prmachdep.c revision ddece0baf7ff3a228bcd106c2bb2303ac0c9af89
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/cred.h>
#include <sys/debug.h>
#include <sys/inline.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/regset.h>
#include <sys/privregs.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/psw.h>
#include <sys/pcb.h>
#include <sys/buf.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/cpuvar.h>
#include <sys/fault.h>
#include <sys/syscall.h>
#include <sys/procfs.h>
#include <sys/cmn_err.h>
#include <sys/stack.h>
#include <sys/debugreg.h>
#include <sys/copyops.h>
#include <sys/vmem.h>
#include <sys/mman.h>
#include <sys/vmparam.h>
#include <sys/fp.h>
#include <sys/archsystm.h>
#include <sys/vmsystm.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kp.h>
#include <vm/page.h>
#include <sys/sysi86.h>
#include <fs/proc/prdata.h>
int prnwatch = 10000; /* maximum number of watched areas */
/*
* Force a thread into the kernel if it is not already there.
* This is a no-op on uniprocessors.
*/
/* ARGSUSED */
void
prpokethread(kthread_t *t)
{
if (t->t_state == TS_ONPROC && t->t_cpu != CPU)
poke_cpu(t->t_cpu->cpu_id);
}
/*
* Return general registers.
*/
void
prgetprregs(klwp_t *lwp, prgregset_t prp)
{
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
getgregs(lwp, prp);
}
/*
* Set general registers.
* (Note: This can be an alias to setgregs().)
*/
void
prsetprregs(klwp_t *lwp, prgregset_t prp, int initial)
{
if (initial) /* set initial values */
lwptoregs(lwp)->r_ps = PSL_USER;
(void) setgregs(lwp, prp);
}
#ifdef _SYSCALL32_IMPL
/*
* Convert prgregset32 to native prgregset
*/
void
prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst)
{
struct regs *rp = lwptoregs(lwp);
dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase;
dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase;
dst[REG_DS] = (uint16_t)src[DS];
dst[REG_ES] = (uint16_t)src[ES];
dst[REG_GS] = (uint16_t)src[GS];
dst[REG_FS] = (uint16_t)src[FS];
dst[REG_SS] = (uint16_t)src[SS];
dst[REG_RSP] = (uint32_t)src[UESP];
dst[REG_RFL] =
(rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK);
dst[REG_CS] = (uint16_t)src[CS];
dst[REG_RIP] = (uint32_t)src[EIP];
dst[REG_ERR] = (uint32_t)src[ERR];
dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
dst[REG_RAX] = (uint32_t)src[EAX];
dst[REG_RCX] = (uint32_t)src[ECX];
dst[REG_RDX] = (uint32_t)src[EDX];
dst[REG_RBX] = (uint32_t)src[EBX];
dst[REG_RBP] = (uint32_t)src[EBP];
dst[REG_RSI] = (uint32_t)src[ESI];
dst[REG_RDI] = (uint32_t)src[EDI];
dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] =
dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0;
}
/*
* Return 32-bit general registers
*/
void
prgetprregs32(klwp_t *lwp, prgregset32_t prp)
{
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
getgregs32(lwp, prp);
}
#endif /* _SYSCALL32_IMPL */
/*
* Get the syscall return values for the lwp.
*/
int
prgetrvals(klwp_t *lwp, long *rval1, long *rval2)
{
struct regs *r = lwptoregs(lwp);
if (r->r_ps & PS_C)
return (r->r_r0);
if (lwp->lwp_eosys == JUSTRETURN) {
*rval1 = 0;
*rval2 = 0;
} else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) {
/*
* XX64 Not sure we -really- need to do this, because the
* syscall return already masks off the bottom values ..?
*/
*rval1 = r->r_r0 & (uint32_t)0xffffffffu;
*rval2 = r->r_r1 & (uint32_t)0xffffffffu;
} else {
*rval1 = r->r_r0;
*rval2 = r->r_r1;
}
return (0);
}
/*
* Does the system support floating-point, either through hardware
* or by trapping and emulating floating-point machine instructions?
