startup.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/mman.h>
#include <sys/vm.h>
#include <sys/conf.h>
#include <sys/avintr.h>
#include <sys/autoconf.h>
#include <sys/disp.h>
#include <sys/class.h>
#include <sys/bitmap.h>
#include <sys/privregs.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/kstat.h>
#include <sys/reboot.h>
#include <sys/uadmin.h>
#include <sys/cred.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/procfs.h>
#include <sys/acct.h>
#include <sys/vfs.h>
#include <sys/dnlc.h>
#include <sys/var.h>
#include <sys/cmn_err.h>
#include <sys/utsname.h>
#include <sys/debug.h>
#include <sys/kdi.h>
#include <sys/dumphdr.h>
#include <sys/bootconf.h>
#include <sys/varargs.h>
#include <sys/promif.h>
#include <sys/prom_emul.h> /* for create_prom_prop */
#include <sys/modctl.h> /* for "procfs" hack */
#include <sys/consdev.h>
#include <sys/frame.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ndi_impldefs.h>
#include <sys/ddidmareq.h>
#include <sys/psw.h>
#include <sys/regset.h>
#include <sys/clock.h>
#include <sys/pte.h>
#include <sys/mmu.h>
#include <sys/tss.h>
#include <sys/stack.h>
#include <sys/trap.h>
#include <sys/pic.h>
#include <sys/fp.h>
#include <vm/anon.h>
#include <vm/as.h>
#include <vm/page.h>
#include <vm/seg.h>
#include <vm/seg_dev.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kpm.h>
#include <vm/seg_map.h>
#include <vm/seg_vn.h>
#include <vm/seg_kp.h>
#include <sys/memnode.h>
#include <vm/vm_dep.h>
#include <sys/swap.h>
#include <sys/thread.h>
#include <sys/sysconf.h>
#include <sys/vm_machparam.h>
#include <sys/archsystm.h>
#include <sys/machsystm.h>
#include <vm/hat.h>
#include <vm/hat_i86.h>
#include <sys/pmem.h>
#include <sys/instance.h>
#include <sys/smp_impldefs.h>
#include <sys/x86_archext.h>
#include <sys/segments.h>
#include <sys/clconf.h>
#include <sys/kobj.h>
#include <sys/kobj_lex.h>
#include <sys/prom_emul.h>
#include <sys/cpc_impl.h>
#include <sys/chip.h>
#include <sys/x86_archext.h>
extern void debug_enter(char *);
extern void progressbar_init(void);
extern void progressbar_start(void);
/*
* XXX make declaration below "static" when drivers no longer use this
* interface.
*/
extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
/*
* segkp
*/
extern int segkp_fromheap;
static void kvm_init(void);
static void startup_init(void);
static void startup_memlist(void);
static void startup_modules(void);
static void startup_bop_gone(void);
static void startup_vm(void);
static void startup_end(void);
/*
* Declare these as initialized data so we can patch them.
*/
pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */
pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
char *kobj_file_buf;
int kobj_file_bufsize; /* set in /etc/system */
/* Global variables for MP support. Used in mp_startup */
caddr_t rm_platter_va;
uint32_t rm_platter_pa;
/*
* Some CPUs have holes in the middle of the 64-bit virtual address range.
*/
uintptr_t hole_start, hole_end;
/*
* kpm mapping window
*/
caddr_t kpm_vbase;
size_t kpm_size;
static int kpm_desired = 0; /* Do we want to try to use segkpm? */
/*
* VA range that must be preserved for boot until we release all of its
* mappings.
*/
#if defined(__amd64)
static void *kmem_setaside;
#endif
/*
* Configuration parameters set at boot time.
*/
caddr_t econtig; /* end of first block of contiguous kernel */
struct bootops *bootops = 0; /* passed in from boot */
struct bootops **bootopsp;
struct boot_syscalls *sysp; /* passed in from boot */
char bootblock_fstype[16];
char kern_bootargs[OBP_MAXPATHLEN];
/*
* new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
* depends on number of BOP_ALLOC calls made and requested size, memory size
* combination and whether boot.bin memory needs to be freed.
*/
#define POSS_NEW_FRAGMENTS 12
/*
* VM data structures
*/
long page_hashsz; /* Size of page hash table (power of two) */
struct page *pp_base; /* Base of initial system page struct array */
struct page **page_hash; /* Page hash table */
struct seg ktextseg; /* Segment used for kernel executable image */
struct seg kvalloc; /* Segment used for "valloc" mapping */
struct seg kpseg; /* Segment used for pageable kernel virt mem */
struct seg kmapseg; /* Segment used for generic kernel mappings */
struct seg kdebugseg; /* Segment used for the kernel debugger */
struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
#if defined(__amd64)
struct seg kvseg_core; /* Segment used for the core heap */
struct seg kpmseg; /* Segment used for physical mapping */
struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
#else
struct seg *segkpm = NULL; /* Unused on IA32 */
#endif
caddr_t segkp_base; /* Base address of segkp */
#if defined(__amd64)
pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
#else
pgcnt_t segkpsize = 0;
#endif
struct memseg *memseg_base;
struct vnode unused_pages_vp;
#define FOURGB 0x100000000LL
struct memlist *memlist;
caddr_t s_text; /* start of kernel text segment */
caddr_t e_text; /* end of kernel text segment */
caddr_t s_data; /* start of kernel data segment */
caddr_t e_data; /* end of kernel data segment */
caddr_t modtext; /* start of loadable module text reserved */
caddr_t e_modtext; /* end of loadable module text reserved */
caddr_t moddata; /* start of loadable module data reserved */
caddr_t e_moddata; /* end of loadable module data reserved */
struct memlist *phys_install; /* Total installed physical memory */
struct memlist *phys_avail; /* Total available physical memory */
static void memlist_add(uint64_t, uint64_t, struct memlist *,
struct memlist **);
/*
* kphysm_init returns the number of pages that were processed
*/
static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t);
#define IO_PROP_SIZE 64 /* device property size */
/*
* a couple useful roundup macros
*/
#define ROUND_UP_PAGE(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
#define ROUND_UP_LPAGE(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
#define ROUND_UP_4MEG(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE))
#define ROUND_UP_TOPLEVEL(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
/*
* 32-bit Kernel's Virtual memory layout.
* +-----------------------+
* | psm 1-1 map |
* | exec args area |
* 0xFFC00000 -|-----------------------|- ARGSBASE
* | debugger |
* 0xFF800000 -|-----------------------|- SEGDEBUGBASE
* | Kernel Data |
* 0xFEC00000 -|-----------------------|
* | Kernel Text |
* 0xFE800000 -|-----------------------|- KERNEL_TEXT
* | LUFS sinkhole |
* 0xFE000000 -|-----------------------|- lufs_addr
* --- -|-----------------------|- valloc_base + valloc_sz
* | early pp structures |
* | memsegs, memlists, |
* | page hash, etc. |
* --- -|-----------------------|- valloc_base (floating)
* | ptable_va |
* 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va
* | | (segkp is an arena under the heap)
* | |
* | kvseg |
* | |
* | |
* --- -|-----------------------|- kernelheap (floating)
* | Segkmap |
* 0xC3002000 -|-----------------------|- segkmap_start (floating)
* | Red Zone |
* 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
* | | ||
* | Shared objects | \/
* | |
* : :
* | user data |
* |-----------------------|
* | user text |
* 0x08048000 -|-----------------------|
* | user stack |
* : :
* | invalid |
* 0x00000000 +-----------------------+
*
*
* 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
* +-----------------------+
* | psm 1-1 map |
* | exec args area |
* 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
* | debugger (?) |
* 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
* | unused |
* +-----------------------+
* | Kernel Data |
* 0xFFFFFFFF.FBC00000 |-----------------------|
* | Kernel Text |
* 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
* | LUFS sinkhole |
* 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr
* --- |-----------------------|- valloc_base + valloc_sz
* | early pp structures |
* | memsegs, memlists, |
* | page hash, etc. |
* --- |-----------------------|- valloc_base
* | ptable_va |
* --- |-----------------------|- ptable_va
* | Core heap | (used for loadable modules)
* 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
* | Kernel |
* | heap |
* 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
* | segkmap |
* 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating)
* | device mappings |
* 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
* | segkp |
* --- |-----------------------|- segkp_base
* | segkpm |
* 0xFFFFFE00.00000000 |-----------------------|
* | Red Zone |
* 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE
* | User stack |- User space memory
* | |
* | shared objects, etc | (grows downwards)
* : :
* | |
* 0xFFFF8000.00000000 |-----------------------|
* | |
* | VA Hole / unused |
* | |
* 0x00008000.00000000 |-----------------------|
* | |
* | |
* : :
* | user heap | (grows upwards)
* | |
* | user data |
* |-----------------------|
* | user text |
* 0x00000000.04000000 |-----------------------|
* | invalid |
* 0x00000000.00000000 +-----------------------+
*
* A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
* kernel, except that userlimit is raised to 0xfe000000
*
* Floating values:
*
* valloc_base: start of the kernel's memory management/tracking data
* structures. This region contains page_t structures for the lowest 4GB
* of physical memory, memsegs, memlists, and the page hash.
