mapping, else it is 1.
*/
static int
hat_pageprocess_precallbacks(struct page *pp, uint_t flag, int *capture_cpus)
{
struct sf_hment *sfhmep;
struct pa_hment *pahmep;
int (*f)(caddr_t, uint_t, uint_t, void *);
int ret;
id_t id;
int locked = 0;
kmutex_t *pml;
ASSERT(PAGE_EXCL(pp));
if (!sfmmu_mlist_held(pp)) {
pml = sfmmu_mlist_enter(pp);
locked = 1;
}
if (capture_cpus)
*capture_cpus = 0;
top:
for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
/*
* skip sf_hments corresponding to VA<->PA mappings;
* for pa_hment's, hme_tte.ll is zero
*/
if (!IS_PAHME(sfhmep))
continue;
pahmep = sfhmep->hme_data;
ASSERT(pahmep != NULL);
/*
* skip if pre-handler has been called earlier in this loop
*/
if (pahmep->flags & flag)
continue;
id = pahmep->cb_id;
ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
if (capture_cpus && sfmmu_cb_table[id].capture_cpus != 0)
*capture_cpus = 1;
if ((f = sfmmu_cb_table[id].prehandler) == NULL) {
pahmep->flags |= flag;
continue;
}
/*
* Drop the mapping list lock to avoid locking order issues.
*/
if (locked)
sfmmu_mlist_exit(pml);
ret = f(pahmep->addr, pahmep->len, flag, pahmep->pvt);
if (ret != 0)
return (ret); /* caller must do the cleanup */
if (locked) {
pml = sfmmu_mlist_enter(pp);
pahmep->flags |= flag;
goto top;
}
pahmep->flags |= flag;
}
if (locked)
sfmmu_mlist_exit(pml);
return (0);
}
/*
* Execute post-callback handler of each pa_hment linked to pp
*
* Same overall assumptions and restrictions apply as for
* hat_pageprocess_precallbacks().
*/
static void
hat_pageprocess_postcallbacks(struct page *pp, uint_t flag)
{
pfn_t pgpfn = pp->p_pagenum;
pfn_t pgmask = btop(page_get_pagesize(pp->p_szc)) - 1;
pfn_t newpfn;
struct sf_hment *sfhmep;
struct pa_hment *pahmep;
int (*f)(caddr_t, uint_t, uint_t, void *, pfn_t);
id_t id;
int locked = 0;
kmutex_t *pml;
ASSERT(PAGE_EXCL(pp));
if (!sfmmu_mlist_held(pp)) {
pml = sfmmu_mlist_enter(pp);
locked = 1;
}
top:
for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
/*
* skip sf_hments corresponding to VA<->PA mappings;
* for pa_hment's, hme_tte.ll is zero
*/
if (!IS_PAHME(sfhmep))
continue;
pahmep = sfhmep->hme_data;
ASSERT(pahmep != NULL);
if ((pahmep->flags & flag) == 0)
continue;
pahmep->flags &= ~flag;
id = pahmep->cb_id;
ASSERT(id >= (id_t)0 && id < sfmmu_cb_nextid);
if ((f = sfmmu_cb_table[id].posthandler) == NULL)
continue;
/*
* Convert the base page PFN into the constituent PFN
* which is needed by the callback handler.
*/
newpfn = pgpfn | (btop((uintptr_t)pahmep->addr) & pgmask);
/*
* Drop the mapping list lock to avoid locking order issues.
*/
if (locked)
sfmmu_mlist_exit(pml);
if (f(pahmep->addr, pahmep->len, flag, pahmep->pvt, newpfn)
!= 0)
panic("sfmmu: posthandler failed");
if (locked) {
pml = sfmmu_mlist_enter(pp);
goto top;
}
}
if (locked)
sfmmu_mlist_exit(pml);
}
/*
* Suspend locked kernel mapping
*/
void
hat_pagesuspend(struct page *pp)
{
struct sf_hment *sfhmep;
sfmmu_t *sfmmup;
tte_t tte, ttemod;
struct hme_blk *hmeblkp;
caddr_t addr;
int index, cons;
cpuset_t cpuset;
ASSERT(PAGE_EXCL(pp));
ASSERT(sfmmu_mlist_held(pp));
mutex_enter(&kpr_suspendlock);
/*
* Call into dtrace to tell it we're about to suspend a
* kernel mapping. This prevents us from running into issues
* with probe context trying to touch a suspended page
* in the relocation codepath itself.
*/
if (dtrace_kreloc_init)
(*dtrace_kreloc_init)();
index = PP_MAPINDEX(pp);
cons = TTE8K;
retry:
for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
if (IS_PAHME(sfhmep))
continue;
if (get_hblk_ttesz(sfmmu_hmetohblk(sfhmep)) != cons)
continue;
/*
* Loop until we successfully set the suspend bit in
* the TTE.
*/
again:
sfmmu_copytte(&sfhmep->hme_tte, &tte);
ASSERT(TTE_IS_VALID(&tte));
ttemod = tte;
TTE_SET_SUSPEND(&ttemod);
if (sfmmu_modifytte_try(&tte, &ttemod,
&sfhmep->hme_tte) < 0)
goto again;
/*
* Invalidate TSB entry
*/
hmeblkp = sfmmu_hmetohblk(sfhmep);
sfmmup = hblktosfmmu(hmeblkp);
ASSERT(sfmmup == ksfmmup);
addr = tte_to_vaddr(hmeblkp, tte);
/*
* No need to make sure that the TSB for this sfmmu is
* not being relocated since it is ksfmmup and thus it
* will never be relocated.
*/
SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
/*
* Update xcall stats
*/
cpuset = cpu_ready_set;
CPUSET_DEL(cpuset, CPU->cpu_id);
/* LINTED: constant in conditional context */
SFMMU_XCALL_STATS(ksfmmup);
/*
* Flush TLB entry on remote CPU's
*/
xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
(uint64_t)ksfmmup);
xt_sync(cpuset);
/*
* Flush TLB entry on local CPU
*/
vtag_flushpage(addr, (uint64_t)ksfmmup);
}
while (index != 0) {
index = index >> 1;
if (index != 0)
cons++;
if (index & 0x1) {
pp = PP_GROUPLEADER(pp, cons);
goto retry;
}
}
}
#ifdef DEBUG
#define N_PRLE 1024
struct prle {
page_t *targ;
page_t *repl;
int status;
int pausecpus;
hrtime_t whence;
};
static struct prle page_relocate_log[N_PRLE];
static int prl_entry;
static kmutex_t prl_mutex;
#define PAGE_RELOCATE_LOG(t, r, s, p) \
mutex_enter(&prl_mutex); \
page_relocate_log[prl_entry].targ = *(t); \
page_relocate_log[prl_entry].repl = *(r); \
page_relocate_log[prl_entry].status = (s); \
page_relocate_log[prl_entry].pausecpus = (p); \
page_relocate_log[prl_entry].whence = gethrtime(); \
prl_entry = (prl_entry == (N_PRLE - 1))? 0 : prl_entry + 1; \
mutex_exit(&prl_mutex);
#else /* !DEBUG */
#define PAGE_RELOCATE_LOG(t, r, s, p)
#endif
/*
* Core Kernel Page Relocation Algorithm
*
* Input:
*
* target : constituent pages are SE_EXCL locked.
* replacement: constituent pages are SE_EXCL locked.
*
* Output:
*
* nrelocp: number of pages relocated
*/
int
hat_page_relocate(page_t **target, page_t **replacement, spgcnt_t *nrelocp)
{
page_t *targ, *repl;
page_t *tpp, *rpp;
kmutex_t *low, *high;
spgcnt_t npages, i;
page_t *pl = NULL;
int old_pil;
cpuset_t cpuset;
int cap_cpus;
int ret;
if (hat_kpr_enabled == 0 || !kcage_on || PP_ISNORELOC(*target)) {
PAGE_RELOCATE_LOG(target, replacement, EAGAIN, -1);
return (EAGAIN);
}
mutex_enter(&kpr_mutex);
kreloc_thread = curthread;
targ = *target;
repl = *replacement;
ASSERT(repl != NULL);
ASSERT(targ->p_szc == repl->p_szc);
npages = page_get_pagecnt(targ->p_szc);
/*
* unload VA<->PA mappings that are not locked
*/
tpp = targ;
for (i = 0; i < npages; i++) {
(void) hat_pageunload(tpp, SFMMU_KERNEL_RELOC);
tpp++;
}
/*
* Do "presuspend" callbacks, in a context from which we can still
* block as needed. Note that we don't hold the mapping list lock
* of "targ" at this point due to potential locking order issues;
* we assume that between the hat_pageunload() above and holding
* the SE_EXCL lock that the mapping list *cannot* change at this
* point.
*/
ret = hat_pageprocess_precallbacks(targ, HAT_PRESUSPEND, &cap_cpus);
if (ret != 0) {
/*
* EIO translates to fatal error, for all others cleanup
* and return EAGAIN.
*/
ASSERT(ret != EIO);
hat_pageprocess_postcallbacks(targ, HAT_POSTUNSUSPEND);
PAGE_RELOCATE_LOG(target, replacement, ret, -1);
kreloc_thread = NULL;
mutex_exit(&kpr_mutex);
return (EAGAIN);
}
/*
* acquire p_mapping list lock for both the target and replacement
* root pages.
*
* low and high refer to the need to grab the mlist locks in a
* specific order in order to prevent race conditions. Thus the
* lower lock must be grabbed before the higher lock.
*
* This will block hat_unload's accessing p_mapping list. Since
* we have SE_EXCL lock, hat_memload and hat_pageunload will be
* blocked. Thus, no one else will be accessing the p_mapping list
* while we suspend and reload the locked mapping below.
*/
tpp = targ;
rpp = repl;
sfmmu_mlist_reloc_enter(tpp, rpp, &low, &high);
kpreempt_disable();
#ifdef VAC
/*
* If the replacement page is of a different virtual color
* than the page it is replacing, we need to handle the VAC
* consistency for it just as we would if we were setting up
* a new mapping to a page.
*/
if ((tpp->p_szc == 0) && (PP_GET_VCOLOR(rpp) != NO_VCOLOR)) {
if (tpp->p_vcolor != rpp->p_vcolor) {
sfmmu_cache_flushcolor(PP_GET_VCOLOR(rpp),
rpp->p_pagenum);
}
}
#endif
/*
* We raise our PIL to 13 so that we don't get captured by
* another CPU or pinned by an interrupt thread. We can't go to
* PIL 14 since the nexus driver(s) may need to interrupt at
* that level in the case of IOMMU pseudo mappings.
*/
cpuset = cpu_ready_set;
CPUSET_DEL(cpuset, CPU->cpu_id);
if (!cap_cpus || CPUSET_ISNULL(cpuset)) {
old_pil = splr(XCALL_PIL);
} else {
old_pil = -1;
xc_attention(cpuset);
}
ASSERT(getpil() == XCALL_PIL);
/*
* Now do suspend callbacks. In the case of an IOMMU mapping
* this will suspend all DMA activity to the page while it is
* being relocated. Since we are well above LOCK_LEVEL and CPUs
* may be captured at this point we should have acquired any needed
* locks in the presuspend callback.
*/
ret = hat_pageprocess_precallbacks(targ, HAT_SUSPEND, NULL);
if (ret != 0) {
repl = targ;
goto suspend_fail;
}
/*
* Raise the PIL yet again, this time to block all high-level
* interrupts on this CPU. This is necessary to prevent an
* interrupt routine from pinning the thread which holds the
* mapping suspended and then touching the suspended page.
*
* Once the page is suspended we also need to be careful to
* avoid calling any functions which touch any seg_kmem memory
* since that memory may be backed by the very page we are
* relocating in here!
*/
hat_pagesuspend(targ);
/*
* Now that we are confident everybody has stopped using this page,
* copy the page contents. Note we use a physical copy to prevent
* locking issues and to avoid fpRAS because we can't handle it in
* this context.
*/
for (i = 0; i < npages; i++, tpp++, rpp++) {
/*
* Copy the contents of the page.
*/
ppcopy_kernel(tpp, rpp);
}
tpp = targ;
rpp = repl;
for (i = 0; i < npages; i++, tpp++, rpp++) {
/*
* Copy attributes. VAC consistency was handled above,
* if required.
*/
rpp->p_nrm = tpp->p_nrm;
tpp->p_nrm = 0;
rpp->p_index = tpp->p_index;
tpp->p_index = 0;
#ifdef VAC
rpp->p_vcolor = tpp->p_vcolor;
#endif
}
/*
* First, unsuspend the page, if we set the suspend bit, and transfer
* the mapping list from the target page to the replacement page.
* Next process postcallbacks; since pa_hment's are linked only to the
* p_mapping list of root page, we don't iterate over the constituent
* pages.
*/
hat_pagereload(targ, repl);
suspend_fail:
hat_pageprocess_postcallbacks(repl, HAT_UNSUSPEND);
/*
* Now lower our PIL and release any captured CPUs since we
* are out of the "danger zone". After this it will again be
* safe to acquire adaptive mutex locks, or to drop them...
*/
if (old_pil != -1) {
splx(old_pil);
} else {
xc_dismissed(cpuset);
}
kpreempt_enable();
sfmmu_mlist_reloc_exit(low, high);
/*
* Postsuspend callbacks should drop any locks held across
* the suspend callbacks. As before, we don't hold the mapping
* list lock at this point.. our assumption is that the mapping
* list still can't change due to our holding SE_EXCL lock and
* there being no unlocked mappings left. Hence the restriction
* on calling context to hat_delete_callback()
*/
hat_pageprocess_postcallbacks(repl, HAT_POSTUNSUSPEND);
if (ret != 0) {
/*
* The second presuspend call failed: we got here through
* the suspend_fail label above.
*/
ASSERT(ret != EIO);
PAGE_RELOCATE_LOG(target, replacement, ret, cap_cpus);
kreloc_thread = NULL;
mutex_exit(&kpr_mutex);
return (EAGAIN);
}
/*
* Now that we're out of the performance critical section we can
* take care of updating the hash table, since we still
* hold all the pages locked SE_EXCL at this point we
* needn't worry about things changing out from under us.
*/
tpp = targ;
rpp = repl;
for (i = 0; i < npages; i++, tpp++, rpp++) {
/*
* replace targ with replacement in page_hash table
*/
targ = tpp;
page_relocate_hash(rpp, targ);
/*
* concatenate target; caller of platform_page_relocate()
* expects target to be concatenated after returning.
*/
ASSERT(targ->p_next == targ);
ASSERT(targ->p_prev == targ);
page_list_concat(&pl, &targ);
}
ASSERT(*target == pl);
*nrelocp = npages;
PAGE_RELOCATE_LOG(target, replacement, 0, cap_cpus);
kreloc_thread = NULL;
mutex_exit(&kpr_mutex);
return (0);
}
/*
* Called when stray pa_hments are found attached to a page which is
* being freed. Notify the subsystem which attached the pa_hment of
* the error if it registered a suitable handler, else panic.
*/
static void
sfmmu_pahment_leaked(struct pa_hment *pahmep)
{
id_t cb_id = pahmep->cb_id;
ASSERT(cb_id >= (id_t)0 && cb_id < sfmmu_cb_nextid);
if (sfmmu_cb_table[cb_id].errhandler != NULL) {
if (sfmmu_cb_table[cb_id].errhandler(pahmep->addr, pahmep->len,
HAT_CB_ERR_LEAKED, pahmep->pvt) == 0)
return; /* non-fatal */
}
panic("pa_hment leaked: 0x%p", pahmep);
}
/*
* Remove all mappings to page 'pp'.
*/
int
hat_pageunload(struct page *pp, uint_t forceflag)
{
struct page *origpp = pp;
struct sf_hment *sfhme, *tmphme;
struct hme_blk *hmeblkp;
kmutex_t *pml;
#ifdef VAC
kmutex_t *pmtx;
#endif
cpuset_t cpuset, tset;
int index, cons;
int xhme_blks;
int pa_hments;
ASSERT(PAGE_EXCL(pp));
retry_xhat:
tmphme = NULL;
xhme_blks = 0;
pa_hments = 0;
CPUSET_ZERO(cpuset);
pml = sfmmu_mlist_enter(pp);
#ifdef VAC
if (pp->p_kpmref)
sfmmu_kpm_pageunload(pp);
ASSERT(!PP_ISMAPPED_KPM(pp));
#endif
index = PP_MAPINDEX(pp);
cons = TTE8K;
retry:
for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
tmphme = sfhme->hme_next;
if (IS_PAHME(sfhme)) {
ASSERT(sfhme->hme_data != NULL);
pa_hments++;
continue;
}
hmeblkp = sfmmu_hmetohblk(sfhme);
if (hmeblkp->hblk_xhat_bit) {
struct xhat_hme_blk *xblk =
(struct xhat_hme_blk *)hmeblkp;
(void) XHAT_PAGEUNLOAD(xblk->xhat_hme_blk_hat,
pp, forceflag, XBLK2PROVBLK(xblk));
xhme_blks = 1;
continue;
}
/*
* If there are kernel mappings don't unload them, they will
* be suspended.
*/
if (forceflag == SFMMU_KERNEL_RELOC && hmeblkp->hblk_lckcnt &&
hmeblkp->hblk_tag.htag_id == ksfmmup)
continue;
tset = sfmmu_pageunload(pp, sfhme, cons);
CPUSET_OR(cpuset, tset);
}
while (index != 0) {
index = index >> 1;
if (index != 0)
cons++;
if (index & 0x1) {
/* Go to leading page */
pp = PP_GROUPLEADER(pp, cons);
ASSERT(sfmmu_mlist_held(pp));
goto retry;
}
}
/*
* cpuset may be empty if the page was only mapped by segkpm,
* in which case we won't actually cross-trap.
*/
xt_sync(cpuset);
/*
* The page should have no mappings at this point, unless
* we were called from hat_page_relocate() in which case we
* leave the locked mappings which will be suspended later.
*/
ASSERT(!PP_ISMAPPED(origpp) || xhme_blks || pa_hments ||
(forceflag == SFMMU_KERNEL_RELOC));
#ifdef VAC
if (PP_ISTNC(pp)) {
if (cons == TTE8K) {
pmtx = sfmmu_page_enter(pp);
PP_CLRTNC(pp);
sfmmu_page_exit(pmtx);
} else {
conv_tnc(pp, cons);
}
}
#endif /* VAC */
if (pa_hments && forceflag != SFMMU_KERNEL_RELOC) {
/*
* Unlink any pa_hments and free them, calling back
* the responsible subsystem to notify it of the error.
* This can occur in situations such as drivers leaking
* DMA handles: naughty, but common enough that we'd like
* to keep the system running rather than bringing it
* down with an obscure error like "pa_hment leaked"
* which doesn't aid the user in debugging their driver.
*/
for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
tmphme = sfhme->hme_next;
if (IS_PAHME(sfhme)) {
struct pa_hment *pahmep = sfhme->hme_data;
sfmmu_pahment_leaked(pahmep);
HME_SUB(sfhme, pp);
kmem_cache_free(pa_hment_cache, pahmep);
}
}
ASSERT(!PP_ISMAPPED(origpp) || xhme_blks);
}
sfmmu_mlist_exit(pml);
/*
* XHAT may not have finished unloading pages
* because some other thread was waiting for
* mlist lock and XHAT_PAGEUNLOAD let it do
* the job.
*/
if (xhme_blks) {
pp = origpp;
goto retry_xhat;
}
return (0);
}
cpuset_t
sfmmu_pageunload(page_t *pp, struct sf_hment *sfhme, int cons)
{
struct hme_blk *hmeblkp;
sfmmu_t *sfmmup;
tte_t tte, ttemod;
#ifdef DEBUG
tte_t orig_old;
#endif /* DEBUG */
caddr_t addr;
int ttesz;
int ret;
cpuset_t cpuset;
ASSERT(pp != NULL);
ASSERT(sfmmu_mlist_held(pp));
ASSERT(pp->p_vnode != &kvp);
CPUSET_ZERO(cpuset);
hmeblkp = sfmmu_hmetohblk(sfhme);
readtte:
sfmmu_copytte(&sfhme->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
sfmmup = hblktosfmmu(hmeblkp);
ttesz = get_hblk_ttesz(hmeblkp);
/*
* Only unload mappings of 'cons' size.
*/
if (ttesz != cons)
return (cpuset);
/*
* Note that we have p_mapping lock, but no hash lock here.
* hblk_unload() has to have both hash lock AND p_mapping
* lock before it tries to modify tte. So, the tte could
* not become invalid in the sfmmu_modifytte_try() below.
*/
ttemod = tte;
#ifdef DEBUG
orig_old = tte;
#endif /* DEBUG */
TTE_SET_INVALID(&ttemod);
ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
if (ret < 0) {
#ifdef DEBUG
/* only R/M bits can change. */
chk_tte(&orig_old, &tte, &ttemod, hmeblkp);
#endif /* DEBUG */
goto readtte;
}
if (ret == 0) {
panic("pageunload: cas failed?");
}
addr = tte_to_vaddr(hmeblkp, tte);
sfmmu_ttesync(sfmmup, addr, &tte, pp);
atomic_add_long(&sfmmup->sfmmu_ttecnt[ttesz], -1);
/*
* We need to flush the page from the virtual cache
* in order to prevent a virtual cache alias
* inconsistency. The particular scenario we need
* to worry about is:
* Given: va1 and va2 are two virtual address that
* alias and will map the same physical address.
* 1. mapping exists from va1 to pa and data has
* been read into the cache.
* 2. unload va1.
* 3. load va2 and modify data using va2.
* 4 unload va2.
* 5. load va1 and reference data. Unless we flush
* the data cache when we unload we will get
* stale data.
* This scenario is taken care of by using virtual
* page coloring.
*/
if (sfmmup->sfmmu_ismhat) {
/*
* Flush TSBs, TLBs and caches
* of every process
* sharing this ism segment.
*/
sfmmu_hat_lock_all();
mutex_enter(&ism_mlist_lock);
kpreempt_disable();
if (do_virtual_coloring)
sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
pp->p_pagenum, CACHE_NO_FLUSH);
else
sfmmu_ismtlbcache_demap(addr, sfmmup, hmeblkp,
pp->p_pagenum, CACHE_FLUSH);
kpreempt_enable();
mutex_exit(&ism_mlist_lock);
sfmmu_hat_unlock_all();
cpuset = cpu_ready_set;
} else if (do_virtual_coloring) {
sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
cpuset = sfmmup->sfmmu_cpusran;
} else {
sfmmu_tlbcache_demap(addr, sfmmup, hmeblkp,
pp->p_pagenum, 0, FLUSH_NECESSARY_CPUS,
CACHE_FLUSH, 0);
cpuset = sfmmup->sfmmu_cpusran;
}
/*
* Hme_sub has to run after ttesync() and a_rss update.
* See hblk_unload().
*/
HME_SUB(sfhme, pp);
membar_stst();
/*
* We can not make ASSERT(hmeblkp->hblk_hmecnt <= NHMENTS)
* since pteload may have done a HME_ADD() right after
* we did the HME_SUB() above. Hmecnt is now maintained
* by cas only. no lock guranteed its value. The only
* gurantee we have is the hmecnt should not be less than
* what it should be so the hblk will not be taken away.
* It's also important that we decremented the hmecnt after
* we are done with hmeblkp so that this hmeblk won't be
* stolen.
*/
ASSERT(hmeblkp->hblk_hmecnt > 0);
ASSERT(hmeblkp->hblk_vcnt > 0);
atomic_add_16(&hmeblkp->hblk_vcnt, -1);
atomic_add_16(&hmeblkp->hblk_hmecnt, -1);
/*
* This is bug 4063182.
* XXX: fixme
* ASSERT(hmeblkp->hblk_hmecnt || hmeblkp->hblk_vcnt ||
* !hmeblkp->hblk_lckcnt);
*/
} else {
panic("invalid tte? pp %p &tte %p",
(void *)pp, (void *)&tte);
}
return (cpuset);
}
/*
* While relocating a kernel page, this function will move the mappings
* from tpp to dpp and modify any associated data with these mappings.
* It also unsuspends the suspended kernel mapping.
