xpv_psm.c revision a31148363f598def767ac48c5d82e1572e44b935
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#define PSMI_1_7
#include <sys/mutex.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/clock.h>
#include <sys/machlock.h>
#include <sys/smp_impldefs.h>
#include <sys/uadmin.h>
#include <sys/promif.h>
#include <sys/psm.h>
#include <sys/psm_common.h>
#include <sys/atomic.h>
#include <sys/apic.h>
#include <sys/archsystm.h>
#include <sys/mach_intr.h>
#include <sys/hypervisor.h>
#include <sys/evtchn_impl.h>
#include <sys/modctl.h>
#include <sys/trap.h>
#include <sys/panic.h>
#include <sys/sysmacros.h>
#include <sys/pci_intr_lib.h>
#include <vm/hat_i86.h>
#include <xen/public/vcpu.h>
#include <xen/public/physdev.h>
/*
* Global Data
*/
int xen_psm_verbose = 0;
/* As of now we don't support x2apic in xVM */
volatile uint32_t *apicadr = NULL; /* dummy, so common code will link */
int apic_error = 0;
int apic_verbose = 0;
cpuset_t apic_cpumask;
int apic_forceload = 0;
uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
};
uchar_t apic_ipltopri[MAXIPL + 1];
uchar_t apic_ipls[APIC_AVAIL_VECTOR];
uint_t apic_picinit_called;
apic_cpus_info_t *apic_cpus;
int xen_psm_intr_policy = INTR_ROUND_ROBIN_WITH_AFFINITY;
/* use to make sure only one cpu handles the nmi */
static lock_t xen_psm_nmi_lock;
int xen_psm_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */
int xen_psm_panic_on_nmi = 0;
int xen_psm_num_nmis = 0;
cpuset_t xen_psm_cpus_online; /* online cpus */
int xen_psm_ncpus = 1; /* cpu count */
int xen_psm_next_bind_cpu; /* next cpu to bind an interrupt to */
int xen_support_msi = 0;
static int xen_clock_irq = INVALID_IRQ;
/* flag definitions for xen_psm_verbose */
#define XEN_PSM_VERBOSE_IRQ_FLAG 0x00000001
#define XEN_PSM_VERBOSE_POWEROFF_FLAG 0x00000002
#define XEN_PSM_VERBOSE_POWEROFF_PAUSE_FLAG 0x00000004
#define XEN_PSM_VERBOSE_IRQ(fmt) \
if (xen_psm_verbose & XEN_PSM_VERBOSE_IRQ_FLAG) \
cmn_err fmt;
#define XEN_PSM_VERBOSE_POWEROFF(fmt) \
if (xen_psm_verbose & XEN_PSM_VERBOSE_POWEROFF_FLAG) \
prom_printf fmt;
/*
* Dummy apic array to point common routines at that want to do some apic
* manipulation. Xen doesn't allow guest apic access so we point at these
* memory locations to fake out those who want to do apic fiddling.
*/
uint32_t xen_psm_dummy_apic[APIC_IRR_REG + 1];
static struct psm_info xen_psm_info;
static void xen_psm_setspl(int);
int
apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
int behavior);
int
apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
int behavior);
/*
* Local support routines
*/
/*
* Select vcpu to bind xen virtual device interrupt to.
*/
/*ARGSUSED*/
int
xen_psm_bind_intr(int irq)
{
int bind_cpu;
apic_irq_t *irqptr;
bind_cpu = IRQ_UNBOUND;
if (xen_psm_intr_policy == INTR_LOWEST_PRIORITY)
return (bind_cpu);
if (irq <= APIC_MAX_VECTOR)
irqptr = apic_irq_table[irq];
else
irqptr = NULL;
if (irqptr && (irqptr->airq_cpu != IRQ_UNBOUND))
bind_cpu = irqptr->airq_cpu & ~IRQ_USER_BOUND;
if (bind_cpu != IRQ_UNBOUND) {
if (!CPU_IN_SET(xen_psm_cpus_online, bind_cpu))
bind_cpu = 0;
goto done;
}
if (xen_psm_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
do {
bind_cpu = xen_psm_next_bind_cpu++;
if (xen_psm_next_bind_cpu >= xen_psm_ncpus)
xen_psm_next_bind_cpu = 0;
} while (!CPU_IN_SET(xen_psm_cpus_online, bind_cpu));
} else {
bind_cpu = 0;
}
done:
return (bind_cpu);
}
/*
* Autoconfiguration Routines
*/
static int
xen_psm_probe(void)
{
int ret = PSM_SUCCESS;
if (DOMAIN_IS_INITDOMAIN(xen_info))
ret = apic_probe_common(xen_psm_info.p_mach_idstring);
return (ret);
}
static void
xen_psm_softinit(void)
{
/* LINTED logical expression always true: op "||" */
ASSERT((1 << EVTCHN_SHIFT) == NBBY * sizeof (ulong_t));
CPUSET_ATOMIC_ADD(xen_psm_cpus_online, 0);
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
apic_init_common();
}
}
#define XEN_NSEC_PER_TICK 10 /* XXX - assume we have a 100 Mhz clock */
/*ARGSUSED*/
static int
xen_psm_clkinit(int hertz)
{
extern enum tod_fault_type tod_fault(enum tod_fault_type, int);
extern int dosynctodr;
/*
* domU cannot set the TOD hardware, fault the TOD clock now to
* indicate that and turn off attempts to sync TOD hardware
* with the hires timer.
*/
if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
mutex_enter(&tod_lock);
(void) tod_fault(TOD_RDONLY, 0);
dosynctodr = 0;
mutex_exit(&tod_lock);
}
/*
* The hypervisor provides a timer based on the local APIC timer.
* The interface supports requests of nanosecond resolution.
* A common frequency of the apic clock is 100 Mhz which
* gives a resolution of 10 nsec per tick. What we would really like
* is a way to get the ns per tick value from xen.