*
* core_base: start of the kernel's "core" heap area on 64-bit systems.
* This area is intended to be used for global data as well as for module
* text/data that does not fit into the nucleus pages. The core heap is
* restricted to a 2GB range, allowing every address within it to be
* accessed using rip-relative addressing
*
* ekernelheap: end of kernelheap and start of segmap.
*
* kernelheap: start of kernel heap. On 32-bit systems, this starts right
* above a red zone that separates the user's address space from the
* kernel's. On 64-bit systems, it sits above segkp and segkpm.
*
* segkmap_start: start of segmap. The length of segmap can be modified
* by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
* The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
*
* kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
* decreased by 2X the size required for page_t. This allows the kernel
* heap to grow in size with physical memory. With sizeof(page_t) == 80
* bytes, the following shows the values of kernelbase and kernel heap
* sizes for different memory configurations (assuming default segmap and
* segkp sizes).
*
* mem size for kernelbase kernel heap
* size page_t's size
* ---- --------- ---------- -----------
* 1gb 0x01400000 0xd1800000 684MB
* 2gb 0x02800000 0xcf000000 704MB
* 4gb 0x05000000 0xca000000 744MB
* 6gb 0x07800000 0xc5000000 784MB
* 8gb 0x0a000000 0xc0000000 824MB
* 16gb 0x14000000 0xac000000 984MB
* 32gb 0x28000000 0x84000000 1304MB
* 64gb 0x50000000 0x34000000 1944MB (*)
*
* kernelbase is less than the abi minimum of 0xc0000000 for memory
* configurations above 8gb.
*
* (*) support for memory configurations above 32gb will require manual tuning
* of kernelbase to balance out the need of user applications.
*/
void init_intr_threads(struct cpu *);
/*
* Dummy spl priority masks
*/
static unsigned char dummy_cpu_pri[MAXIPL + 1] = {
0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf
};
/* real-time-clock initialization parameters */
long gmt_lag; /* offset in seconds of gmt to local time */
extern long process_rtc_config_file(void);
char *final_kernelheap;
char *boot_kernelheap;
uintptr_t kernelbase;
uintptr_t eprom_kernelbase;
size_t segmapsize;
static uintptr_t segmap_reserved;
uintptr_t segkmap_start;
int segmapfreelists;
pgcnt_t boot_npages;
pgcnt_t npages;
size_t core_size; /* size of "core" heap */
uintptr_t core_base; /* base address of "core" heap */
/*
* List of bootstrap pages. We mark these as allocated in startup.
* release_bootstrap() will free them when we're completely done with
* the bootstrap.
*/
static page_t *bootpages, *rd_pages;
struct system_hardware system_hardware;
/*
* Enable some debugging messages concerning memory usage...
*
* XX64 There should only be one print routine once memlist usage between
* vmx and the kernel is cleaned up and there is a single memlist structure
* shared between kernel and boot.
*/
static void
print_boot_memlist(char *title, struct memlist *mp)
{
prom_printf("MEMLIST: %s:\n", title);
while (mp != NULL) {
prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
mp->address, mp->size);
mp = mp->next;
}
}
static void
print_kernel_memlist(char *title, struct memlist *mp)
{
prom_printf("MEMLIST: %s:\n", title);
while (mp != NULL) {
prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
mp->address, mp->size);
mp = mp->next;
}
}
/*
* XX64 need a comment here.. are these just default values, surely
* we read the "cpuid" type information to figure this out.
*/
int l2cache_sz = 0x80000;
int l2cache_linesz = 0x40;
int l2cache_assoc = 1;
/*
* on 64 bit we use a predifined VA range for mapping devices in the kernel
* on 32 bit the mappings are intermixed in the heap, so we use a bit map
*/
#ifdef __amd64
vmem_t *device_arena;
uintptr_t toxic_addr = (uintptr_t)NULL;
size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
#else /* __i386 */
ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
size_t toxic_bit_map_len = 0; /* in bits */
#endif /* __i386 */
/*
* Simple boot time debug facilities
*/
static char *prm_dbg_str[] = {
"%s:%d: '%s' is 0x%x\n",
"%s:%d: '%s' is 0x%llx\n"
};
int prom_debug;
#define PRM_DEBUG(q) if (prom_debug) \
prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
#define PRM_POINT(q) if (prom_debug) \
prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
/*
* This structure is used to keep track of the intial allocations
* done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
* be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
*/
#define NUM_ALLOCATIONS 7
int num_allocations = 0;
struct {
void **al_ptr;
size_t al_size;
} allocations[NUM_ALLOCATIONS];
size_t valloc_sz = 0;
uintptr_t valloc_base;
extern uintptr_t ptable_va;
extern size_t ptable_sz;
#define ADD_TO_ALLOCATIONS(ptr, size) { \
size = ROUND_UP_PAGE(size); \
if (num_allocations == NUM_ALLOCATIONS) \
panic("too many ADD_TO_ALLOCATIONS()"); \
allocations[num_allocations].al_ptr = (void**)&ptr; \
allocations[num_allocations].al_size = size; \
valloc_sz += size; \
++num_allocations; \
}
static void
perform_allocations(void)
{
caddr_t mem;
int i;
mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN);
if (mem != (caddr_t)valloc_base)
panic("BOP_ALLOC() failed");
bzero(mem, valloc_sz);
for (i = 0; i < num_allocations; ++i) {
*allocations[i].al_ptr = (void *)mem;
mem += allocations[i].al_size;
}
}
/*
* Our world looks like this at startup time.
*
* In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
* at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
* 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
* addresses are fixed in the binary at link time.
*
* On the text page:
* unix/genunix/krtld/module text loads.
*
* On the data page:
* unix/genunix/krtld/module data loads and space for page_t's.
*/
/*
* Machine-dependent startup code
*/
void
startup(void)
{
extern void startup_bios_disk();
/*
* Make sure that nobody tries to use sekpm until we have
* initialized it properly.
*/
#if defined(__amd64)
kpm_desired = kpm_enable;
#endif
kpm_enable = 0;
progressbar_init();
startup_init();
startup_memlist();
startup_modules();
startup_bios_disk();
startup_bop_gone();
startup_vm();
startup_end();
progressbar_start();
}
static void
startup_init()
{
PRM_POINT("startup_init() starting...");
/*
* Complete the extraction of cpuid data
*/
cpuid_pass2(CPU);
(void) check_boot_version(BOP_GETVERSION(bootops));
/*
* Check for prom_debug in boot environment
*/
if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
++prom_debug;
PRM_POINT("prom_debug found in boot enviroment");
}
/*
* Collect node, cpu and memory configuration information.
*/
get_system_configuration();
/*
* Halt if this is an unsupported processor.
*/
if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
printf("\n486 processor (\"%s\") detected.\n",
CPU->cpu_brandstr);
halt("This processor is not supported by this release "
"of Solaris.");
}
/*
* Set up dummy values till psm spl code installed
*/
CPU->cpu_pri_data = dummy_cpu_pri;
PRM_POINT("startup_init() done");
}
/*
* Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
* everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
* also filters out physical page zero. There is some reliance on the
* boot loader allocating only a few contiguous physical memory chunks.
*/
static void
avail_filter(uint64_t *addr, uint64_t *size)
{
uintptr_t va;
uintptr_t next_va;
pfn_t pfn;
uint64_t pfn_addr;
uint64_t pfn_eaddr;
uint_t prot;
size_t len;
uint_t change;
if (prom_debug)
prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
*addr, *size);
/*
* page zero is required for BIOS.. never make it available
*/
if (*addr == 0) {
*addr += MMU_PAGESIZE;
*size -= MMU_PAGESIZE;
}
/*
* First we trim from the front of the range. Since hat_boot_probe()
* walks ranges in virtual order, but addr/size are physical, we need
* to the list until no changes are seen. This deals with the case
* where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
* but w < v.
*/
do {
change = 0;
for (va = KERNEL_TEXT;
*size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0;
va = next_va) {
next_va = va + len;
pfn_addr = ptob((uint64_t)pfn);
pfn_eaddr = pfn_addr + len;
if (pfn_addr <= *addr && pfn_eaddr > *addr) {
change = 1;
while (*size > 0 && len > 0) {
*addr += MMU_PAGESIZE;
*size -= MMU_PAGESIZE;
len -= MMU_PAGESIZE;
}
}
}
if (change && prom_debug)
prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
*addr, *size);
} while (change);
/*
* Trim pages from the end of the range.
*/
for (va = KERNEL_TEXT;
*size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0;
va = next_va) {
next_va = va + len;
pfn_addr = ptob((uint64_t)pfn);
if (pfn_addr >= *addr && pfn_addr < *addr + *size)
*size = pfn_addr - *addr;
}
if (prom_debug)
prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
*addr, *size);
}
static void
kpm_init()
{
struct segkpm_crargs b;
uintptr_t start, end;
struct memlist *pmem;
/*
* These variables were all designed for sfmmu in which segkpm is
* mapped using a single pagesize - either 8KB or 4MB. On x86, we
* might use 2+ page sizes on a single machine, so none of these
* variables have a single correct value. They are set up as if we
* always use a 4KB pagesize, which should do no harm. In the long
* run, we should get rid of KPM's assumption that only a single
* pagesize is used.