*/
static void
hat_pagereload(struct page *tpp, struct page *dpp)
{
struct sf_hment *sfhme;
tte_t tte, ttemod;
int index, cons;
ASSERT(getpil() == PIL_MAX);
ASSERT(sfmmu_mlist_held(tpp));
ASSERT(sfmmu_mlist_held(dpp));
index = PP_MAPINDEX(tpp);
cons = TTE8K;
/* Update real mappings to the page */
retry:
for (sfhme = tpp->p_mapping; sfhme != NULL; sfhme = sfhme->hme_next) {
if (IS_PAHME(sfhme))
continue;
sfmmu_copytte(&sfhme->hme_tte, &tte);
ttemod = tte;
/*
* replace old pfn with new pfn in TTE
*/
PFN_TO_TTE(ttemod, dpp->p_pagenum);
/*
* clear suspend bit
*/
ASSERT(TTE_IS_SUSPEND(&ttemod));
TTE_CLR_SUSPEND(&ttemod);
if (sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte) < 0)
panic("hat_pagereload(): sfmmu_modifytte_try() failed");
/*
* set hme_page point to new page
*/
sfhme->hme_page = dpp;
}
/*
* move p_mapping list from old page to new page
*/
dpp->p_mapping = tpp->p_mapping;
tpp->p_mapping = NULL;
dpp->p_share = tpp->p_share;
tpp->p_share = 0;
while (index != 0) {
index = index >> 1;
if (index != 0)
cons++;
if (index & 0x1) {
tpp = PP_GROUPLEADER(tpp, cons);
dpp = PP_GROUPLEADER(dpp, cons);
goto retry;
}
}
if (dtrace_kreloc_fini)
(*dtrace_kreloc_fini)();
mutex_exit(&kpr_suspendlock);
}
uint_t
hat_pagesync(struct page *pp, uint_t clearflag)
{
struct sf_hment *sfhme, *tmphme = NULL;
struct hme_blk *hmeblkp;
kmutex_t *pml;
cpuset_t cpuset, tset;
int index, cons;
extern ulong_t po_share;
page_t *save_pp = pp;
CPUSET_ZERO(cpuset);
if (PP_ISRO(pp) && (clearflag & HAT_SYNC_STOPON_MOD)) {
return (PP_GENERIC_ATTR(pp));
}
if ((clearflag == (HAT_SYNC_STOPON_REF | HAT_SYNC_DONTZERO)) &&
PP_ISREF(pp)) {
return (PP_GENERIC_ATTR(pp));
}
if ((clearflag == (HAT_SYNC_STOPON_MOD | HAT_SYNC_DONTZERO)) &&
PP_ISMOD(pp)) {
return (PP_GENERIC_ATTR(pp));
}
if ((clearflag & HAT_SYNC_STOPON_SHARED) != 0 &&
(pp->p_share > po_share) &&
!(clearflag & HAT_SYNC_ZERORM)) {
if (PP_ISRO(pp))
hat_page_setattr(pp, P_REF);
return (PP_GENERIC_ATTR(pp));
}
clearflag &= ~HAT_SYNC_STOPON_SHARED;
pml = sfmmu_mlist_enter(pp);
index = PP_MAPINDEX(pp);
cons = TTE8K;
retry:
for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
/*
* We need to save the next hment on the list since
* it is possible for pagesync to remove an invalid hment
* from the list.
*/
tmphme = sfhme->hme_next;
/*
* If we are looking for large mappings and this hme doesn't
* reach the range we are seeking, just ignore its.
*/
hmeblkp = sfmmu_hmetohblk(sfhme);
if (hmeblkp->hblk_xhat_bit)
continue;
if (hme_size(sfhme) < cons)
continue;
tset = sfmmu_pagesync(pp, sfhme,
clearflag & ~HAT_SYNC_STOPON_RM);
CPUSET_OR(cpuset, tset);
/*
* If clearflag is HAT_SYNC_DONTZERO, break out as soon
* as the "ref" or "mod" is set.
*/
if ((clearflag & ~HAT_SYNC_STOPON_RM) == HAT_SYNC_DONTZERO &&
((clearflag & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) ||
((clearflag & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) {
index = 0;
break;
}
}
while (index) {
index = index >> 1;
cons++;
if (index & 0x1) {
/* Go to leading page */
pp = PP_GROUPLEADER(pp, cons);
goto retry;
}
}
xt_sync(cpuset);
sfmmu_mlist_exit(pml);
return (PP_GENERIC_ATTR(save_pp));
}
/*
* Get all the hardware dependent attributes for a page struct
*/
static cpuset_t
sfmmu_pagesync(struct page *pp, struct sf_hment *sfhme,
uint_t clearflag)
{
caddr_t addr;
tte_t tte, ttemod;
struct hme_blk *hmeblkp;
int ret;
sfmmu_t *sfmmup;
cpuset_t cpuset;
ASSERT(pp != NULL);
ASSERT(sfmmu_mlist_held(pp));
ASSERT((clearflag == HAT_SYNC_DONTZERO) ||
(clearflag == HAT_SYNC_ZERORM));
SFMMU_STAT(sf_pagesync);
CPUSET_ZERO(cpuset);
sfmmu_pagesync_retry:
sfmmu_copytte(&sfhme->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
hmeblkp = sfmmu_hmetohblk(sfhme);
sfmmup = hblktosfmmu(hmeblkp);
addr = tte_to_vaddr(hmeblkp, tte);
if (clearflag == HAT_SYNC_ZERORM) {
ttemod = tte;
TTE_CLR_RM(&ttemod);
ret = sfmmu_modifytte_try(&tte, &ttemod,
&sfhme->hme_tte);
if (ret < 0) {
/*
* cas failed and the new value is not what
* we want.
*/
goto sfmmu_pagesync_retry;
}
if (ret > 0) {
/* we win the cas */
sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
cpuset = sfmmup->sfmmu_cpusran;
}
}
sfmmu_ttesync(sfmmup, addr, &tte, pp);
}
return (cpuset);
}
/*
* Remove write permission from a mappings to a page, so that
* we can detect the next modification of it. This requires modifying
* the TTE then invalidating (demap) any TLB entry using that TTE.
* This code is similar to sfmmu_pagesync().
*/
static cpuset_t
sfmmu_pageclrwrt(struct page *pp, struct sf_hment *sfhme)
{
caddr_t addr;
tte_t tte;
tte_t ttemod;
struct hme_blk *hmeblkp;
int ret;
sfmmu_t *sfmmup;
cpuset_t cpuset;
ASSERT(pp != NULL);
ASSERT(sfmmu_mlist_held(pp));
CPUSET_ZERO(cpuset);
SFMMU_STAT(sf_clrwrt);
retry:
sfmmu_copytte(&sfhme->hme_tte, &tte);
if (TTE_IS_VALID(&tte) && TTE_IS_WRITABLE(&tte)) {
hmeblkp = sfmmu_hmetohblk(sfhme);
/*
* xhat mappings should never be to a VMODSORT page.
*/
ASSERT(hmeblkp->hblk_xhat_bit == 0);
sfmmup = hblktosfmmu(hmeblkp);
addr = tte_to_vaddr(hmeblkp, tte);
ttemod = tte;
TTE_CLR_WRT(&ttemod);
TTE_CLR_MOD(&ttemod);
ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
/*
* if cas failed and the new value is not what
* we want retry
*/
if (ret < 0)
goto retry;
/* we win the cas */
if (ret > 0) {
sfmmu_tlb_demap(addr, sfmmup, hmeblkp, 0, 0);
cpuset = sfmmup->sfmmu_cpusran;
}
}
return (cpuset);
}
/*
* Walk all mappings of a page, removing write permission and clearing the
* ref/mod bits. This code is similar to hat_pagesync()
*/
static void
hat_page_clrwrt(page_t *pp)
{
struct sf_hment *sfhme;
struct sf_hment *tmphme = NULL;
kmutex_t *pml;
cpuset_t cpuset;
cpuset_t tset;
int index;
int cons;
CPUSET_ZERO(cpuset);
pml = sfmmu_mlist_enter(pp);
index = PP_MAPINDEX(pp);
cons = TTE8K;
retry:
for (sfhme = pp->p_mapping; sfhme; sfhme = tmphme) {
tmphme = sfhme->hme_next;
/*
* If we are looking for large mappings and this hme doesn't
* reach the range we are seeking, just ignore its.
*/
if (hme_size(sfhme) < cons)
continue;
tset = sfmmu_pageclrwrt(pp, sfhme);
CPUSET_OR(cpuset, tset);
}
while (index) {
index = index >> 1;
cons++;
if (index & 0x1) {
/* Go to leading page */
pp = PP_GROUPLEADER(pp, cons);
goto retry;
}
}
xt_sync(cpuset);
sfmmu_mlist_exit(pml);
}
/*
* Set the given REF/MOD/RO bits for the given page.
* For a vnode with a sorted v_pages list, we need to change
* the attributes and the v_pages list together under page_vnode_mutex.
*/
void
hat_page_setattr(page_t *pp, uint_t flag)
{
vnode_t *vp = pp->p_vnode;
page_t **listp;
kmutex_t *pmtx;
kmutex_t *vphm = NULL;
ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
/*
* nothing to do if attribute already set
*/
if ((pp->p_nrm & flag) == flag)
return;
if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
}
pmtx = sfmmu_page_enter(pp);
pp->p_nrm |= flag;
sfmmu_page_exit(pmtx);
if (vphm != NULL) {
/*
* Some File Systems examine v_pages for NULL w/o
* grabbing the vphm mutex. Must not let it become NULL when
* pp is the only page on the list.
*/
if (pp->p_vpnext != pp) {
page_vpsub(&vp->v_pages, pp);
if (vp->v_pages != NULL)
listp = &vp->v_pages->p_vpprev->p_vpnext;
else
listp = &vp->v_pages;
page_vpadd(listp, pp);
}
mutex_exit(vphm);
}
}
void
hat_page_clrattr(page_t *pp, uint_t flag)
{
vnode_t *vp = pp->p_vnode;
kmutex_t *vphm = NULL;
kmutex_t *pmtx;
ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
/*
* For vnode with a sorted v_pages list, we need to change
* the attributes and the v_pages list together under page_vnode_mutex.
*/
if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
}
pmtx = sfmmu_page_enter(pp);
pp->p_nrm &= ~flag;
sfmmu_page_exit(pmtx);
if (vphm != NULL) {
/*
* Some File Systems examine v_pages for NULL w/o
* grabbing the vphm mutex. Must not let it become NULL when
* pp is the only page on the list.
*/
if (pp->p_vpnext != pp) {
page_vpsub(&vp->v_pages, pp);
page_vpadd(&vp->v_pages, pp);
}
mutex_exit(vphm);
/*
* VMODSORT works by removing write permissions and getting
* a fault when a page is made dirty. At this point
* we need to remove write permission from all mappings
* to this page.
*/
hat_page_clrwrt(pp);
}
}
uint_t
hat_page_getattr(page_t *pp, uint_t flag)
{
ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
return ((uint_t)(pp->p_nrm & flag));
}
/*
* DEBUG kernels: verify that a kernel va<->pa translation
* is safe by checking the underlying page_t is in a page
* relocation-safe state.
*/
#ifdef DEBUG
void
sfmmu_check_kpfn(pfn_t pfn)
{
page_t *pp;
int index, cons;
if (hat_check_vtop == 0)
return;
if (hat_kpr_enabled == 0 || kvseg.s_base == NULL || panicstr)
return;
pp = page_numtopp_nolock(pfn);
if (!pp)
return;
if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
return;
/*
* Handed a large kernel page, we dig up the root page since we
* know the root page might have the lock also.
*/
if (pp->p_szc != 0) {
index = PP_MAPINDEX(pp);
cons = TTE8K;
again:
while (index != 0) {
index >>= 1;
if (index != 0)
cons++;
if (index & 0x1) {
pp = PP_GROUPLEADER(pp, cons);
goto again;
}
}
}
if (PAGE_LOCKED(pp) || PP_ISNORELOC(pp))
return;
/*
* Pages need to be locked or allocated "permanent" (either from
* static_arena arena or explicitly setting PG_NORELOC when calling
* page_create_va()) for VA->PA translations to be valid.
*/
if (!PP_ISNORELOC(pp))
panic("Illegal VA->PA translation, pp 0x%p not permanent", pp);
else
panic("Illegal VA->PA translation, pp 0x%p not locked", pp);
}
#endif /* DEBUG */
/*
* Returns a page frame number for a given virtual address.
* Returns PFN_INVALID to indicate an invalid mapping
*/
pfn_t
hat_getpfnum(struct hat *hat, caddr_t addr)
{
pfn_t pfn;
tte_t tte;
/*
* We would like to
* ASSERT(AS_LOCK_HELD(as, &as->a_lock));
* but we can't because the iommu driver will call this
* routine at interrupt time and it can't grab the as lock
* or it will deadlock: A thread could have the as lock
* and be waiting for io. The io can't complete
* because the interrupt thread is blocked trying to grab
* the as lock.
*/
ASSERT(hat->sfmmu_xhat_provider == NULL);
if (hat == ksfmmup) {
if (segkpm && IS_KPM_ADDR(addr))
return (sfmmu_kpm_vatopfn(addr));
while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
== PFN_SUSPENDED) {
sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
}
sfmmu_check_kpfn(pfn);
return (pfn);
} else {
return (sfmmu_uvatopfn(addr, hat));
}
}
/*
* hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
* Use hat_getpfnum(kas.a_hat, ...) instead.
*
* We'd like to return PFN_INVALID if the mappings have underlying page_t's
* but can't right now due to the fact that some software has grown to use
* this interface incorrectly. So for now when the interface is misused,
* return a warning to the user that in the future it won't work in the
* way they're abusing it, and carry on (after disabling page relocation).
*/
pfn_t
hat_getkpfnum(caddr_t addr)
{
pfn_t pfn;
tte_t tte;
int badcaller = 0;
extern int segkmem_reloc;
if (segkpm && IS_KPM_ADDR(addr)) {
badcaller = 1;
pfn = sfmmu_kpm_vatopfn(addr);
} else {
while ((pfn = sfmmu_vatopfn(addr, ksfmmup, &tte))
== PFN_SUSPENDED) {
sfmmu_vatopfn_suspended(addr, ksfmmup, &tte);
}
badcaller = pf_is_memory(pfn);
}
if (badcaller) {
/*
* We can't return PFN_INVALID or the caller may panic
* or corrupt the system. The only alternative is to
* disable page relocation at this point for all kernel
* memory. This will impact any callers of page_relocate()
* such as FMA or DR.
*
* RFE: Add junk here to spit out an ereport so the sysadmin
* can be advised that he should upgrade his device driver
* so that this doesn't happen.
*/
hat_getkpfnum_badcall(caller());
if (hat_kpr_enabled && segkmem_reloc) {
hat_kpr_enabled = 0;
segkmem_reloc = 0;
cmn_err(CE_WARN, "Kernel Page Relocation is DISABLED");
}
}
return (pfn);
}
pfn_t
sfmmu_uvatopfn(caddr_t vaddr, struct hat *sfmmup)
{
struct hmehash_bucket *hmebp;
hmeblk_tag hblktag;
int hmeshift, hashno = 1;
struct hme_blk *hmeblkp = NULL;
struct sf_hment *sfhmep;
tte_t tte;
pfn_t pfn;
/* support for ISM */
ism_map_t *ism_map;
ism_blk_t *ism_blkp;
int i;
sfmmu_t *ism_hatid = NULL;
sfmmu_t *locked_hatid = NULL;
ASSERT(sfmmup != ksfmmup);
SFMMU_STAT(sf_user_vtop);
/*
* Set ism_hatid if vaddr falls in a ISM segment.
*/
ism_blkp = sfmmup->sfmmu_iblk;
if (ism_blkp) {
sfmmu_ismhat_enter(sfmmup, 0);
locked_hatid = sfmmup;
}
while (ism_blkp && ism_hatid == NULL) {
ism_map = ism_blkp->iblk_maps;
for (i = 0; ism_map[i].imap_ismhat && i < ISM_MAP_SLOTS; i++) {
if (vaddr >= ism_start(ism_map[i]) &&
vaddr < ism_end(ism_map[i])) {
sfmmup = ism_hatid = ism_map[i].imap_ismhat;
vaddr = (caddr_t)(vaddr -
ism_start(ism_map[i]));
break;
}
}
ism_blkp = ism_blkp->iblk_next;
}
if (locked_hatid) {
sfmmu_ismhat_exit(locked_hatid, 0);
}
hblktag.htag_id = sfmmup;
do {
hmeshift = HME_HASH_SHIFT(hashno);
hblktag.htag_bspage = HME_HASH_BSPAGE(vaddr, hmeshift);
hblktag.htag_rehash = hashno;
hmebp = HME_HASH_FUNCTION(sfmmup, vaddr, hmeshift);
SFMMU_HASH_LOCK(hmebp);
HME_HASH_FAST_SEARCH(hmebp, hblktag, hmeblkp);
if (hmeblkp != NULL) {
HBLKTOHME(sfhmep, hmeblkp, vaddr);
sfmmu_copytte(&sfhmep->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
pfn = TTE_TO_PFN(vaddr, &tte);
} else {
pfn = PFN_INVALID;
}
SFMMU_HASH_UNLOCK(hmebp);
return (pfn);
}
SFMMU_HASH_UNLOCK(hmebp);
hashno++;
} while (HME_REHASH(sfmmup) && (hashno <= mmu_hashcnt));
return (PFN_INVALID);
}
/*
* For compatability with AT&T and later optimizations
*/
/* ARGSUSED */
void
hat_map(struct hat *hat, caddr_t addr, size_t len, uint_t flags)
{
ASSERT(hat != NULL);
ASSERT(hat->sfmmu_xhat_provider == NULL);
}
/*
* Return the number of mappings to a particular page.
* This number is an approximation of the number of
* number of people sharing the page.
*/
ulong_t
hat_page_getshare(page_t *pp)
{
page_t *spp = pp; /* start page */
kmutex_t *pml;
ulong_t cnt;
int index, sz = TTE64K;
/*
* We need to grab the mlist lock to make sure any outstanding
* load/unloads complete. Otherwise we could return zero
* even though the unload(s) hasn't finished yet.
*/
pml = sfmmu_mlist_enter(spp);
cnt = spp->p_share;
#ifdef VAC
if (kpm_enable)
cnt += spp->p_kpmref;
#endif
/*
* If we have any large mappings, we count the number of
* mappings that this large page is part of.
*/
index = PP_MAPINDEX(spp);
index >>= 1;
while (index) {
pp = PP_GROUPLEADER(spp, sz);
if ((index & 0x1) && pp != spp) {
cnt += pp->p_share;
spp = pp;
}
index >>= 1;
sz++;
}
sfmmu_mlist_exit(pml);
return (cnt);
}
/*
* Unload all large mappings to the pp and reset the p_szc field of every
* constituent page according to the remaining mappings.
*
* pp must be locked SE_EXCL. Even though no other constituent pages are
* locked it's legal to unload the large mappings to the pp because all
* constituent pages of large locked mappings have to be locked SE_SHARED.
* This means if we have SE_EXCL lock on one of constituent pages none of the
* large mappings to pp are locked.
*
* Decrease p_szc field starting from the last constituent page and ending
* with the root page. This method is used because other threads rely on the
* root's p_szc to find the lock to syncronize on. After a root page_t's p_szc
* is demoted then other threads will succeed in sfmmu_mlspl_enter(). This
* ensures that p_szc changes of the constituent pages appears atomic for all
* threads that use sfmmu_mlspl_enter() to examine p_szc field.
*
* This mechanism is only used for file system pages where it's not always
* possible to get SE_EXCL locks on all constituent pages to demote the size
* code (as is done for anonymous or kernel large pages).
*
* See more comments in front of sfmmu_mlspl_enter().
*/
void
hat_page_demote(page_t *pp)
{
int index;
int sz;
cpuset_t cpuset;
int sync = 0;
page_t *rootpp;
struct sf_hment *sfhme;
struct sf_hment *tmphme = NULL;
struct hme_blk *hmeblkp;
uint_t pszc;
page_t *lastpp;
cpuset_t tset;
pgcnt_t npgs;
kmutex_t *pml;
kmutex_t *pmtx = NULL;
ASSERT(PAGE_EXCL(pp));
ASSERT(!PP_ISFREE(pp));
ASSERT(page_szc_lock_assert(pp));
pml = sfmmu_mlist_enter(pp);
pszc = pp->p_szc;
if (pszc == 0) {
goto out;
}
index = PP_MAPINDEX(pp) >> 1;
if (index) {
CPUSET_ZERO(cpuset);
sz = TTE64K;
sync = 1;
}
while (index) {
if (!(index & 0x1)) {
index >>= 1;
sz++;
continue;
}
ASSERT(sz <= pszc);
rootpp = PP_GROUPLEADER(pp, sz);
for (sfhme = rootpp->p_mapping; sfhme; sfhme = tmphme) {
tmphme = sfhme->hme_next;
hmeblkp = sfmmu_hmetohblk(sfhme);
if (hme_size(sfhme) != sz) {
continue;
}
if (hmeblkp->hblk_xhat_bit) {
cmn_err(CE_PANIC,
"hat_page_demote: xhat hmeblk");
}
tset = sfmmu_pageunload(rootpp, sfhme, sz);
CPUSET_OR(cpuset, tset);
}
if (index >>= 1) {
sz++;
}
}
ASSERT(!PP_ISMAPPED_LARGE(pp));
if (sync) {
xt_sync(cpuset);
#ifdef VAC
if (PP_ISTNC(pp)) {
conv_tnc(rootpp, sz);
}
#endif /* VAC */
}
pmtx = sfmmu_page_enter(pp);
ASSERT(pp->p_szc == pszc);
rootpp = PP_PAGEROOT(pp);
ASSERT(rootpp->p_szc == pszc);
lastpp = PP_PAGENEXT_N(rootpp, TTEPAGES(pszc) - 1);
while (lastpp != rootpp) {
sz = PP_MAPINDEX(lastpp) ? fnd_mapping_sz(lastpp) : 0;
ASSERT(sz < pszc);
npgs = (sz == 0) ? 1 : TTEPAGES(sz);
ASSERT(P2PHASE(lastpp->p_pagenum, npgs) == npgs - 1);
while (--npgs > 0) {
lastpp->p_szc = (uchar_t)sz;
lastpp = PP_PAGEPREV(lastpp);
}
if (sz) {
/*
* make sure before current root's pszc
* is updated all updates to constituent pages pszc
* fields are globally visible.
*/
membar_producer();
}
lastpp->p_szc = sz;
ASSERT(IS_P2ALIGNED(lastpp->p_pagenum, TTEPAGES(sz)));
if (lastpp != rootpp) {
lastpp = PP_PAGEPREV(lastpp);
}
}
if (sz == 0) {
/* the loop above doesn't cover this case */
rootpp->p_szc = 0;
}
out:
ASSERT(pp->p_szc == 0);
if (pmtx != NULL) {
sfmmu_page_exit(pmtx);
}
sfmmu_mlist_exit(pml);
}
/*
* Refresh the HAT ismttecnt[] element for size szc.
* Caller must have set ISM busy flag to prevent mapping
* lists from changing while we're traversing them.
*/
pgcnt_t
ism_tsb_entries(sfmmu_t *sfmmup, int szc)
{
ism_blk_t *ism_blkp = sfmmup->sfmmu_iblk;
ism_map_t *ism_map;
pgcnt_t npgs = 0;
int j;
ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
for (; ism_blkp != NULL; ism_blkp = ism_blkp->iblk_next) {
ism_map = ism_blkp->iblk_maps;
for (j = 0; ism_map[j].imap_ismhat && j < ISM_MAP_SLOTS; j++)
npgs += ism_map[j].imap_ismhat->sfmmu_ttecnt[szc];
}
sfmmup->sfmmu_ismttecnt[szc] = npgs;
return (npgs);
}
/*
* Yield the memory claim requirement for an address space.
*
* This is currently implemented as the number of bytes that have active
* hardware translations that have page structures. Therefore, it can
* underestimate the traditional resident set size, eg, if the
* physical page is present and the hardware translation is missing;
* and it can overestimate the rss, eg, if there are active
* translations to a frame buffer with page structs.
* Also, it does not take sharing into account.
*
* Note that we don't acquire locks here since this function is most often
* called from the clock thread.
*/
size_t
hat_get_mapped_size(struct hat *hat)
{
size_t assize = 0;
int i;
if (hat == NULL)
return (0);
ASSERT(hat->sfmmu_xhat_provider == NULL);
for (i = 0; i < mmu_page_sizes; i++)
assize += (pgcnt_t)hat->sfmmu_ttecnt[i] * TTEBYTES(i);
if (hat->sfmmu_iblk == NULL)
return (assize);
for (i = 0; i < mmu_page_sizes; i++)
assize += (pgcnt_t)hat->sfmmu_ismttecnt[i] * TTEBYTES(i);
return (assize);
}
int
hat_stats_enable(struct hat *hat)
{
hatlock_t *hatlockp;
ASSERT(hat->sfmmu_xhat_provider == NULL);
hatlockp = sfmmu_hat_enter(hat);
hat->sfmmu_rmstat++;
sfmmu_hat_exit(hatlockp);
return (1);
}
void
hat_stats_disable(struct hat *hat)
{
hatlock_t *hatlockp;
ASSERT(hat->sfmmu_xhat_provider == NULL);
hatlockp = sfmmu_hat_enter(hat);
hat->sfmmu_rmstat--;
sfmmu_hat_exit(hatlockp);
}
/*
* Routines for entering or removing ourselves from the
* ism_hat's mapping list.
*/
static void
iment_add(struct ism_ment *iment, struct hat *ism_hat)
{
ASSERT(MUTEX_HELD(&ism_mlist_lock));
iment->iment_prev = NULL;
iment->iment_next = ism_hat->sfmmu_iment;
if (ism_hat->sfmmu_iment) {
ism_hat->sfmmu_iment->iment_prev = iment;
}
ism_hat->sfmmu_iment = iment;
}
static void
iment_sub(struct ism_ment *iment, struct hat *ism_hat)
{
ASSERT(MUTEX_HELD(&ism_mlist_lock));
if (ism_hat->sfmmu_iment == NULL) {
panic("ism map entry remove - no entries");
}
if (iment->iment_prev) {
ASSERT(ism_hat->sfmmu_iment != iment);
iment->iment_prev->iment_next = iment->iment_next;
} else {
ASSERT(ism_hat->sfmmu_iment == iment);
ism_hat->sfmmu_iment = iment->iment_next;
}
if (iment->iment_next) {
iment->iment_next->iment_prev = iment->iment_prev;
}
/*
* zero out the entry
*/
iment->iment_next = NULL;
iment->iment_prev = NULL;
iment->iment_hat = NULL;
}
/*
* Hat_share()/unshare() return an (non-zero) error
* when saddr and daddr are not properly aligned.