* XXPV - This is an assumption that needs checking and may change
*/
return (XEN_NSEC_PER_TICK);
}
static void
xen_psm_hrtimeinit(void)
{
extern int gethrtime_hires;
gethrtime_hires = 1;
}
/* xen_psm NMI handler */
/*ARGSUSED*/
static void
xen_psm_nmi_intr(caddr_t arg, struct regs *rp)
{
xen_psm_num_nmis++;
if (!lock_try(&xen_psm_nmi_lock))
return;
if (xen_psm_kmdb_on_nmi && psm_debugger()) {
debug_enter("NMI received: entering kmdb\n");
} else if (xen_psm_panic_on_nmi) {
/* Keep panic from entering kmdb. */
nopanicdebug = 1;
panic("NMI received\n");
} else {
/*
* prom_printf is the best shot we have of something which is
* problem free from high level/NMI type of interrupts
*/
prom_printf("NMI received\n");
}
lock_clear(&xen_psm_nmi_lock);
}
static void
xen_psm_picinit()
{
int cpu, irqno;
cpuset_t cpus;
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
/* set a flag so we know we have run xen_psm_picinit() */
apic_picinit_called = 1;
LOCK_INIT_CLEAR(&apic_ioapic_lock);
/* XXPV - do we need to do this? */
picsetup(); /* initialise the 8259 */
/* enable apic mode if imcr present */
/* XXPV - do we need to do this either? */
if (apic_imcrp) {
outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
}
ioapic_init_intr(IOAPIC_NOMASK);
/*
* We never called xen_psm_addspl() when the SCI
* interrupt was added because that happened before the
* PSM module was loaded. Fix that up here by doing
* any missed operations (e.g. bind to CPU)
*/
if ((irqno = apic_sci_vect) > 0) {
if ((cpu = xen_psm_bind_intr(irqno)) == IRQ_UNBOUND) {
CPUSET_ZERO(cpus);
CPUSET_OR(cpus, xen_psm_cpus_online);
} else {
CPUSET_ONLY(cpus, cpu & ~IRQ_USER_BOUND);
}
ec_set_irq_affinity(irqno, cpus);
apic_irq_table[irqno]->airq_temp_cpu =
(uchar_t)(cpu & ~IRQ_USER_BOUND);
ec_enable_irq(irqno);
}
}
/* add nmi handler - least priority nmi handler */
LOCK_INIT_CLEAR(&xen_psm_nmi_lock);
if (!psm_add_nmintr(0, (avfunc) xen_psm_nmi_intr,
"xVM_psm NMI handler", (caddr_t)NULL))
cmn_err(CE_WARN, "xVM_psm: Unable to add nmi handler");
}
/*
* generates an interprocessor interrupt to another CPU
*/
static void
xen_psm_send_ipi(int cpun, int ipl)
{
ulong_t flag = intr_clear();
ec_send_ipi(ipl, cpun);
intr_restore(flag);
}
/*ARGSUSED*/
static int
xen_psm_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
{
int cpu, ret;
cpuset_t cpus;
/*
* We are called at splhi() so we can't call anything that might end
* up trying to context switch.
*/
if (irqno >= PIRQ_BASE && irqno < NR_PIRQS &&
DOMAIN_IS_INITDOMAIN(xen_info)) {
/*
* Priority/affinity/enable for PIRQ's is set in ec_setup_pirq()
*/
ret = apic_addspl_common(irqno, ipl, min_ipl, max_ipl);
} else {
/*
* Set priority/affinity/enable for non PIRQs
*/
ret = ec_set_irq_priority(irqno, ipl);
ASSERT(ret == 0);
if ((cpu = xen_psm_bind_intr(irqno)) == IRQ_UNBOUND) {
CPUSET_ZERO(cpus);
CPUSET_OR(cpus, xen_psm_cpus_online);
} else {
CPUSET_ONLY(cpus, cpu & ~IRQ_USER_BOUND);
}
ec_set_irq_affinity(irqno, cpus);
ec_enable_irq(irqno);
}
return (ret);
}
/*
* Acquire ownership of this irq on this cpu
*/
void
xen_psm_acquire_irq(int irq)
{
ulong_t flags;
int cpuid;
/*
* If the irq is currently being serviced by another cpu
* we busy-wait for the other cpu to finish. Take any
* pending interrupts before retrying.
*/
do {
flags = intr_clear();
cpuid = ec_block_irq(irq);
intr_restore(flags);
} while (cpuid != CPU->cpu_id);
}
/*ARGSUSED*/
static int
xen_psm_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
{
apic_irq_t *irqptr;
int err = PSM_SUCCESS;
if (irqno >= PIRQ_BASE && irqno < NR_PIRQS &&
DOMAIN_IS_INITDOMAIN(xen_info)) {
irqptr = apic_irq_table[irqno];
/*
* unbind if no more sharers of this irq/evtchn
*/
if (irqptr->airq_share == 1) {
xen_psm_acquire_irq(irqno);
ec_unbind_irq(irqno);
}
err = apic_delspl_common(irqno, ipl, min_ipl, max_ipl);
/*
* If still in use reset priority
*/
if (!err && irqptr->airq_share != 0) {
err = ec_set_irq_priority(irqno, max_ipl);
return (err);
}
} else {
xen_psm_acquire_irq(irqno);
ec_unbind_irq(irqno);
}
return (err);
}
static processorid_t
xen_psm_get_next_processorid(processorid_t id)
{
if (id == -1)
return (0);
for (id++; id < NCPU; id++) {
switch (-HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL)) {
case 0: /* yeah, that one's there */
return (id);
default:
case X_EINVAL: /* out of range */
return (-1);
case X_ENOENT: /* not present in the domain */
/*
* It's not clear that we -need- to keep looking
* at this point, if, e.g., we can guarantee
* the hypervisor always keeps a contiguous range
* of vcpus around this is equivalent to "out of range".
*
* But it would be sad to miss a vcpu we're
* supposed to be using ..