*/
int
prhasfp(void)
{
extern int fp_kind;
return (fp_kind != FP_NO);
}
/*
* Get floating-point registers.
*/
void
prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
{
bzero(pfp, sizeof (prfpregset_t));
getfpregs(lwp, pfp);
}
#if defined(_SYSCALL32_IMPL)
void
prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
{
bzero(pfp, sizeof (*pfp));
getfpregs32(lwp, pfp);
}
#endif /* _SYSCALL32_IMPL */
/*
* Set floating-point registers.
* (Note: This can be an alias to setfpregs().)
*/
void
prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
{
setfpregs(lwp, pfp);
}
#if defined(_SYSCALL32_IMPL)
void
prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
{
setfpregs32(lwp, pfp);
}
#endif /* _SYSCALL32_IMPL */
/*
* Does the system support extra register state?
*/
/* ARGSUSED */
int
prhasx(proc_t *p)
{
return (0);
}
/*
* Get the size of the extra registers.
*/
/* ARGSUSED */
int
prgetprxregsize(proc_t *p)
{
return (0);
}
/*
* Get extra registers.
*/
/*ARGSUSED*/
void
prgetprxregs(klwp_t *lwp, caddr_t prx)
{
/* no extra registers */
}
/*
* Set extra registers.
*/
/*ARGSUSED*/
void
prsetprxregs(klwp_t *lwp, caddr_t prx)
{
/* no extra registers */
}
/*
* Return the base (lower limit) of the process stack.
*/
caddr_t
prgetstackbase(proc_t *p)
{
return (p->p_usrstack - p->p_stksize);
}
/*
* Return the "addr" field for pr_addr in prpsinfo_t.
* This is a vestige of the past, so whatever we return is OK.
*/
caddr_t
prgetpsaddr(proc_t *p)
{
return ((caddr_t)p);
}
/*
* Arrange to single-step the lwp.
*/
void
prstep(klwp_t *lwp, int watchstep)
{
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
/*
* flag LWP so that its r_efl trace bit (PS_T) will be set on
* next return to usermode.
*/
lwp->lwp_pcb.pcb_flags |= REQUEST_STEP;
lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
if (watchstep)
lwp->lwp_pcb.pcb_flags |= WATCH_STEP;
else
lwp->lwp_pcb.pcb_flags |= NORMAL_STEP;
aston(lwptot(lwp)); /* let trap() set PS_T in rp->r_efl */
}
/*
* Undo prstep().
*/
void
prnostep(klwp_t *lwp)
{
ASSERT(ttolwp(curthread) == lwp ||
MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
/*
* flag LWP so that its r_efl trace bit (PS_T) will be cleared on
* next return to usermode.
*/
lwp->lwp_pcb.pcb_flags |= REQUEST_NOSTEP;
lwp->lwp_pcb.pcb_flags &=
~(REQUEST_STEP|NORMAL_STEP|WATCH_STEP|DEBUG_PENDING);
aston(lwptot(lwp)); /* let trap() clear PS_T in rp->r_efl */
}
/*
* Return non-zero if a single-step is in effect.
*/
int
prisstep(klwp_t *lwp)
{
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
return ((lwp->lwp_pcb.pcb_flags &
(NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0);
}
/*
* Set the PC to the specified virtual address.
*/
void
prsvaddr(klwp_t *lwp, caddr_t vaddr)
{
struct regs *r = lwptoregs(lwp);
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
r->r_pc = (uintptr_t)vaddr;
}
/*
* Map address "addr" in address space "as" into a kernel virtual address.
* The memory is guaranteed to be resident and locked down.
*/
caddr_t
prmapin(struct as *as, caddr_t addr, int writing)
{
page_t *pp;
caddr_t kaddr;
pfn_t pfnum;
/*
* XXX - Because of past mistakes, we have bits being returned
* by getpfnum that are actually the page type bits of the pte.
* When the object we are trying to map is a memory page with
* a page structure everything is ok and we can use the optimal
* method, ppmapin. Otherwise, we have to do something special.