*/
kpm_pgshft = MMU_PAGESHIFT;
kpm_pgsz = MMU_PAGESIZE;
kpm_pgoff = MMU_PAGEOFFSET;
kpmp2pshft = 0;
kpmpnpgs = 1;
ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
PRM_POINT("about to create segkpm");
rw_enter(&kas.a_lock, RW_WRITER);
if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
panic("cannot attach segkpm");
b.prot = PROT_READ | PROT_WRITE;
b.nvcolors = 1;
if (segkpm_create(segkpm, (caddr_t)&b) != 0)
panic("segkpm_create segkpm");
rw_exit(&kas.a_lock);
/*
* Map each of the memsegs into the kpm segment, coalesing adjacent
* memsegs to allow mapping with the largest possible pages.
*/
pmem = phys_install;
start = pmem->address;
end = start + pmem->size;
for (;;) {
if (pmem == NULL || pmem->address > end) {
hat_devload(kas.a_hat, kpm_vbase + start,
end - start, mmu_btop(start),
PROT_READ | PROT_WRITE,
HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
if (pmem == NULL)
break;
start = pmem->address;
}
end = pmem->address + pmem->size;
pmem = pmem->next;
}
}
/*
* The purpose of startup memlist is to get the system to the
* point where it can use kmem_alloc()'s that operate correctly
* relying on BOP_ALLOC(). This includes allocating page_ts,
* page hash table, vmem initialized, etc.
*
* Boot's versions of physinstalled and physavail are insufficient for
* the kernel's purposes. Specifically we don't know which pages that
* are not in physavail can be reclaimed after boot is gone.
*
* This code solves the problem by dividing the address space
* into 3 regions as it takes over the MMU from the booter.
*
* 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT
* can not be used by the kernel.
*
* 2) Any free page that happens to be mapped below kernelbase
* is protected until the boot loader is released, but will then be reclaimed.
*
* 3) Boot shouldn't use any address in the remaining area between kernelbase
* and KERNEL_TEXT.
*
* In the case of multiple mappings to the same page, region 1 has precedence
* over region 2.
*/
static void
startup_memlist(void)
{
size_t memlist_sz;
size_t memseg_sz;
size_t pagehash_sz;
size_t pp_sz;
uintptr_t va;
size_t len;
uint_t prot;
pfn_t pfn;
int memblocks;
caddr_t pagecolor_mem;
size_t pagecolor_memsz;
caddr_t page_ctrs_mem;
size_t page_ctrs_size;
struct memlist *current;
extern void startup_build_mem_nodes(struct memlist *);
/* XX64 fix these - they should be in include files */
extern ulong_t cr4_value;
extern size_t page_coloring_init(uint_t, int, int);
extern void page_coloring_setup(caddr_t);
PRM_POINT("startup_memlist() starting...");
/*
* Take the most current snapshot we can by calling mem-update.
* For this to work properly, we first have to ask boot for its
* end address.
*/
if (BOP_GETPROPLEN(bootops, "memory-update") == 0)
(void) BOP_GETPROP(bootops, "memory-update", NULL);
/*
* find if the kernel is mapped on a large page
*/
va = KERNEL_TEXT;
if (hat_boot_probe(&va, &len, &pfn, &prot) == 0)
panic("Couldn't find kernel text boot mapping");
/*
* Use leftover large page nucleus text/data space for loadable modules.
* Use at most MODTEXT/MODDATA.
*/
if (len > MMU_PAGESIZE) {
moddata = (caddr_t)ROUND_UP_PAGE(e_data);
e_moddata = (caddr_t)ROUND_UP_4MEG(e_data);
if (e_moddata - moddata > MODDATA)
e_moddata = moddata + MODDATA;
modtext = (caddr_t)ROUND_UP_PAGE(e_text);
e_modtext = (caddr_t)ROUND_UP_4MEG(e_text);
if (e_modtext - modtext > MODTEXT)
e_modtext = modtext + MODTEXT;
} else {
PRM_POINT("Kernel NOT loaded on Large Page!");
e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data);
e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text);
}
econtig = e_moddata;
PRM_DEBUG(modtext);
PRM_DEBUG(e_modtext);
PRM_DEBUG(moddata);
PRM_DEBUG(e_moddata);
PRM_DEBUG(econtig);
/*
* For MP machines cr4_value must be set or the non-boot
* CPUs will not be able to start.
*/
if (x86_feature & X86_LARGEPAGE)
cr4_value = getcr4();
PRM_DEBUG(cr4_value);
/*
* Examine the boot loaders physical memory map to find out:
* - total memory in system - physinstalled
* - the max physical address - physmax
* - the number of segments the intsalled memory comes in
*/
if (prom_debug)
print_boot_memlist("boot physinstalled",
bootops->boot_mem->physinstalled);
installed_top_size(bootops->boot_mem->physinstalled, &physmax,
&physinstalled, &memblocks);
PRM_DEBUG(physmax);
PRM_DEBUG(physinstalled);
PRM_DEBUG(memblocks);
if (prom_debug)
print_boot_memlist("boot physavail",
bootops->boot_mem->physavail);
/*
* Initialize hat's mmu parameters.
* Check for enforce-prot-exec in boot environment. It's used to
* enable/disable support for the page table entry NX bit.
* The default is to enforce PROT_EXEC on processors that support NX.
* Boot seems to round up the "len", but 8 seems to be big enough.
*/
mmu_init();
#ifdef __i386
/*
* physmax is lowered if there is more memory than can be
* physically addressed in 32 bit (PAE/non-PAE) modes.
*/
if (mmu.pae_hat) {
if (PFN_ABOVE64G(physmax)) {
physinstalled -= (physmax - (PFN_64G - 1));
physmax = PFN_64G - 1;
}
} else {
if (PFN_ABOVE4G(physmax)) {
physinstalled -= (physmax - (PFN_4G - 1));
physmax = PFN_4G - 1;
}
}
#endif
startup_build_mem_nodes(bootops->boot_mem->physinstalled);
if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
char value[8];
if (len < 8)
(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
else
(void) strcpy(value, "");
if (strcmp(value, "off") == 0)
mmu.pt_nx = 0;
}
PRM_DEBUG(mmu.pt_nx);
/*
* We will need page_t's for every page in the system, except for
* memory mapped at or above above the start of the kernel text segment.
*
* pages above e_modtext are attributed to kernel debugger (obp_pages)
*/
npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
obp_pages = 0;
va = KERNEL_TEXT;
while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) {
npages -= len >> MMU_PAGESHIFT;
if (va >= (uintptr_t)e_moddata)
obp_pages += len >> MMU_PAGESHIFT;
va += len;
}
PRM_DEBUG(npages);
PRM_DEBUG(obp_pages);
/*
* If physmem is patched to be non-zero, use it instead of
* the computed value unless it is larger than the real
* amount of memory on hand.
*/
if (physmem == 0 || physmem > npages)
physmem = npages;
else
npages = physmem;
PRM_DEBUG(physmem);
/*
* We now compute the sizes of all the initial allocations for
* structures the kernel needs in order do kmem_alloc(). These
* include:
* memsegs
* memlists
* page hash table
* page_t's
* page coloring data structs
*/
memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
PRM_DEBUG(memseg_sz);
/*
* Reserve space for phys_avail/phys_install memlists.
* There's no real good way to know exactly how much room we'll need,
* but this should be a good upper bound.
*/
memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
(memblocks + POSS_NEW_FRAGMENTS));
ADD_TO_ALLOCATIONS(memlist, memlist_sz);
PRM_DEBUG(memlist_sz);
/*
* The page structure hash table size is a power of 2
* such that the average hash chain length is PAGE_HASHAVELEN.
*/
page_hashsz = npages / PAGE_HASHAVELEN;
page_hashsz = 1 << highbit(page_hashsz);
pagehash_sz = sizeof (struct page *) * page_hashsz;
ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
PRM_DEBUG(pagehash_sz);
/*
* Set aside room for the page structures themselves. Note: on
* 64-bit systems we don't allocate page_t's for every page here.
* We just allocate enough to map the lowest 4GB of physical
* memory, minus those pages that are used for the "nucleus" kernel
* text and data. The remaining pages are allocated once we can
* map around boot.
*
* boot_npages is used to allocate an area big enough for our
* initial page_t's. kphym_init may use less than that.
*/
boot_npages = npages;
#if defined(__amd64)
if (npages > mmu_btop(FOURGB - (econtig - s_text)))
boot_npages = mmu_btop(FOURGB - (econtig - s_text));
#endif
PRM_DEBUG(boot_npages);
pp_sz = sizeof (struct page) * boot_npages;
ADD_TO_ALLOCATIONS(pp_base, pp_sz);
PRM_DEBUG(pp_sz);
/*
* determine l2 cache info and memory size for page coloring
*/
(void) getl2cacheinfo(CPU,
&l2cache_sz, &l2cache_linesz, &l2cache_assoc);
pagecolor_memsz =
page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
PRM_DEBUG(pagecolor_memsz);
page_ctrs_size = page_ctrs_sz();
ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
PRM_DEBUG(page_ctrs_size);
/*
* valloc_base will be below kernel text
* The extra pages are for the HAT and kmdb to map page tables.