*/
break;
}
}
return (-1);
}
/*
* XXPV - undo the start cpu op change; return to ignoring this value
* - also tweak error handling in main startup loop
*/
/*ARGSUSED*/
static int
xen_psm_cpu_start(processorid_t id, caddr_t arg)
{
int ret;
ASSERT(id > 0);
CPUSET_ATOMIC_ADD(xen_psm_cpus_online, id);
ec_bind_cpu_ipis(id);
(void) ec_bind_virq_to_irq(VIRQ_TIMER, id);
if ((ret = xen_vcpu_up(id)) == 0)
xen_psm_ncpus++;
else
ret = EINVAL;
return (ret);
}
/*
* Allocate an irq for inter cpu signaling
*/
/*ARGSUSED*/
static int
xen_psm_get_ipivect(int ipl, int type)
{
return (ec_bind_ipi_to_irq(ipl, 0));
}
/*ARGSUSED*/
static int
xen_psm_get_clockirq(int ipl)
{
if (xen_clock_irq != INVALID_IRQ)
return (xen_clock_irq);
xen_clock_irq = ec_bind_virq_to_irq(VIRQ_TIMER, 0);
return (xen_clock_irq);
}
/*ARGSUSED*/
static void
xen_psm_shutdown(int cmd, int fcn)
{
XEN_PSM_VERBOSE_POWEROFF(("xen_psm_shutdown(%d,%d);\n", cmd, fcn));
switch (cmd) {
case A_SHUTDOWN:
switch (fcn) {
case AD_BOOT:
case AD_IBOOT:
(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
break;
case AD_POWEROFF:
/* fall through if domU or if poweroff fails */
if (DOMAIN_IS_INITDOMAIN(xen_info))
if (apic_enable_acpi)
(void) acpi_poweroff();
/* FALLTHRU */
case AD_HALT:
default:
(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
break;
}
break;
case A_REBOOT:
(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
break;
default:
return;
}
}
static int
xen_psm_translate_irq(dev_info_t *dip, int irqno)
{
if (dip == NULL) {
XEN_PSM_VERBOSE_IRQ((CE_CONT, "!xen_psm: irqno = %d"
" dip = NULL\n", irqno));
return (irqno);
}
return (irqno);
}
/*
* xen_psm_intr_enter() acks the event that triggered the interrupt and
* returns the new priority level,
*/
/*ARGSUSED*/
static int
xen_psm_intr_enter(int ipl, int *vector)
{
int newipl;
uint_t intno;
cpu_t *cpu = CPU;
intno = (*vector);
ASSERT(intno < NR_IRQS);
ASSERT(cpu->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask != 0);
if (!ec_is_edge_pirq(intno))
ec_clear_irq(intno);
newipl = autovect[intno].avh_hi_pri;
if (newipl == 0) {
/*
* (newipl == 0) means we have no service routines for this
* vector. We will treat this as a spurious interrupt.
* We have cleared the pending bit already, clear the event
* mask and return a spurious interrupt. This case can happen
* when an interrupt delivery is racing with the removal of
* of the service routine for that interrupt.
*/
ec_unmask_irq(intno);
newipl = -1; /* flag spurious interrupt */
} else if (newipl <= cpu->cpu_pri) {
/*
* (newipl <= cpu->cpu_pri) means that we must be trying to
* service a vector that was shared with a higher priority
* isr. The higher priority handler has been removed and
* we need to service this int. We can't return a lower
* priority than current cpu priority. Just synthesize a
* priority to return that should be acceptable.
* It should never happen that we synthesize a priority that
* moves us from low-priority to high-priority that would make
* a us incorrectly run on the high priority stack.
*/
newipl = cpu->cpu_pri + 1; /* synthetic priority */
ASSERT(newipl != LOCK_LEVEL + 1);
}
return (newipl);
}
/*
* xen_psm_intr_exit() restores the old interrupt
* priority level after processing an interrupt.
* It is called with interrupts disabled, and does not enable interrupts.
*/
/* ARGSUSED */
static void
xen_psm_intr_exit(int ipl, int vector)
{
ec_try_unmask_irq(vector);
xen_psm_setspl(ipl);
}
intr_exit_fn_t
psm_intr_exit_fn(void)
{
return (xen_psm_intr_exit);
}
/*
* Check if new ipl level allows delivery of previously unserviced events
*/
static void
xen_psm_setspl(int ipl)
{
struct cpu *cpu = CPU;
volatile vcpu_info_t *vci = cpu->cpu_m.mcpu_vcpu_info;
uint16_t pending;
ASSERT(vci->evtchn_upcall_mask != 0);
/*
* If new ipl level will enable any pending interrupts, setup so the
* upcoming sti will cause us to get an upcall.
*/
pending = cpu->cpu_m.mcpu_intr_pending & ~((1 << (ipl + 1)) - 1);
if (pending) {
int i;
ulong_t pending_sels = 0;
volatile ulong_t *selp;
struct xen_evt_data *cpe = cpu->cpu_m.mcpu_evt_pend;
for (i = bsrw_insn(pending); i > ipl; i--)
pending_sels |= cpe->pending_sel[i];
ASSERT(pending_sels);
selp = (volatile ulong_t *)&vci->evtchn_pending_sel;
atomic_or_ulong(selp, pending_sels);
vci->evtchn_upcall_pending = 1;
}
}
/*
* This function provides external interface to the nexus for all
* functionality related to the new DDI interrupt framework.
*
* Input:
* dip - pointer to the dev_info structure of the requested device
* hdlp - pointer to the internal interrupt handle structure for the
* requested interrupt
* intr_op - opcode for this call
* result - pointer to the integer that will hold the result to be
* passed back if return value is PSM_SUCCESS
*
* Output:
* return value is either PSM_SUCCESS or PSM_FAILURE
*/
int
xen_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
psm_intr_op_t intr_op, int *result)
{
int cap;
int err;
int new_priority;
apic_irq_t *irqp;
struct intrspec *ispec;
DDI_INTR_IMPLDBG((CE_CONT, "xen_intr_ops: dip: %p hdlp: %p "
"intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
switch (intr_op) {
case PSM_INTR_OP_CHECK_MSI:
/*
* Till PCI passthru is supported, only dom0 has MSI/MSIX
*/
if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
DDI_INTR_TYPE_MSIX);
break;
}
/*
* Check MSI/X is supported or not at APIC level and
* masked off the MSI/X bits in hdlp->ih_type if not
* supported before return. If MSI/X is supported,
* leave the ih_type unchanged and return.