*
* The top level mapping element determines the alignment
* requirement for saddr and daddr, depending on different
* architectures.
*
* When hat_share()/unshare() are not supported,
* HATOP_SHARE()/UNSHARE() return 0
*/
int
hat_share(struct hat *sfmmup, caddr_t addr,
struct hat *ism_hatid, caddr_t sptaddr, size_t len, uint_t ismszc)
{
ism_blk_t *ism_blkp;
ism_blk_t *new_iblk;
ism_map_t *ism_map;
ism_ment_t *ism_ment;
int i, added;
hatlock_t *hatlockp;
int reload_mmu = 0;
uint_t ismshift = page_get_shift(ismszc);
size_t ismpgsz = page_get_pagesize(ismszc);
uint_t ismmask = (uint_t)ismpgsz - 1;
size_t sh_size = ISM_SHIFT(ismshift, len);
ushort_t ismhatflag;
#ifdef DEBUG
caddr_t eaddr = addr + len;
#endif /* DEBUG */
ASSERT(ism_hatid != NULL && sfmmup != NULL);
ASSERT(sptaddr == ISMID_STARTADDR);
/*
* Check the alignment.
*/
if (!ISM_ALIGNED(ismshift, addr) || !ISM_ALIGNED(ismshift, sptaddr))
return (EINVAL);
/*
* Check size alignment.
*/
if (!ISM_ALIGNED(ismshift, len))
return (EINVAL);
ASSERT(sfmmup->sfmmu_xhat_provider == NULL);
/*
* Allocate ism_ment for the ism_hat's mapping list, and an
* ism map blk in case we need one. We must do our
* allocations before acquiring locks to prevent a deadlock
* in the kmem allocator on the mapping list lock.
*/
new_iblk = kmem_cache_alloc(ism_blk_cache, KM_SLEEP);
ism_ment = kmem_cache_alloc(ism_ment_cache, KM_SLEEP);
/*
* Serialize ISM mappings with the ISM busy flag, and also the
* trap handlers.
*/
sfmmu_ismhat_enter(sfmmup, 0);
/*
* Allocate an ism map blk if necessary.
*/
if (sfmmup->sfmmu_iblk == NULL) {
sfmmup->sfmmu_iblk = new_iblk;
bzero(new_iblk, sizeof (*new_iblk));
new_iblk->iblk_nextpa = (uint64_t)-1;
membar_stst(); /* make sure next ptr visible to all CPUs */
sfmmup->sfmmu_ismblkpa = va_to_pa((caddr_t)new_iblk);
reload_mmu = 1;
new_iblk = NULL;
}
#ifdef DEBUG
/*
* Make sure mapping does not already exist.
*/
ism_blkp = sfmmup->sfmmu_iblk;
while (ism_blkp) {
ism_map = ism_blkp->iblk_maps;
for (i = 0; i < ISM_MAP_SLOTS && ism_map[i].imap_ismhat; i++) {
if ((addr >= ism_start(ism_map[i]) &&
addr < ism_end(ism_map[i])) ||
eaddr > ism_start(ism_map[i]) &&
eaddr <= ism_end(ism_map[i])) {
panic("sfmmu_share: Already mapped!");
}
}
ism_blkp = ism_blkp->iblk_next;
}
#endif /* DEBUG */
ASSERT(ismszc >= TTE4M);
if (ismszc == TTE4M) {
ismhatflag = HAT_4M_FLAG;
} else if (ismszc == TTE32M) {
ismhatflag = HAT_32M_FLAG;
} else if (ismszc == TTE256M) {
ismhatflag = HAT_256M_FLAG;
}
/*
* Add mapping to first available mapping slot.
*/
ism_blkp = sfmmup->sfmmu_iblk;
added = 0;
while (!added) {
ism_map = ism_blkp->iblk_maps;
for (i = 0; i < ISM_MAP_SLOTS; i++) {
if (ism_map[i].imap_ismhat == NULL) {
ism_map[i].imap_ismhat = ism_hatid;
ism_map[i].imap_vb_shift = (ushort_t)ismshift;
ism_map[i].imap_hatflags = ismhatflag;
ism_map[i].imap_sz_mask = ismmask;
/*
* imap_seg is checked in ISM_CHECK to see if
* non-NULL, then other info assumed valid.
*/
membar_stst();
ism_map[i].imap_seg = (uintptr_t)addr | sh_size;
ism_map[i].imap_ment = ism_ment;
/*
* Now add ourselves to the ism_hat's
* mapping list.
*/
ism_ment->iment_hat = sfmmup;
ism_ment->iment_base_va = addr;
ism_hatid->sfmmu_ismhat = 1;
ism_hatid->sfmmu_flags = 0;
mutex_enter(&ism_mlist_lock);
iment_add(ism_ment, ism_hatid);
mutex_exit(&ism_mlist_lock);
added = 1;
break;
}
}
if (!added && ism_blkp->iblk_next == NULL) {
ism_blkp->iblk_next = new_iblk;
new_iblk = NULL;
bzero(ism_blkp->iblk_next,
sizeof (*ism_blkp->iblk_next));
ism_blkp->iblk_next->iblk_nextpa = (uint64_t)-1;
membar_stst();
ism_blkp->iblk_nextpa =
va_to_pa((caddr_t)ism_blkp->iblk_next);
}
ism_blkp = ism_blkp->iblk_next;
}
/*
* Update our counters for this sfmmup's ism mappings.
*/
for (i = 0; i <= ismszc; i++) {
if (!(disable_ism_large_pages & (1 << i)))
(void) ism_tsb_entries(sfmmup, i);
}
hatlockp = sfmmu_hat_enter(sfmmup);
/*
* For ISM and DISM we do not support 512K pages, so we only
* only search the 4M and 8K/64K hashes for 4 pagesize cpus, and search
* the 256M or 32M, and 4M and 8K/64K hashes for 6 pagesize cpus.
*/
ASSERT((disable_ism_large_pages & (1 << TTE512K)) != 0);
if (ismszc > TTE4M && !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG))
SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
if (!SFMMU_FLAGS_ISSET(sfmmup, HAT_64K_FLAG))
SFMMU_FLAGS_SET(sfmmup, HAT_64K_FLAG);
/*
* If we updated the ismblkpa for this HAT or we need
* to start searching the 256M or 32M or 4M hash, we must
* make sure all CPUs running this process reload their
* tsbmiss area. Otherwise they will fail to load the mappings
* in the tsbmiss handler and will loop calling pagefault().
*/
switch (ismszc) {
case TTE256M:
if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_256M_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_256M_FLAG);
sfmmu_sync_mmustate(sfmmup);
}
break;
case TTE32M:
if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_32M_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_32M_FLAG);
sfmmu_sync_mmustate(sfmmup);
}
break;
case TTE4M:
if (reload_mmu || !SFMMU_FLAGS_ISSET(sfmmup, HAT_4M_FLAG)) {
SFMMU_FLAGS_SET(sfmmup, HAT_4M_FLAG);
sfmmu_sync_mmustate(sfmmup);
}
break;
default:
break;
}
/*
* Now we can drop the locks.
*/
sfmmu_ismhat_exit(sfmmup, 1);
sfmmu_hat_exit(hatlockp);
/*
* Free up ismblk if we didn't use it.
*/
if (new_iblk != NULL)
kmem_cache_free(ism_blk_cache, new_iblk);
/*
* Check TSB and TLB page sizes.
*/
sfmmu_check_page_sizes(sfmmup, 1);
return (0);
}
/*
* hat_unshare removes exactly one ism_map from
* this process's as. It expects multiple calls
* to hat_unshare for multiple shm segments.
*/
void
hat_unshare(struct hat *sfmmup, caddr_t addr, size_t len, uint_t ismszc)
{
ism_map_t *ism_map;
ism_ment_t *free_ment = NULL;
ism_blk_t *ism_blkp;
struct hat *ism_hatid;
int found, i;
hatlock_t *hatlockp;
struct tsb_info *tsbinfo;
uint_t ismshift = page_get_shift(ismszc);
size_t sh_size = ISM_SHIFT(ismshift, len);
ASSERT(ISM_ALIGNED(ismshift, addr));
ASSERT(ISM_ALIGNED(ismshift, len));
ASSERT(sfmmup != NULL);
ASSERT(sfmmup != ksfmmup);
if (sfmmup->sfmmu_xhat_provider) {
XHAT_UNSHARE(sfmmup, addr, len);
return;
} else {
/*
* This must be a CPU HAT. If the address space has
* XHATs attached, inform all XHATs that ISM segment
* is going away
*/
ASSERT(sfmmup->sfmmu_as != NULL);
if (sfmmup->sfmmu_as->a_xhat != NULL)
xhat_unshare_all(sfmmup->sfmmu_as, addr, len);
}
/*
* Make sure that during the entire time ISM mappings are removed,
* the trap handlers serialize behind us, and that no one else
* can be mucking with ISM mappings. This also lets us get away
* with not doing expensive cross calls to flush the TLB -- we
* just discard the context, flush the entire TSB, and call it
* a day.
*/
sfmmu_ismhat_enter(sfmmup, 0);
/*
* Remove the mapping.
*
* We can't have any holes in the ism map.
* The tsb miss code while searching the ism map will
* stop on an empty map slot. So we must move
* everyone past the hole up 1 if any.
*
* Also empty ism map blks are not freed until the
* process exits. This is to prevent a MT race condition
* between sfmmu_unshare() and sfmmu_tsbmiss_exception().
*/
found = 0;
ism_blkp = sfmmup->sfmmu_iblk;
while (!found && ism_blkp) {
ism_map = ism_blkp->iblk_maps;
for (i = 0; i < ISM_MAP_SLOTS; i++) {
if (addr == ism_start(ism_map[i]) &&
sh_size == (size_t)(ism_size(ism_map[i]))) {
found = 1;
break;
}
}
if (!found)
ism_blkp = ism_blkp->iblk_next;
}
if (found) {
ism_hatid = ism_map[i].imap_ismhat;
ASSERT(ism_hatid != NULL);
ASSERT(ism_hatid->sfmmu_ismhat == 1);
/*
* First remove ourselves from the ism mapping list.
*/
mutex_enter(&ism_mlist_lock);
iment_sub(ism_map[i].imap_ment, ism_hatid);
mutex_exit(&ism_mlist_lock);
free_ment = ism_map[i].imap_ment;
/*
* Now gurantee that any other cpu
* that tries to process an ISM miss
* will go to tl=0.
*/
hatlockp = sfmmu_hat_enter(sfmmup);
sfmmu_invalidate_ctx(sfmmup);
sfmmu_hat_exit(hatlockp);
/*
* We delete the ism map by copying
* the next map over the current one.
* We will take the next one in the maps
* array or from the next ism_blk.
*/
while (ism_blkp) {
ism_map = ism_blkp->iblk_maps;
while (i < (ISM_MAP_SLOTS - 1)) {
ism_map[i] = ism_map[i + 1];
i++;
}
/* i == (ISM_MAP_SLOTS - 1) */
ism_blkp = ism_blkp->iblk_next;
if (ism_blkp) {
ism_map[i] = ism_blkp->iblk_maps[0];
i = 0;
} else {
ism_map[i].imap_seg = 0;
ism_map[i].imap_vb_shift = 0;
ism_map[i].imap_hatflags = 0;
ism_map[i].imap_sz_mask = 0;
ism_map[i].imap_ismhat = NULL;
ism_map[i].imap_ment = NULL;
}
}
/*
* Now flush entire TSB for the process, since
* demapping page by page can be too expensive.
* We don't have to flush the TLB here anymore
* since we switch to a new TLB ctx instead.
* Also, there is no need to flush if the process
* is exiting since the TSB will be freed later.
*/
if (!sfmmup->sfmmu_free) {
hatlockp = sfmmu_hat_enter(sfmmup);
for (tsbinfo = sfmmup->sfmmu_tsb; tsbinfo != NULL;
tsbinfo = tsbinfo->tsb_next) {
if (tsbinfo->tsb_flags & TSB_SWAPPED)
continue;
sfmmu_inv_tsb(tsbinfo->tsb_va,
TSB_BYTES(tsbinfo->tsb_szc));
}
sfmmu_hat_exit(hatlockp);
}
}
/*
* Update our counters for this sfmmup's ism mappings.
*/
for (i = 0; i <= ismszc; i++) {
if (!(disable_ism_large_pages & (1 << i)))
(void) ism_tsb_entries(sfmmup, i);
}
sfmmu_ismhat_exit(sfmmup, 0);
/*
* We must do our freeing here after dropping locks
* to prevent a deadlock in the kmem allocator on the
* mapping list lock.
*/
if (free_ment != NULL)
kmem_cache_free(ism_ment_cache, free_ment);
/*
* Check TSB and TLB page sizes if the process isn't exiting.
*/
if (!sfmmup->sfmmu_free)
sfmmu_check_page_sizes(sfmmup, 0);
}
/* ARGSUSED */
static int
sfmmu_idcache_constructor(void *buf, void *cdrarg, int kmflags)
{
/* void *buf is sfmmu_t pointer */
return (0);
}
/* ARGSUSED */
static void
sfmmu_idcache_destructor(void *buf, void *cdrarg)
{
/* void *buf is sfmmu_t pointer */
}
/*
* setup kmem hmeblks by bzeroing all members and initializing the nextpa
* field to be the pa of this hmeblk
*/
/* ARGSUSED */
static int
sfmmu_hblkcache_constructor(void *buf, void *cdrarg, int kmflags)
{
struct hme_blk *hmeblkp;
bzero(buf, (size_t)cdrarg);
hmeblkp = (struct hme_blk *)buf;
hmeblkp->hblk_nextpa = va_to_pa((caddr_t)hmeblkp);
#ifdef HBLK_TRACE
mutex_init(&hmeblkp->hblk_audit_lock, NULL, MUTEX_DEFAULT, NULL);
#endif /* HBLK_TRACE */
return (0);
}
/* ARGSUSED */
static void
sfmmu_hblkcache_destructor(void *buf, void *cdrarg)
{
#ifdef HBLK_TRACE
struct hme_blk *hmeblkp;
hmeblkp = (struct hme_blk *)buf;
mutex_destroy(&hmeblkp->hblk_audit_lock);
#endif /* HBLK_TRACE */
}
#define SFMMU_CACHE_RECLAIM_SCAN_RATIO 8
static int sfmmu_cache_reclaim_scan_ratio = SFMMU_CACHE_RECLAIM_SCAN_RATIO;
/*
* The kmem allocator will callback into our reclaim routine when the system
* is running low in memory. We traverse the hash and free up all unused but
* still cached hme_blks. We also traverse the free list and free them up
* as well.
*/
/*ARGSUSED*/
static void
sfmmu_hblkcache_reclaim(void *cdrarg)
{
int i;
uint64_t hblkpa, prevpa, nx_pa;
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp, *nx_hblk, *pr_hblk = NULL;
static struct hmehash_bucket *uhmehash_reclaim_hand;
static struct hmehash_bucket *khmehash_reclaim_hand;
struct hme_blk *list = NULL;
hmebp = uhmehash_reclaim_hand;
if (hmebp == NULL || hmebp > &uhme_hash[UHMEHASH_SZ])
uhmehash_reclaim_hand = hmebp = uhme_hash;
uhmehash_reclaim_hand += UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
for (i = UHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
nx_hblk = hmeblkp->hblk_next;
nx_pa = hmeblkp->hblk_nextpa;
if (!hmeblkp->hblk_vcnt &&
!hmeblkp->hblk_hmecnt) {
sfmmu_hblk_hash_rm(hmebp, hmeblkp,
prevpa, pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp,
hblkpa, &list);
} else {
pr_hblk = hmeblkp;
prevpa = hblkpa;
}
hmeblkp = nx_hblk;
hblkpa = nx_pa;
}
SFMMU_HASH_UNLOCK(hmebp);
}
if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
hmebp = uhme_hash;
}
hmebp = khmehash_reclaim_hand;
if (hmebp == NULL || hmebp > &khme_hash[KHMEHASH_SZ])
khmehash_reclaim_hand = hmebp = khme_hash;
khmehash_reclaim_hand += KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio;
for (i = KHMEHASH_SZ / sfmmu_cache_reclaim_scan_ratio; i; i--) {
if (SFMMU_HASH_LOCK_TRYENTER(hmebp) != 0) {
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
nx_hblk = hmeblkp->hblk_next;
nx_pa = hmeblkp->hblk_nextpa;
if (!hmeblkp->hblk_vcnt &&
!hmeblkp->hblk_hmecnt) {
sfmmu_hblk_hash_rm(hmebp, hmeblkp,
prevpa, pr_hblk);
sfmmu_hblk_free(hmebp, hmeblkp,
hblkpa, &list);
} else {
pr_hblk = hmeblkp;
prevpa = hblkpa;
}
hmeblkp = nx_hblk;
hblkpa = nx_pa;
}
SFMMU_HASH_UNLOCK(hmebp);
}
if (hmebp++ == &khme_hash[KHMEHASH_SZ])
hmebp = khme_hash;
}
sfmmu_hblks_list_purge(&list);
}
/*
* sfmmu_get_ppvcolor should become a vm_machdep or hatop interface.
* same goes for sfmmu_get_addrvcolor().
*
* This function will return the virtual color for the specified page. The
* virtual color corresponds to this page current mapping or its last mapping.
* It is used by memory allocators to choose addresses with the correct
* alignment so vac consistency is automatically maintained. If the page
* has no color it returns -1.
*/
/*ARGSUSED*/
int
sfmmu_get_ppvcolor(struct page *pp)
{
#ifdef VAC
int color;
if (!(cache & CACHE_VAC) || PP_NEWPAGE(pp)) {
return (-1);
}
color = PP_GET_VCOLOR(pp);
ASSERT(color < mmu_btop(shm_alignment));
return (color);
#else
return (-1);
#endif /* VAC */
}
/*
* This function will return the desired alignment for vac consistency
* (vac color) given a virtual address. If no vac is present it returns -1.
*/
/*ARGSUSED*/
int
sfmmu_get_addrvcolor(caddr_t vaddr)
{
#ifdef VAC
if (cache & CACHE_VAC) {
return (addr_to_vcolor(vaddr));
} else {
return (-1);
}
#else
return (-1);
#endif /* VAC */
}
#ifdef VAC
/*
* Check for conflicts.
* A conflict exists if the new and existent mappings do not match in
* their "shm_alignment fields. If conflicts exist, the existant mappings
* are flushed unless one of them is locked. If one of them is locked, then
* the mappings are flushed and converted to non-cacheable mappings.
*/
static void
sfmmu_vac_conflict(struct hat *hat, caddr_t addr, page_t *pp)
{
struct hat *tmphat;
struct sf_hment *sfhmep, *tmphme = NULL;
struct hme_blk *hmeblkp;
int vcolor;
tte_t tte;
ASSERT(sfmmu_mlist_held(pp));
ASSERT(!PP_ISNC(pp)); /* page better be cacheable */
vcolor = addr_to_vcolor(addr);
if (PP_NEWPAGE(pp)) {
PP_SET_VCOLOR(pp, vcolor);
return;
}
if (PP_GET_VCOLOR(pp) == vcolor) {
return;
}
if (!PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp)) {
/*
* Previous user of page had a different color
* but since there are no current users
* we just flush the cache and change the color.
*/
SFMMU_STAT(sf_pgcolor_conflict);
sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
PP_SET_VCOLOR(pp, vcolor);
return;
}
/*
* If we get here we have a vac conflict with a current
* mapping. VAC conflict policy is as follows.
* - The default is to unload the other mappings unless:
* - If we have a large mapping we uncache the page.
* We need to uncache the rest of the large page too.
* - If any of the mappings are locked we uncache the page.
* - If the requested mapping is inconsistent
* with another mapping and that mapping
* is in the same address space we have to
* make it non-cached. The default thing
* to do is unload the inconsistent mapping
* but if they are in the same address space
* we run the risk of unmapping the pc or the
* stack which we will use as we return to the user,
* in which case we can then fault on the thing
* we just unloaded and get into an infinite loop.
*/
if (PP_ISMAPPED_LARGE(pp)) {
int sz;
/*
* Existing mapping is for big pages. We don't unload
* existing big mappings to satisfy new mappings.
* Always convert all mappings to TNC.
*/
sz = fnd_mapping_sz(pp);
pp = PP_GROUPLEADER(pp, sz);
SFMMU_STAT_ADD(sf_uncache_conflict, TTEPAGES(sz));
sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH,
TTEPAGES(sz));
return;
}
/*
* check if any mapping is in same as or if it is locked
* since in that case we need to uncache.
*/
for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
tmphme = sfhmep->hme_next;
hmeblkp = sfmmu_hmetohblk(sfhmep);
if (hmeblkp->hblk_xhat_bit)
continue;
tmphat = hblktosfmmu(hmeblkp);
sfmmu_copytte(&sfhmep->hme_tte, &tte);
ASSERT(TTE_IS_VALID(&tte));
if ((tmphat == hat) || hmeblkp->hblk_lckcnt) {
/*
* We have an uncache conflict
*/
SFMMU_STAT(sf_uncache_conflict);
sfmmu_page_cache_array(pp, HAT_TMPNC, CACHE_FLUSH, 1);
return;
}
}
/*
* We have an unload conflict
* We have already checked for LARGE mappings, therefore
* the remaining mapping(s) must be TTE8K.
*/
SFMMU_STAT(sf_unload_conflict);
for (sfhmep = pp->p_mapping; sfhmep; sfhmep = tmphme) {
tmphme = sfhmep->hme_next;
hmeblkp = sfmmu_hmetohblk(sfhmep);
if (hmeblkp->hblk_xhat_bit)
continue;
(void) sfmmu_pageunload(pp, sfhmep, TTE8K);
}
if (PP_ISMAPPED_KPM(pp))
sfmmu_kpm_vac_unload(pp, addr);
/*
* Unloads only do TLB flushes so we need to flush the
* cache here.
*/
sfmmu_cache_flush(pp->p_pagenum, PP_GET_VCOLOR(pp));
PP_SET_VCOLOR(pp, vcolor);
}
/*
* Whenever a mapping is unloaded and the page is in TNC state,
* we see if the page can be made cacheable again. 'pp' is
* the page that we just unloaded a mapping from, the size
* of mapping that was unloaded is 'ottesz'.
* Remark:
* The recache policy for mpss pages can leave a performance problem
* under the following circumstances:
* . A large page in uncached mode has just been unmapped.
* . All constituent pages are TNC due to a conflicting small mapping.
* . There are many other, non conflicting, small mappings around for
* a lot of the constituent pages.
* . We're called w/ the "old" groupleader page and the old ottesz,
* but this is irrelevant, since we're no more "PP_ISMAPPED_LARGE", so
* we end up w/ TTE8K or npages == 1.
* . We call tst_tnc w/ the old groupleader only, and if there is no
* conflict, we re-cache only this page.
* . All other small mappings are not checked and will be left in TNC mode.
* The problem is not very serious because:
* . mpss is actually only defined for heap and stack, so the probability
* is not very high that a large page mapping exists in parallel to a small
* one (this is possible, but seems to be bad programming style in the
* appl).
* . The problem gets a little bit more serious, when those TNC pages
* have to be mapped into kernel space, e.g. for networking.
* . When VAC alias conflicts occur in applications, this is regarded
* as an application bug. So if kstat's show them, the appl should
* be changed anyway.
*/
void
conv_tnc(page_t *pp, int ottesz)
{
int cursz, dosz;
pgcnt_t curnpgs, dopgs;
pgcnt_t pg64k;
page_t *pp2;
/*
* Determine how big a range we check for TNC and find
* leader page. cursz is the size of the biggest
* mapping that still exist on 'pp'.
*/
if (PP_ISMAPPED_LARGE(pp)) {
cursz = fnd_mapping_sz(pp);
} else {
cursz = TTE8K;
}
if (ottesz >= cursz) {
dosz = ottesz;
pp2 = pp;
} else {
dosz = cursz;
pp2 = PP_GROUPLEADER(pp, dosz);
}
pg64k = TTEPAGES(TTE64K);
dopgs = TTEPAGES(dosz);
ASSERT(dopgs == 1 || ((dopgs & (pg64k - 1)) == 0));
while (dopgs != 0) {
curnpgs = TTEPAGES(cursz);
if (tst_tnc(pp2, curnpgs)) {
SFMMU_STAT_ADD(sf_recache, curnpgs);
sfmmu_page_cache_array(pp2, HAT_CACHE, CACHE_NO_FLUSH,
curnpgs);
}
ASSERT(dopgs >= curnpgs);
dopgs -= curnpgs;
if (dopgs == 0) {
break;
}
pp2 = PP_PAGENEXT_N(pp2, curnpgs);
if (((dopgs & (pg64k - 1)) == 0) && PP_ISMAPPED_LARGE(pp2)) {
cursz = fnd_mapping_sz(pp2);
} else {
cursz = TTE8K;
}
}
}
/*
* Returns 1 if page(s) can be converted from TNC to cacheable setting,
* returns 0 otherwise. Note that oaddr argument is valid for only
* 8k pages.