*/
valloc_sz = ROUND_UP_LPAGE(valloc_sz);
valloc_base = KERNEL_TEXT - valloc_sz;
PRM_DEBUG(valloc_base);
ptable_va = valloc_base - ptable_sz;
#if defined(__amd64)
if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
"systems.");
kernelbase = (uintptr_t)KERNELBASE;
core_base = (uintptr_t)COREHEAP_BASE;
core_size = ptable_va - core_base;
#else /* __i386 */
/*
* We configure kernelbase based on:
*
* 1. user specified kernelbase via eeprom command. Value cannot exceed
* KERNELBASE_MAX. we large page align eprom_kernelbase
*
* 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
* On large memory systems we must lower kernelbase to allow
* enough room for page_t's for all of memory.
*
* The value set here, might be changed a little later.
*/
if (eprom_kernelbase) {
kernelbase = eprom_kernelbase & mmu.level_mask[1];
if (kernelbase > KERNELBASE_MAX)
kernelbase = KERNELBASE_MAX;
} else {
kernelbase = (uintptr_t)KERNELBASE;
kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
}
ASSERT((kernelbase & mmu.level_offset[1]) == 0);
core_base = ptable_va;
core_size = 0;
#endif
PRM_DEBUG(kernelbase);
PRM_DEBUG(core_base);
PRM_DEBUG(core_size);
/*
* At this point, we can only use a portion of the kernelheap that
* will be available after we boot. Both 32-bit and 64-bit systems
* have this limitation, although the reasons are completely
* different.
*
* On 64-bit systems, the booter only supports allocations in the
* upper 4GB of memory, so we have to work with a reduced kernel
* heap until we take over all allocations. The booter also sits
* in the lower portion of that 4GB range, so we have to raise the
* bottom of the heap even further.
*
* On 32-bit systems we have to leave room to place segmap below
* the heap. We don't yet know how large segmap will be, so we
* have to be very conservative.
*/
#if defined(__amd64)
/*
* XX64: For now, we let boot have the lower 2GB of the top 4GB
* address range. In the long run, that should be fixed. It's
* insane for a booter to need 2 2GB address ranges.
*/
boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE);
segmap_reserved = 0;
#else /* __i386 */
segkp_fromheap = 1;
segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX));
boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) +
segmap_reserved);
#endif
PRM_DEBUG(boot_kernelheap);
kernelheap = boot_kernelheap;
ekernelheap = (char *)core_base;
/*
* If segmap is too large we can push the bottom of the kernel heap
* higher than the base. Or worse, it could exceed the top of the
* VA space entirely, causing it to wrap around.
*/
if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
panic("too little memory available for kernelheap,"
" use a different kernelbase");
/*
* Now that we know the real value of kernelbase,
* update variables that were initialized with a value of
* KERNELBASE (in common/conf/param.c).
*
* XXX The problem with this sort of hackery is that the
* compiler just may feel like putting the const declarations
* (in param.c) into the .text section. Perhaps they should
* just be declared as variables there?
*/
#if defined(__amd64)
ASSERT(_kernelbase == KERNELBASE);
ASSERT(_userlimit == USERLIMIT);
/*
* As one final sanity check, verify that the "red zone" between
* kernel and userspace is exactly the size we expected.
*/
ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024)));
#else
*(uintptr_t *)&_kernelbase = kernelbase;
*(uintptr_t *)&_userlimit = kernelbase;
*(uintptr_t *)&_userlimit32 = _userlimit;
#endif
PRM_DEBUG(_kernelbase);
PRM_DEBUG(_userlimit);
PRM_DEBUG(_userlimit32);
/*
* do all the initial allocations
*/
perform_allocations();
/*
* Initialize the kernel heap. Note 3rd argument must be > 1st.
*/
kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE,
(void *)core_base, (void *)ptable_va);
/*
* Build phys_install and phys_avail in kernel memspace.
* - phys_install should be all memory in the system.
* - phys_avail is phys_install minus any memory mapped before this
* point above KERNEL_TEXT.
*/
current = phys_install = memlist;
copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
panic("physinstalled was too big!");
if (prom_debug)
print_kernel_memlist("phys_install", phys_install);
phys_avail = current;
PRM_POINT("Building phys_avail:\n");
copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
avail_filter);
if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
panic("physavail was too big!");
if (prom_debug)
print_kernel_memlist("phys_avail", phys_avail);
/*
* setup page coloring
*/
page_coloring_setup(pagecolor_mem);
page_lock_init(); /* currently a no-op */
/*
* free page list counters
*/
(void) page_ctrs_alloc(page_ctrs_mem);
/*
* Initialize the page structures from the memory lists.
*/
availrmem_initial = availrmem = freemem = 0;
PRM_POINT("Calling kphysm_init()...");
boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages);
PRM_POINT("kphysm_init() done");
PRM_DEBUG(boot_npages);
/*
* Now that page_t's have been initialized, remove all the
* initial allocation pages from the kernel free page lists.
*/
boot_mapin((caddr_t)valloc_base, valloc_sz);
/*
* Initialize kernel memory allocator.
*/
kmem_init();
/*
* print this out early so that we know what's going on
*/
cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
/*
* Initialize bp_mapin().
*/
bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
#if defined(__i386)
if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
"System using 0x%lx",
(uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
#endif
#ifdef KERNELBASE_ABI_MIN
if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
"i386 ABI compliant.", (uintptr_t)kernelbase);
}
#endif
PRM_POINT("startup_memlist() done");
}
static void
startup_modules(void)
{
unsigned int i;
extern void impl_setup_ddi(void);
extern void prom_setup(void);
PRM_POINT("startup_modules() starting...");
/*
* Initialize ten-micro second timer so that drivers will
* not get short changed in their init phase. This was
* not getting called until clkinit which, on fast cpu's
* caused the drv_usecwait to be way too short.
*/
microfind();
/*
* Read the GMT lag from /etc/rtc_config.
*/
gmt_lag = process_rtc_config_file();
/*
* Calculate default settings of system parameters based upon
* maxusers, yet allow to be overridden via the /etc/system file.
*/
param_calc(0);
mod_setup();
/*
* Setup machine check architecture on P6
*/
setup_mca();
/*
* Initialize system parameters.
*/
param_init();
/*
* maxmem is the amount of physical memory we're playing with.
*/
maxmem = physmem;
/*
* Initialize the hat layer.
*/
hat_init();
/*
* Initialize segment management stuff.
*/
seg_init();
if (modload("fs", "specfs") == -1)
halt("Can't load specfs");
if (modload("fs", "devfs") == -1)
halt("Can't load devfs");
dispinit();
/*
* This is needed here to initialize hw_serial[] for cluster booting.
*/
if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
(void) modunload(i);
else
cmn_err(CE_CONT, "sysinit load failed");
/* Read cluster configuration data. */
clconf_init();
/*
* Create a kernel device tree. First, create rootnex and
* then invoke bus specific code to probe devices.
*/
setup_ddi();
impl_setup_ddi();
/*
* Fake a prom tree such that /dev/openprom continues to work
*/
prom_setup();
/*
* Load all platform specific modules
*/
psm_modload();
PRM_POINT("startup_modules() done");
}
static void
startup_bop_gone(void)
{
PRM_POINT("startup_bop_gone() starting...");
/*
* Do final allocations of HAT data structures that need to
* be allocated before quiescing the boot loader.
*/
PRM_POINT("Calling hat_kern_alloc()...");
hat_kern_alloc();
PRM_POINT("hat_kern_alloc() done");
/*
* Setup MTRR (Memory type range registers)
*/
setup_mtrr();
PRM_POINT("startup_bop_gone() done");
}
/*
* Walk through the pagetables looking for pages mapped in by boot. If the
* setaside flag is set the pages are expected to be returned to the
* kernel later in boot, so we add them to the bootpages list.
*/
static void
protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
{
uintptr_t va = low;
size_t len;
uint_t prot;
pfn_t pfn;
page_t *pp;
pgcnt_t boot_protect_cnt = 0;
while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
if (va + len >= high)
panic("0x%lx byte mapping at 0x%p exceeds boot's "
"legal range.", len, (void *)va);
while (len > 0) {
pp = page_numtopp_alloc(pfn);
if (pp != NULL) {
if (setaside == 0)
panic("Unexpected mapping by boot. "
"addr=%p pfn=%lx\n",
(void *)va, pfn);
pp->p_next = bootpages;
bootpages = pp;
++boot_protect_cnt;
}
++pfn;
len -= MMU_PAGESIZE;
va += MMU_PAGESIZE;
}
}
PRM_DEBUG(boot_protect_cnt);
}
static void
startup_vm(void)
{
struct segmap_crargs a;
extern void hat_kern_setup(void);
pgcnt_t pages_left;
PRM_POINT("startup_vm() starting...");
/*
* The next two loops are done in distinct steps in order
* to be sure that any page that is doubly mapped (both above
* KERNEL_TEXT and below kernelbase) is dealt with correctly.
* Note this may never happen, but it might someday.