*
* hdlp->ih_type passed in from the nexus has all the
* interrupt types supported by the device.
*/
if (xen_support_msi == 0) {
/*
* if xen_support_msi is not set, call
* apic_check_msi_support() to check whether msi
* is supported first
*/
if (apic_check_msi_support() == PSM_SUCCESS)
xen_support_msi = 1;
else
xen_support_msi = -1;
}
if (xen_support_msi == 1)
*result = hdlp->ih_type;
else
*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
DDI_INTR_TYPE_MSIX);
break;
case PSM_INTR_OP_ALLOC_VECTORS:
if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
*result = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
hdlp->ih_scratch1, hdlp->ih_pri,
(int)(uintptr_t)hdlp->ih_scratch2);
else
*result = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
hdlp->ih_scratch1, hdlp->ih_pri,
(int)(uintptr_t)hdlp->ih_scratch2);
break;
case PSM_INTR_OP_FREE_VECTORS:
apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
hdlp->ih_pri, hdlp->ih_type);
break;
case PSM_INTR_OP_NAVAIL_VECTORS:
/*
* XXPV - maybe we should make this be:
* min(APIC_VECTOR_PER_IPL, count of all avail vectors);
*/
if (DOMAIN_IS_INITDOMAIN(xen_info))
*result = APIC_VECTOR_PER_IPL;
else
*result = 1;
break;
case PSM_INTR_OP_XLATE_VECTOR:
ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
if (ispec->intrspec_vec >= PIRQ_BASE &&
ispec->intrspec_vec < NR_PIRQS &&
DOMAIN_IS_INITDOMAIN(xen_info)) {
*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
} else {
*result = ispec->intrspec_vec;
}
break;
case PSM_INTR_OP_GET_PENDING:
/* XXPV - is this enough for dom0 or do we need to ref ioapic */
*result = ec_pending_irq(hdlp->ih_vector);
break;
case PSM_INTR_OP_CLEAR_MASK:
/* XXPV - is this enough for dom0 or do we need to set ioapic */
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
ec_enable_irq(hdlp->ih_vector);
break;
case PSM_INTR_OP_SET_MASK:
/* XXPV - is this enough for dom0 or do we need to set ioapic */
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
ec_disable_irq(hdlp->ih_vector);
break;
case PSM_INTR_OP_GET_CAP:
cap = DDI_INTR_FLAG_PENDING | DDI_INTR_FLAG_EDGE;
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
cap |= DDI_INTR_FLAG_MASKABLE;
*result = cap;
break;
case PSM_INTR_OP_GET_SHARED:
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type))
== NULL)
return (PSM_FAILURE);
*result = (irqp->airq_share > 1) ? 1: 0;
} else {
return (PSM_FAILURE);
}
break;
case PSM_INTR_OP_SET_PRI:
new_priority = *(int *)result;
err = ec_set_irq_priority(hdlp->ih_vector, new_priority);
if (err != 0)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_GET_INTR:
if (!DOMAIN_IS_INITDOMAIN(xen_info))
return (PSM_FAILURE);
/*
* The interrupt handle given here has been allocated
* specifically for this command, and ih_private carries
* a pointer to a apic_get_intr_t.
*/
if (apic_get_vector_intr_info(
hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_SET_CAP:
/* FALLTHRU */
default:
return (PSM_FAILURE);
}
return (PSM_SUCCESS);
}
static void
xen_psm_rebind_irq(int irq)
{
cpuset_t ncpu;
processorid_t newcpu;
apic_irq_t *irqptr;
newcpu = xen_psm_bind_intr(irq);
if (newcpu == IRQ_UNBOUND) {
CPUSET_ZERO(ncpu);
CPUSET_OR(ncpu, xen_psm_cpus_online);
} else {
CPUSET_ONLY(ncpu, newcpu & ~IRQ_USER_BOUND);
}
ec_set_irq_affinity(irq, ncpu);
if (irq <= APIC_MAX_VECTOR) {
irqptr = apic_irq_table[irq];
ASSERT(irqptr != NULL);
irqptr->airq_temp_cpu = (uchar_t)newcpu;
}
}
/*
* Disable all device interrupts for the given cpu.
* High priority interrupts are not disabled and will still be serviced.
*/
static int
xen_psm_disable_intr(processorid_t cpun)
{
int irq;
/*
* Can't offline VCPU 0 on this hypervisor. There's no reason
* anyone would want to given that the CPUs are virtual. Also note
* that the hypervisor requires suspend/resume to be on VCPU 0.
*/
if (cpun == 0)
return (PSM_FAILURE);
CPUSET_ATOMIC_DEL(xen_psm_cpus_online, cpun);
for (irq = 0; irq < NR_IRQS; irq++) {
if (!ec_irq_needs_rebind(irq, cpun))
continue;
xen_psm_rebind_irq(irq);
}
return (PSM_SUCCESS);
}
static void
xen_psm_enable_intr(processorid_t cpun)
{
int irq;
if (cpun == 0)
return;
CPUSET_ATOMIC_ADD(xen_psm_cpus_online, cpun);
/*
* Rebalance device interrupts among online processors
*/
for (irq = 0; irq < NR_IRQS; irq++) {
if (!ec_irq_rebindable(irq))
continue;
xen_psm_rebind_irq(irq);
}
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
}
}
static int
xen_psm_post_cpu_start()
{
processorid_t cpun;
cpun = psm_get_cpu_id();
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
/*
* Non-virtualized environments can call psm_post_cpu_start
* from Suspend/Resume with the APIC_CPU_INTR_ENABLE bit set.
* xen_psm_post_cpu_start() is only called from boot.
*/
apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
}
return (PSM_SUCCESS);
}
/*
* This function will reprogram the timer.
*
* When in oneshot mode the argument is the absolute time in future at which to
* generate the interrupt.
*
* When in periodic mode, the argument is the interval at which the
* interrupts should be generated. There is no need to support the periodic
* mode timer change at this time.
*
* Note that we must be careful to convert from hrtime to Xen system time (see
* xpv_timestamp.c).