*/
pfnum = hat_getpfnum(as->a_hat, addr);
if (pf_is_memory(pfnum)) {
pp = page_numtopp_nolock(pfnum);
if (pp != NULL) {
ASSERT(PAGE_LOCKED(pp));
kaddr = ppmapin(pp, writing ?
(PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1);
return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
}
}
/*
* Oh well, we didn't have a page struct for the object we were
* trying to map in; ppmapin doesn't handle devices, but allocating a
* heap address allows ppmapout to free virtual space when done.
*/
kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE, pfnum,
writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0);
return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
}
/*
* Unmap address "addr" in address space "as"; inverse of prmapin().
*/
/* ARGSUSED */
void
prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
{
extern void ppmapout(caddr_t);
vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK);
ppmapout(vaddr);
}
/*
* Make sure the lwp is in an orderly state
* for inspection by a debugger through /proc.
* Called from stop() and from syslwp_create().
*/
/* ARGSUSED */
void
prstop(int why, int what)
{
klwp_t *lwp = ttolwp(curthread);
struct regs *r = lwptoregs(lwp);
/*
* Make sure we don't deadlock on a recursive call
* to prstop(). stop() tests the lwp_nostop flag.
*/
ASSERT(lwp->lwp_nostop == 0);
lwp->lwp_nostop = 1;
if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr,
sizeof (lwp->lwp_pcb.pcb_instr)) == 0)
lwp->lwp_pcb.pcb_flags |= INSTR_VALID;
else {
lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID;
lwp->lwp_pcb.pcb_instr = 0;
}
(void) save_syscall_args();
ASSERT(lwp->lwp_nostop == 1);
lwp->lwp_nostop = 0;
}
/*
* Fetch the user-level instruction on which the lwp is stopped.
* It was saved by the lwp itself, in prstop().
* Return non-zero if the instruction is valid.
*/
int
prfetchinstr(klwp_t *lwp, ulong_t *ip)
{
*ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr;
return (lwp->lwp_pcb.pcb_flags & INSTR_VALID);
}
/*
* Called from trap() when a load or store instruction
* falls in a watched page but is not a watchpoint.
* We emulate the instruction in the kernel.
*/
/* ARGSUSED */
int
pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw)
{
#ifdef SOMEDAY
int res;
proc_t *p = curproc;
char *badaddr = (caddr_t)(-1);
int mapped;
/* prevent recursive calls to pr_watch_emul() */
ASSERT(!(curthread->t_flag & T_WATCHPT));
curthread->t_flag |= T_WATCHPT;
watch_disable_addr(addr, 8, rw);
res = do_unaligned(rp, &badaddr);
watch_enable_addr(addr, 8, rw);
curthread->t_flag &= ~T_WATCHPT;
if (res == SIMU_SUCCESS) {
/* adjust the pc */
return (1);
}
#endif
return (0);
}
/*
* Return the number of active entries in the local descriptor table.
*/
int
prnldt(proc_t *p)
{
int limit, i, n;
user_desc_t *udp;
ASSERT(MUTEX_HELD(&p->p_ldtlock));
/*
* Currently 64 bit processes cannot have private LDTs.
*/
ASSERT(p->p_model != DATAMODEL_LP64 || p->p_ldt == NULL);
if (p->p_ldt == NULL)
return (0);
n = 0;
limit = p->p_ldtlimit;
ASSERT(limit >= 0 && limit < MAXNLDT);
/*
* Count all present user descriptors.
*/
for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0)
n++;
return (n);
}
/*
* Fetch the active entries from the local descriptor table.
*/
void
prgetldt(proc_t *p, struct ssd *ssd)
{
int i, limit;
user_desc_t *udp;
ASSERT(MUTEX_HELD(&p->p_ldtlock));
if (p->p_ldt == NULL)
return;
limit = p->p_ldtlimit;
ASSERT(limit >= 0 && limit < MAXNLDT);
/*
* All present user descriptors.
*/
for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
if (udp->usd_type != 0 || udp->usd_dpl != 0 ||
udp->usd_p != 0)
usd_to_ssd(udp, ssd++, SEL_LDT(i));
}