*/
bootpages = NULL;
PRM_POINT("Protecting boot pages");
/*
* Protect any pages mapped above KERNEL_TEXT that somehow have
* page_t's. This can only happen if something weird allocated
* in this range (like kadb/kmdb).
*/
protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
/*
* Before we can take over memory allocation/mapping from the boot
* loader we must remove from our free page lists any boot pages that
* will stay mapped until release_bootstrap().
*/
protect_boot_range(0, kernelbase, 1);
#if defined(__amd64)
protect_boot_range(BOOT_DOUBLEMAP_BASE,
BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0);
#endif
/*
* Copy in boot's page tables, set up extra page tables for the kernel,
* and switch to the kernel's context.
*/
PRM_POINT("Calling hat_kern_setup()...");
hat_kern_setup();
/*
* It is no longer safe to call BOP_ALLOC(), so make sure we don't.
*/
bootops->bsys_alloc = NULL;
PRM_POINT("hat_kern_setup() done");
hat_cpu_online(CPU);
/*
* Before we call kvm_init(), we need to establish the final size
* of the kernel's heap. So, we need to figure out how much space
* to set aside for segkp, segkpm, and segmap.
*/
final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase);
#if defined(__amd64)
if (kpm_desired) {
/*
* Segkpm appears at the bottom of the kernel's address
* range. To detect accidental overruns of the user
* address space, we leave a "red zone" of unmapped memory
* between kernelbase and the beginning of segkpm.
*/
kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE;
kpm_size = mmu_ptob(physmax);
PRM_DEBUG(kpm_vbase);
PRM_DEBUG(kpm_size);
final_kernelheap =
(caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size);
}
if (!segkp_fromheap) {
size_t sz = mmu_ptob(segkpsize);
/*
* determine size of segkp and adjust the bottom of the
* kernel's heap.
*/
if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
sz = SEGKPDEFSIZE;
cmn_err(CE_WARN, "!Illegal value for segkpsize. "
"segkpsize has been reset to %ld pages",
mmu_btop(sz));
}
sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
segkp_base = final_kernelheap;
PRM_DEBUG(segkpsize);
PRM_DEBUG(segkp_base);
final_kernelheap = segkp_base + mmu_ptob(segkpsize);
PRM_DEBUG(final_kernelheap);
}
/*
* put the range of VA for device mappings next
*/
toxic_addr = (uintptr_t)final_kernelheap;
PRM_DEBUG(toxic_addr);
final_kernelheap = (char *)toxic_addr + toxic_size;
#endif
PRM_DEBUG(final_kernelheap);
ASSERT(final_kernelheap < boot_kernelheap);
/*
* Users can change segmapsize through eeprom or /etc/system.
* If the variable is tuned through eeprom, there is no upper
* bound on the size of segmap. If it is tuned through
* /etc/system on 32-bit systems, it must be no larger than we
* planned for in startup_memlist().
*/
segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap);
#if defined(__i386)
if (segmapsize > segmap_reserved) {
cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in "
"/etc/system. Use eeprom.", (long)SEGMAPMAX);
segmapsize = segmap_reserved;
}
/*
* 32-bit systems don't have segkpm or segkp, so segmap appears at
* the bottom of the kernel's address range. Set aside space for a
* red zone just below the start of segmap.
*/
segkmap_start += KERNEL_REDZONE_SIZE;
segmapsize -= KERNEL_REDZONE_SIZE;
#endif
final_kernelheap = (char *)(segkmap_start + segmapsize);
PRM_DEBUG(segkmap_start);
PRM_DEBUG(segmapsize);
PRM_DEBUG(final_kernelheap);
/*
* Initialize VM system
*/
PRM_POINT("Calling kvm_init()...");
kvm_init();
PRM_POINT("kvm_init() done");
/*
* Tell kmdb that the VM system is now working
*/
if (boothowto & RB_DEBUG)
kdi_dvec_vmready();
/*
* Mangle the brand string etc.
*/
cpuid_pass3(CPU);
PRM_DEBUG(final_kernelheap);
/*
* Now that we can use memory outside the top 4GB (on 64-bit
* systems) and we know the size of segmap, we can set the final
* size of the kernel's heap. Note: on 64-bit systems we still
* can't touch anything in the bottom half of the top 4GB range
* because boot still has pages mapped there.
*/
if (final_kernelheap < boot_kernelheap) {
kernelheap_extend(final_kernelheap, boot_kernelheap);
#if defined(__amd64)
kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE,
MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE),
(void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE),
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
PRM_DEBUG(kmem_setaside);
if (kmem_setaside == NULL)
panic("Could not protect boot's memory");
#endif
}
/*
* Now that the kernel heap may have grown significantly, we need
* to make all the remaining page_t's available to back that memory.
*
* XX64 this should probably wait till after release boot-strap too.
*/
pages_left = npages - boot_npages;
if (pages_left > 0) {
PRM_DEBUG(pages_left);
(void) kphysm_init(NULL, memseg_base, boot_npages, pages_left);
}
#if defined(__amd64)
/*
* Create the device arena for toxic (to dtrace/kmdb) mappings.
*/
device_arena = vmem_create("device", (void *)toxic_addr,
toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
#else /* __i386 */
/*
* allocate the bit map that tracks toxic pages
*/
toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase));
PRM_DEBUG(toxic_bit_map_len);
toxic_bit_map =
kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
ASSERT(toxic_bit_map != NULL);
PRM_DEBUG(toxic_bit_map);
#endif /* __i386 */
/*
* Now that we've got more VA, as well as the ability to allocate from
* it, tell the debugger.
*/
if (boothowto & RB_DEBUG)
kdi_dvec_memavail();
/*
* The following code installs a special page fault handler (#pf)
* to work around a pentium bug.
*/
#if !defined(__amd64)
if (x86_type == X86_TYPE_P5) {
gate_desc_t *newidt;
desctbr_t newidt_r;
if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
panic("failed to install pentium_pftrap");
bcopy(idt0, newidt, sizeof (idt0));
set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
KCS_SEL, 0, SDT_SYSIGT, SEL_KPL);
(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
PROT_READ|PROT_EXEC);
newidt_r.dtr_limit = sizeof (idt0) - 1;
newidt_r.dtr_base = (uintptr_t)newidt;
CPU->cpu_idt = newidt;
wr_idtr(&newidt_r);
}
#endif /* !__amd64 */
/*
* Map page pfn=0 for drivers, such as kd, that need to pick up
* parameters left there by controllers/BIOS.
*/
PRM_POINT("setup up p0_va");
p0_va = i86devmap(0, 1, PROT_READ);
PRM_DEBUG(p0_va);
/*
* If the following is true, someone has patched phsymem to be less
* than the number of pages that the system actually has. Remove
* pages until system memory is limited to the requested amount.
* Since we have allocated page structures for all pages, we
* correct the amount of memory we want to remove by the size of
* the memory used to hold page structures for the non-used pages.
*/
if (physmem < npages) {
uint_t diff;
offset_t off;
struct page *pp;
caddr_t rand_vaddr;
struct seg kseg;
cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem);
off = 0;
diff = npages - physmem;
diff -= mmu_btopr(diff * sizeof (struct page));
kseg.s_as = &kas;
while (diff--) {
rand_vaddr = (caddr_t)
(((uintptr_t)&unused_pages_vp >> 7) ^
(uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT));
pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE,
PG_WAIT | PG_EXCL, &kseg, rand_vaddr);
if (pp == NULL) {
panic("limited physmem too much!");
/*NOTREACHED*/
}
page_io_unlock(pp);
page_downgrade(pp);
availrmem--;
off += MMU_PAGESIZE;
}
}
cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
PRM_POINT("Calling hat_init_finish()...");
hat_init_finish();
PRM_POINT("hat_init_finish() done");
/*
* Initialize the segkp segment type.
*/
rw_enter(&kas.a_lock, RW_WRITER);
if (!segkp_fromheap) {
if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
segkp) < 0) {
panic("startup: cannot attach segkp");
/*NOTREACHED*/
}
} else {
/*
* For 32 bit x86 systems, we will have segkp under the heap.
* There will not be a segkp segment. We do, however, need
* to fill in the seg structure.
*/
segkp->s_as = &kas;
}
if (segkp_create(segkp) != 0) {
panic("startup: segkp_create failed");
/*NOTREACHED*/
}
PRM_DEBUG(segkp);
rw_exit(&kas.a_lock);
/*
* kpm segment
*/
segmap_kpm = 0;
if (kpm_desired) {
kpm_init();
kpm_enable = 1;
}
/*
* Now create segmap segment.
*/
rw_enter(&kas.a_lock, RW_WRITER);
if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) {
panic("cannot attach segkmap");
/*NOTREACHED*/
}
PRM_DEBUG(segkmap);
/*
* The 64 bit HAT permanently maps only segmap's page tables.
* The 32 bit HAT maps the heap's page tables too.
