kdi_idt.c revision 9844da31e6f9a1bffcbbb9ec7926f759ee04c460
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Management of KMDB's IDT, which is installed upon KMDB activation.
*
* Debugger activation has two flavors, which cover the cases where KMDB is
* loaded at boot, and when it is loaded after boot. In brief, in both cases,
* the KDI needs to interpose upon several handlers in the IDT. When
* mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the
* handlers to what they were before we started.
*
* We also take over the entirety of IDT (except the double-fault handler) on
* the active CPU when we're in kmdb so we can handle things like page faults
* sensibly.
*
* Boot-loaded KMDB
*
* When we're first activated, we're running on boot's IDT. We need to be able
* to function in this world, so we'll install our handlers into boot's IDT.
* This is a little complicated: we're using the fake cpu_t set up by
* boot_kdi_tmpinit(), so we can't access cpu_idt directly. Instead,
* kdi_idt_write() notices that cpu_idt is NULL, and works around this problem.
*
* Later, when we're about to switch to the kernel's IDT, it'll call us via
* kdi_idt_sync(), allowing us to add our handlers to the new IDT. While
* boot-loaded KMDB can't be unloaded, we still need to save the descriptors we
* replace so we can pass traps back to the kernel as necessary.
*
* The last phase of boot-loaded KMDB activation occurs at non-boot CPU
* startup. We will be called on each non-boot CPU, thus allowing us to set up
* any watchpoints that may have been configured on the boot CPU and interpose
* on the given CPU's IDT. We don't save the interposed descriptors in this
* case -- see kdi_cpu_init() for details.
*
* Mod-loaded KMDB
*
* This style of activation is much simpler, as the CPUs are already running,
* and are using their own copy of the kernel's IDT. We simply interpose upon
* each CPU's IDT. We save the handlers we replace, both for deactivation and
* for passing traps back to the kernel. Note that for the hypervisors'
* benefit, we need to xcall to the other CPUs to do this, since we need to
* actively set the trap entries in its virtual IDT from that vcpu's context
* rather than just modifying the IDT table from the CPU running kdi_activate().
*/
#include <sys/types.h>
#include <sys/segments.h>
#include <sys/trap.h>
#include <sys/cpuvar.h>
#include <sys/reboot.h>
#include <sys/sunddi.h>
#include <sys/archsystm.h>
#include <sys/kdi_impl.h>
#include <sys/x_call.h>
#include <ia32/sys/psw.h>
#define KDI_GATE_NVECS 3
#define KDI_IDT_NOSAVE 0
#define KDI_IDT_SAVE 1
#define KDI_IDT_DTYPE_KERNEL 0
#define KDI_IDT_DTYPE_BOOT 1
kdi_cpusave_t *kdi_cpusave;
int kdi_ncpusave;
static kdi_main_t kdi_kmdb_main;
kdi_drreg_t kdi_drreg;
#ifndef __amd64
/* Used to track the current set of valid kernel selectors. */
uint32_t kdi_cs;
uint32_t kdi_ds;
uint32_t kdi_fs;
uint32_t kdi_gs;
#endif
uint_t kdi_msr_wrexit_msr;
uint64_t *kdi_msr_wrexit_valp;
uintptr_t kdi_kernel_handler;
int kdi_trap_switch;
#define KDI_MEMRANGES_MAX 2
kdi_memrange_t kdi_memranges[KDI_MEMRANGES_MAX];
int kdi_nmemranges;
typedef void idt_hdlr_f(void);
extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4;
extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9;
extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12;
extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_trap17;
extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32;
extern idt_hdlr_f kdi_invaltrap;
extern size_t kdi_ivct_size;
extern char kdi_slave_entry_patch;
typedef struct kdi_gate_spec {
uint_t kgs_vec;
uint_t kgs_dpl;
} kdi_gate_spec_t;
/*
* Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list.