*/
int
tst_tnc(page_t *pp, pgcnt_t npages)
{
struct sf_hment *sfhme;
struct hme_blk *hmeblkp;
tte_t tte;
caddr_t vaddr;
int clr_valid = 0;
int color, color1, bcolor;
int i, ncolors;
ASSERT(pp != NULL);
ASSERT(!(cache & CACHE_WRITEBACK));
if (npages > 1) {
ncolors = CACHE_NUM_COLOR;
}
for (i = 0; i < npages; i++) {
ASSERT(sfmmu_mlist_held(pp));
ASSERT(PP_ISTNC(pp));
ASSERT(PP_GET_VCOLOR(pp) == NO_VCOLOR);
if (PP_ISPNC(pp)) {
return (0);
}
clr_valid = 0;
if (PP_ISMAPPED_KPM(pp)) {
caddr_t kpmvaddr;
ASSERT(kpm_enable);
kpmvaddr = hat_kpm_page2va(pp, 1);
ASSERT(!(npages > 1 && IS_KPM_ALIAS_RANGE(kpmvaddr)));
color1 = addr_to_vcolor(kpmvaddr);
clr_valid = 1;
}
for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
hmeblkp = sfmmu_hmetohblk(sfhme);
if (hmeblkp->hblk_xhat_bit)
continue;
sfmmu_copytte(&sfhme->hme_tte, &tte);
ASSERT(TTE_IS_VALID(&tte));
vaddr = tte_to_vaddr(hmeblkp, tte);
color = addr_to_vcolor(vaddr);
if (npages > 1) {
/*
* If there is a big mapping, make sure
* 8K mapping is consistent with the big
* mapping.
*/
bcolor = i % ncolors;
if (color != bcolor) {
return (0);
}
}
if (!clr_valid) {
clr_valid = 1;
color1 = color;
}
if (color1 != color) {
return (0);
}
}
pp = PP_PAGENEXT(pp);
}
return (1);
}
void
sfmmu_page_cache_array(page_t *pp, int flags, int cache_flush_flag,
pgcnt_t npages)
{
kmutex_t *pmtx;
int i, ncolors, bcolor;
kpm_hlk_t *kpmp;
cpuset_t cpuset;
ASSERT(pp != NULL);
ASSERT(!(cache & CACHE_WRITEBACK));
kpmp = sfmmu_kpm_kpmp_enter(pp, npages);
pmtx = sfmmu_page_enter(pp);
/*
* Fast path caching single unmapped page
*/
if (npages == 1 && !PP_ISMAPPED(pp) && !PP_ISMAPPED_KPM(pp) &&
flags == HAT_CACHE) {
PP_CLRTNC(pp);
PP_CLRPNC(pp);
sfmmu_page_exit(pmtx);
sfmmu_kpm_kpmp_exit(kpmp);
return;
}
/*
* We need to capture all cpus in order to change cacheability
* because we can't allow one cpu to access the same physical
* page using a cacheable and a non-cachebale mapping at the same
* time. Since we may end up walking the ism mapping list
* have to grab it's lock now since we can't after all the
* cpus have been captured.
*/
sfmmu_hat_lock_all();
mutex_enter(&ism_mlist_lock);
kpreempt_disable();
cpuset = cpu_ready_set;
xc_attention(cpuset);
if (npages > 1) {
/*
* Make sure all colors are flushed since the
* sfmmu_page_cache() only flushes one color-
* it does not know big pages.
*/
ncolors = CACHE_NUM_COLOR;
if (flags & HAT_TMPNC) {
for (i = 0; i < ncolors; i++) {
sfmmu_cache_flushcolor(i, pp->p_pagenum);
}
cache_flush_flag = CACHE_NO_FLUSH;
}
}
for (i = 0; i < npages; i++) {
ASSERT(sfmmu_mlist_held(pp));
if (!(flags == HAT_TMPNC && PP_ISTNC(pp))) {
if (npages > 1) {
bcolor = i % ncolors;
} else {
bcolor = NO_VCOLOR;
}
sfmmu_page_cache(pp, flags, cache_flush_flag,
bcolor);
}
pp = PP_PAGENEXT(pp);
}
xt_sync(cpuset);
xc_dismissed(cpuset);
mutex_exit(&ism_mlist_lock);
sfmmu_hat_unlock_all();
sfmmu_page_exit(pmtx);
sfmmu_kpm_kpmp_exit(kpmp);
kpreempt_enable();
}
/*
* This function changes the virtual cacheability of all mappings to a
* particular page. When changing from uncache to cacheable the mappings will
* only be changed if all of them have the same virtual color.
* We need to flush the cache in all cpus. It is possible that
* a process referenced a page as cacheable but has sinced exited
* and cleared the mapping list. We still to flush it but have no
* state so all cpus is the only alternative.
*/
static void
sfmmu_page_cache(page_t *pp, int flags, int cache_flush_flag, int bcolor)
{
struct sf_hment *sfhme;
struct hme_blk *hmeblkp;
sfmmu_t *sfmmup;
tte_t tte, ttemod;
caddr_t vaddr;
int ret, color;
pfn_t pfn;
color = bcolor;
pfn = pp->p_pagenum;
for (sfhme = pp->p_mapping; sfhme; sfhme = sfhme->hme_next) {
hmeblkp = sfmmu_hmetohblk(sfhme);
if (hmeblkp->hblk_xhat_bit)
continue;
sfmmu_copytte(&sfhme->hme_tte, &tte);
ASSERT(TTE_IS_VALID(&tte));
vaddr = tte_to_vaddr(hmeblkp, tte);
color = addr_to_vcolor(vaddr);
#ifdef DEBUG
if ((flags & HAT_CACHE) && bcolor != NO_VCOLOR) {
ASSERT(color == bcolor);
}
#endif
ASSERT(flags != HAT_TMPNC || color == PP_GET_VCOLOR(pp));
ttemod = tte;
if (flags & (HAT_UNCACHE | HAT_TMPNC)) {
TTE_CLR_VCACHEABLE(&ttemod);
} else { /* flags & HAT_CACHE */
TTE_SET_VCACHEABLE(&ttemod);
}
ret = sfmmu_modifytte_try(&tte, &ttemod, &sfhme->hme_tte);
if (ret < 0) {
/*
* Since all cpus are captured modifytte should not
* fail.
*/
panic("sfmmu_page_cache: write to tte failed");
}
sfmmup = hblktosfmmu(hmeblkp);
if (cache_flush_flag == CACHE_FLUSH) {
/*
* Flush TSBs, TLBs and caches
*/
if (sfmmup->sfmmu_ismhat) {
if (flags & HAT_CACHE) {
SFMMU_STAT(sf_ism_recache);
} else {
SFMMU_STAT(sf_ism_uncache);
}
sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
pfn, CACHE_FLUSH);
} else {
sfmmu_tlbcache_demap(vaddr, sfmmup, hmeblkp,
pfn, 0, FLUSH_ALL_CPUS, CACHE_FLUSH, 1);
}
/*
* all cache entries belonging to this pfn are
* now flushed.
*/
cache_flush_flag = CACHE_NO_FLUSH;
} else {
/*
* Flush only TSBs and TLBs.
*/
if (sfmmup->sfmmu_ismhat) {
if (flags & HAT_CACHE) {
SFMMU_STAT(sf_ism_recache);
} else {
SFMMU_STAT(sf_ism_uncache);
}
sfmmu_ismtlbcache_demap(vaddr, sfmmup, hmeblkp,
pfn, CACHE_NO_FLUSH);
} else {
sfmmu_tlb_demap(vaddr, sfmmup, hmeblkp, 0, 1);
}
}
}
if (PP_ISMAPPED_KPM(pp))
sfmmu_kpm_page_cache(pp, flags, cache_flush_flag);
switch (flags) {
default:
panic("sfmmu_pagecache: unknown flags");
break;
case HAT_CACHE:
PP_CLRTNC(pp);
PP_CLRPNC(pp);
PP_SET_VCOLOR(pp, color);
break;
case HAT_TMPNC:
PP_SETTNC(pp);
PP_SET_VCOLOR(pp, NO_VCOLOR);
break;
case HAT_UNCACHE:
PP_SETPNC(pp);
PP_CLRTNC(pp);
PP_SET_VCOLOR(pp, NO_VCOLOR);
break;
}
}
#endif /* VAC */
/*
* Wrapper routine used to return a context.
*
* It's the responsibility of the caller to guarantee that the
* process serializes on calls here by taking the HAT lock for
* the hat.
*
*/
static void
sfmmu_get_ctx(sfmmu_t *sfmmup)
{
mmu_ctx_t *mmu_ctxp;
uint_t pstate_save;
ASSERT(sfmmu_hat_lock_held(sfmmup));
ASSERT(sfmmup != ksfmmup);
kpreempt_disable();
mmu_ctxp = CPU_MMU_CTXP(CPU);
ASSERT(mmu_ctxp);
ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
/*
* Do a wrap-around if cnum reaches the max # cnum supported by a MMU.
*/
if (mmu_ctxp->mmu_cnum == mmu_ctxp->mmu_nctxs)
sfmmu_ctx_wrap_around(mmu_ctxp);
/*
* Let the MMU set up the page sizes to use for
* this context in the TLB. Don't program 2nd dtlb for ism hat.
*/
if ((&mmu_set_ctx_page_sizes) && (sfmmup->sfmmu_ismhat == 0)) {
mmu_set_ctx_page_sizes(sfmmup);
}
/*
* sfmmu_alloc_ctx and sfmmu_load_mmustate will be performed with
* interrupts disabled to prevent race condition with wrap-around
* ctx invalidatation. In sun4v, ctx invalidation also involves
* a HV call to set the number of TSBs to 0. If interrupts are not
* disabled until after sfmmu_load_mmustate is complete TSBs may
* become assigned to INVALID_CONTEXT. This is not allowed.
*/
pstate_save = sfmmu_disable_intrs();
sfmmu_alloc_ctx(sfmmup, 1, CPU);
sfmmu_load_mmustate(sfmmup);
sfmmu_enable_intrs(pstate_save);
kpreempt_enable();
}
/*
* When all cnums are used up in a MMU, cnum will wrap around to the
* next generation and start from 2.
*/
static void
sfmmu_ctx_wrap_around(mmu_ctx_t *mmu_ctxp)
{
/* caller must have disabled the preemption */
ASSERT(curthread->t_preempt >= 1);
ASSERT(mmu_ctxp != NULL);
/* acquire Per-MMU (PM) spin lock */
mutex_enter(&mmu_ctxp->mmu_lock);
/* re-check to see if wrap-around is needed */
if (mmu_ctxp->mmu_cnum < mmu_ctxp->mmu_nctxs)
goto done;
SFMMU_MMU_STAT(mmu_wrap_around);
/* update gnum */
ASSERT(mmu_ctxp->mmu_gnum != 0);
mmu_ctxp->mmu_gnum++;
if (mmu_ctxp->mmu_gnum == 0 ||
mmu_ctxp->mmu_gnum > MAX_SFMMU_GNUM_VAL) {
cmn_err(CE_PANIC, "mmu_gnum of mmu_ctx 0x%p is out of bound.",
(void *)mmu_ctxp);
}
if (mmu_ctxp->mmu_ncpus > 1) {
cpuset_t cpuset;
membar_enter(); /* make sure updated gnum visible */
SFMMU_XCALL_STATS(NULL);
/* xcall to others on the same MMU to invalidate ctx */
cpuset = mmu_ctxp->mmu_cpuset;
ASSERT(CPU_IN_SET(cpuset, CPU->cpu_id));
CPUSET_DEL(cpuset, CPU->cpu_id);
CPUSET_AND(cpuset, cpu_ready_set);
/*
* Pass in INVALID_CONTEXT as the first parameter to
* sfmmu_raise_tsb_exception, which invalidates the context
* of any process running on the CPUs in the MMU.
*/
xt_some(cpuset, sfmmu_raise_tsb_exception,
INVALID_CONTEXT, INVALID_CONTEXT);
xt_sync(cpuset);
SFMMU_MMU_STAT(mmu_tsb_raise_exception);
}
if (sfmmu_getctx_sec() != INVALID_CONTEXT) {
sfmmu_setctx_sec(INVALID_CONTEXT);
sfmmu_clear_utsbinfo();
}
/*
* No xcall is needed here. For sun4u systems all CPUs in context
* domain share a single physical MMU therefore it's enough to flush
* TLB on local CPU. On sun4v systems we use 1 global context
* domain and flush all remote TLBs in sfmmu_raise_tsb_exception
* handler. Note that vtag_flushall_uctxs() is called
* for Ultra II machine, where the equivalent flushall functionality
* is implemented in SW, and only user ctx TLB entries are flushed.
*/
if (&vtag_flushall_uctxs != NULL) {
vtag_flushall_uctxs();
} else {
vtag_flushall();
}
/* reset mmu cnum, skips cnum 0 and 1 */
mmu_ctxp->mmu_cnum = NUM_LOCKED_CTXS;
done:
mutex_exit(&mmu_ctxp->mmu_lock);
}
/*
* For multi-threaded process, set the process context to INVALID_CONTEXT
* so that it faults and reloads the MMU state from TL=0. For single-threaded
* process, we can just load the MMU state directly without having to
* set context invalid. Caller must hold the hat lock since we don't
* acquire it here.
*/
static void
sfmmu_sync_mmustate(sfmmu_t *sfmmup)
{
uint_t cnum;
uint_t pstate_save;
ASSERT(sfmmup != ksfmmup);
ASSERT(sfmmu_hat_lock_held(sfmmup));
kpreempt_disable();
/*
* We check whether the pass'ed-in sfmmup is the same as the
* current running proc. This is to makes sure the current proc
* stays single-threaded if it already is.
*/
if ((sfmmup == curthread->t_procp->p_as->a_hat) &&
(curthread->t_procp->p_lwpcnt == 1)) {
/* single-thread */
cnum = sfmmup->sfmmu_ctxs[CPU_MMU_IDX(CPU)].cnum;
if (cnum != INVALID_CONTEXT) {
uint_t curcnum;
/*
* Disable interrupts to prevent race condition
* with sfmmu_ctx_wrap_around ctx invalidation.
* In sun4v, ctx invalidation involves setting
* TSB to NULL, hence, interrupts should be disabled
* untill after sfmmu_load_mmustate is completed.
*/
pstate_save = sfmmu_disable_intrs();
curcnum = sfmmu_getctx_sec();
if (curcnum == cnum)
sfmmu_load_mmustate(sfmmup);
sfmmu_enable_intrs(pstate_save);
ASSERT(curcnum == cnum || curcnum == INVALID_CONTEXT);
}
} else {
/*
* multi-thread
* or when sfmmup is not the same as the curproc.
*/
sfmmu_invalidate_ctx(sfmmup);
}
kpreempt_enable();
}
/*
* Replace the specified TSB with a new TSB. This function gets called when
* we grow, shrink or swapin a TSB. When swapping in a TSB (TSB_SWAPIN), the
* TSB_FORCEALLOC flag may be used to force allocation of a minimum-sized TSB
* (8K).
*
* Caller must hold the HAT lock, but should assume any tsb_info
* pointers it has are no longer valid after calling this function.
*
* Return values:
* TSB_ALLOCFAIL Failed to allocate a TSB, due to memory constraints
* TSB_LOSTRACE HAT is busy, i.e. another thread is already doing
* something to this tsbinfo/TSB
* TSB_SUCCESS Operation succeeded
*/
static tsb_replace_rc_t
sfmmu_replace_tsb(sfmmu_t *sfmmup, struct tsb_info *old_tsbinfo, uint_t szc,
hatlock_t *hatlockp, uint_t flags)
{
struct tsb_info *new_tsbinfo = NULL;
struct tsb_info *curtsb, *prevtsb;
uint_t tte_sz_mask;
int i;
ASSERT(sfmmup != ksfmmup);
ASSERT(sfmmup->sfmmu_ismhat == 0);
ASSERT(sfmmu_hat_lock_held(sfmmup));
ASSERT(szc <= tsb_max_growsize);
if (SFMMU_FLAGS_ISSET(sfmmup, HAT_BUSY))
return (TSB_LOSTRACE);
/*
* Find the tsb_info ahead of this one in the list, and
* also make sure that the tsb_info passed in really
* exists!
*/
for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
curtsb != old_tsbinfo && curtsb != NULL;
prevtsb = curtsb, curtsb = curtsb->tsb_next);
ASSERT(curtsb != NULL);
if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
/*
* The process is swapped out, so just set the new size
* code. When it swaps back in, we'll allocate a new one
* of the new chosen size.
*/
curtsb->tsb_szc = szc;
return (TSB_SUCCESS);
}
SFMMU_FLAGS_SET(sfmmup, HAT_BUSY);
tte_sz_mask = old_tsbinfo->tsb_ttesz_mask;
/*
* All initialization is done inside of sfmmu_tsbinfo_alloc().
* If we fail to allocate a TSB, exit.
*/
sfmmu_hat_exit(hatlockp);
if (sfmmu_tsbinfo_alloc(&new_tsbinfo, szc, tte_sz_mask,
flags, sfmmup)) {
(void) sfmmu_hat_enter(sfmmup);
if (!(flags & TSB_SWAPIN))
SFMMU_STAT(sf_tsb_resize_failures);
SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
return (TSB_ALLOCFAIL);
}
(void) sfmmu_hat_enter(sfmmup);
/*
* Re-check to make sure somebody else didn't muck with us while we
* didn't hold the HAT lock. If the process swapped out, fine, just
* exit; this can happen if we try to shrink the TSB from the context
* of another process (such as on an ISM unmap), though it is rare.
*/
if (!(flags & TSB_SWAPIN) && SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
SFMMU_STAT(sf_tsb_resize_failures);
SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
sfmmu_hat_exit(hatlockp);
sfmmu_tsbinfo_free(new_tsbinfo);
(void) sfmmu_hat_enter(sfmmup);
return (TSB_LOSTRACE);
}
#ifdef DEBUG
/* Reverify that the tsb_info still exists.. for debugging only */
for (prevtsb = NULL, curtsb = sfmmup->sfmmu_tsb;
curtsb != old_tsbinfo && curtsb != NULL;
prevtsb = curtsb, curtsb = curtsb->tsb_next);
ASSERT(curtsb != NULL);
#endif /* DEBUG */
/*
* Quiesce any CPUs running this process on their next TLB miss
* so they atomically see the new tsb_info. We temporarily set the
* context to invalid context so new threads that come on processor
* after we do the xcall to cpusran will also serialize behind the
* HAT lock on TLB miss and will see the new TSB. Since this short
* race with a new thread coming on processor is relatively rare,
* this synchronization mechanism should be cheaper than always
* pausing all CPUs for the duration of the setup, which is what
* the old implementation did. This is particuarly true if we are
* copying a huge chunk of memory around during that window.
*
* The memory barriers are to make sure things stay consistent
* with resume() since it does not hold the HAT lock while
* walking the list of tsb_info structures.
*/
if ((flags & TSB_SWAPIN) != TSB_SWAPIN) {
/* The TSB is either growing or shrinking. */
sfmmu_invalidate_ctx(sfmmup);
} else {
/*
* It is illegal to swap in TSBs from a process other
* than a process being swapped in. This in turn
* implies we do not have a valid MMU context here
* since a process needs one to resolve translation
* misses.
*/
ASSERT(curthread->t_procp->p_as->a_hat == sfmmup);
}
#ifdef DEBUG
ASSERT(max_mmu_ctxdoms > 0);
/*
* Process should have INVALID_CONTEXT on all MMUs
*/
for (i = 0; i < max_mmu_ctxdoms; i++) {
ASSERT(sfmmup->sfmmu_ctxs[i].cnum == INVALID_CONTEXT);
}
#endif
new_tsbinfo->tsb_next = old_tsbinfo->tsb_next;
membar_stst(); /* strict ordering required */
if (prevtsb)
prevtsb->tsb_next = new_tsbinfo;
else
sfmmup->sfmmu_tsb = new_tsbinfo;
membar_enter(); /* make sure new TSB globally visible */
sfmmu_setup_tsbinfo(sfmmup);
/*
* We need to migrate TSB entries from the old TSB to the new TSB
* if tsb_remap_ttes is set and the TSB is growing.
*/
if (tsb_remap_ttes && ((flags & TSB_GROW) == TSB_GROW))
sfmmu_copy_tsb(old_tsbinfo, new_tsbinfo);
SFMMU_FLAGS_CLEAR(sfmmup, HAT_BUSY);
/*
* Drop the HAT lock to free our old tsb_info.
*/
sfmmu_hat_exit(hatlockp);
if ((flags & TSB_GROW) == TSB_GROW) {
SFMMU_STAT(sf_tsb_grow);
} else if ((flags & TSB_SHRINK) == TSB_SHRINK) {
SFMMU_STAT(sf_tsb_shrink);
}
sfmmu_tsbinfo_free(old_tsbinfo);
(void) sfmmu_hat_enter(sfmmup);
return (TSB_SUCCESS);
}
/*
* This function will re-program hat pgsz array, and invalidate the
* process' context, forcing the process to switch to another
* context on the next TLB miss, and therefore start using the
* TLB that is reprogrammed for the new page sizes.
*/
void
sfmmu_reprog_pgsz_arr(sfmmu_t *sfmmup, uint8_t *tmp_pgsz)
{
int i;
hatlock_t *hatlockp = NULL;
hatlockp = sfmmu_hat_enter(sfmmup);
/* USIII+-IV+ optimization, requires hat lock */
if (tmp_pgsz) {
for (i = 0; i < mmu_page_sizes; i++)
sfmmup->sfmmu_pgsz[i] = tmp_pgsz[i];
}
SFMMU_STAT(sf_tlb_reprog_pgsz);
sfmmu_invalidate_ctx(sfmmup);
sfmmu_hat_exit(hatlockp);
}
/*
* This function assumes that there are either four or six supported page
* sizes and at most two programmable TLBs, so we need to decide which
* page sizes are most important and then tell the MMU layer so it
* can adjust the TLB page sizes accordingly (if supported).
*
* If these assumptions change, this function will need to be
* updated to support whatever the new limits are.
*
* The growing flag is nonzero if we are growing the address space,
* and zero if it is shrinking. This allows us to decide whether
* to grow or shrink our TSB, depending upon available memory
* conditions.
*/
static void
sfmmu_check_page_sizes(sfmmu_t *sfmmup, int growing)
{
uint64_t ttecnt[MMU_PAGE_SIZES];
uint64_t tte8k_cnt, tte4m_cnt;
uint8_t i;
int sectsb_thresh;
/*
* Kernel threads, processes with small address spaces not using
* large pages, and dummy ISM HATs need not apply.
*/
if (sfmmup == ksfmmup || sfmmup->sfmmu_ismhat != NULL)
return;
if ((sfmmup->sfmmu_flags & HAT_LGPG_FLAGS) == 0 &&
sfmmup->sfmmu_ttecnt[TTE8K] <= tsb_rss_factor)
return;
for (i = 0; i < mmu_page_sizes; i++) {
ttecnt[i] = SFMMU_TTE_CNT(sfmmup, i);
}
/* Check pagesizes in use, and possibly reprogram DTLB. */
if (&mmu_check_page_sizes)
mmu_check_page_sizes(sfmmup, ttecnt);
/*
* Calculate the number of 8k ttes to represent the span of these
* pages.
*/
tte8k_cnt = ttecnt[TTE8K] +
(ttecnt[TTE64K] << (MMU_PAGESHIFT64K - MMU_PAGESHIFT)) +
(ttecnt[TTE512K] << (MMU_PAGESHIFT512K - MMU_PAGESHIFT));
if (mmu_page_sizes == max_mmu_page_sizes) {
tte4m_cnt = ttecnt[TTE4M] +
(ttecnt[TTE32M] << (MMU_PAGESHIFT32M - MMU_PAGESHIFT4M)) +
(ttecnt[TTE256M] << (MMU_PAGESHIFT256M - MMU_PAGESHIFT4M));
} else {
tte4m_cnt = ttecnt[TTE4M];
}
/*
* Inflate TSB sizes by a factor of 2 if this process
* uses 4M text pages to minimize extra conflict misses
* in the first TSB since without counting text pages
* 8K TSB may become too small.
*
* Also double the size of the second TSB to minimize
* extra conflict misses due to competition between 4M text pages
* and data pages.
*
* We need to adjust the second TSB allocation threshold by the
* inflation factor, since there is no point in creating a second
* TSB when we know all the mappings can fit in the I/D TLBs.
*/
sectsb_thresh = tsb_sectsb_threshold;
if (sfmmup->sfmmu_flags & HAT_4MTEXT_FLAG) {
tte8k_cnt <<= 1;
tte4m_cnt <<= 1;
sectsb_thresh <<= 1;
}
/*
* Check to see if our TSB is the right size; we may need to
* grow or shrink it. If the process is small, our work is
* finished at this point.