*/
#if defined(__amd64)
hat_kmap_init(segkmap_start, segmapsize);
#else /* __i386 */
ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap);
hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start);
#endif /* __i386 */
a.prot = PROT_READ | PROT_WRITE;
a.shmsize = 0;
a.nfreelist = segmapfreelists;
if (segmap_create(segkmap, (caddr_t)&a) != 0)
panic("segmap_create segkmap");
rw_exit(&kas.a_lock);
setup_vaddr_for_ppcopy(CPU);
segdev_init();
pmem_init();
PRM_POINT("startup_vm() done");
}
static void
startup_end(void)
{
extern void setx86isalist(void);
PRM_POINT("startup_end() starting...");
/*
* Perform tasks that get done after most of the VM
* initialization has been done but before the clock
* and other devices get started.
*/
kern_setup1();
/*
* Perform CPC initialization for this CPU.
*/
kcpc_hw_init(CPU);
#if defined(__amd64)
/*
* Validate support for syscall/sysret
* XX64 -- include SSE, SSE2, etc. here too?
*/
if ((x86_feature & X86_ASYSC) == 0) {
cmn_err(CE_WARN,
"cpu%d does not support syscall/sysret", CPU->cpu_id);
}
#endif
/*
* Configure the system.
*/
PRM_POINT("Calling configure()...");
configure(); /* set up devices */
PRM_POINT("configure() done");
/*
* Set the isa_list string to the defined instruction sets we
* support.
*/
setx86isalist();
init_intr_threads(CPU);
psm_install();
/*
* We're done with bootops. We don't unmap the bootstrap yet because
* we're still using bootsvcs.
*/
PRM_POINT("zeroing out bootops");
*bootopsp = (struct bootops *)0;
bootops = (struct bootops *)NULL;
PRM_POINT("Enabling interrupts");
(*picinitf)();
sti();
(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
"softlevel1", NULL, NULL); /* XXX to be moved later */
PRM_POINT("startup_end() done");
}
extern char hw_serial[];
char *_hs1107 = hw_serial;
ulong_t _bdhs34;
void
post_startup(void)
{
extern void memscrub_init(void);
/*
* Set the system wide, processor-specific flags to be passed
* to userland via the aux vector for performance hints and
* instruction set extensions.
*/
bind_hwcap();
/*
* Startup memory scrubber.
*/
(void) memscrub_init();
/*
* Perform forceloading tasks for /etc/system.
*/
(void) mod_sysctl(SYS_FORCELOAD, NULL);
/*
* complete mmu initialization, now that kernel and critical
* modules have been loaded.
*/
(void) post_startup_mmu_initialization();
/*
* ON4.0: Force /proc module in until clock interrupt handle fixed
* ON4.0: This must be fixed or restated in /etc/systems.
*/
(void) modload("fs", "procfs");
#if defined(__i386)
/*
* Check for required functional Floating Point hardware,
* unless FP hardware explicitly disabled.
*/
if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
halt("No working FP hardware found");
#endif
maxmem = freemem;
add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
/*
* Perform the formal initialization of the boot chip,
* and associate the boot cpu with it.
* This must be done after the cpu node for CPU has been
* added to the device tree, when the necessary probing to
* know the chip type and chip "id" is performed.
*/
chip_cpu_init(CPU);
chip_cpu_assign(CPU);
}
static int
pp_in_ramdisk(page_t *pp)
{
extern uint64_t ramdisk_start, ramdisk_end;
return ((pp->p_pagenum >= btop(ramdisk_start)) &&
(pp->p_pagenum < btopr(ramdisk_end)));
}
void
release_bootstrap(void)
{
int root_is_ramdisk;
pfn_t pfn;
page_t *pp;
extern void kobj_boot_unmountroot(void);
extern dev_t rootdev;
/* unmount boot ramdisk and release kmem usage */
kobj_boot_unmountroot();
/*
* We're finished using the boot loader so free its pages.
*/
PRM_POINT("Unmapping lower boot pages");
clear_boot_mappings(0, kernelbase);
#if defined(__amd64)
PRM_POINT("Unmapping upper boot pages");
clear_boot_mappings(BOOT_DOUBLEMAP_BASE,
BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE);
#endif
/*
* If root isn't on ramdisk, destroy the hardcoded
* ramdisk node now and release the memory. Else,
* ramdisk memory is kept in rd_pages.
*/
root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
if (!root_is_ramdisk) {
dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
ndi_rele_devi(dip); /* held from ddi_find_devinfo */
(void) ddi_remove_child(dip, 0);
}
PRM_POINT("Releasing boot pages");
while (bootpages) {
pp = bootpages;
bootpages = pp->p_next;
if (root_is_ramdisk && pp_in_ramdisk(pp)) {
pp->p_next = rd_pages;
rd_pages = pp;
continue;
}
pp->p_next = (struct page *)0;
page_free(pp, 1);
}
/*
* Find 1 page below 1 MB so that other processors can boot up.
* Make sure it has a kernel VA as well as a 1:1 mapping.
* We should have just free'd one up.
*/
if (use_mp) {
for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
if (page_numtopp_alloc(pfn) == NULL)
continue;
rm_platter_va = i86devmap(pfn, 1,
PROT_READ | PROT_WRITE | PROT_EXEC);
rm_platter_pa = ptob(pfn);
hat_devload(kas.a_hat,
(caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
HAT_LOAD_NOCONSIST);
break;
}
if (pfn == btop(1*1024*1024))
panic("No page available for starting "
"other processors");
}
#if defined(__amd64)
PRM_POINT("Returning boot's VA space to kernel heap");
if (kmem_setaside != NULL)
vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE);
#endif
}
/*
* Initialize the platform-specific parts of a page_t.
*/
void
add_physmem_cb(page_t *pp, pfn_t pnum)
{
pp->p_pagenum = pnum;
pp->p_mapping = NULL;
pp->p_embed = 0;
pp->p_share = 0;
pp->p_mlentry = 0;
}
/*
* kphysm_init() initializes physical memory.
*/
static pgcnt_t
kphysm_init(
page_t *inpp,
struct memseg *memsegp,
pgcnt_t start,
pgcnt_t npages)
{
struct memlist *pmem;
struct memseg *cur_memseg;
struct memseg **memsegpp;
pfn_t base_pfn;
pgcnt_t num;
pgcnt_t total_skipped = 0;
pgcnt_t skipping = 0;
pgcnt_t pages_done = 0;
pgcnt_t largepgcnt;
uint64_t addr;
uint64_t size;
page_t *pp = inpp;
int dobreak = 0;
extern pfn_t ddiphysmin;
ASSERT(page_hash != NULL && page_hashsz != 0);
for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++);
ASSERT(cur_memseg == memsegp || start > 0);
for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
/*
* In a 32 bit kernel can't use higher memory if we're
* not booting in PAE mode. This check takes care of that.
*/
addr = pmem->address;
size = pmem->size;
if (btop(addr) > physmax)
continue;
/*
* align addr and size - they may not be at page boundaries
*/
if ((addr & MMU_PAGEOFFSET) != 0) {
addr += MMU_PAGEOFFSET;
addr &= ~(uint64_t)MMU_PAGEOFFSET;
size -= addr - pmem->address;
}
/* only process pages below physmax */
if (btop(addr + size) > physmax)
size = ptob(physmax - btop(addr));
num = btop(size);
if (num == 0)
continue;
if (total_skipped < start) {
if (start - total_skipped > num) {
total_skipped += num;
continue;
}
skipping = start - total_skipped;
num -= skipping;
addr += (MMU_PAGESIZE * skipping);
total_skipped = start;
}
if (num == 0)
continue;
if (num > npages)
num = npages;
npages -= num;
pages_done += num;
base_pfn = btop(addr);
/*
* If the caller didn't provide space for the page
* structures, carve them out of the memseg they will
* represent.
*/
if (pp == NULL) {
pgcnt_t pp_pgs;
if (num <= 1)
continue;
/*
* Compute how many of the pages we need to use for
* page_ts
*/
pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1;
while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >=
num - pp_pgs + 1)
--pp_pgs;
PRM_DEBUG(pp_pgs);
pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs),
VM_NOSLEEP);
if (pp == NULL) {
cmn_err(CE_WARN, "Unable to add %ld pages to "
"the system.", num);
continue;
}
hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs),
base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK,
HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
bzero(pp, mmu_ptob(pp_pgs));
num -= pp_pgs;
base_pfn += pp_pgs;
}
if (prom_debug)
prom_printf("MEMSEG addr=0x%" PRIx64
" pgs=0x%lx pfn 0x%lx-0x%lx\n",
addr, num, base_pfn, base_pfn + num);
/*
* drop pages below ddiphysmin to simplify ddi memory
* allocation with non-zero addr_lo requests.
*/
if (base_pfn < ddiphysmin) {
if (base_pfn + num <= ddiphysmin) {
/* drop entire range below ddiphysmin */
continue;
}
/* adjust range to ddiphysmin */
pp += (ddiphysmin - base_pfn);
num -= (ddiphysmin - base_pfn);
base_pfn = ddiphysmin;
}
/*
* Build the memsegs entry
*/
cur_memseg->pages = pp;
cur_memseg->epages = pp + num;
cur_memseg->pages_base = base_pfn;
cur_memseg->pages_end = base_pfn + num;
/*
* insert in memseg list in decreasing pfn range order.
* Low memory is typically more fragmented such that this
* ordering keeps the larger ranges at the front of the list
* for code that searches memseg.