*/
static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = {
{ T_SGLSTP, TRP_KPL },
{ T_BPTFLT, TRP_UPL },
{ T_DBGENTR, TRP_KPL }
};
static gate_desc_t kdi_kgates[KDI_GATE_NVECS];
gate_desc_t kdi_idt[NIDT];
struct idt_description {
uint_t id_low;
uint_t id_high;
idt_hdlr_f *id_basehdlr;
size_t *id_incrp;
} idt_description[] = {
{ T_ZERODIV, 0, kdi_trap0, NULL },
{ T_SGLSTP, 0, kdi_trap1, NULL },
{ T_NMIFLT, 0, kdi_int2, NULL },
{ T_BPTFLT, 0, kdi_trap3, NULL },
{ T_OVFLW, 0, kdi_trap4, NULL },
{ T_BOUNDFLT, 0, kdi_trap5, NULL },
{ T_ILLINST, 0, kdi_trap6, NULL },
{ T_NOEXTFLT, 0, kdi_trap7, NULL },
#if !defined(__xpv)
{ T_DBLFLT, 0, syserrtrap, NULL },
#endif
{ T_EXTOVRFLT, 0, kdi_trap9, NULL },
{ T_TSSFLT, 0, kdi_traperr10, NULL },
{ T_SEGFLT, 0, kdi_traperr11, NULL },
{ T_STKFLT, 0, kdi_traperr12, NULL },
{ T_GPFLT, 0, kdi_traperr13, NULL },
{ T_PGFLT, 0, kdi_traperr14, NULL },
{ 15, 0, kdi_invaltrap, NULL },
{ T_EXTERRFLT, 0, kdi_trap16, NULL },
{ T_ALIGNMENT, 0, kdi_trap17, NULL },
{ T_MCE, 0, kdi_trap18, NULL },
{ T_SIMDFPE, 0, kdi_trap19, NULL },
{ T_DBGENTR, 0, kdi_trap20, NULL },
{ 21, 31, kdi_invaltrap, NULL },
{ 32, 255, kdi_ivct32, &kdi_ivct_size },
{ 0, 0, NULL },
};
void
kdi_idt_init(selector_t sel)
{
struct idt_description *id;
int i;
for (id = idt_description; id->id_basehdlr != NULL; id++) {
uint_t high = id->id_high != 0 ? id->id_high : id->id_low;
size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0;
for (i = id->id_low; i <= high; i++) {
caddr_t hdlr = (caddr_t)id->id_basehdlr +
incr * (i - id->id_low);
set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel,
SDT_SYSIGT, TRP_KPL, i);
}
}
}
/*
* Patch caller-provided code into the debugger's IDT handlers. This code is
* used to save MSRs that must be saved before the first branch. All handlers
* are essentially the same, and end with a branch to kdi_cmnint. To save the
* MSR, we need to patch in before the branch. The handlers have the following
* structure: KDI_MSR_PATCHOFF bytes of code, KDI_MSR_PATCHSZ bytes of
* patchable space, followed by more code.
*/
void
kdi_idt_patch(caddr_t code, size_t sz)
{
int i;
ASSERT(sz <= KDI_MSR_PATCHSZ);
for (i = 0; i < sizeof (kdi_idt) / sizeof (struct gate_desc); i++) {
gate_desc_t *gd;
uchar_t *patch;
if (i == T_DBLFLT)
continue; /* uses kernel's handler */
gd = &kdi_idt[i];
patch = (uchar_t *)GATESEG_GETOFFSET(gd) + KDI_MSR_PATCHOFF;
/*
* We can't ASSERT that there's a nop here, because this may be
* a debugger restart. In that case, we're copying the new
* patch point over the old one.