*/
if (tte8k_cnt <= tsb_rss_factor && tte4m_cnt <= sectsb_thresh) {
return;
}
sfmmu_size_tsb(sfmmup, growing, tte8k_cnt, tte4m_cnt, sectsb_thresh);
}
static void
sfmmu_size_tsb(sfmmu_t *sfmmup, int growing, uint64_t tte8k_cnt,
uint64_t tte4m_cnt, int sectsb_thresh)
{
int tsb_bits;
uint_t tsb_szc;
struct tsb_info *tsbinfop;
hatlock_t *hatlockp = NULL;
hatlockp = sfmmu_hat_enter(sfmmup);
ASSERT(hatlockp != NULL);
tsbinfop = sfmmup->sfmmu_tsb;
ASSERT(tsbinfop != NULL);
/*
* If we're growing, select the size based on RSS. If we're
* shrinking, leave some room so we don't have to turn around and
* grow again immediately.
*/
if (growing)
tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt);
else
tsb_szc = SELECT_TSB_SIZECODE(tte8k_cnt << 1);
if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
(tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
hatlockp, TSB_SHRINK);
} else if (growing && tsb_szc > tsbinfop->tsb_szc && TSB_OK_GROW()) {
(void) sfmmu_replace_tsb(sfmmup, tsbinfop, tsb_szc,
hatlockp, TSB_GROW);
}
tsbinfop = sfmmup->sfmmu_tsb;
/*
* With the TLB and first TSB out of the way, we need to see if
* we need a second TSB for 4M pages. If we managed to reprogram
* the TLB page sizes above, the process will start using this new
* TSB right away; otherwise, it will start using it on the next
* context switch. Either way, it's no big deal so there's no
* synchronization with the trap handlers here unless we grow the
* TSB (in which case it's required to prevent using the old one
* after it's freed). Note: second tsb is required for 32M/256M
* page sizes.
*/
if (tte4m_cnt > sectsb_thresh) {
/*
* If we're growing, select the size based on RSS. If we're
* shrinking, leave some room so we don't have to turn
* around and grow again immediately.
*/
if (growing)
tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt);
else
tsb_szc = SELECT_TSB_SIZECODE(tte4m_cnt << 1);
if (tsbinfop->tsb_next == NULL) {
struct tsb_info *newtsb;
int allocflags = SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)?
0 : TSB_ALLOC;
sfmmu_hat_exit(hatlockp);
/*
* Try to allocate a TSB for 4[32|256]M pages. If we
* can't get the size we want, retry w/a minimum sized
* TSB. If that still didn't work, give up; we can
* still run without one.
*/
tsb_bits = (mmu_page_sizes == max_mmu_page_sizes)?
TSB4M|TSB32M|TSB256M:TSB4M;
if ((sfmmu_tsbinfo_alloc(&newtsb, tsb_szc, tsb_bits,
allocflags, sfmmup) != 0) &&
(sfmmu_tsbinfo_alloc(&newtsb, TSB_MIN_SZCODE,
tsb_bits, allocflags, sfmmup) != 0)) {
return;
}
hatlockp = sfmmu_hat_enter(sfmmup);
if (sfmmup->sfmmu_tsb->tsb_next == NULL) {
sfmmup->sfmmu_tsb->tsb_next = newtsb;
SFMMU_STAT(sf_tsb_sectsb_create);
sfmmu_setup_tsbinfo(sfmmup);
sfmmu_hat_exit(hatlockp);
return;
} else {
/*
* It's annoying, but possible for us
* to get here.. we dropped the HAT lock
* because of locking order in the kmem
* allocator, and while we were off getting
* our memory, some other thread decided to
* do us a favor and won the race to get a
* second TSB for this process. Sigh.
*/
sfmmu_hat_exit(hatlockp);
sfmmu_tsbinfo_free(newtsb);
return;
}
}
/*
* We have a second TSB, see if it's big enough.
*/
tsbinfop = tsbinfop->tsb_next;
/*
* Check to see if our second TSB is the right size;
* we may need to grow or shrink it.
* To prevent thrashing (e.g. growing the TSB on a
* subsequent map operation), only try to shrink if
* the TSB reach exceeds twice the virtual address
* space size.
*/
if (!growing && (tsb_szc < tsbinfop->tsb_szc) &&
(tsb_szc >= default_tsb_size) && TSB_OK_SHRINK()) {
(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
tsb_szc, hatlockp, TSB_SHRINK);
} else if (growing && tsb_szc > tsbinfop->tsb_szc &&
TSB_OK_GROW()) {
(void) sfmmu_replace_tsb(sfmmup, tsbinfop,
tsb_szc, hatlockp, TSB_GROW);
}
}
sfmmu_hat_exit(hatlockp);
}
/*
* Get the preferred page size code for a hat.
* This is only advice, so locking is not done;
* this transitory information could change
* following the call anyway. This interface is
* sun4 private.
*/
/*ARGSUSED*/
uint_t
hat_preferred_pgsz(struct hat *hat, caddr_t vaddr, size_t maplen, int maptype)
{
sfmmu_t *sfmmup = (sfmmu_t *)hat;
uint_t szc, maxszc = mmu_page_sizes - 1;
size_t pgsz;
if (maptype == MAPPGSZ_ISM) {
for (szc = maxszc; szc >= TTE4M; szc--) {
if (disable_ism_large_pages & (1 << szc))
continue;
pgsz = hw_page_array[szc].hp_size;
if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
return (szc);
}
return (TTE4M);
} else if (&mmu_preferred_pgsz) { /* USIII+-USIV+ */
return (mmu_preferred_pgsz(sfmmup, vaddr, maplen));
} else { /* USIII, USII, Niagara */
for (szc = maxszc; szc > TTE8K; szc--) {
if (disable_large_pages & (1 << szc))
continue;
pgsz = hw_page_array[szc].hp_size;
if ((maplen >= pgsz) && IS_P2ALIGNED(vaddr, pgsz))
return (szc);
}
return (TTE8K);
}
}
/*
* Free up a sfmmu
* Since the sfmmu is currently embedded in the hat struct we simply zero
* out our fields and free up the ism map blk list if any.
*/
static void
sfmmu_free_sfmmu(sfmmu_t *sfmmup)
{
ism_blk_t *blkp, *nx_blkp;
#ifdef DEBUG
ism_map_t *map;
int i;
#endif
ASSERT(sfmmup->sfmmu_ttecnt[TTE8K] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE64K] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE512K] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE4M] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE32M] == 0);
ASSERT(sfmmup->sfmmu_ttecnt[TTE256M] == 0);
sfmmup->sfmmu_free = 0;
sfmmup->sfmmu_ismhat = 0;
blkp = sfmmup->sfmmu_iblk;
sfmmup->sfmmu_iblk = NULL;
while (blkp) {
#ifdef DEBUG
map = blkp->iblk_maps;
for (i = 0; i < ISM_MAP_SLOTS; i++) {
ASSERT(map[i].imap_seg == 0);
ASSERT(map[i].imap_ismhat == NULL);
ASSERT(map[i].imap_ment == NULL);
}
#endif
nx_blkp = blkp->iblk_next;
blkp->iblk_next = NULL;
blkp->iblk_nextpa = (uint64_t)-1;
kmem_cache_free(ism_blk_cache, blkp);
blkp = nx_blkp;
}
}
/*
* Locking primitves accessed by HATLOCK macros
*/
#define SFMMU_SPL_MTX (0x0)
#define SFMMU_ML_MTX (0x1)
#define SFMMU_MLSPL_MTX(type, pg) (((type) == SFMMU_SPL_MTX) ? \
SPL_HASH(pg) : MLIST_HASH(pg))
kmutex_t *
sfmmu_page_enter(struct page *pp)
{
return (sfmmu_mlspl_enter(pp, SFMMU_SPL_MTX));
}
void
sfmmu_page_exit(kmutex_t *spl)
{
mutex_exit(spl);
}
int
sfmmu_page_spl_held(struct page *pp)
{
return (sfmmu_mlspl_held(pp, SFMMU_SPL_MTX));
}
kmutex_t *
sfmmu_mlist_enter(struct page *pp)
{
return (sfmmu_mlspl_enter(pp, SFMMU_ML_MTX));
}
void
sfmmu_mlist_exit(kmutex_t *mml)
{
mutex_exit(mml);
}
int
sfmmu_mlist_held(struct page *pp)
{
return (sfmmu_mlspl_held(pp, SFMMU_ML_MTX));
}
/*
* Common code for sfmmu_mlist_enter() and sfmmu_page_enter(). For
* sfmmu_mlist_enter() case mml_table lock array is used and for
* sfmmu_page_enter() sfmmu_page_lock lock array is used.
*
* The lock is taken on a root page so that it protects an operation on all
* constituent pages of a large page pp belongs to.
*
* The routine takes a lock from the appropriate array. The lock is determined
* by hashing the root page. After taking the lock this routine checks if the
* root page has the same size code that was used to determine the root (i.e
* that root hasn't changed). If root page has the expected p_szc field we
* have the right lock and it's returned to the caller. If root's p_szc
* decreased we release the lock and retry from the beginning. This case can
* happen due to hat_page_demote() decreasing p_szc between our load of p_szc
* value and taking the lock. The number of retries due to p_szc decrease is
* limited by the maximum p_szc value. If p_szc is 0 we return the lock
* determined by hashing pp itself.
*
* If our caller doesn't hold a SE_SHARED or SE_EXCL lock on pp it's also
* possible that p_szc can increase. To increase p_szc a thread has to lock
* all constituent pages EXCL and do hat_pageunload() on all of them. All the
* callers that don't hold a page locked recheck if hmeblk through which pp
* was found still maps this pp. If it doesn't map it anymore returned lock
* is immediately dropped. Therefore if sfmmu_mlspl_enter() hits the case of
* p_szc increase after taking the lock it returns this lock without further
* retries because in this case the caller doesn't care about which lock was
* taken. The caller will drop it right away.
*
* After the routine returns it's guaranteed that hat_page_demote() can't
* change p_szc field of any of constituent pages of a large page pp belongs
* to as long as pp was either locked at least SHARED prior to this call or
* the caller finds that hment that pointed to this pp still references this
* pp (this also assumes that the caller holds hme hash bucket lock so that
* the same pp can't be remapped into the same hmeblk after it was unmapped by
* hat_pageunload()).
*/
static kmutex_t *
sfmmu_mlspl_enter(struct page *pp, int type)
{
kmutex_t *mtx;
uint_t prev_rszc = UINT_MAX;
page_t *rootpp;
uint_t szc;
uint_t rszc;
uint_t pszc = pp->p_szc;
ASSERT(pp != NULL);
again:
if (pszc == 0) {
mtx = SFMMU_MLSPL_MTX(type, pp);
mutex_enter(mtx);
return (mtx);
}
/* The lock lives in the root page */
rootpp = PP_GROUPLEADER(pp, pszc);
mtx = SFMMU_MLSPL_MTX(type, rootpp);
mutex_enter(mtx);
/*
* Return mml in the following 3 cases:
*
* 1) If pp itself is root since if its p_szc decreased before we took
* the lock pp is still the root of smaller szc page. And if its p_szc
* increased it doesn't matter what lock we return (see comment in
* front of this routine).
*
* 2) If pp's not root but rootpp is the root of a rootpp->p_szc size
* large page we have the right lock since any previous potential
* hat_page_demote() is done demoting from greater than current root's
* p_szc because hat_page_demote() changes root's p_szc last. No
* further hat_page_demote() can start or be in progress since it
* would need the same lock we currently hold.
*
* 3) If rootpp's p_szc increased since previous iteration it doesn't
* matter what lock we return (see comment in front of this routine).
*/
if (pp == rootpp || (rszc = rootpp->p_szc) == pszc ||
rszc >= prev_rszc) {
return (mtx);
}
/*
* hat_page_demote() could have decreased root's p_szc.
* In this case pp's p_szc must also be smaller than pszc.
* Retry.
*/
if (rszc < pszc) {
szc = pp->p_szc;
if (szc < pszc) {
mutex_exit(mtx);
pszc = szc;
goto again;
}
/*
* pp's p_szc increased after it was decreased.
* page cannot be mapped. Return current lock. The caller
* will drop it right away.
*/
return (mtx);
}
/*
* root's p_szc is greater than pp's p_szc.
* hat_page_demote() is not done with all pages
* yet. Wait for it to complete.
*/
mutex_exit(mtx);
rootpp = PP_GROUPLEADER(rootpp, rszc);
mtx = SFMMU_MLSPL_MTX(type, rootpp);
mutex_enter(mtx);
mutex_exit(mtx);
prev_rszc = rszc;
goto again;
}
static int
sfmmu_mlspl_held(struct page *pp, int type)
{
kmutex_t *mtx;
ASSERT(pp != NULL);
/* The lock lives in the root page */
pp = PP_PAGEROOT(pp);
ASSERT(pp != NULL);
mtx = SFMMU_MLSPL_MTX(type, pp);
return (MUTEX_HELD(mtx));
}
static uint_t
sfmmu_get_free_hblk(struct hme_blk **hmeblkpp, uint_t critical)
{
struct hme_blk *hblkp;
if (freehblkp != NULL) {
mutex_enter(&freehblkp_lock);
if (freehblkp != NULL) {
/*
* If the current thread is owning hblk_reserve,
* let it succede even if freehblkcnt is really low.
*/
if (freehblkcnt <= HBLK_RESERVE_MIN && !critical) {
SFMMU_STAT(sf_get_free_throttle);
mutex_exit(&freehblkp_lock);
return (0);
}
freehblkcnt--;
*hmeblkpp = freehblkp;
hblkp = *hmeblkpp;
freehblkp = hblkp->hblk_next;
mutex_exit(&freehblkp_lock);
hblkp->hblk_next = NULL;
SFMMU_STAT(sf_get_free_success);
return (1);
}
mutex_exit(&freehblkp_lock);
}
SFMMU_STAT(sf_get_free_fail);
return (0);
}
static uint_t
sfmmu_put_free_hblk(struct hme_blk *hmeblkp, uint_t critical)
{
struct hme_blk *hblkp;
/*
* If the current thread is mapping into kernel space,
* let it succede even if freehblkcnt is max
* so that it will avoid freeing it to kmem.
* This will prevent stack overflow due to
* possible recursion since kmem_cache_free()
* might require creation of a slab which
* in turn needs an hmeblk to map that slab;
* let's break this vicious chain at the first
* opportunity.
*/
if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
mutex_enter(&freehblkp_lock);
if (freehblkcnt < HBLK_RESERVE_CNT || critical) {
SFMMU_STAT(sf_put_free_success);
freehblkcnt++;
hmeblkp->hblk_next = freehblkp;
freehblkp = hmeblkp;
mutex_exit(&freehblkp_lock);
return (1);
}
mutex_exit(&freehblkp_lock);
}
/*
* Bring down freehblkcnt to HBLK_RESERVE_CNT. We are here
* only if freehblkcnt is at least HBLK_RESERVE_CNT *and*
* we are not in the process of mapping into kernel space.
*/
ASSERT(!critical);
while (freehblkcnt > HBLK_RESERVE_CNT) {
mutex_enter(&freehblkp_lock);
if (freehblkcnt > HBLK_RESERVE_CNT) {
freehblkcnt--;
hblkp = freehblkp;
freehblkp = hblkp->hblk_next;
mutex_exit(&freehblkp_lock);
ASSERT(get_hblk_cache(hblkp) == sfmmu8_cache);
kmem_cache_free(sfmmu8_cache, hblkp);
continue;
}
mutex_exit(&freehblkp_lock);
}
SFMMU_STAT(sf_put_free_fail);
return (0);
}
static void
sfmmu_hblk_swap(struct hme_blk *new)
{
struct hme_blk *old, *hblkp, *prev;
uint64_t hblkpa, prevpa, newpa;
caddr_t base, vaddr, endaddr;
struct hmehash_bucket *hmebp;
struct sf_hment *osfhme, *nsfhme;
page_t *pp;
kmutex_t *pml;
tte_t tte;
#ifdef DEBUG
hmeblk_tag hblktag;
struct hme_blk *found;
#endif
old = HBLK_RESERVE;
/*
* save pa before bcopy clobbers it
*/
newpa = new->hblk_nextpa;
base = (caddr_t)get_hblk_base(old);
endaddr = base + get_hblk_span(old);
/*
* acquire hash bucket lock.
*/
hmebp = sfmmu_tteload_acquire_hashbucket(ksfmmup, base, TTE8K);
/*
* copy contents from old to new
*/
bcopy((void *)old, (void *)new, HME8BLK_SZ);
/*
* add new to hash chain
*/
sfmmu_hblk_hash_add(hmebp, new, newpa);
/*
* search hash chain for hblk_reserve; this needs to be performed
* after adding new, otherwise prevpa and prev won't correspond
* to the hblk which is prior to old in hash chain when we call
* sfmmu_hblk_hash_rm to remove old later.
*/
for (prevpa = 0, prev = NULL,
hblkpa = hmebp->hmeh_nextpa, hblkp = hmebp->hmeblkp;
hblkp != NULL && hblkp != old;
prevpa = hblkpa, prev = hblkp,
hblkpa = hblkp->hblk_nextpa, hblkp = hblkp->hblk_next);
if (hblkp != old)
panic("sfmmu_hblk_swap: hblk_reserve not found");
/*
* p_mapping list is still pointing to hments in hblk_reserve;
* fix up p_mapping list so that they point to hments in new.
*
* Since all these mappings are created by hblk_reserve_thread
* on the way and it's using at least one of the buffers from each of
* the newly minted slabs, there is no danger of any of these
* mappings getting unloaded by another thread.
*
* tsbmiss could only modify ref/mod bits of hments in old/new.
* Since all of these hments hold mappings established by segkmem
* and mappings in segkmem are setup with HAT_NOSYNC, ref/mod bits
* have no meaning for the mappings in hblk_reserve. hments in
* old and new are identical except for ref/mod bits.
*/
for (vaddr = base; vaddr < endaddr; vaddr += TTEBYTES(TTE8K)) {
HBLKTOHME(osfhme, old, vaddr);
sfmmu_copytte(&osfhme->hme_tte, &tte);
if (TTE_IS_VALID(&tte)) {
if ((pp = osfhme->hme_page) == NULL)
panic("sfmmu_hblk_swap: page not mapped");
pml = sfmmu_mlist_enter(pp);
if (pp != osfhme->hme_page)
panic("sfmmu_hblk_swap: mapping changed");
HBLKTOHME(nsfhme, new, vaddr);
HME_ADD(nsfhme, pp);
HME_SUB(osfhme, pp);
sfmmu_mlist_exit(pml);
}
}
/*
* remove old from hash chain
*/
sfmmu_hblk_hash_rm(hmebp, old, prevpa, prev);
#ifdef DEBUG
hblktag.htag_id = ksfmmup;
hblktag.htag_bspage = HME_HASH_BSPAGE(base, HME_HASH_SHIFT(TTE8K));
hblktag.htag_rehash = HME_HASH_REHASH(TTE8K);
HME_HASH_FAST_SEARCH(hmebp, hblktag, found);
if (found != new)
panic("sfmmu_hblk_swap: new hblk not found");
#endif
SFMMU_HASH_UNLOCK(hmebp);
/*
* Reset hblk_reserve
*/
bzero((void *)old, HME8BLK_SZ);
old->hblk_nextpa = va_to_pa((caddr_t)old);
}
/*
* Grab the mlist mutex for both pages passed in.
*
* low and high will be returned as pointers to the mutexes for these pages.
* low refers to the mutex residing in the lower bin of the mlist hash, while
* high refers to the mutex residing in the higher bin of the mlist hash. This
* is due to the locking order restrictions on the same thread grabbing
* multiple mlist mutexes. The low lock must be acquired before the high lock.
*
* If both pages hash to the same mutex, only grab that single mutex, and
* high will be returned as NULL
* If the pages hash to different bins in the hash, grab the lower addressed
* lock first and then the higher addressed lock in order to follow the locking
* rules involved with the same thread grabbing multiple mlist mutexes.
* low and high will both have non-NULL values.
*/
static void
sfmmu_mlist_reloc_enter(struct page *targ, struct page *repl,
kmutex_t **low, kmutex_t **high)
{
kmutex_t *mml_targ, *mml_repl;
/*
* no need to do the dance around szc as in sfmmu_mlist_enter()
* because this routine is only called by hat_page_relocate() and all
* targ and repl pages are already locked EXCL so szc can't change.
*/
mml_targ = MLIST_HASH(PP_PAGEROOT(targ));
mml_repl = MLIST_HASH(PP_PAGEROOT(repl));
if (mml_targ == mml_repl) {
*low = mml_targ;
*high = NULL;
} else {
if (mml_targ < mml_repl) {
*low = mml_targ;
*high = mml_repl;
} else {
*low = mml_repl;
*high = mml_targ;
}
}
mutex_enter(*low);
if (*high)
mutex_enter(*high);
}
static void
sfmmu_mlist_reloc_exit(kmutex_t *low, kmutex_t *high)
{
if (high)
mutex_exit(high);
mutex_exit(low);
}
static hatlock_t *
sfmmu_hat_enter(sfmmu_t *sfmmup)
{
hatlock_t *hatlockp;
if (sfmmup != ksfmmup) {
hatlockp = TSB_HASH(sfmmup);
mutex_enter(HATLOCK_MUTEXP(hatlockp));
return (hatlockp);
}
return (NULL);
}
static hatlock_t *
sfmmu_hat_tryenter(sfmmu_t *sfmmup)
{
hatlock_t *hatlockp;
if (sfmmup != ksfmmup) {
hatlockp = TSB_HASH(sfmmup);
if (mutex_tryenter(HATLOCK_MUTEXP(hatlockp)) == 0)
return (NULL);
return (hatlockp);
}
return (NULL);
}
static void
sfmmu_hat_exit(hatlock_t *hatlockp)
{
if (hatlockp != NULL)
mutex_exit(HATLOCK_MUTEXP(hatlockp));
}
static void
sfmmu_hat_lock_all(void)
{
int i;
for (i = 0; i < SFMMU_NUM_LOCK; i++)
mutex_enter(HATLOCK_MUTEXP(&hat_lock[i]));
}
static void
sfmmu_hat_unlock_all(void)
{
int i;
for (i = SFMMU_NUM_LOCK - 1; i >= 0; i--)
mutex_exit(HATLOCK_MUTEXP(&hat_lock[i]));
}
int
sfmmu_hat_lock_held(sfmmu_t *sfmmup)
{
ASSERT(sfmmup != ksfmmup);
return (MUTEX_HELD(HATLOCK_MUTEXP(TSB_HASH(sfmmup))));
}
/*
* Locking primitives to provide consistency between ISM unmap
* and other operations. Since ISM unmap can take a long time, we
* use HAT_ISMBUSY flag (protected by the hatlock) to avoid creating
* contention on the hatlock buckets while ISM segments are being
* unmapped. The tradeoff is that the flags don't prevent priority
* inversion from occurring, so we must request kernel priority in
* case we have to sleep to keep from getting buried while holding
* the HAT_ISMBUSY flag set, which in turn could block other kernel
* threads from running (for example, in sfmmu_uvatopfn()).
*/
static void
sfmmu_ismhat_enter(sfmmu_t *sfmmup, int hatlock_held)
{
hatlock_t *hatlockp;
THREAD_KPRI_REQUEST();
if (!hatlock_held)
hatlockp = sfmmu_hat_enter(sfmmup);
while (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY))
cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
SFMMU_FLAGS_SET(sfmmup, HAT_ISMBUSY);
if (!hatlock_held)
sfmmu_hat_exit(hatlockp);
}
static void
sfmmu_ismhat_exit(sfmmu_t *sfmmup, int hatlock_held)
{
hatlock_t *hatlockp;
if (!hatlock_held)
hatlockp = sfmmu_hat_enter(sfmmup);
ASSERT(SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY));
SFMMU_FLAGS_CLEAR(sfmmup, HAT_ISMBUSY);
cv_broadcast(&sfmmup->sfmmu_tsb_cv);
if (!hatlock_held)
sfmmu_hat_exit(hatlockp);
THREAD_KPRI_RELEASE();
}
/*
*
* Algorithm:
*
* (1) if segkmem is not ready, allocate hblk from an array of pre-alloc'ed
* hblks.
*
* (2) if we are allocating an hblk for mapping a slab in sfmmu_cache,
*
* (a) try to return an hblk from reserve pool of free hblks;
* (b) if the reserve pool is empty, acquire hblk_reserve_lock
* and return hblk_reserve.
*
* (3) call kmem_cache_alloc() to allocate hblk;
*
* (a) if hblk_reserve_lock is held by the current thread,
* atomically replace hblk_reserve by the hblk that is
* returned by kmem_cache_alloc; release hblk_reserve_lock
* and call kmem_cache_alloc() again.
* (b) if reserve pool is not full, add the hblk that is
* returned by kmem_cache_alloc to reserve pool and
* call kmem_cache_alloc again.
*
*/
static struct hme_blk *
sfmmu_hblk_alloc(sfmmu_t *sfmmup, caddr_t vaddr,
struct hmehash_bucket *hmebp, uint_t size, hmeblk_tag hblktag,
uint_t flags)
{
struct hme_blk *hmeblkp = NULL;
struct hme_blk *newhblkp;
struct hme_blk *shw_hblkp = NULL;
struct kmem_cache *sfmmu_cache = NULL;
uint64_t hblkpa;
ulong_t index;
uint_t owner; /* set to 1 if using hblk_reserve */
uint_t forcefree;
int sleep;
ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
/*
* If segkmem is not created yet, allocate from static hmeblks
* created at the end of startup_modules(). See the block comment
* in startup_modules() describing how we estimate the number of
* static hmeblks that will be needed during re-map.