*/
memsegpp = &memsegs;
for (;;) {
if (*memsegpp == NULL) {
/* empty memsegs */
memsegs = cur_memseg;
break;
}
/* check for continuity with start of memsegpp */
if (cur_memseg->pages_end == (*memsegpp)->pages_base) {
if (cur_memseg->epages == (*memsegpp)->pages) {
/*
* contiguous pfn and page_t's. Merge
* cur_memseg into *memsegpp. Drop
* cur_memseg
*/
(*memsegpp)->pages_base =
cur_memseg->pages_base;
(*memsegpp)->pages =
cur_memseg->pages;
/*
* check if contiguous with the end of
* the next memseg.
*/
if ((*memsegpp)->next &&
((*memsegpp)->pages_base ==
(*memsegpp)->next->pages_end)) {
cur_memseg = *memsegpp;
memsegpp = &((*memsegpp)->next);
dobreak = 1;
} else {
break;
}
} else {
/*
* contiguous pfn but not page_t's.
* drop last pfn/page_t in cur_memseg
* to prevent creation of large pages
* with noncontiguous page_t's if not
* aligned to largest page boundary.
*/
largepgcnt = page_get_pagecnt(
page_num_pagesizes() - 1);
if (cur_memseg->pages_end &
(largepgcnt - 1)) {
num--;
cur_memseg->epages--;
cur_memseg->pages_end--;
}
}
}
/* check for continuity with end of memsegpp */
if (cur_memseg->pages_base == (*memsegpp)->pages_end) {
if (cur_memseg->pages == (*memsegpp)->epages) {
/*
* contiguous pfn and page_t's. Merge
* cur_memseg into *memsegpp. Drop
* cur_memseg.
*/
if (dobreak) {
/* merge previously done */
cur_memseg->pages =
(*memsegpp)->pages;
cur_memseg->pages_base =
(*memsegpp)->pages_base;
cur_memseg->next =
(*memsegpp)->next;
} else {
(*memsegpp)->pages_end =
cur_memseg->pages_end;
(*memsegpp)->epages =
cur_memseg->epages;
}
break;
}
/*
* contiguous pfn but not page_t's.
* drop first pfn/page_t in cur_memseg
* to prevent creation of large pages
* with noncontiguous page_t's if not
* aligned to largest page boundary.
*/
largepgcnt = page_get_pagecnt(
page_num_pagesizes() - 1);
if (base_pfn & (largepgcnt - 1)) {
num--;
base_pfn++;
cur_memseg->pages++;
cur_memseg->pages_base++;
pp = cur_memseg->pages;
}
if (dobreak)
break;
}
if (cur_memseg->pages_base >=
(*memsegpp)->pages_end) {
cur_memseg->next = *memsegpp;
*memsegpp = cur_memseg;
break;
}
if ((*memsegpp)->next == NULL) {
cur_memseg->next = NULL;
(*memsegpp)->next = cur_memseg;
break;
}
memsegpp = &((*memsegpp)->next);
ASSERT(*memsegpp != NULL);
}
/*
* add_physmem() initializes the PSM part of the page
* struct by calling the PSM back with add_physmem_cb().
* In addition it coalesces pages into larger pages as
* it initializes them.
*/
add_physmem(pp, num, base_pfn);
cur_memseg++;
availrmem_initial += num;
availrmem += num;
/*
* If the caller provided the page frames to us, then
* advance in that list. Otherwise, prepare to allocate
* our own page frames for the next memseg.
*/
pp = (inpp == NULL) ? NULL : pp + num;
}
PRM_DEBUG(availrmem_initial);
PRM_DEBUG(availrmem);
PRM_DEBUG(freemem);
build_pfn_hash();
return (pages_done);
}
/*
* Kernel VM initialization.
*/
static void
kvm_init(void)
{
#ifdef DEBUG
extern void _start();
ASSERT((caddr_t)_start == s_text);
#endif
ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
/*
* Put the kernel segments in kernel address space.
*/
rw_enter(&kas.a_lock, RW_WRITER);
as_avlinit(&kas);
(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
(void) segkmem_create(&ktextseg);
(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
(void) segkmem_create(&kvalloc);
/*
* We're about to map out /boot. This is the beginning of the
* system resource management transition. We can no longer
* call into /boot for I/O or memory allocations.
*
* XX64 - Is this still correct with kernelheap_extend() being called
* later than this????
*/
(void) seg_attach(&kas, final_kernelheap,
ekernelheap - final_kernelheap, &kvseg);
(void) segkmem_create(&kvseg);
#if defined(__amd64)
(void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core);
(void) segkmem_create(&kvseg_core);
#endif
(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
&kdebugseg);
(void) segkmem_create(&kdebugseg);
rw_exit(&kas.a_lock);
/*
* Ensure that the red zone at kernelbase is never accessible.
*/
(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
/*
* Make the text writable so that it can be hot patched by DTrace.
*/
(void) as_setprot(&kas, s_text, e_modtext - s_text,
PROT_READ | PROT_WRITE | PROT_EXEC);
/*
* Make data writable until end.
*/
(void) as_setprot(&kas, s_data, e_moddata - s_data,
PROT_READ | PROT_WRITE | PROT_EXEC);
}
/*
* These are MTTR registers supported by P6
*/
static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR];
static uint64_t mtrr64k, mtrr16k1, mtrr16k2;
static uint64_t mtrr4k1, mtrr4k2, mtrr4k3;
static uint64_t mtrr4k4, mtrr4k5, mtrr4k6;
static uint64_t mtrr4k7, mtrr4k8, mtrrcap;
uint64_t mtrrdef, pat_attr_reg;
/*
* Disable reprogramming of MTRRs by default.
*/
int enable_relaxed_mtrr = 0;
/*
* These must serve for Pentium, Pentium Pro (P6/Pentium II/Pentium III)
* and Pentium 4, and yes, they are named 0, 1, 2, 4, 3 in ascending
* address order (starting from 0x400). The Pentium 4 only implements
* 4 sets, and while they are named 0-3 in the doc, the corresponding
* names for P6 are 0,1,2,4. So define these arrays in address order
* so that they work for both pre-Pentium4 and Pentium 4 processors.
*/
static uint_t mci_ctl[] = {REG_MC0_CTL, REG_MC1_CTL, REG_MC2_CTL,
REG_MC4_CTL, REG_MC3_CTL};
static uint_t mci_status[] = {REG_MC0_STATUS, REG_MC1_STATUS, REG_MC2_STATUS,
REG_MC4_STATUS, REG_MC3_STATUS};
static uint_t mci_addr[] = {REG_MC0_ADDR, REG_MC1_ADDR, REG_MC2_ADDR,
REG_MC4_ADDR, REG_MC3_ADDR};
static int mca_cnt;
void
setup_mca()
{
int i;
uint64_t allzeros;
uint64_t allones;
uint64_t mca_cap;
if (!(x86_feature & X86_MCA))
return;
(void) rdmsr(REG_MCG_CAP, &mca_cap);
allones = 0xffffffffffffffffULL;
if (mca_cap & MCG_CAP_CTL_P)
(void) wrmsr(REG_MCG_CTL, &allones);
mca_cnt = mca_cap & MCG_CAP_COUNT_MASK;
if (mca_cnt > P6_MCG_CAP_COUNT)
mca_cnt = P6_MCG_CAP_COUNT;
for (i = 1; i < mca_cnt; i++)
(void) wrmsr(mci_ctl[i], &allones);
allzeros = 0;
for (i = 0; i < mca_cnt; i++)
(void) wrmsr(mci_status[i], &allzeros);
setcr4(getcr4() | CR4_MCE);
}
int
mca_exception(struct regs *rp)
{
uint64_t status, addr;
uint64_t allzeros;
uint64_t buf;
int i, ret = 1, errcode, mserrcode;
allzeros = 0;
(void) rdmsr(REG_MCG_STATUS, &buf);
status = buf;
if (status & MCG_STATUS_RIPV)
ret = 0;
if (status & MCG_STATUS_EIPV)
cmn_err(CE_WARN, "MCE at 0x%lx", rp->r_pc);
(void) wrmsr(REG_MCG_STATUS, &allzeros);
for (i = 0; i < mca_cnt; i++) {
(void) rdmsr(mci_status[i], &buf);
status = buf;
/*
* If status register not valid skip this bank
*/
if (!(status & MCI_STATUS_VAL))
continue;
errcode = status & MCI_STATUS_ERRCODE;
mserrcode = (status >> MSERRCODE_SHFT) & MCI_STATUS_ERRCODE;
if (status & MCI_STATUS_ADDRV) {
/*
* If mci_addr contains the address where
* error occurred, display the address
*/
(void) rdmsr(mci_addr[i], &buf);
addr = buf;
cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x:"\
"addr = 0x%" PRIx64 ", model errcode = 0x%x", i,
errcode, addr, mserrcode);
} else {
cmn_err(CE_WARN,
"MCE: Bank %d: error code 0x%x, mserrcode = 0x%x",
i, errcode, mserrcode);
}
(void) wrmsr(mci_status[i], &allzeros);
}
return (ret);
}
void
setup_mtrr()
{
int i, ecx;
int vcnt;
struct mtrrvar *mtrrphys;
if (!(x86_feature & X86_MTRR))
return;
(void) rdmsr(REG_MTRRCAP, &mtrrcap);
(void) rdmsr(REG_MTRRDEF, &mtrrdef);
if (mtrrcap & MTRRCAP_FIX) {
(void) rdmsr(REG_MTRR64K, &mtrr64k);
(void) rdmsr(REG_MTRR16K1, &mtrr16k1);
(void) rdmsr(REG_MTRR16K2, &mtrr16k2);
(void) rdmsr(REG_MTRR4K1, &mtrr4k1);
(void) rdmsr(REG_MTRR4K2, &mtrr4k2);
(void) rdmsr(REG_MTRR4K3, &mtrr4k3);
(void) rdmsr(REG_MTRR4K4, &mtrr4k4);
(void) rdmsr(REG_MTRR4K5, &mtrr4k5);
(void) rdmsr(REG_MTRR4K6, &mtrr4k6);
(void) rdmsr(REG_MTRR4K7, &mtrr4k7);
(void) rdmsr(REG_MTRR4K8, &mtrr4k8);
}
if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
vcnt = MAX_MTRRVAR;
for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
i < vcnt - 1; i++, ecx += 2, mtrrphys++) {
(void) rdmsr(ecx, &mtrrphys->mtrrphys_base);
(void) rdmsr(ecx + 1, &mtrrphys->mtrrphys_mask);
if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V;
}
}
if (x86_feature & X86_PAT) {
if (enable_relaxed_mtrr)
mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E;
pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
}
mtrr_sync();
}
/*
* Sync current cpu mtrr with the incore copy of mtrr.