*/
static void
xen_psm_timer_reprogram(hrtime_t timer_req)
{
hrtime_t now, timer_new, time_delta, xen_time;
ulong_t flags;
flags = intr_clear();
/*
* We should be called from high PIL context (CBE_HIGH_PIL),
* so kpreempt is disabled.
*/
now = xpv_gethrtime();
xen_time = xpv_getsystime();
if (timer_req <= now) {
/*
* requested to generate an interrupt in the past
* generate an interrupt as soon as possible
*/
time_delta = XEN_NSEC_PER_TICK;
} else
time_delta = timer_req - now;
timer_new = xen_time + time_delta;
if (HYPERVISOR_set_timer_op(timer_new) != 0)
panic("can't set hypervisor timer?");
intr_restore(flags);
}
/*
* This function will enable timer interrupts.
*/
static void
xen_psm_timer_enable(void)
{
ec_unmask_irq(xen_clock_irq);
}
/*
* This function will disable timer interrupts on the current cpu.
*/
static void
xen_psm_timer_disable(void)
{
(void) ec_block_irq(xen_clock_irq);
/*
* If the clock irq is pending on this cpu then we need to
* clear the pending interrupt.
*/
ec_unpend_irq(xen_clock_irq);
}
/*
*
* The following functions are in the platform specific file so that they
* can be different functions depending on whether we are running on
* bare metal or a hypervisor.
*/
/*
* Allocate a free vector for irq at ipl.
*/
/* ARGSUSED */
uchar_t
apic_allocate_vector(int ipl, int irq, int pri)
{
physdev_irq_t irq_op;
uchar_t vector;
int rc;
irq_op.irq = irq;
if ((rc = HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op))
!= 0)
panic("Hypervisor alloc vector failed err: %d", -rc);
vector = irq_op.vector;
/*
* No need to worry about vector colliding with our reserved vectors
* e.g. T_FASTTRAP, xen can differentiate between hardware and software
* generated traps and handle them properly.
*/
apic_vector_to_irq[vector] = (uchar_t)irq;
return (vector);
}
/* Mark vector as not being used by any irq */
void
apic_free_vector(uchar_t vector)
{
apic_vector_to_irq[vector] = APIC_RESV_IRQ;
}
/*
* This function returns the no. of vectors available for the pri.
* dip is not used at this moment. If we really don't need that,
* it will be removed. Since priority is not limited by hardware
* when running on the hypervisor we simply return the maximum no.
* of available contiguous vectors.
*/
/*ARGSUSED*/
int
apic_navail_vector(dev_info_t *dip, int pri)
{
int lowest, highest, i, navail, count;
DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
(void *)dip, pri));
highest = APIC_MAX_VECTOR;
lowest = APIC_BASE_VECT;
navail = count = 0;
/* It has to be contiguous */
for (i = lowest; i < highest; i++) {
count = 0;
while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
(i < highest)) {
count++;
i++;
}
if (count > navail)
navail = count;
}
return (navail);
}
static physdev_manage_pci_t *managed_devlist;
static int mdev_cnt;
static int mdev_size = 128;
static uchar_t msi_vector_to_pirq[APIC_MAX_VECTOR+1];
/*
* Add devfn on given bus to devices managed by hypervisor
*/
static int
xen_manage_device(uint8_t bus, uint8_t devfn)
{
physdev_manage_pci_t manage_pci, *newlist;
int rc, i, oldsize;
/*
* Check if bus/devfn already managed. If so just return success.
*/
if (managed_devlist == NULL) {
managed_devlist = kmem_alloc(sizeof (physdev_manage_pci_t) *
mdev_size, KM_NOSLEEP);
if (managed_devlist == NULL) {
cmn_err(CE_WARN,
"Can't alloc space for managed device list");
return (0);
}
};
for (i = 0; i < mdev_cnt; i++) {
if (managed_devlist[i].bus == bus &&
managed_devlist[i].devfn == devfn)
return (1); /* device already managed */
}
manage_pci.bus = bus;
manage_pci.devfn = devfn;
rc = HYPERVISOR_physdev_op(PHYSDEVOP_manage_pci_add, &manage_pci);
if (rc < 0) {
cmn_err(CE_WARN,
"hypervisor add pci device call failed bus:0x%x"
" devfn:0x%x", bus, devfn);
return (0);
}
/*
* Add device to the managed device list
*/
if (i == mdev_size) {
/*
* grow the managed device list
*/
oldsize = mdev_size * sizeof (physdev_manage_pci_t);
mdev_size *= 2;
newlist = kmem_alloc(sizeof (physdev_manage_pci_t) * mdev_size,
KM_NOSLEEP);
if (newlist == NULL) {
cmn_err(CE_WARN, "Can't grow managed device list");
return (0);
}
bcopy(managed_devlist, newlist, oldsize);
kmem_free(managed_devlist, oldsize);
managed_devlist = newlist;
}
managed_devlist[i].bus = bus;
managed_devlist[i].devfn = devfn;
mdev_cnt++;
return (1);
}
/*
* allocate an apic irq struct for an MSI interrupt
*/
static int
msi_allocate_irq(int irq)
{
apic_irq_t *irqptr = apic_irq_table[irq];
if (irqptr == NULL) {
irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP);
if (irqptr == NULL) {
cmn_err(CE_WARN, "xpv_psm: NO memory to allocate IRQ");
return (-1);
}
apic_irq_table[irq] = irqptr;
} else {
if (irq == APIC_RESV_IRQ && irqptr->airq_mps_intr_index == 0)
irqptr->airq_mps_intr_index = FREE_INDEX;
if (irqptr->airq_mps_intr_index != FREE_INDEX) {
cmn_err(CE_WARN, "xpv_psm: MSI IRQ already in use");
return (-1);
}
}
irqptr->airq_mps_intr_index = FREE_INDEX;
return (irq);
}
/*
* read MSI/MSIX vector out of config space
*/
static uchar_t
xpv_psm_get_msi_vector(dev_info_t *dip, int type, int entry)
{
uint64_t msi_data = 0;
int cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(dip);
ushort_t msi_ctrl;
uchar_t vector;
ASSERT((handle != NULL) && (cap_ptr != 0));
if (type == DDI_INTR_TYPE_MSI) {
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
/*
* Get vector
*/
if (msi_ctrl & PCI_MSI_64BIT_MASK) {
msi_data = pci_config_get16(handle,
cap_ptr + PCI_MSI_64BIT_DATA);
} else {
msi_data = pci_config_get16(handle,
cap_ptr + PCI_MSI_32BIT_DATA);
}
vector = (msi_data & 0xff) + entry;
} else if (type == DDI_INTR_TYPE_MSIX) {
uintptr_t off;
ddi_intr_msix_t *msix_p = i_ddi_get_msix(dip);
/* Offset into the given entry in the MSI-X table */
off = (uintptr_t)msix_p->msix_tbl_addr +
(entry * PCI_MSIX_VECTOR_SIZE);
msi_data = ddi_get32(msix_p->msix_tbl_hdl,
(uint32_t *)(off + PCI_MSIX_DATA_OFFSET));
vector = msi_data & 0xff;
}
return (vector);
}
static void
get_busdevfn(dev_info_t *dip, int *busp, int *devfnp)
{
pci_regspec_t *regspec;
int reglen;
/*
* Get device reg spec, first word has PCI bus and
* device/function info we need.