*/
/* FIXME: dtrace fbt ... */
bcopy(code, patch, sz);
/* Fill the rest with nops to be sure */
while (sz < KDI_MSR_PATCHSZ)
patch[sz++] = 0x90; /* nop */
}
}
static void
kdi_idt_gates_install(selector_t sel, int saveold)
{
gate_desc_t gates[KDI_GATE_NVECS];
int i;
bzero(gates, sizeof (*gates));
for (i = 0; i < KDI_GATE_NVECS; i++) {
const kdi_gate_spec_t *gs = &kdi_gate_specs[i];
uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]);
set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT,
gs->kgs_dpl, gs->kgs_vec);
}
for (i = 0; i < KDI_GATE_NVECS; i++) {
uint_t vec = kdi_gate_specs[i].kgs_vec;
if (saveold)
kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec];
kdi_idt_write(&gates[i], vec);
}
}
static void
kdi_idt_gates_restore(void)
{
int i;
for (i = 0; i < KDI_GATE_NVECS; i++)
kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec);
}
/*
* Called when we switch to the kernel's IDT. We need to interpose on the
* kernel's IDT entries and stop using KMDBCODE_SEL.
*/
void
kdi_idt_sync(void)
{
kdi_idt_init(KCS_SEL);
kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
}
/*
* On some processors, we'll need to clear a certain MSR before proceeding into
* the debugger. Complicating matters, this MSR must be cleared before we take
* any branches. We have patch points in every trap handler, which will cover
* all entry paths for master CPUs. We also have a patch point in the slave
* entry code.
*/
static void
kdi_msr_add_clrentry(uint_t msr)
{
#ifdef __amd64
uchar_t code[] = {
0x51, 0x50, 0x52, /* pushq %rcx, %rax, %rdx */
0xb9, 0x00, 0x00, 0x00, 0x00, /* movl $MSRNUM, %ecx */
0x31, 0xc0, /* clr %eax */
0x31, 0xd2, /* clr %edx */
0x0f, 0x30, /* wrmsr */
0x5a, 0x58, 0x59 /* popq %rdx, %rax, %rcx */
};
uchar_t *patch = &code[4];
#else
uchar_t code[] = {
0x60, /* pushal */
0xb9, 0x00, 0x00, 0x00, 0x00, /* movl $MSRNUM, %ecx */
0x31, 0xc0, /* clr %eax */
0x31, 0xd2, /* clr %edx */
0x0f, 0x30, /* wrmsr */
0x61 /* popal */
};
uchar_t *patch = &code[2];
#endif
bcopy(&msr, patch, sizeof (uint32_t));
kdi_idt_patch((caddr_t)code, sizeof (code));
bcopy(code, &kdi_slave_entry_patch, sizeof (code));
}
static void
kdi_msr_add_wrexit(uint_t msr, uint64_t *valp)
{
kdi_msr_wrexit_msr = msr;
kdi_msr_wrexit_valp = valp;
}
void
kdi_set_debug_msrs(kdi_msr_t *msrs)
{
int nmsrs, i;
ASSERT(kdi_cpusave[0].krs_msr == NULL);
/* Look in CPU0's MSRs for any special MSRs. */
for (nmsrs = 0; msrs[nmsrs].msr_num != 0; nmsrs++) {
switch (msrs[nmsrs].msr_type) {
case KDI_MSR_CLEARENTRY:
kdi_msr_add_clrentry(msrs[nmsrs].msr_num);
break;
case KDI_MSR_WRITEDELAY:
kdi_msr_add_wrexit(msrs[nmsrs].msr_num,
msrs[nmsrs].kdi_msr_valp);
break;
}
}
nmsrs++;
for (i = 0; i < kdi_ncpusave; i++)
kdi_cpusave[i].krs_msr = &msrs[nmsrs * i];
}
void
kdi_update_drreg(kdi_drreg_t *drreg)
{
kdi_drreg = *drreg;
}
void
kdi_memrange_add(caddr_t base, size_t len)
{
kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges];
ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX);
mr->mr_base = base;
mr->mr_lim = base + len - 1;
kdi_nmemranges++;
}
void
kdi_idt_switch(kdi_cpusave_t *cpusave)
{
if (cpusave == NULL)
kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1);
else
kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1);
}
/*
* Activation for CPUs other than the boot CPU, called from that CPU's
* mp_startup(). We saved the kernel's descriptors when we initialized the
* boot CPU, so we don't want to do it again. Saving the handlers from this
* CPU's IDT would actually be dangerous with the CPU initialization method in
* use at the time of this writing. With that method, the startup code creates
* the IDTs for slave CPUs by copying the one used by the boot CPU, which has
* already been interposed upon by KMDB. Were we to interpose again, we'd
* replace the kernel's descriptors with our own in the save area. By not
* saving, but still overwriting, we'll work in the current world, and in any
* future world where the IDT is generated from scratch.