*/
if (!hblk_alloc_dynamic) {
if (size == TTE8K) {
index = nucleus_hblk8.index;
if (index >= nucleus_hblk8.len) {
/*
* If we panic here, see startup_modules() to
* make sure that we are calculating the
* number of hblk8's that we need correctly.
*/
panic("no nucleus hblk8 to allocate");
}
hmeblkp =
(struct hme_blk *)&nucleus_hblk8.list[index];
nucleus_hblk8.index++;
SFMMU_STAT(sf_hblk8_nalloc);
} else {
index = nucleus_hblk1.index;
if (nucleus_hblk1.index >= nucleus_hblk1.len) {
/*
* If we panic here, see startup_modules()
* and H8TOH1; most likely you need to
* update the calculation of the number
* of hblk1's the kernel needs to boot.
*/
panic("no nucleus hblk1 to allocate");
}
hmeblkp =
(struct hme_blk *)&nucleus_hblk1.list[index];
nucleus_hblk1.index++;
SFMMU_STAT(sf_hblk1_nalloc);
}
goto hblk_init;
}
SFMMU_HASH_UNLOCK(hmebp);
if (sfmmup != KHATID) {
if (mmu_page_sizes == max_mmu_page_sizes) {
if (size < TTE256M)
shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
size, flags);
} else {
if (size < TTE4M)
shw_hblkp = sfmmu_shadow_hcreate(sfmmup, vaddr,
size, flags);
}
}
fill_hblk:
owner = (hblk_reserve_thread == curthread) ? 1 : 0;
if (owner && size == TTE8K) {
/*
* We are really in a tight spot. We already own
* hblk_reserve and we need another hblk. In anticipation
* of this kind of scenario, we specifically set aside
* HBLK_RESERVE_MIN number of hblks to be used exclusively
* by owner of hblk_reserve.
*/
SFMMU_STAT(sf_hblk_recurse_cnt);
if (!sfmmu_get_free_hblk(&hmeblkp, 1))
panic("sfmmu_hblk_alloc: reserve list is empty");
goto hblk_verify;
}
ASSERT(!owner);
if ((flags & HAT_NO_KALLOC) == 0) {
sfmmu_cache = ((size == TTE8K) ? sfmmu8_cache : sfmmu1_cache);
sleep = ((sfmmup == KHATID) ? KM_NOSLEEP : KM_SLEEP);
if ((hmeblkp = kmem_cache_alloc(sfmmu_cache, sleep)) == NULL) {
hmeblkp = sfmmu_hblk_steal(size);
} else {
/*
* if we are the owner of hblk_reserve,
* swap hblk_reserve with hmeblkp and
* start a fresh life. Hope things go
* better this time.
*/
if (hblk_reserve_thread == curthread) {
ASSERT(sfmmu_cache == sfmmu8_cache);
sfmmu_hblk_swap(hmeblkp);
hblk_reserve_thread = NULL;
mutex_exit(&hblk_reserve_lock);
goto fill_hblk;
}
/*
* let's donate this hblk to our reserve list if
* we are not mapping kernel range
*/
if (size == TTE8K && sfmmup != KHATID)
if (sfmmu_put_free_hblk(hmeblkp, 0))
goto fill_hblk;
}
} else {
/*
* We are here to map the slab in sfmmu8_cache; let's
* check if we could tap our reserve list; if successful,
* this will avoid the pain of going thru sfmmu_hblk_swap
*/
SFMMU_STAT(sf_hblk_slab_cnt);
if (!sfmmu_get_free_hblk(&hmeblkp, 0)) {
/*
* let's start hblk_reserve dance
*/
SFMMU_STAT(sf_hblk_reserve_cnt);
owner = 1;
mutex_enter(&hblk_reserve_lock);
hmeblkp = HBLK_RESERVE;
hblk_reserve_thread = curthread;
}
}
hblk_verify:
ASSERT(hmeblkp != NULL);
set_hblk_sz(hmeblkp, size);
ASSERT(hmeblkp->hblk_nextpa == va_to_pa((caddr_t)hmeblkp));
SFMMU_HASH_LOCK(hmebp);
HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
if (newhblkp != NULL) {
SFMMU_HASH_UNLOCK(hmebp);
if (hmeblkp != HBLK_RESERVE) {
/*
* This is really tricky!
*
* vmem_alloc(vmem_seg_arena)
* vmem_alloc(vmem_internal_arena)
* segkmem_alloc(heap_arena)
* vmem_alloc(heap_arena)
* page_create()
* hat_memload()
* kmem_cache_free()
* kmem_cache_alloc()
* kmem_slab_create()
* vmem_alloc(kmem_internal_arena)
* segkmem_alloc(heap_arena)
* vmem_alloc(heap_arena)
* page_create()
* hat_memload()
* kmem_cache_free()
* ...
*
* Thus, hat_memload() could call kmem_cache_free
* for enough number of times that we could easily
* hit the bottom of the stack or run out of reserve
* list of vmem_seg structs. So, we must donate
* this hblk to reserve list if it's allocated
* from sfmmu8_cache *and* mapping kernel range.
* We don't need to worry about freeing hmeblk1's
* to kmem since they don't map any kmem slabs.
*
* Note: When segkmem supports largepages, we must
* free hmeblk1's to reserve list as well.
*/
forcefree = (sfmmup == KHATID) ? 1 : 0;
if (size == TTE8K &&
sfmmu_put_free_hblk(hmeblkp, forcefree)) {
goto re_verify;
}
ASSERT(sfmmup != KHATID);
kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
} else {
/*
* Hey! we don't need hblk_reserve any more.
*/
ASSERT(owner);
hblk_reserve_thread = NULL;
mutex_exit(&hblk_reserve_lock);
owner = 0;
}
re_verify:
/*
* let's check if the goodies are still present
*/
SFMMU_HASH_LOCK(hmebp);
HME_HASH_FAST_SEARCH(hmebp, hblktag, newhblkp);
if (newhblkp != NULL) {
/*
* return newhblkp if it's not hblk_reserve;
* if newhblkp is hblk_reserve, return it
* _only if_ we are the owner of hblk_reserve.
*/
if (newhblkp != HBLK_RESERVE || owner) {
return (newhblkp);
} else {
/*
* we just hit hblk_reserve in the hash and
* we are not the owner of that;
*
* block until hblk_reserve_thread completes
* swapping hblk_reserve and try the dance
* once again.
*/
SFMMU_HASH_UNLOCK(hmebp);
mutex_enter(&hblk_reserve_lock);
mutex_exit(&hblk_reserve_lock);
SFMMU_STAT(sf_hblk_reserve_hit);
goto fill_hblk;
}
} else {
/*
* it's no more! try the dance once again.
*/
SFMMU_HASH_UNLOCK(hmebp);
goto fill_hblk;
}
}
hblk_init:
set_hblk_sz(hmeblkp, size);
ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
hmeblkp->hblk_next = (struct hme_blk *)NULL;
hmeblkp->hblk_tag = hblktag;
hmeblkp->hblk_shadow = shw_hblkp;
hblkpa = hmeblkp->hblk_nextpa;
hmeblkp->hblk_nextpa = 0;
ASSERT(get_hblk_ttesz(hmeblkp) == size);
ASSERT(get_hblk_span(hmeblkp) == HMEBLK_SPAN(size));
ASSERT(hmeblkp->hblk_hmecnt == 0);
ASSERT(hmeblkp->hblk_vcnt == 0);
ASSERT(hmeblkp->hblk_lckcnt == 0);
ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
sfmmu_hblk_hash_add(hmebp, hmeblkp, hblkpa);
return (hmeblkp);
}
/*
* This function performs any cleanup required on the hme_blk
* and returns it to the free list.
*/
/* ARGSUSED */
static void
sfmmu_hblk_free(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
uint64_t hblkpa, struct hme_blk **listp)
{
int shw_size, vshift;
struct hme_blk *shw_hblkp;
uint_t shw_mask, newshw_mask;
uintptr_t vaddr;
int size;
uint_t critical;
ASSERT(hmeblkp);
ASSERT(!hmeblkp->hblk_hmecnt);
ASSERT(!hmeblkp->hblk_vcnt);
ASSERT(!hmeblkp->hblk_lckcnt);
ASSERT(hblkpa == va_to_pa((caddr_t)hmeblkp));
ASSERT(hmeblkp != (struct hme_blk *)hblk_reserve);
critical = (hblktosfmmu(hmeblkp) == KHATID) ? 1 : 0;
size = get_hblk_ttesz(hmeblkp);
shw_hblkp = hmeblkp->hblk_shadow;
if (shw_hblkp) {
ASSERT(hblktosfmmu(hmeblkp) != KHATID);
if (mmu_page_sizes == max_mmu_page_sizes) {
ASSERT(size < TTE256M);
} else {
ASSERT(size < TTE4M);
}
shw_size = get_hblk_ttesz(shw_hblkp);
vaddr = get_hblk_base(hmeblkp);
vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
ASSERT(vshift < 8);
/*
* Atomically clear shadow mask bit
*/
do {
shw_mask = shw_hblkp->hblk_shw_mask;
ASSERT(shw_mask & (1 << vshift));
newshw_mask = shw_mask & ~(1 << vshift);
newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
shw_mask, newshw_mask);
} while (newshw_mask != shw_mask);
hmeblkp->hblk_shadow = NULL;
}
hmeblkp->hblk_next = NULL;
hmeblkp->hblk_nextpa = hblkpa;
hmeblkp->hblk_shw_bit = 0;
if (hmeblkp->hblk_nuc_bit == 0) {
if (size == TTE8K && sfmmu_put_free_hblk(hmeblkp, critical))
return;
hmeblkp->hblk_next = *listp;
*listp = hmeblkp;
}
}
static void
sfmmu_hblks_list_purge(struct hme_blk **listp)
{
struct hme_blk *hmeblkp;
while ((hmeblkp = *listp) != NULL) {
*listp = hmeblkp->hblk_next;
kmem_cache_free(get_hblk_cache(hmeblkp), hmeblkp);
}
}
#define BUCKETS_TO_SEARCH_BEFORE_UNLOAD 30
static uint_t sfmmu_hblk_steal_twice;
static uint_t sfmmu_hblk_steal_count, sfmmu_hblk_steal_unload_count;
/*
* Steal a hmeblk
* Enough hmeblks were allocated at startup (nucleus hmeblks) and also
* hmeblks were added dynamically. We should never ever not be able to
* find one. Look for an unused/unlocked hmeblk in user hash table.
*/
static struct hme_blk *
sfmmu_hblk_steal(int size)
{
static struct hmehash_bucket *uhmehash_steal_hand = NULL;
struct hmehash_bucket *hmebp;
struct hme_blk *hmeblkp = NULL, *pr_hblk;
uint64_t hblkpa, prevpa;
int i;
for (;;) {
hmebp = (uhmehash_steal_hand == NULL) ? uhme_hash :
uhmehash_steal_hand;
ASSERT(hmebp >= uhme_hash && hmebp <= &uhme_hash[UHMEHASH_SZ]);
for (i = 0; hmeblkp == NULL && i <= UHMEHASH_SZ +
BUCKETS_TO_SEARCH_BEFORE_UNLOAD; i++) {
SFMMU_HASH_LOCK(hmebp);
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
/*
* check if it is a hmeblk that is not locked
* and not shared. skip shadow hmeblks with
* shadow_mask set i.e valid count non zero.
*/
if ((get_hblk_ttesz(hmeblkp) == size) &&
(hmeblkp->hblk_shw_bit == 0 ||
hmeblkp->hblk_vcnt == 0) &&
(hmeblkp->hblk_lckcnt == 0)) {
/*
* there is a high probability that we
* will find a free one. search some
* buckets for a free hmeblk initially
* before unloading a valid hmeblk.
*/
if ((hmeblkp->hblk_vcnt == 0 &&
hmeblkp->hblk_hmecnt == 0) || (i >=
BUCKETS_TO_SEARCH_BEFORE_UNLOAD)) {
if (sfmmu_steal_this_hblk(hmebp,
hmeblkp, hblkpa, prevpa,
pr_hblk)) {
/*
* Hblk is unloaded
* successfully
*/
break;
}
}
}
pr_hblk = hmeblkp;
prevpa = hblkpa;
hblkpa = hmeblkp->hblk_nextpa;
hmeblkp = hmeblkp->hblk_next;
}
SFMMU_HASH_UNLOCK(hmebp);
if (hmebp++ == &uhme_hash[UHMEHASH_SZ])
hmebp = uhme_hash;
}
uhmehash_steal_hand = hmebp;
if (hmeblkp != NULL)
break;
/*
* in the worst case, look for a free one in the kernel
* hash table.
*/
for (i = 0, hmebp = khme_hash; i <= KHMEHASH_SZ; i++) {
SFMMU_HASH_LOCK(hmebp);
hmeblkp = hmebp->hmeblkp;
hblkpa = hmebp->hmeh_nextpa;
prevpa = 0;
pr_hblk = NULL;
while (hmeblkp) {
/*
* check if it is free hmeblk
*/
if ((get_hblk_ttesz(hmeblkp) == size) &&
(hmeblkp->hblk_lckcnt == 0) &&
(hmeblkp->hblk_vcnt == 0) &&
(hmeblkp->hblk_hmecnt == 0)) {
if (sfmmu_steal_this_hblk(hmebp,
hmeblkp, hblkpa, prevpa, pr_hblk)) {
break;
} else {
/*
* Cannot fail since we have
* hash lock.
*/
panic("fail to steal?");
}
}
pr_hblk = hmeblkp;
prevpa = hblkpa;
hblkpa = hmeblkp->hblk_nextpa;
hmeblkp = hmeblkp->hblk_next;
}
SFMMU_HASH_UNLOCK(hmebp);
if (hmebp++ == &khme_hash[KHMEHASH_SZ])
hmebp = khme_hash;
}
if (hmeblkp != NULL)
break;
sfmmu_hblk_steal_twice++;
}
return (hmeblkp);
}
/*
* This routine does real work to prepare a hblk to be "stolen" by
* unloading the mappings, updating shadow counts ....
* It returns 1 if the block is ready to be reused (stolen), or 0
* means the block cannot be stolen yet- pageunload is still working
* on this hblk.
*/
static int
sfmmu_steal_this_hblk(struct hmehash_bucket *hmebp, struct hme_blk *hmeblkp,
uint64_t hblkpa, uint64_t prevpa, struct hme_blk *pr_hblk)
{
int shw_size, vshift;
struct hme_blk *shw_hblkp;
uintptr_t vaddr;
uint_t shw_mask, newshw_mask;
ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));
/*
* check if the hmeblk is free, unload if necessary
*/
if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
sfmmu_t *sfmmup;
demap_range_t dmr;
sfmmup = hblktosfmmu(hmeblkp);
DEMAP_RANGE_INIT(sfmmup, &dmr);
(void) sfmmu_hblk_unload(sfmmup, hmeblkp,
(caddr_t)get_hblk_base(hmeblkp),
get_hblk_endaddr(hmeblkp), &dmr, HAT_UNLOAD);
DEMAP_RANGE_FLUSH(&dmr);
if (hmeblkp->hblk_vcnt || hmeblkp->hblk_hmecnt) {
/*
* Pageunload is working on the same hblk.
*/
return (0);
}
sfmmu_hblk_steal_unload_count++;
}
ASSERT(hmeblkp->hblk_lckcnt == 0);
ASSERT(hmeblkp->hblk_vcnt == 0 && hmeblkp->hblk_hmecnt == 0);
sfmmu_hblk_hash_rm(hmebp, hmeblkp, prevpa, pr_hblk);
hmeblkp->hblk_nextpa = hblkpa;
shw_hblkp = hmeblkp->hblk_shadow;
if (shw_hblkp) {
shw_size = get_hblk_ttesz(shw_hblkp);
vaddr = get_hblk_base(hmeblkp);
vshift = vaddr_to_vshift(shw_hblkp->hblk_tag, vaddr, shw_size);
ASSERT(vshift < 8);
/*
* Atomically clear shadow mask bit
*/
do {
shw_mask = shw_hblkp->hblk_shw_mask;
ASSERT(shw_mask & (1 << vshift));
newshw_mask = shw_mask & ~(1 << vshift);
newshw_mask = cas32(&shw_hblkp->hblk_shw_mask,
shw_mask, newshw_mask);
} while (newshw_mask != shw_mask);
hmeblkp->hblk_shadow = NULL;
}
/*
* remove shadow bit if we are stealing an unused shadow hmeblk.
* sfmmu_hblk_alloc needs it that way, will set shadow bit later if
* we are indeed allocating a shadow hmeblk.
*/
hmeblkp->hblk_shw_bit = 0;
sfmmu_hblk_steal_count++;
SFMMU_STAT(sf_steal_count);
return (1);
}
struct hme_blk *
sfmmu_hmetohblk(struct sf_hment *sfhme)
{
struct hme_blk *hmeblkp;
struct sf_hment *sfhme0;
struct hme_blk *hblk_dummy = 0;
/*
* No dummy sf_hments, please.
*/
ASSERT(sfhme->hme_tte.ll != 0);
sfhme0 = sfhme - sfhme->hme_tte.tte_hmenum;
hmeblkp = (struct hme_blk *)((uintptr_t)sfhme0 -
(uintptr_t)&hblk_dummy->hblk_hme[0]);
return (hmeblkp);
}
/*
* On swapin, get appropriately sized TSB(s) and clear the HAT_SWAPPED flag.
* If we can't get appropriately sized TSB(s), try for 8K TSB(s) using
* KM_SLEEP allocation.
*
* Return 0 on success, -1 otherwise.
*/
static void
sfmmu_tsb_swapin(sfmmu_t *sfmmup, hatlock_t *hatlockp)
{
struct tsb_info *tsbinfop, *next;
tsb_replace_rc_t rc;
boolean_t gotfirst = B_FALSE;
ASSERT(sfmmup != ksfmmup);
ASSERT(sfmmu_hat_lock_held(sfmmup));
while (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPIN)) {
cv_wait(&sfmmup->sfmmu_tsb_cv, HATLOCK_MUTEXP(hatlockp));
}
if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
SFMMU_FLAGS_SET(sfmmup, HAT_SWAPIN);
} else {
return;
}
ASSERT(sfmmup->sfmmu_tsb != NULL);
/*
* Loop over all tsbinfo's replacing them with ones that actually have
* a TSB. If any of the replacements ever fail, bail out of the loop.
*/
for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL; tsbinfop = next) {
ASSERT(tsbinfop->tsb_flags & TSB_SWAPPED);
next = tsbinfop->tsb_next;
rc = sfmmu_replace_tsb(sfmmup, tsbinfop, tsbinfop->tsb_szc,
hatlockp, TSB_SWAPIN);
if (rc != TSB_SUCCESS) {
break;
}
gotfirst = B_TRUE;
}
switch (rc) {
case TSB_SUCCESS:
SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
cv_broadcast(&sfmmup->sfmmu_tsb_cv);
return;
case TSB_ALLOCFAIL:
break;
default:
panic("sfmmu_replace_tsb returned unrecognized failure code "
"%d", rc);
}
/*
* In this case, we failed to get one of our TSBs. If we failed to
* get the first TSB, get one of minimum size (8KB). Walk the list
* and throw away the tsbinfos, starting where the allocation failed;
* we can get by with just one TSB as long as we don't leave the
* SWAPPED tsbinfo structures lying around.
*/
tsbinfop = sfmmup->sfmmu_tsb;
next = tsbinfop->tsb_next;
tsbinfop->tsb_next = NULL;
sfmmu_hat_exit(hatlockp);
for (tsbinfop = next; tsbinfop != NULL; tsbinfop = next) {
next = tsbinfop->tsb_next;
sfmmu_tsbinfo_free(tsbinfop);
}
hatlockp = sfmmu_hat_enter(sfmmup);
/*
* If we don't have any TSBs, get a single 8K TSB for 8K, 64K and 512K
* pages.
*/
if (!gotfirst) {
tsbinfop = sfmmup->sfmmu_tsb;
rc = sfmmu_replace_tsb(sfmmup, tsbinfop, TSB_MIN_SZCODE,
hatlockp, TSB_SWAPIN | TSB_FORCEALLOC);
ASSERT(rc == TSB_SUCCESS);
}
SFMMU_FLAGS_CLEAR(sfmmup, HAT_SWAPPED|HAT_SWAPIN);
cv_broadcast(&sfmmup->sfmmu_tsb_cv);
}
/*
* Handle exceptions for low level tsb_handler.
*
* There are many scenarios that could land us here:
*
* If the context is invalid we land here. The context can be invalid
* for 3 reasons: 1) we couldn't allocate a new context and now need to
* perform a wrap around operation in order to allocate a new context.
* 2) Context was invalidated to change pagesize programming 3) ISMs or
* TSBs configuration is changeing for this process and we are forced into
* here to do a syncronization operation. If the context is valid we can
* be here from window trap hanlder. In this case just call trap to handle
* the fault.
*
* Note that the process will run in INVALID_CONTEXT before
* faulting into here and subsequently loading the MMU registers
* (including the TSB base register) associated with this process.
* For this reason, the trap handlers must all test for
* INVALID_CONTEXT before attempting to access any registers other
* than the context registers.
*/
void
sfmmu_tsbmiss_exception(struct regs *rp, uintptr_t tagaccess, uint_t traptype)
{
sfmmu_t *sfmmup;
uint_t ctxnum;
klwp_id_t lwp;
char lwp_save_state;
hatlock_t *hatlockp;
struct tsb_info *tsbinfop;
SFMMU_STAT(sf_tsb_exceptions);
SFMMU_MMU_STAT(mmu_tsb_exceptions);
sfmmup = astosfmmu(curthread->t_procp->p_as);
ctxnum = tagaccess & TAGACC_CTX_MASK;
ASSERT(sfmmup != ksfmmup && ctxnum != KCONTEXT);
ASSERT(sfmmup->sfmmu_ismhat == 0);
/*
* First, make sure we come out of here with a valid ctx,
* since if we don't get one we'll simply loop on the
* faulting instruction.
*
* If the ISM mappings are changing, the TSB is being relocated, or
* the process is swapped out we serialize behind the controlling
* thread with the sfmmu_flags and sfmmu_tsb_cv condition variable.
* Otherwise we synchronize with the context stealer or the thread
* that required us to change out our MMU registers (such
* as a thread changing out our TSB while we were running) by
* locking the HAT and grabbing the rwlock on the context as a
* reader temporarily.
*/
ASSERT(!SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED) ||
ctxnum == INVALID_CONTEXT);
if (ctxnum == INVALID_CONTEXT) {
/*
* Must set lwp state to LWP_SYS before
* trying to acquire any adaptive lock
*/
lwp = ttolwp(curthread);
ASSERT(lwp);
lwp_save_state = lwp->lwp_state;
lwp->lwp_state = LWP_SYS;
hatlockp = sfmmu_hat_enter(sfmmup);
retry:
for (tsbinfop = sfmmup->sfmmu_tsb; tsbinfop != NULL;
tsbinfop = tsbinfop->tsb_next) {
if (tsbinfop->tsb_flags & TSB_RELOC_FLAG) {
cv_wait(&sfmmup->sfmmu_tsb_cv,
HATLOCK_MUTEXP(hatlockp));
goto retry;
}
}
/*
* Wait for ISM maps to be updated.
*/
if (SFMMU_FLAGS_ISSET(sfmmup, HAT_ISMBUSY)) {
cv_wait(&sfmmup->sfmmu_tsb_cv,
HATLOCK_MUTEXP(hatlockp));
goto retry;
}
/*
* If we're swapping in, get TSB(s). Note that we must do
* this before we get a ctx or load the MMU state. Once
* we swap in we have to recheck to make sure the TSB(s) and
* ISM mappings didn't change while we slept.
*/
if (SFMMU_FLAGS_ISSET(sfmmup, HAT_SWAPPED)) {
sfmmu_tsb_swapin(sfmmup, hatlockp);
goto retry;
}
sfmmu_get_ctx(sfmmup);
sfmmu_hat_exit(hatlockp);
/*
* Must restore lwp_state if not calling
* trap() for further processing. Restore
* it anyway.
*/
lwp->lwp_state = lwp_save_state;
if (sfmmup->sfmmu_ttecnt[TTE8K] != 0 ||
sfmmup->sfmmu_ttecnt[TTE64K] != 0 ||
sfmmup->sfmmu_ttecnt[TTE512K] != 0 ||
sfmmup->sfmmu_ttecnt[TTE4M] != 0 ||
sfmmup->sfmmu_ttecnt[TTE32M] != 0 ||
sfmmup->sfmmu_ttecnt[TTE256M] != 0) {
return;
}
if (traptype == T_DATA_PROT) {
traptype = T_DATA_MMU_MISS;
}
}
trap(rp, (caddr_t)tagaccess, traptype, 0);
}
/*
* sfmmu_vatopfn_suspended is called from GET_TTE when TL=0 and
* TTE_SUSPENDED bit set in tte we block on aquiring a page lock
* rather than spinning to avoid send mondo timeouts with
* interrupts enabled. When the lock is acquired it is immediately
* released and we return back to sfmmu_vatopfn just after
* the GET_TTE call.