*/
if (ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "reg",
(caddr_t)&regspec, &reglen) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"get_busdevfn() failed to get regspec.");
return;
}
/*
* get PCI bus # from reg spec for device
*/
*busp = PCI_REG_BUS_G(regspec[0].pci_phys_hi);
/*
* get combined device/function from reg spec for device.
*/
*devfnp = (regspec[0].pci_phys_hi & (PCI_REG_FUNC_M | PCI_REG_DEV_M)) >>
PCI_REG_FUNC_SHIFT;
kmem_free(regspec, reglen);
}
/*
* This function allocates "count" MSI vector(s) for the given "dip/pri/type"
*/
int
apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
int behavior)
{
int rcount, i, rc, irqno;
uchar_t vector, cpu;
major_t major;
apic_irq_t *irqptr;
physdev_map_pirq_t map_irq;
int busnum, devfn;
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
"inum=0x%x pri=0x%x count=0x%x behavior=%d\n",
(void *)dip, inum, pri, count, behavior));
if (count > 1) {
if (behavior == DDI_INTR_ALLOC_STRICT &&
apic_multi_msi_enable == 0)
return (0);
if (apic_multi_msi_enable == 0)
count = 1;
}
if ((rcount = apic_navail_vector(dip, pri)) > count)
rcount = count;
else if (rcount == 0 || (rcount < count &&
behavior == DDI_INTR_ALLOC_STRICT))
return (0);
/* if not ISP2, then round it down */
if (!ISP2(rcount))
rcount = 1 << (highbit(rcount) - 1);
/*
* get PCI bus # and devfn from reg spec for device
*/
get_busdevfn(dip, &busnum, &devfn);
/*
* Tell xen about this pci device
*/
if (!xen_manage_device(busnum, devfn))
return (0);
mutex_enter(&airq_mutex);
major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
for (i = 0; i < rcount; i++) {
/*
* use PHYSDEVOP_map_pirq to have xen map MSI to a pirq
*/
map_irq.domid = DOMID_SELF;
map_irq.type = MAP_PIRQ_TYPE_MSI;
map_irq.index = -rcount; /* hypervisor auto allocates vectors */
map_irq.pirq = -1;
map_irq.bus = busnum;
map_irq.devfn = devfn;
map_irq.entry_nr = i;
map_irq.table_base = 0;
rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
irqno = map_irq.pirq;
if (rc < 0) {
mutex_exit(&airq_mutex);
cmn_err(CE_WARN, "map MSI irq failed err: %d", -rc);
return (i);
}
if (irqno < 0) {
mutex_exit(&airq_mutex);
cmn_err(CE_NOTE,
"!hypervisor not configured for MSI support");
xen_support_msi = -1;
return (0);
}
/*
* Find out what vector the hypervisor assigned
*/
vector = xpv_psm_get_msi_vector(dip, DDI_INTR_TYPE_MSI, i);
if (msi_allocate_irq(irqno) < 0) {
mutex_exit(&airq_mutex);
return (i);
}
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
irqptr = apic_irq_table[irqno];
ASSERT(irqptr != NULL);
#ifdef DEBUG
if (apic_vector_to_irq[vector] != APIC_RESV_IRQ)
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
"apic_vector_to_irq is not APIC_RESV_IRQ\n"));
#endif
apic_vector_to_irq[vector] = (uchar_t)irqno;
msi_vector_to_pirq[vector] = (uchar_t)irqno;
irqptr->airq_vector = vector;
irqptr->airq_ioapicindex = (uchar_t)inum; /* start */
irqptr->airq_intin_no = (uchar_t)rcount;
irqptr->airq_ipl = pri;
irqptr->airq_origirq = (uchar_t)(inum + i);
irqptr->airq_share_id = 0;
irqptr->airq_mps_intr_index = MSI_INDEX;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
if (i == 0) /* they all bind to the same cpu */
cpu = irqptr->airq_cpu = xen_psm_bind_intr(irqno);
else
irqptr->airq_cpu = cpu;
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
"dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
(void *)irqptr->airq_dip, irqptr->airq_vector,
irqptr->airq_origirq, pri));
}
mutex_exit(&airq_mutex);
return (rcount);
}
/*
* This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
*/
int
apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
int behavior)
{
int rcount, i, rc;
major_t major;
physdev_map_pirq_t map_irq;
int busnum, devfn;
ddi_intr_msix_t *msix_p = i_ddi_get_msix(dip);
uint64_t table_base;
pfn_t pfnum;
if (msix_p == NULL) {
msix_p = pci_msix_init(dip);
if (msix_p != NULL) {
i_ddi_set_msix(dip, msix_p);
} else {
cmn_err(CE_WARN, "apic_alloc_msix_vectors()"
" msix_init failed");
return (0);
}
}
/*
* Hypervisor wants PCI config space address of msix table base
*/
pfnum = hat_getpfnum(kas.a_hat, (caddr_t)msix_p->msix_tbl_addr) &
~PFN_IS_FOREIGN_MFN;
table_base = (uint64_t)((pfnum << PAGESHIFT) - msix_p->msix_tbl_offset |
((uintptr_t)msix_p->msix_tbl_addr & PAGEOFFSET));
/*
* get PCI bus # and devfn from reg spec for device
*/
get_busdevfn(dip, &busnum, &devfn);
/*
* Tell xen about this pci device
*/
if (!xen_manage_device(busnum, devfn))
return (0);
mutex_enter(&airq_mutex);
if ((rcount = apic_navail_vector(dip, pri)) > count)
rcount = count;
else if (rcount == 0 || (rcount < count &&
behavior == DDI_INTR_ALLOC_STRICT)) {
rcount = 0;
goto out;
}