*/
void
kdi_cpu_init(void)
{
kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE);
/* Load the debug registers and MSRs */
kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]);
}
/*
* Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't
* loaded at boot.
*/
static int
kdi_cpu_activate(void)
{
kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
return (0);
}
void
kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave)
{
int i;
cpuset_t cpuset;
CPUSET_ALL(cpuset);
kdi_cpusave = cpusave;
kdi_ncpusave = ncpusave;
kdi_kmdb_main = main;
for (i = 0; i < kdi_ncpusave; i++) {
kdi_cpusave[i].krs_cpu_id = i;
kdi_cpusave[i].krs_curcrumb =
&kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1];
kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1;
}
if (boothowto & RB_KMDB)
kdi_idt_init(KMDBCODE_SEL);
else
kdi_idt_init(KCS_SEL);
/* The initial selector set. Updated by the debugger-entry code */
#ifndef __amd64
kdi_cs = B32CODE_SEL;
kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL;
#endif
kdi_memranges[0].mr_base = kdi_segdebugbase;
kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1;
kdi_nmemranges = 1;
kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED;
kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED;
kdi_msr_wrexit_msr = 0;
kdi_msr_wrexit_valp = NULL;
if (boothowto & RB_KMDB) {
kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE);
} else {
xc_call(0, 0, 0, X_CALL_HIPRI, cpuset,
(xc_func_t)kdi_cpu_activate);
}
}
static int
kdi_cpu_deactivate(void)
{
kdi_idt_gates_restore();
return (0);
}
void
kdi_deactivate(void)
{
cpuset_t cpuset;
CPUSET_ALL(cpuset);
xc_call(0, 0, 0, X_CALL_HIPRI, cpuset, (xc_func_t)kdi_cpu_deactivate);
kdi_nmemranges = 0;
}
/*
* We receive all breakpoints and single step traps. Some of them,
* including those from userland and those induced by DTrace providers,
* are intended for the kernel, and must be processed there. We adopt
* this ours-until-proven-otherwise position due to the painful
* consequences of sending the kernel an unexpected breakpoint or
* single step. Unless someone can prove to us that the kernel is
* prepared to handle the trap, we'll assume there's a problem and will
* give the user a chance to debug it.
*/
int
kdi_trap_pass(kdi_cpusave_t *cpusave)
{
greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO];
greg_t pc = cpusave->krs_gregs[KDIREG_PC];
greg_t cs = cpusave->krs_gregs[KDIREG_CS];
if (USERMODE(cs))
return (1);
if (tt != T_BPTFLT && tt != T_SGLSTP)
return (0);
if (tt == T_BPTFLT && kdi_dtrace_get_state() ==
KDI_DTSTATE_DTRACE_ACTIVE)
return (1);
/*
* See the comments in the kernel's T_SGLSTP handler for why we need to
* do this.
*/
if (tt == T_SGLSTP &&
(pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter))
return (1);
return (0);
}
/*
* State has been saved, and all CPUs are on the CPU-specific stacks. All
* CPUs enter here, and head off into the debugger proper.
*/
void
kdi_debugger_entry(kdi_cpusave_t *cpusave)
{
/*
* BPTFLT gives us control with %eip set to the instruction *after*
* the int 3. Back it off, so we're looking at the instruction that
* triggered the fault.
*/
if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT)
cpusave->krs_gregs[KDIREG_PC]--;
kdi_kmdb_main(cpusave);
}