*/
void
sfmmu_vatopfn_suspended(caddr_t vaddr, sfmmu_t *sfmmu, tte_t *ttep)
{
struct page **pp;
(void) as_pagelock(sfmmu->sfmmu_as, &pp, vaddr, TTE_CSZ(ttep), S_WRITE);
as_pageunlock(sfmmu->sfmmu_as, pp, vaddr, TTE_CSZ(ttep), S_WRITE);
}
/*
* sfmmu_tsbmiss_suspended is called from GET_TTE when TL>0 and
* TTE_SUSPENDED bit set in tte. We do this so that we can handle
* cross traps which cannot be handled while spinning in the
* trap handlers. Simply enter and exit the kpr_suspendlock spin
* mutex, which is held by the holder of the suspend bit, and then
* retry the trapped instruction after unwinding.
*/
/*ARGSUSED*/
void
sfmmu_tsbmiss_suspended(struct regs *rp, uintptr_t tagacc, uint_t traptype)
{
ASSERT(curthread != kreloc_thread);
mutex_enter(&kpr_suspendlock);
mutex_exit(&kpr_suspendlock);
}
/*
* Special routine to flush out ism mappings- TSBs, TLBs and D-caches.
* This routine may be called with all cpu's captured. Therefore, the
* caller is responsible for holding all locks and disabling kernel
* preemption.
*/
/* ARGSUSED */
static void
sfmmu_ismtlbcache_demap(caddr_t addr, sfmmu_t *ism_sfmmup,
struct hme_blk *hmeblkp, pfn_t pfnum, int cache_flush_flag)
{
cpuset_t cpuset;
caddr_t va;
ism_ment_t *ment;
sfmmu_t *sfmmup;
#ifdef VAC
int vcolor;
#endif
int ttesz;
/*
* Walk the ism_hat's mapping list and flush the page
* from every hat sharing this ism_hat. This routine
* may be called while all cpu's have been captured.
* Therefore we can't attempt to grab any locks. For now
* this means we will protect the ism mapping list under
* a single lock which will be grabbed by the caller.
* If hat_share/unshare scalibility becomes a performance
* problem then we may need to re-think ism mapping list locking.
*/
ASSERT(ism_sfmmup->sfmmu_ismhat);
ASSERT(MUTEX_HELD(&ism_mlist_lock));
addr = addr - ISMID_STARTADDR;
for (ment = ism_sfmmup->sfmmu_iment; ment; ment = ment->iment_next) {
sfmmup = ment->iment_hat;
va = ment->iment_base_va;
va = (caddr_t)((uintptr_t)va + (uintptr_t)addr);
/*
* Flush TSB of ISM mappings.
*/
ttesz = get_hblk_ttesz(hmeblkp);
if (ttesz == TTE8K || ttesz == TTE4M) {
sfmmu_unload_tsb(sfmmup, va, ttesz);
} else {
caddr_t sva = va;
caddr_t eva;
ASSERT(addr == (caddr_t)get_hblk_base(hmeblkp));
eva = sva + get_hblk_span(hmeblkp);
sfmmu_unload_tsb_range(sfmmup, sva, eva, ttesz);
}
cpuset = sfmmup->sfmmu_cpusran;
CPUSET_AND(cpuset, cpu_ready_set);
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(sfmmup);
xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)va,
(uint64_t)sfmmup);
vtag_flushpage(va, (uint64_t)sfmmup);
#ifdef VAC
/*
* Flush D$
* When flushing D$ we must flush all
* cpu's. See sfmmu_cache_flush().
*/
if (cache_flush_flag == CACHE_FLUSH) {
cpuset = cpu_ready_set;
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(sfmmup);
vcolor = addr_to_vcolor(va);
xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
vac_flushpage(pfnum, vcolor);
}
#endif /* VAC */
}
}
/*
* Demaps the TSB, CPU caches, and flushes all TLBs on all CPUs of
* a particular virtual address and ctx. If noflush is set we do not
* flush the TLB/TSB. This function may or may not be called with the
* HAT lock held.
*/
static void
sfmmu_tlbcache_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
pfn_t pfnum, int tlb_noflush, int cpu_flag, int cache_flush_flag,
int hat_lock_held)
{
#ifdef VAC
int vcolor;
#endif
cpuset_t cpuset;
hatlock_t *hatlockp;
#if defined(lint) && !defined(VAC)
pfnum = pfnum;
cpu_flag = cpu_flag;
cache_flush_flag = cache_flush_flag;
#endif
/*
* There is no longer a need to protect against ctx being
* stolen here since we don't store the ctx in the TSB anymore.
*/
#ifdef VAC
vcolor = addr_to_vcolor(addr);
#endif
/*
* We must hold the hat lock during the flush of TLB,
* to avoid a race with sfmmu_invalidate_ctx(), where
* sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
* causing TLB demap routine to skip flush on that MMU.
* If the context on a MMU has already been set to
* INVALID_CONTEXT, we just get an extra flush on
* that MMU.
*/
if (!hat_lock_held && !tlb_noflush)
hatlockp = sfmmu_hat_enter(sfmmup);
kpreempt_disable();
if (!tlb_noflush) {
/*
* Flush the TSB and TLB.
*/
SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
cpuset = sfmmup->sfmmu_cpusran;
CPUSET_AND(cpuset, cpu_ready_set);
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(sfmmup);
xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr,
(uint64_t)sfmmup);
vtag_flushpage(addr, (uint64_t)sfmmup);
}
if (!hat_lock_held && !tlb_noflush)
sfmmu_hat_exit(hatlockp);
#ifdef VAC
/*
* Flush the D$
*
* Even if the ctx is stolen, we need to flush the
* cache. Our ctx stealer only flushes the TLBs.
*/
if (cache_flush_flag == CACHE_FLUSH) {
if (cpu_flag & FLUSH_ALL_CPUS) {
cpuset = cpu_ready_set;
} else {
cpuset = sfmmup->sfmmu_cpusran;
CPUSET_AND(cpuset, cpu_ready_set);
}
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(sfmmup);
xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
vac_flushpage(pfnum, vcolor);
}
#endif /* VAC */
kpreempt_enable();
}
/*
* Demaps the TSB and flushes all TLBs on all cpus for a particular virtual
* address and ctx. If noflush is set we do not currently do anything.
* This function may or may not be called with the HAT lock held.
*/
static void
sfmmu_tlb_demap(caddr_t addr, sfmmu_t *sfmmup, struct hme_blk *hmeblkp,
int tlb_noflush, int hat_lock_held)
{
cpuset_t cpuset;
hatlock_t *hatlockp;
/*
* If the process is exiting we have nothing to do.
*/
if (tlb_noflush)
return;
/*
* Flush TSB.
*/
if (!hat_lock_held)
hatlockp = sfmmu_hat_enter(sfmmup);
SFMMU_UNLOAD_TSB(addr, sfmmup, hmeblkp);
kpreempt_disable();
cpuset = sfmmup->sfmmu_cpusran;
CPUSET_AND(cpuset, cpu_ready_set);
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(sfmmup);
xt_some(cpuset, vtag_flushpage_tl1, (uint64_t)addr, (uint64_t)sfmmup);
vtag_flushpage(addr, (uint64_t)sfmmup);
if (!hat_lock_held)
sfmmu_hat_exit(hatlockp);
kpreempt_enable();
}
/*
* Special case of sfmmu_tlb_demap for MMU_PAGESIZE hblks. Use the xcall
* call handler that can flush a range of pages to save on xcalls.
*/
static int sfmmu_xcall_save;
static void
sfmmu_tlb_range_demap(demap_range_t *dmrp)
{
sfmmu_t *sfmmup = dmrp->dmr_sfmmup;
hatlock_t *hatlockp;
cpuset_t cpuset;
uint64_t sfmmu_pgcnt;
pgcnt_t pgcnt = 0;
int pgunload = 0;
int dirtypg = 0;
caddr_t addr = dmrp->dmr_addr;
caddr_t eaddr;
uint64_t bitvec = dmrp->dmr_bitvec;
ASSERT(bitvec & 1);
/*
* Flush TSB and calculate number of pages to flush.
*/
while (bitvec != 0) {
dirtypg = 0;
/*
* Find the first page to flush and then count how many
* pages there are after it that also need to be flushed.
* This way the number of TSB flushes is minimized.
*/
while ((bitvec & 1) == 0) {
pgcnt++;
addr += MMU_PAGESIZE;
bitvec >>= 1;
}
while (bitvec & 1) {
dirtypg++;
bitvec >>= 1;
}
eaddr = addr + ptob(dirtypg);
hatlockp = sfmmu_hat_enter(sfmmup);
sfmmu_unload_tsb_range(sfmmup, addr, eaddr, TTE8K);
sfmmu_hat_exit(hatlockp);
pgunload += dirtypg;
addr = eaddr;
pgcnt += dirtypg;
}
ASSERT((pgcnt<<MMU_PAGESHIFT) <= dmrp->dmr_endaddr - dmrp->dmr_addr);
if (sfmmup->sfmmu_free == 0) {
addr = dmrp->dmr_addr;
bitvec = dmrp->dmr_bitvec;
/*
* make sure it has SFMMU_PGCNT_SHIFT bits only,
* as it will be used to pack argument for xt_some
*/
ASSERT((pgcnt > 0) &&
(pgcnt <= (1 << SFMMU_PGCNT_SHIFT)));
/*
* Encode pgcnt as (pgcnt -1 ), and pass (pgcnt - 1) in
* the low 6 bits of sfmmup. This is doable since pgcnt
* always >= 1.
*/
ASSERT(!((uint64_t)sfmmup & SFMMU_PGCNT_MASK));
sfmmu_pgcnt = (uint64_t)sfmmup |
((pgcnt - 1) & SFMMU_PGCNT_MASK);
/*
* We must hold the hat lock during the flush of TLB,
* to avoid a race with sfmmu_invalidate_ctx(), where
* sfmmu_cnum on a MMU could be set to INVALID_CONTEXT,
* causing TLB demap routine to skip flush on that MMU.
* If the context on a MMU has already been set to
* INVALID_CONTEXT, we just get an extra flush on
* that MMU.
*/
hatlockp = sfmmu_hat_enter(sfmmup);
kpreempt_disable();
cpuset = sfmmup->sfmmu_cpusran;
CPUSET_AND(cpuset, cpu_ready_set);
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(sfmmup);
xt_some(cpuset, vtag_flush_pgcnt_tl1, (uint64_t)addr,
sfmmu_pgcnt);
for (; bitvec != 0; bitvec >>= 1) {
if (bitvec & 1)
vtag_flushpage(addr, (uint64_t)sfmmup);
addr += MMU_PAGESIZE;
}
kpreempt_enable();
sfmmu_hat_exit(hatlockp);
sfmmu_xcall_save += (pgunload-1);
}
dmrp->dmr_bitvec = 0;
}
/*
* In cases where we need to synchronize with TLB/TSB miss trap
* handlers, _and_ need to flush the TLB, it's a lot easier to
* throw away the context from the process than to do a
* special song and dance to keep things consistent for the
* handlers.
*
* Since the process suddenly ends up without a context and our caller
* holds the hat lock, threads that fault after this function is called
* will pile up on the lock. We can then do whatever we need to
* atomically from the context of the caller. The first blocked thread
* to resume executing will get the process a new context, and the
* process will resume executing.
*
* One added advantage of this approach is that on MMUs that
* support a "flush all" operation, we will delay the flush until
* cnum wrap-around, and then flush the TLB one time. This
* is rather rare, so it's a lot less expensive than making 8000
* x-calls to flush the TLB 8000 times.
*
* A per-process (PP) lock is used to synchronize ctx allocations in
* resume() and ctx invalidations here.
*/
static void
sfmmu_invalidate_ctx(sfmmu_t *sfmmup)
{
cpuset_t cpuset;
int cnum, currcnum;
mmu_ctx_t *mmu_ctxp;
int i;
uint_t pstate_save;
SFMMU_STAT(sf_ctx_inv);
ASSERT(sfmmu_hat_lock_held(sfmmup));
ASSERT(sfmmup != ksfmmup);
kpreempt_disable();
mmu_ctxp = CPU_MMU_CTXP(CPU);
ASSERT(mmu_ctxp);
ASSERT(mmu_ctxp->mmu_idx < max_mmu_ctxdoms);
ASSERT(mmu_ctxp == mmu_ctxs_tbl[mmu_ctxp->mmu_idx]);
currcnum = sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum;
pstate_save = sfmmu_disable_intrs();
lock_set(&sfmmup->sfmmu_ctx_lock); /* acquire PP lock */
/* set HAT cnum invalid across all context domains. */
for (i = 0; i < max_mmu_ctxdoms; i++) {
cnum = sfmmup->sfmmu_ctxs[i].cnum;
if (cnum == INVALID_CONTEXT) {
continue;
}
sfmmup->sfmmu_ctxs[i].cnum = INVALID_CONTEXT;
}
membar_enter(); /* make sure globally visible to all CPUs */
lock_clear(&sfmmup->sfmmu_ctx_lock); /* release PP lock */
sfmmu_enable_intrs(pstate_save);
cpuset = sfmmup->sfmmu_cpusran;
CPUSET_DEL(cpuset, CPU->cpu_id);
CPUSET_AND(cpuset, cpu_ready_set);
if (!CPUSET_ISNULL(cpuset)) {
SFMMU_XCALL_STATS(sfmmup);
xt_some(cpuset, sfmmu_raise_tsb_exception,
(uint64_t)sfmmup, INVALID_CONTEXT);
xt_sync(cpuset);
SFMMU_STAT(sf_tsb_raise_exception);
SFMMU_MMU_STAT(mmu_tsb_raise_exception);
}
/*
* If the hat to-be-invalidated is the same as the current
* process on local CPU we need to invalidate
* this CPU context as well.
*/
if ((sfmmu_getctx_sec() == currcnum) &&
(currcnum != INVALID_CONTEXT)) {
sfmmu_setctx_sec(INVALID_CONTEXT);
sfmmu_clear_utsbinfo();
}
kpreempt_enable();
/*
* we hold the hat lock, so nobody should allocate a context
* for us yet
*/
ASSERT(sfmmup->sfmmu_ctxs[mmu_ctxp->mmu_idx].cnum == INVALID_CONTEXT);
}
#ifdef VAC
/*
* We need to flush the cache in all cpus. It is possible that
* a process referenced a page as cacheable but has sinced exited
* and cleared the mapping list. We still to flush it but have no
* state so all cpus is the only alternative.
*/
void
sfmmu_cache_flush(pfn_t pfnum, int vcolor)
{
cpuset_t cpuset;
kpreempt_disable();
cpuset = cpu_ready_set;
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(NULL); /* account to any ctx */
xt_some(cpuset, vac_flushpage_tl1, pfnum, vcolor);
xt_sync(cpuset);
vac_flushpage(pfnum, vcolor);
kpreempt_enable();
}
void
sfmmu_cache_flushcolor(int vcolor, pfn_t pfnum)
{
cpuset_t cpuset;
ASSERT(vcolor >= 0);
kpreempt_disable();
cpuset = cpu_ready_set;
CPUSET_DEL(cpuset, CPU->cpu_id);
SFMMU_XCALL_STATS(NULL); /* account to any ctx */
xt_some(cpuset, vac_flushcolor_tl1, vcolor, pfnum);
xt_sync(cpuset);
vac_flushcolor(vcolor, pfnum);
kpreempt_enable();
}
#endif /* VAC */
/*
* We need to prevent processes from accessing the TSB using a cached physical
* address. It's alright if they try to access the TSB via virtual address
* since they will just fault on that virtual address once the mapping has
* been suspended.
*/
#pragma weak sendmondo_in_recover
/* ARGSUSED */
static int
sfmmu_tsb_pre_relocator(caddr_t va, uint_t tsbsz, uint_t flags, void *tsbinfo)
{
hatlock_t *hatlockp;
struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
extern uint32_t sendmondo_in_recover;
if (flags != HAT_PRESUSPEND)
return (0);
hatlockp = sfmmu_hat_enter(sfmmup);
tsbinfop->tsb_flags |= TSB_RELOC_FLAG;
/*
* For Cheetah+ Erratum 25:
* Wait for any active recovery to finish. We can't risk
* relocating the TSB of the thread running mondo_recover_proc()
* since, if we did that, we would deadlock. The scenario we are
* trying to avoid is as follows:
*
* THIS CPU RECOVER CPU
* -------- -----------
* Begins recovery, walking through TSB
* hat_pagesuspend() TSB TTE
* TLB miss on TSB TTE, spins at TL1
* xt_sync()
* send_mondo_timeout()
* mondo_recover_proc()
* ((deadlocked))
*
* The second half of the workaround is that mondo_recover_proc()
* checks to see if the tsb_info has the RELOC flag set, and if it
* does, it skips over that TSB without ever touching tsbinfop->tsb_va
* and hence avoiding the TLB miss that could result in a deadlock.
*/
if (&sendmondo_in_recover) {
membar_enter(); /* make sure RELOC flag visible */
while (sendmondo_in_recover) {
drv_usecwait(1);
membar_consumer();
}
}
sfmmu_invalidate_ctx(sfmmup);
sfmmu_hat_exit(hatlockp);
return (0);
}
/* ARGSUSED */
static int
sfmmu_tsb_post_relocator(caddr_t va, uint_t tsbsz, uint_t flags,
void *tsbinfo, pfn_t newpfn)
{
hatlock_t *hatlockp;
struct tsb_info *tsbinfop = (struct tsb_info *)tsbinfo;
sfmmu_t *sfmmup = tsbinfop->tsb_sfmmu;
if (flags != HAT_POSTUNSUSPEND)
return (0);
hatlockp = sfmmu_hat_enter(sfmmup);
SFMMU_STAT(sf_tsb_reloc);
/*
* The process may have swapped out while we were relocating one
* of its TSBs. If so, don't bother doing the setup since the
* process can't be using the memory anymore.
*/
if ((tsbinfop->tsb_flags & TSB_SWAPPED) == 0) {
ASSERT(va == tsbinfop->tsb_va);
sfmmu_tsbinfo_setup_phys(tsbinfop, newpfn);
sfmmu_setup_tsbinfo(sfmmup);
if (tsbinfop->tsb_flags & TSB_FLUSH_NEEDED) {
sfmmu_inv_tsb(tsbinfop->tsb_va,
TSB_BYTES(tsbinfop->tsb_szc));
tsbinfop->tsb_flags &= ~TSB_FLUSH_NEEDED;
}
}
membar_exit();
tsbinfop->tsb_flags &= ~TSB_RELOC_FLAG;
cv_broadcast(&sfmmup->sfmmu_tsb_cv);
sfmmu_hat_exit(hatlockp);
return (0);
}
/*
* Allocate and initialize a tsb_info structure. Note that we may or may not
* allocate a TSB here, depending on the flags passed in.
*/
static int
sfmmu_tsbinfo_alloc(struct tsb_info **tsbinfopp, int tsb_szc, int tte_sz_mask,
uint_t flags, sfmmu_t *sfmmup)
{
int err;
*tsbinfopp = (struct tsb_info *)kmem_cache_alloc(
sfmmu_tsbinfo_cache, KM_SLEEP);
if ((err = sfmmu_init_tsbinfo(*tsbinfopp, tte_sz_mask,
tsb_szc, flags, sfmmup)) != 0) {
kmem_cache_free(sfmmu_tsbinfo_cache, *tsbinfopp);
SFMMU_STAT(sf_tsb_allocfail);
*tsbinfopp = NULL;
return (err);
}
SFMMU_STAT(sf_tsb_alloc);
/*
* Bump the TSB size counters for this TSB size.
*/
(*(((int *)&sfmmu_tsbsize_stat) + tsb_szc))++;
return (0);
}
static void
sfmmu_tsb_free(struct tsb_info *tsbinfo)
{
caddr_t tsbva = tsbinfo->tsb_va;
uint_t tsb_size = TSB_BYTES(tsbinfo->tsb_szc);
struct kmem_cache *kmem_cachep = tsbinfo->tsb_cache;
vmem_t *vmp = tsbinfo->tsb_vmp;
/*
* If we allocated this TSB from relocatable kernel memory, then we
* need to uninstall the callback handler.
*/
if (tsbinfo->tsb_cache != sfmmu_tsb8k_cache) {
uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
caddr_t slab_vaddr = (caddr_t)((uintptr_t)tsbva & slab_mask);
page_t **ppl;
int ret;
ret = as_pagelock(&kas, &ppl, slab_vaddr, PAGESIZE, S_WRITE);
ASSERT(ret == 0);
hat_delete_callback(tsbva, (uint_t)tsb_size, (void *)tsbinfo,
0, NULL);
as_pageunlock(&kas, ppl, slab_vaddr, PAGESIZE, S_WRITE);
}
if (kmem_cachep != NULL) {
kmem_cache_free(kmem_cachep, tsbva);
} else {
vmem_xfree(vmp, (void *)tsbva, tsb_size);
}
tsbinfo->tsb_va = (caddr_t)0xbad00bad;
atomic_add_64(&tsb_alloc_bytes, -(int64_t)tsb_size);
}
static void
sfmmu_tsbinfo_free(struct tsb_info *tsbinfo)
{
if ((tsbinfo->tsb_flags & TSB_SWAPPED) == 0) {
sfmmu_tsb_free(tsbinfo);
}
kmem_cache_free(sfmmu_tsbinfo_cache, tsbinfo);
}
/*
* Setup all the references to physical memory for this tsbinfo.
* The underlying page(s) must be locked.
*/
static void
sfmmu_tsbinfo_setup_phys(struct tsb_info *tsbinfo, pfn_t pfn)
{
ASSERT(pfn != PFN_INVALID);
ASSERT(pfn == va_to_pfn(tsbinfo->tsb_va));
#ifndef sun4v
if (tsbinfo->tsb_szc == 0) {
sfmmu_memtte(&tsbinfo->tsb_tte, pfn,
PROT_WRITE|PROT_READ, TTE8K);
} else {
/*
* Round down PA and use a large mapping; the handlers will
* compute the TSB pointer at the correct offset into the
* big virtual page. NOTE: this assumes all TSBs larger
* than 8K must come from physically contiguous slabs of
* size tsb_slab_size.
*/
sfmmu_memtte(&tsbinfo->tsb_tte, pfn & ~tsb_slab_mask,
PROT_WRITE|PROT_READ, tsb_slab_ttesz);
}
tsbinfo->tsb_pa = ptob(pfn);
TTE_SET_LOCKED(&tsbinfo->tsb_tte); /* lock the tte into dtlb */
TTE_SET_MOD(&tsbinfo->tsb_tte); /* enable writes */
ASSERT(TTE_IS_PRIVILEGED(&tsbinfo->tsb_tte));
ASSERT(TTE_IS_LOCKED(&tsbinfo->tsb_tte));
#else /* sun4v */
tsbinfo->tsb_pa = ptob(pfn);
#endif /* sun4v */
}
/*
* Returns zero on success, ENOMEM if over the high water mark,
* or EAGAIN if the caller needs to retry with a smaller TSB
* size (or specify TSB_FORCEALLOC if the allocation can't fail).
*
* This call cannot fail to allocate a TSB if TSB_FORCEALLOC
* is specified and the TSB requested is PAGESIZE, though it
* may sleep waiting for memory if sufficient memory is not
* available.
*/
static int
sfmmu_init_tsbinfo(struct tsb_info *tsbinfo, int tteszmask,
int tsbcode, uint_t flags, sfmmu_t *sfmmup)
{
caddr_t vaddr = NULL;
caddr_t slab_vaddr;
uintptr_t slab_mask = ~((uintptr_t)tsb_slab_mask) << PAGESHIFT;
int tsbbytes = TSB_BYTES(tsbcode);
int lowmem = 0;
struct kmem_cache *kmem_cachep = NULL;
vmem_t *vmp = NULL;
lgrp_id_t lgrpid = LGRP_NONE;
pfn_t pfn;
uint_t cbflags = HAC_SLEEP;
page_t **pplist;
int ret;
if (flags & (TSB_FORCEALLOC | TSB_SWAPIN | TSB_GROW | TSB_SHRINK))
flags |= TSB_ALLOC;
ASSERT((flags & TSB_FORCEALLOC) == 0 || tsbcode == TSB_MIN_SZCODE);
tsbinfo->tsb_sfmmu = sfmmup;
/*
* If not allocating a TSB, set up the tsbinfo, set TSB_SWAPPED, and
* return.
*/
if ((flags & TSB_ALLOC) == 0) {
tsbinfo->tsb_szc = tsbcode;
tsbinfo->tsb_ttesz_mask = tteszmask;
tsbinfo->tsb_va = (caddr_t)0xbadbadbeef;
tsbinfo->tsb_pa = -1;
tsbinfo->tsb_tte.ll = 0;
tsbinfo->tsb_next = NULL;
tsbinfo->tsb_flags = TSB_SWAPPED;
tsbinfo->tsb_cache = NULL;
tsbinfo->tsb_vmp = NULL;
return (0);
}
#ifdef DEBUG
/*
* For debugging:
* Randomly force allocation failures every tsb_alloc_mtbf
* tries if TSB_FORCEALLOC is not specified. This will
* return ENOMEM if tsb_alloc_mtbf is odd, or EAGAIN if
* it is even, to allow testing of both failure paths...