major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
for (i = 0; i < rcount; i++) {
int irqno;
uchar_t vector;
apic_irq_t *irqptr;
/*
* use PHYSDEVOP_map_pirq to have xen map MSI-X to a pirq
*/
map_irq.domid = DOMID_SELF;
map_irq.type = MAP_PIRQ_TYPE_MSI;
map_irq.index = -1; /* hypervisor auto allocates vector */
map_irq.pirq = -1;
map_irq.bus = busnum;
map_irq.devfn = devfn;
map_irq.entry_nr = i;
map_irq.table_base = table_base;
rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
irqno = map_irq.pirq;
if (rc < 0) {
mutex_exit(&airq_mutex);
cmn_err(CE_WARN, "map MSI irq failed err: %d", -rc);
return (i);
}
if (irqno < 0) {
mutex_exit(&airq_mutex);
cmn_err(CE_NOTE,
"!hypervisor not configured for MSI support");
xen_support_msi = -1;
return (0);
}
/*
* Find out what vector the hypervisor assigned
*/
vector = xpv_psm_get_msi_vector(dip, DDI_INTR_TYPE_MSIX, i);
if (msi_allocate_irq(irqno) < 0) {
mutex_exit(&airq_mutex);
return (i);
}
apic_vector_to_irq[vector] = (uchar_t)irqno;
msi_vector_to_pirq[vector] = (uchar_t)irqno;
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
irqptr = apic_irq_table[irqno];
ASSERT(irqptr != NULL);
irqptr->airq_vector = (uchar_t)vector;
irqptr->airq_ipl = pri;
irqptr->airq_origirq = (uchar_t)(inum + i);
irqptr->airq_share_id = 0;
irqptr->airq_mps_intr_index = MSIX_INDEX;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
irqptr->airq_cpu = IRQ_UNBOUND; /* will be bound when addspl */
}
out:
mutex_exit(&airq_mutex);
return (rcount);
}
/*
* This finds the apic_irq_t associated with the dip, ispec and type.
* The entry should have already been freed, but it can not have been
* reused yet since the hypervisor can not have reassigned the pirq since
* we have not freed that yet.
*/
static apic_irq_t *
msi_find_irq(dev_info_t *dip, struct intrspec *ispec)
{
apic_irq_t *irqp;
int i;
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
if ((irqp = apic_irq_table[i]) == NULL)
continue;
if ((irqp->airq_dip == dip) &&
(irqp->airq_origirq == ispec->intrspec_vec) &&
(irqp->airq_ipl == ispec->intrspec_pri)) {
return (irqp);
}
}
return (NULL);
}
void
apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
{
int i, rc;
physdev_unmap_pirq_t unmap_pirq;
apic_irq_t *irqptr;
struct intrspec ispec;
DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
"count: %x pri: %x type: %x\n",
(void *)dip, inum, count, pri, type));
/* for MSI/X only */
if (!DDI_INTR_IS_MSI_OR_MSIX(type))
return;
for (i = 0; i < count; i++) {
DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
"pri=0x%x count=0x%x\n", inum, pri, count));
ispec.intrspec_vec = inum + i;
ispec.intrspec_pri = pri;
if ((irqptr = msi_find_irq(dip, &ispec)) == NULL) {
cmn_err(CE_WARN,
"couldn't find irq %s,%s dip: 0x%p vec: %x pri: %x",
ddi_get_name(dip), ddi_get_name_addr(dip),
(void *)dip, inum + i, pri);
continue;
}
/*
* use PHYSDEVOP_unmap_pirq to have xen unmap MSI from a pirq
*/
unmap_pirq.domid = DOMID_SELF;
unmap_pirq.pirq = msi_vector_to_pirq[irqptr->airq_vector];
rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_pirq);
if (rc < 0) {
cmn_err(CE_WARN, "unmap pirq failed");
return;
}
irqptr->airq_mps_intr_index = FREE_INDEX;
apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
}
}
/*
* The hypervisor doesn't permit access to local apics directly
*/
/* ARGSUSED */
uint32_t *
mapin_apic(uint32_t addr, size_t len, int flags)
{
/*
* Return a pointer to a memory area to fake out the
* probe code that wants to read apic registers.
* The dummy values will end up being ignored by xen
* later on when they are used anyway.
*/
xen_psm_dummy_apic[APIC_VERS_REG] = APIC_INTEGRATED_VERS;
return (xen_psm_dummy_apic);
}
/* ARGSUSED */
uint32_t *
mapin_ioapic(uint32_t addr, size_t len, int flags)
{
/*
* Return non-null here to fake out configure code that calls this.
* The i86xpv platform will not reference through the returned value..
*/
return ((uint32_t *)0x1);
}
/* ARGSUSED */
void
mapout_apic(caddr_t addr, size_t len)
{
}
/* ARGSUSED */
void
mapout_ioapic(caddr_t addr, size_t len)
{
}
uint32_t
ioapic_read(int apic_ix, uint32_t reg)
{
physdev_apic_t apic;
apic.apic_physbase = (unsigned long)apic_physaddr[apic_ix];
apic.reg = reg;
if (HYPERVISOR_physdev_op(PHYSDEVOP_apic_read, &apic))
panic("read ioapic %d reg %d failed", apic_ix, reg);
return (apic.value);
}
void
ioapic_write(int apic_ix, uint32_t reg, uint32_t value)
{
physdev_apic_t apic;
apic.apic_physbase = (unsigned long)apic_physaddr[apic_ix];
apic.reg = reg;
apic.value = value;
if (HYPERVISOR_physdev_op(PHYSDEVOP_apic_write, &apic))
panic("write ioapic %d reg %d failed", apic_ix, reg);
}
/*
* This function was added as part of x2APIC support in pcplusmp.
*/
void
ioapic_write_eoi(int apic_ix, uint32_t value)
{
physdev_apic_t apic;
apic.apic_physbase = (unsigned long)apic_physaddr[apic_ix];
apic.reg = APIC_IO_EOI;
apic.value = value;
if (HYPERVISOR_physdev_op(PHYSDEVOP_apic_write, &apic))
panic("write ioapic reg : APIC_IO_EOI %d failed", apic_ix);
}
/*
* This function was added as part of x2APIC support in pcplusmp to resolve
* undefined symbol in xpv_psm.
*/
void
x2apic_update_psm()
{
}
/*
* This function was added as part of x2APIC support in pcplusmp to resolve
* undefined symbol in xpv_psm.
*/
void
apic_ret()
{
}
/*
* Call rebind to do the actual programming.
*/
int
apic_setup_io_intr(void *p, int irq, boolean_t deferred)
{
apic_irq_t *irqptr;
struct ioapic_reprogram_data *drep = NULL;
int rv, cpu;
cpuset_t cpus;
if (deferred) {
drep = (struct ioapic_reprogram_data *)p;
ASSERT(drep != NULL);
irqptr = drep->irqp;
} else {
irqptr = (apic_irq_t *)p;
}
ASSERT(irqptr != NULL);
/*
* Set cpu based on xen idea of online cpu's not apic tables.
* Note that xen ignores/sets to it's own preferred value the
* target cpu field when programming ioapic anyway.
*/
if (irqptr->airq_mps_intr_index == MSI_INDEX)
cpu = irqptr->airq_cpu; /* MSI cpus are already set */
else {
cpu = xen_psm_bind_intr(irq);
irqptr->airq_cpu = cpu;
}
if (cpu == IRQ_UNBOUND) {
CPUSET_ZERO(cpus);
CPUSET_OR(cpus, xen_psm_cpus_online);
} else {
CPUSET_ONLY(cpus, cpu & ~IRQ_USER_BOUND);
}
rv = apic_rebind(irqptr, cpu, drep);
if (rv) {
/* CPU is not up or interrupt is disabled. Fall back to 0 */
cpu = 0;
irqptr->airq_cpu = cpu;
rv = apic_rebind(irqptr, cpu, drep);
}
/*
* If rebind successful bind the irq to an event channel
*/
if (rv == 0) {
ec_setup_pirq(irq, irqptr->airq_ipl, &cpus);
CPUSET_FIND(cpus, cpu);
apic_irq_table[irq]->airq_temp_cpu = cpu & ~IRQ_USER_BOUND;
}
return (rv);
}
/*
* Allocate a new vector for the given irq
*/
/* ARGSUSED */
uchar_t
apic_modify_vector(uchar_t vector, int irq)
{
return (apic_allocate_vector(0, irq, 0));
}
/*
* The rest of the file is just generic psm module boilerplate
*/
static struct psm_ops xen_psm_ops = {
xen_psm_probe, /* psm_probe */
xen_psm_softinit, /* psm_init */
xen_psm_picinit, /* psm_picinit */
xen_psm_intr_enter, /* psm_intr_enter */
xen_psm_intr_exit, /* psm_intr_exit */
xen_psm_setspl, /* psm_setspl */
xen_psm_addspl, /* psm_addspl */
xen_psm_delspl, /* psm_delspl */
xen_psm_disable_intr, /* psm_disable_intr */
xen_psm_enable_intr, /* psm_enable_intr */
(int (*)(int))NULL, /* psm_softlvl_to_irq */
(void (*)(int))NULL, /* psm_set_softintr */
(void (*)(processorid_t))NULL, /* psm_set_idlecpu */
(void (*)(processorid_t))NULL, /* psm_unset_idlecpu */
xen_psm_clkinit, /* psm_clkinit */
xen_psm_get_clockirq, /* psm_get_clockirq */
xen_psm_hrtimeinit, /* psm_hrtimeinit */
xpv_gethrtime, /* psm_gethrtime */
xen_psm_get_next_processorid, /* psm_get_next_processorid */
xen_psm_cpu_start, /* psm_cpu_start */
xen_psm_post_cpu_start, /* psm_post_cpu_start */
xen_psm_shutdown, /* psm_shutdown */
xen_psm_get_ipivect, /* psm_get_ipivect */
xen_psm_send_ipi, /* psm_send_ipi */
xen_psm_translate_irq, /* psm_translate_irq */
(void (*)(int, char *))NULL, /* psm_notify_error */
(void (*)(int msg))NULL, /* psm_notify_func */
xen_psm_timer_reprogram, /* psm_timer_reprogram */
xen_psm_timer_enable, /* psm_timer_enable */
xen_psm_timer_disable, /* psm_timer_disable */
(void (*)(void *arg))NULL, /* psm_post_cyclic_setup */
(void (*)(int, int))NULL, /* psm_preshutdown */
xen_intr_ops, /* Advanced DDI Interrupt framework */
(int (*)(psm_state_request_t *))NULL, /* psm_state */
(int (*)(psm_cpu_request_t *))NULL /* psm_cpu_ops */
};
static struct psm_info xen_psm_info = {
PSM_INFO_VER01_5, /* version */
PSM_OWN_EXCLUSIVE, /* ownership */
&xen_psm_ops, /* operation */
"xVM_psm", /* machine name */
"platform module" /* machine descriptions */
};
static void *xen_psm_hdlp;
int
_init(void)
{
return (psm_mod_init(&xen_psm_hdlp, &xen_psm_info));
}
int
_fini(void)
{
return (psm_mod_fini(&xen_psm_hdlp, &xen_psm_info));
}
int
_info(struct modinfo *modinfop)
{
return (psm_mod_info(&xen_psm_hdlp, &xen_psm_info, modinfop));
}