*/
if (tsb_alloc_mtbf && ((flags & TSB_FORCEALLOC) == 0) &&
(tsb_alloc_count++ == tsb_alloc_mtbf)) {
tsb_alloc_count = 0;
tsb_alloc_fail_mtbf++;
return ((tsb_alloc_mtbf & 1)? ENOMEM : EAGAIN);
}
#endif /* DEBUG */
/*
* Enforce high water mark if we are not doing a forced allocation
* and are not shrinking a process' TSB.
*/
if ((flags & TSB_SHRINK) == 0 &&
(tsbbytes + tsb_alloc_bytes) > tsb_alloc_hiwater) {
if ((flags & TSB_FORCEALLOC) == 0)
return (ENOMEM);
lowmem = 1;
}
/*
* Allocate from the correct location based upon the size of the TSB
* compared to the base page size, and what memory conditions dictate.
* Note we always do nonblocking allocations from the TSB arena since
* we don't want memory fragmentation to cause processes to block
* indefinitely waiting for memory; until the kernel algorithms that
* coalesce large pages are improved this is our best option.
*
* Algorithm:
* If allocating a "large" TSB (>8K), allocate from the
* appropriate kmem_tsb_default_arena vmem arena
* else if low on memory or the TSB_FORCEALLOC flag is set or
* tsb_forceheap is set
* Allocate from kernel heap via sfmmu_tsb8k_cache with
* KM_SLEEP (never fails)
* else
* Allocate from appropriate sfmmu_tsb_cache with
* KM_NOSLEEP
* endif
*/
if (tsb_lgrp_affinity)
lgrpid = lgrp_home_id(curthread);
if (lgrpid == LGRP_NONE)
lgrpid = 0; /* use lgrp of boot CPU */
if (tsbbytes > MMU_PAGESIZE) {
vmp = kmem_tsb_default_arena[lgrpid];
vaddr = (caddr_t)vmem_xalloc(vmp, tsbbytes, tsbbytes, 0, 0,
NULL, NULL, VM_NOSLEEP);
#ifdef DEBUG
} else if (lowmem || (flags & TSB_FORCEALLOC) || tsb_forceheap) {
#else /* !DEBUG */
} else if (lowmem || (flags & TSB_FORCEALLOC)) {
#endif /* DEBUG */
kmem_cachep = sfmmu_tsb8k_cache;
vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_SLEEP);
ASSERT(vaddr != NULL);
} else {
kmem_cachep = sfmmu_tsb_cache[lgrpid];
vaddr = (caddr_t)kmem_cache_alloc(kmem_cachep, KM_NOSLEEP);
}
tsbinfo->tsb_cache = kmem_cachep;
tsbinfo->tsb_vmp = vmp;
if (vaddr == NULL) {
return (EAGAIN);
}
atomic_add_64(&tsb_alloc_bytes, (int64_t)tsbbytes);
kmem_cachep = tsbinfo->tsb_cache;
/*
* If we are allocating from outside the cage, then we need to
* register a relocation callback handler. Note that for now
* since pseudo mappings always hang off of the slab's root page,
* we need only lock the first 8K of the TSB slab. This is a bit
* hacky but it is good for performance.
*/
if (kmem_cachep != sfmmu_tsb8k_cache) {
slab_vaddr = (caddr_t)((uintptr_t)vaddr & slab_mask);
ret = as_pagelock(&kas, &pplist, slab_vaddr, PAGESIZE, S_WRITE);
ASSERT(ret == 0);
ret = hat_add_callback(sfmmu_tsb_cb_id, vaddr, (uint_t)tsbbytes,
cbflags, (void *)tsbinfo, &pfn, NULL);
/*
* Need to free up resources if we could not successfully
* add the callback function and return an error condition.
*/
if (ret != 0) {
if (kmem_cachep) {
kmem_cache_free(kmem_cachep, vaddr);
} else {
vmem_xfree(vmp, (void *)vaddr, tsbbytes);
}
as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE,
S_WRITE);
return (EAGAIN);
}
} else {
/*
* Since allocation of 8K TSBs from heap is rare and occurs
* during memory pressure we allocate them from permanent
* memory rather than using callbacks to get the PFN.
*/
pfn = hat_getpfnum(kas.a_hat, vaddr);
}
tsbinfo->tsb_va = vaddr;
tsbinfo->tsb_szc = tsbcode;
tsbinfo->tsb_ttesz_mask = tteszmask;
tsbinfo->tsb_next = NULL;
tsbinfo->tsb_flags = 0;
sfmmu_tsbinfo_setup_phys(tsbinfo, pfn);
if (kmem_cachep != sfmmu_tsb8k_cache) {
as_pageunlock(&kas, pplist, slab_vaddr, PAGESIZE, S_WRITE);
}
sfmmu_inv_tsb(vaddr, tsbbytes);
return (0);
}
/*
* Initialize per cpu tsb and per cpu tsbmiss_area
*/
void
sfmmu_init_tsbs(void)
{
int i;
struct tsbmiss *tsbmissp;
struct kpmtsbm *kpmtsbmp;
#ifndef sun4v
extern int dcache_line_mask;
#endif /* sun4v */
extern uint_t vac_colors;
/*
* Init. tsb miss area.
*/
tsbmissp = tsbmiss_area;
for (i = 0; i < NCPU; tsbmissp++, i++) {
/*
* initialize the tsbmiss area.
* Do this for all possible CPUs as some may be added
* while the system is running. There is no cost to this.
*/
tsbmissp->ksfmmup = ksfmmup;
#ifndef sun4v
tsbmissp->dcache_line_mask = (uint16_t)dcache_line_mask;
#endif /* sun4v */
tsbmissp->khashstart =
(struct hmehash_bucket *)va_to_pa((caddr_t)khme_hash);
tsbmissp->uhashstart =
(struct hmehash_bucket *)va_to_pa((caddr_t)uhme_hash);
tsbmissp->khashsz = khmehash_num;
tsbmissp->uhashsz = uhmehash_num;
}
sfmmu_tsb_cb_id = hat_register_callback('T'<<16 | 'S' << 8 | 'B',
sfmmu_tsb_pre_relocator, sfmmu_tsb_post_relocator, NULL, 0);
if (kpm_enable == 0)
return;
/* -- Begin KPM specific init -- */
if (kpm_smallpages) {
/*
* If we're using base pagesize pages for seg_kpm
* mappings, we use the kernel TSB since we can't afford
* to allocate a second huge TSB for these mappings.
*/
kpm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
kpm_tsbsz = ktsb_szcode;
kpmsm_tsbbase = kpm_tsbbase;
kpmsm_tsbsz = kpm_tsbsz;
} else {
/*
* In VAC conflict case, just put the entries in the
* kernel 8K indexed TSB for now so we can find them.
* This could really be changed in the future if we feel
* the need...
*/
kpmsm_tsbbase = ktsb_phys? ktsb_pbase : (uint64_t)ktsb_base;
kpmsm_tsbsz = ktsb_szcode;
kpm_tsbbase = ktsb_phys? ktsb4m_pbase : (uint64_t)ktsb4m_base;
kpm_tsbsz = ktsb4m_szcode;
}
kpmtsbmp = kpmtsbm_area;
for (i = 0; i < NCPU; kpmtsbmp++, i++) {
/*
* Initialize the kpmtsbm area.
* Do this for all possible CPUs as some may be added
* while the system is running. There is no cost to this.
*/
kpmtsbmp->vbase = kpm_vbase;
kpmtsbmp->vend = kpm_vbase + kpm_size * vac_colors;
kpmtsbmp->sz_shift = kpm_size_shift;
kpmtsbmp->kpmp_shift = kpmp_shift;
kpmtsbmp->kpmp2pshft = (uchar_t)kpmp2pshft;
if (kpm_smallpages == 0) {
kpmtsbmp->kpmp_table_sz = kpmp_table_sz;
kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_table);
} else {
kpmtsbmp->kpmp_table_sz = kpmp_stable_sz;
kpmtsbmp->kpmp_tablepa = va_to_pa(kpmp_stable);
}
kpmtsbmp->msegphashpa = va_to_pa(memseg_phash);
kpmtsbmp->flags = KPMTSBM_ENABLE_FLAG;
#ifdef DEBUG
kpmtsbmp->flags |= (kpm_tsbmtl) ? KPMTSBM_TLTSBM_FLAG : 0;
#endif /* DEBUG */
if (ktsb_phys)
kpmtsbmp->flags |= KPMTSBM_TSBPHYS_FLAG;
}
/* -- End KPM specific init -- */
}
/* Avoid using sfmmu_tsbinfo_alloc() to avoid kmem_alloc - no real reason */
struct tsb_info ktsb_info[2];
/*
* Called from hat_kern_setup() to setup the tsb_info for ksfmmup.
*/
void
sfmmu_init_ktsbinfo()
{
ASSERT(ksfmmup != NULL);
ASSERT(ksfmmup->sfmmu_tsb == NULL);
/*
* Allocate tsbinfos for kernel and copy in data
* to make debug easier and sun4v setup easier.
*/
ktsb_info[0].tsb_sfmmu = ksfmmup;
ktsb_info[0].tsb_szc = ktsb_szcode;
ktsb_info[0].tsb_ttesz_mask = TSB8K|TSB64K|TSB512K;
ktsb_info[0].tsb_va = ktsb_base;
ktsb_info[0].tsb_pa = ktsb_pbase;
ktsb_info[0].tsb_flags = 0;
ktsb_info[0].tsb_tte.ll = 0;
ktsb_info[0].tsb_cache = NULL;
ktsb_info[1].tsb_sfmmu = ksfmmup;
ktsb_info[1].tsb_szc = ktsb4m_szcode;
ktsb_info[1].tsb_ttesz_mask = TSB4M;
ktsb_info[1].tsb_va = ktsb4m_base;
ktsb_info[1].tsb_pa = ktsb4m_pbase;
ktsb_info[1].tsb_flags = 0;
ktsb_info[1].tsb_tte.ll = 0;
ktsb_info[1].tsb_cache = NULL;
/* Link them into ksfmmup. */
ktsb_info[0].tsb_next = &ktsb_info[1];
ktsb_info[1].tsb_next = NULL;
ksfmmup->sfmmu_tsb = &ktsb_info[0];
sfmmu_setup_tsbinfo(ksfmmup);
}
/*
* Cache the last value returned from va_to_pa(). If the VA specified
* in the current call to cached_va_to_pa() maps to the same Page (as the
* previous call to cached_va_to_pa()), then compute the PA using
* cached info, else call va_to_pa().
*
* Note: this function is neither MT-safe nor consistent in the presence
* of multiple, interleaved threads. This function was created to enable
* an optimization used during boot (at a point when there's only one thread
* executing on the "boot CPU", and before startup_vm() has been called).
*/
static uint64_t
cached_va_to_pa(void *vaddr)
{
static uint64_t prev_vaddr_base = 0;
static uint64_t prev_pfn = 0;
if ((((uint64_t)vaddr) & MMU_PAGEMASK) == prev_vaddr_base) {
return (prev_pfn | ((uint64_t)vaddr & MMU_PAGEOFFSET));
} else {
uint64_t pa = va_to_pa(vaddr);
if (pa != ((uint64_t)-1)) {
/*
* Computed physical address is valid. Cache its
* related info for the next cached_va_to_pa() call.
*/
prev_pfn = pa & MMU_PAGEMASK;
prev_vaddr_base = ((uint64_t)vaddr) & MMU_PAGEMASK;
}
return (pa);
}
}
/*
* Carve up our nucleus hblk region. We may allocate more hblks than
* asked due to rounding errors but we are guaranteed to have at least
* enough space to allocate the requested number of hblk8's and hblk1's.
*/
void
sfmmu_init_nucleus_hblks(caddr_t addr, size_t size, int nhblk8, int nhblk1)
{
struct hme_blk *hmeblkp;
size_t hme8blk_sz, hme1blk_sz;
size_t i;
size_t hblk8_bound;
ulong_t j = 0, k = 0;
ASSERT(addr != NULL && size != 0);
/* Need to use proper structure alignment */
hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
nucleus_hblk8.list = (void *)addr;
nucleus_hblk8.index = 0;
/*
* Use as much memory as possible for hblk8's since we
* expect all bop_alloc'ed memory to be allocated in 8k chunks.
* We need to hold back enough space for the hblk1's which
* we'll allocate next.
*/
hblk8_bound = size - (nhblk1 * hme1blk_sz) - hme8blk_sz;
for (i = 0; i <= hblk8_bound; i += hme8blk_sz, j++) {
hmeblkp = (struct hme_blk *)addr;
addr += hme8blk_sz;
hmeblkp->hblk_nuc_bit = 1;
hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
}
nucleus_hblk8.len = j;
ASSERT(j >= nhblk8);
SFMMU_STAT_ADD(sf_hblk8_ncreate, j);
nucleus_hblk1.list = (void *)addr;
nucleus_hblk1.index = 0;
for (; i <= (size - hme1blk_sz); i += hme1blk_sz, k++) {
hmeblkp = (struct hme_blk *)addr;
addr += hme1blk_sz;
hmeblkp->hblk_nuc_bit = 1;
hmeblkp->hblk_nextpa = cached_va_to_pa((caddr_t)hmeblkp);
}
ASSERT(k >= nhblk1);
nucleus_hblk1.len = k;
SFMMU_STAT_ADD(sf_hblk1_ncreate, k);
}
/*
* This function is currently not supported on this platform. For what
* it's supposed to do, see hat.c and hat_srmmu.c
*/
/* ARGSUSED */
faultcode_t
hat_softlock(struct hat *hat, caddr_t addr, size_t *lenp, page_t **ppp,
uint_t flags)
{
ASSERT(hat->sfmmu_xhat_provider == NULL);
return (FC_NOSUPPORT);
}
/*
* Searchs the mapping list of the page for a mapping of the same size. If not
* found the corresponding bit is cleared in the p_index field. When large
* pages are more prevalent in the system, we can maintain the mapping list
* in order and we don't have to traverse the list each time. Just check the
* next and prev entries, and if both are of different size, we clear the bit.
*/
static void
sfmmu_rm_large_mappings(page_t *pp, int ttesz)
{
struct sf_hment *sfhmep;
struct hme_blk *hmeblkp;
int index;
pgcnt_t npgs;
ASSERT(ttesz > TTE8K);
ASSERT(sfmmu_mlist_held(pp));
ASSERT(PP_ISMAPPED_LARGE(pp));
/*
* Traverse mapping list looking for another mapping of same size.
* since we only want to clear index field if all mappings of
* that size are gone.
*/
for (sfhmep = pp->p_mapping; sfhmep; sfhmep = sfhmep->hme_next) {
hmeblkp = sfmmu_hmetohblk(sfhmep);
if (hmeblkp->hblk_xhat_bit)
continue;
if (hme_size(sfhmep) == ttesz) {
/*
* another mapping of the same size. don't clear index.
*/
return;
}
}
/*
* Clear the p_index bit for large page.
*/
index = PAGESZ_TO_INDEX(ttesz);
npgs = TTEPAGES(ttesz);
while (npgs-- > 0) {
ASSERT(pp->p_index & index);
pp->p_index &= ~index;
pp = PP_PAGENEXT(pp);
}
}
/*
* return supported features
*/
/* ARGSUSED */
int
hat_supported(enum hat_features feature, void *arg)
{
switch (feature) {
case HAT_SHARED_PT:
case HAT_DYNAMIC_ISM_UNMAP:
case HAT_VMODSORT:
return (1);
default:
return (0);
}
}
void
hat_enter(struct hat *hat)
{
hatlock_t *hatlockp;
if (hat != ksfmmup) {
hatlockp = TSB_HASH(hat);
mutex_enter(HATLOCK_MUTEXP(hatlockp));
}
}
void
hat_exit(struct hat *hat)
{
hatlock_t *hatlockp;
if (hat != ksfmmup) {
hatlockp = TSB_HASH(hat);
mutex_exit(HATLOCK_MUTEXP(hatlockp));
}
}
/*ARGSUSED*/
void
hat_reserve(struct as *as, caddr_t addr, size_t len)
{
}
static void
hat_kstat_init(void)
{
kstat_t *ksp;
ksp = kstat_create("unix", 0, "sfmmu_global_stat", "hat",
KSTAT_TYPE_RAW, sizeof (struct sfmmu_global_stat),
KSTAT_FLAG_VIRTUAL);
if (ksp) {
ksp->ks_data = (void *) &sfmmu_global_stat;
kstat_install(ksp);
}
ksp = kstat_create("unix", 0, "sfmmu_tsbsize_stat", "hat",
KSTAT_TYPE_RAW, sizeof (struct sfmmu_tsbsize_stat),
KSTAT_FLAG_VIRTUAL);
if (ksp) {
ksp->ks_data = (void *) &sfmmu_tsbsize_stat;
kstat_install(ksp);
}
ksp = kstat_create("unix", 0, "sfmmu_percpu_stat", "hat",
KSTAT_TYPE_RAW, sizeof (struct sfmmu_percpu_stat) * NCPU,
KSTAT_FLAG_WRITABLE);
if (ksp) {
ksp->ks_update = sfmmu_kstat_percpu_update;
kstat_install(ksp);
}
}
/* ARGSUSED */
static int
sfmmu_kstat_percpu_update(kstat_t *ksp, int rw)
{
struct sfmmu_percpu_stat *cpu_kstat = ksp->ks_data;
struct tsbmiss *tsbm = tsbmiss_area;
struct kpmtsbm *kpmtsbm = kpmtsbm_area;
int i;
ASSERT(cpu_kstat);
if (rw == KSTAT_READ) {
for (i = 0; i < NCPU; cpu_kstat++, tsbm++, kpmtsbm++, i++) {
cpu_kstat->sf_itlb_misses = tsbm->itlb_misses;
cpu_kstat->sf_dtlb_misses = tsbm->dtlb_misses;
cpu_kstat->sf_utsb_misses = tsbm->utsb_misses -
tsbm->uprot_traps;
cpu_kstat->sf_ktsb_misses = tsbm->ktsb_misses +
kpmtsbm->kpm_tsb_misses - tsbm->kprot_traps;
if (tsbm->itlb_misses > 0 && tsbm->dtlb_misses > 0) {
cpu_kstat->sf_tsb_hits =
(tsbm->itlb_misses + tsbm->dtlb_misses) -
(tsbm->utsb_misses + tsbm->ktsb_misses +
kpmtsbm->kpm_tsb_misses);
} else {
cpu_kstat->sf_tsb_hits = 0;
}
cpu_kstat->sf_umod_faults = tsbm->uprot_traps;
cpu_kstat->sf_kmod_faults = tsbm->kprot_traps;
}
} else {
/* KSTAT_WRITE is used to clear stats */
for (i = 0; i < NCPU; tsbm++, kpmtsbm++, i++) {
tsbm->itlb_misses = 0;
tsbm->dtlb_misses = 0;
tsbm->utsb_misses = 0;
tsbm->ktsb_misses = 0;
tsbm->uprot_traps = 0;
tsbm->kprot_traps = 0;
kpmtsbm->kpm_dtlb_misses = 0;
kpmtsbm->kpm_tsb_misses = 0;
}
}
return (0);
}
#ifdef DEBUG
tte_t *gorig[NCPU], *gcur[NCPU], *gnew[NCPU];
/*
* A tte checker. *orig_old is the value we read before cas.
* *cur is the value returned by cas.
* *new is the desired value when we do the cas.
*
* *hmeblkp is currently unused.
*/
/* ARGSUSED */
void
chk_tte(tte_t *orig_old, tte_t *cur, tte_t *new, struct hme_blk *hmeblkp)
{
pfn_t i, j, k;
int cpuid = CPU->cpu_id;
gorig[cpuid] = orig_old;
gcur[cpuid] = cur;
gnew[cpuid] = new;
#ifdef lint
hmeblkp = hmeblkp;
#endif
if (TTE_IS_VALID(orig_old)) {
if (TTE_IS_VALID(cur)) {
i = TTE_TO_TTEPFN(orig_old);
j = TTE_TO_TTEPFN(cur);
k = TTE_TO_TTEPFN(new);
if (i != j) {
/* remap error? */
panic("chk_tte: bad pfn, 0x%lx, 0x%lx", i, j);
}
if (i != k) {
/* remap error? */
panic("chk_tte: bad pfn2, 0x%lx, 0x%lx", i, k);
}
} else {
if (TTE_IS_VALID(new)) {
panic("chk_tte: invalid cur? ");
}
i = TTE_TO_TTEPFN(orig_old);
k = TTE_TO_TTEPFN(new);
if (i != k) {
panic("chk_tte: bad pfn3, 0x%lx, 0x%lx", i, k);
}
}
} else {
if (TTE_IS_VALID(cur)) {
j = TTE_TO_TTEPFN(cur);
if (TTE_IS_VALID(new)) {
k = TTE_TO_TTEPFN(new);
if (j != k) {
panic("chk_tte: bad pfn4, 0x%lx, 0x%lx",
j, k);
}
} else {
panic("chk_tte: why here?");
}
} else {
if (!TTE_IS_VALID(new)) {
panic("chk_tte: why here2 ?");
}
}
}
}
#endif /* DEBUG */
extern void prefetch_tsbe_read(struct tsbe *);
extern void prefetch_tsbe_write(struct tsbe *);
/*
* We want to prefetch 7 cache lines ahead for our read prefetch. This gives
* us optimal performance on Cheetah+. You can only have 8 outstanding
* prefetches at any one time, so we opted for 7 read prefetches and 1 write
* prefetch to make the most utilization of the prefetch capability.
*/
#define TSBE_PREFETCH_STRIDE (7)
void
sfmmu_copy_tsb(struct tsb_info *old_tsbinfo, struct tsb_info *new_tsbinfo)
{
int old_bytes = TSB_BYTES(old_tsbinfo->tsb_szc);
int new_bytes = TSB_BYTES(new_tsbinfo->tsb_szc);
int old_entries = TSB_ENTRIES(old_tsbinfo->tsb_szc);
int new_entries = TSB_ENTRIES(new_tsbinfo->tsb_szc);
struct tsbe *old;
struct tsbe *new;
struct tsbe *new_base = (struct tsbe *)new_tsbinfo->tsb_va;
uint64_t va;
int new_offset;
int i;
int vpshift;
int last_prefetch;
if (old_bytes == new_bytes) {
bcopy(old_tsbinfo->tsb_va, new_tsbinfo->tsb_va, new_bytes);
} else {
/*
* A TSBE is 16 bytes which means there are four TSBE's per
* P$ line (64 bytes), thus every 4 TSBE's we prefetch.
*/
old = (struct tsbe *)old_tsbinfo->tsb_va;
last_prefetch = old_entries - (4*(TSBE_PREFETCH_STRIDE+1));
for (i = 0; i < old_entries; i++, old++) {
if (((i & (4-1)) == 0) && (i < last_prefetch))
prefetch_tsbe_read(old);
if (!old->tte_tag.tag_invalid) {
/*
* We have a valid TTE to remap. Check the
* size. We won't remap 64K or 512K TTEs
* because they span more than one TSB entry
* and are indexed using an 8K virt. page.
* Ditto for 32M and 256M TTEs.
*/
if (TTE_CSZ(&old->tte_data) == TTE64K ||
TTE_CSZ(&old->tte_data) == TTE512K)
continue;
if (mmu_page_sizes == max_mmu_page_sizes) {
if (TTE_CSZ(&old->tte_data) == TTE32M ||
TTE_CSZ(&old->tte_data) == TTE256M)
continue;
}
/* clear the lower 22 bits of the va */
va = *(uint64_t *)old << 22;
/* turn va into a virtual pfn */
va >>= 22 - TSB_START_SIZE;
/*
* or in bits from the offset in the tsb
* to get the real virtual pfn. These
* correspond to bits [21:13] in the va
*/
vpshift =
TTE_BSZS_SHIFT(TTE_CSZ(&old->tte_data)) &
0x1ff;
va |= (i << vpshift);
va >>= vpshift;
new_offset = va & (new_entries - 1);
new = new_base + new_offset;
prefetch_tsbe_write(new);
*new = *old;
}
}
}
}
/*
* unused in sfmmu
*/
void
hat_dump(void)
{
}
/*
* Called when a thread is exiting and we have switched to the kernel address
* space. Perform the same VM initialization resume() uses when switching
* processes.
*
* Note that sfmmu_load_mmustate() is currently a no-op for kernel threads, but
* we call it anyway in case the semantics change in the future.
*/
/*ARGSUSED*/
void
hat_thread_exit(kthread_t *thd)
{
uint64_t pgsz_cnum;
uint_t pstate_save;
ASSERT(thd->t_procp->p_as == &kas);
pgsz_cnum = KCONTEXT;
#ifdef sun4u
pgsz_cnum |= (ksfmmup->sfmmu_cext << CTXREG_EXT_SHIFT);
#endif
/*
* Note that sfmmu_load_mmustate() is currently a no-op for
* kernel threads. We need to disable interrupts here,
* simply because otherwise sfmmu_load_mmustate() would panic
* if the caller does not disable interrupts.
*/
pstate_save = sfmmu_disable_intrs();
sfmmu_setctx_sec(pgsz_cnum);
sfmmu_load_mmustate(ksfmmup);
sfmmu_enable_intrs(pstate_save);
}