* This function has to be invoked with interrupts disabled
* Currently we do not capture other cpu's. This is invoked on cpu0
* just after reading /etc/system.
* On other cpu's its invoked from mp_startup().
*/
void
mtrr_sync()
{
uint64_t my_mtrrdef;
uint_t crvalue, cr0_orig;
int vcnt, i, ecx;
struct mtrrvar *mtrrphys;
cr0_orig = crvalue = getcr0();
crvalue |= CR0_CD;
crvalue &= ~CR0_NW;
setcr0(crvalue);
invalidate_cache();
setcr3(getcr3());
if (x86_feature & X86_PAT) {
(void) wrmsr(REG_MTRRPAT, &pat_attr_reg);
}
(void) rdmsr(REG_MTRRDEF, &my_mtrrdef);
my_mtrrdef &= ~MTRRDEF_E;
(void) wrmsr(REG_MTRRDEF, &my_mtrrdef);
if (mtrrcap & MTRRCAP_FIX) {
(void) wrmsr(REG_MTRR64K, &mtrr64k);
(void) wrmsr(REG_MTRR16K1, &mtrr16k1);
(void) wrmsr(REG_MTRR16K2, &mtrr16k2);
(void) wrmsr(REG_MTRR4K1, &mtrr4k1);
(void) wrmsr(REG_MTRR4K2, &mtrr4k2);
(void) wrmsr(REG_MTRR4K3, &mtrr4k3);
(void) wrmsr(REG_MTRR4K4, &mtrr4k4);
(void) wrmsr(REG_MTRR4K5, &mtrr4k5);
(void) wrmsr(REG_MTRR4K6, &mtrr4k6);
(void) wrmsr(REG_MTRR4K7, &mtrr4k7);
(void) wrmsr(REG_MTRR4K8, &mtrr4k8);
}
if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
vcnt = MAX_MTRRVAR;
for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
i < vcnt - 1; i++, ecx += 2, mtrrphys++) {
(void) wrmsr(ecx, &mtrrphys->mtrrphys_base);
(void) wrmsr(ecx + 1, &mtrrphys->mtrrphys_mask);
}
(void) wrmsr(REG_MTRRDEF, &mtrrdef);
setcr3(getcr3());
invalidate_cache();
setcr0(cr0_orig);
}
/*
* resync mtrr so that BIOS is happy. Called from mdboot
*/
void
mtrr_resync()
{
if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
/*
* We could have changed the default mtrr definition.
* Put it back to uncached which is what it is at power on
*/
mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E;
mtrr_sync();
}
}
void
get_system_configuration()
{
char prop[32];
u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) ||
(BOP_GETPROP(bootops, "nodes", prop) < 0) ||
(kobj_getvalue(prop, &nodes_ll) == -1) ||
(nodes_ll > MAXNODES)) ||
((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) ||
(BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) ||
(kobj_getvalue(prop, &cpus_pernode_ll) == -1))) {
system_hardware.hd_nodes = 1;
system_hardware.hd_cpus_per_node = 0;
} else {
system_hardware.hd_nodes = (int)nodes_ll;
system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
}
if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) ||
(BOP_GETPROP(bootops, "kernelbase", prop) < 0) ||
(kobj_getvalue(prop, &lvalue) == -1))
eprom_kernelbase = NULL;
else
eprom_kernelbase = (uintptr_t)lvalue;
if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) ||
(BOP_GETPROP(bootops, "segmapsize", prop) < 0) ||
(kobj_getvalue(prop, &lvalue) == -1)) {
segmapsize = SEGMAPDEFAULT;
} else {
segmapsize = (uintptr_t)lvalue;
}
if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) ||
(BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) ||
(kobj_getvalue(prop, &lvalue) == -1)) {
segmapfreelists = 0; /* use segmap driver default */
} else {
segmapfreelists = (int)lvalue;
}
}
/*
* Add to a memory list.
* start = start of new memory segment
* len = length of new memory segment in bytes
* new = pointer to a new struct memlist
* memlistp = memory list to which to add segment.
*/
static void
memlist_add(
uint64_t start,
uint64_t len,
struct memlist *new,
struct memlist **memlistp)
{
struct memlist *cur;
uint64_t end = start + len;
new->address = start;
new->size = len;
cur = *memlistp;
while (cur) {
if (cur->address >= end) {
new->next = cur;
*memlistp = new;
new->prev = cur->prev;
cur->prev = new;
return;
}
ASSERT(cur->address + cur->size <= start);
if (cur->next == NULL) {
cur->next = new;
new->prev = cur;
new->next = NULL;
return;
}
memlistp = &cur->next;
cur = cur->next;
}
}
void
kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
{
size_t tsize = e_modtext - modtext;
size_t dsize = e_moddata - moddata;
*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
}
caddr_t
kobj_text_alloc(vmem_t *arena, size_t size)
{
return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
}
/*ARGSUSED*/
caddr_t
kobj_texthole_alloc(caddr_t addr, size_t size)
{
panic("unexpected call to kobj_texthole_alloc()");
/*NOTREACHED*/
return (0);
}
/*ARGSUSED*/
void
kobj_texthole_free(caddr_t addr, size_t size)
{
panic("unexpected call to kobj_texthole_free()");
}
/*
* This is called just after configure() in startup().
*
* The ISALIST concept is a bit hopeless on Intel, because
* there's no guarantee of an ever-more-capable processor
* given that various parts of the instruction set may appear
* and disappear between different implementations.
*
* While it would be possible to correct it and even enhance
* it somewhat, the explicit hardware capability bitmask allows
* more flexibility.
*
* So, we just leave this alone.
*/
void
setx86isalist(void)
{
char *tp;
size_t len;
extern char *isa_list;
#define TBUFSIZE 1024
tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
*tp = '\0';
#if defined(__amd64)
(void) strcpy(tp, "amd64 ");
#endif
switch (x86_vendor) {
case X86_VENDOR_Intel:
case X86_VENDOR_AMD:
case X86_VENDOR_TM:
if (x86_feature & X86_CMOV) {
/*
* Pentium Pro or later
*/
(void) strcat(tp, "pentium_pro");
(void) strcat(tp, x86_feature & X86_MMX ?
"+mmx pentium_pro " : " ");
}
/*FALLTHROUGH*/
case X86_VENDOR_Cyrix:
/*
* The Cyrix 6x86 does not have any Pentium features
* accessible while not at privilege level 0.
*/
if (x86_feature & X86_CPUID) {
(void) strcat(tp, "pentium");
(void) strcat(tp, x86_feature & X86_MMX ?
"+mmx pentium " : " ");
}
break;
default:
break;
}
(void) strcat(tp, "i486 i386 i86");
len = strlen(tp) + 1; /* account for NULL at end of string */
isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
kmem_free(tp, TBUFSIZE);
#undef TBUFSIZE
}
#ifdef __amd64
void *
device_arena_alloc(size_t size, int vm_flag)
{
return (vmem_alloc(device_arena, size, vm_flag));
}
void
device_arena_free(void *vaddr, size_t size)
{
vmem_free(device_arena, vaddr, size);
}
#else
void *
device_arena_alloc(size_t size, int vm_flag)
{
caddr_t vaddr;
uintptr_t v;
size_t start;
size_t end;
vaddr = vmem_alloc(heap_arena, size, vm_flag);
if (vaddr == NULL)
return (NULL);
v = (uintptr_t)vaddr;
ASSERT(v >= kernelbase);
ASSERT(v + size <= ptable_va);
start = btop(v - kernelbase);
end = btop(v + size - 1 - kernelbase);
ASSERT(start < toxic_bit_map_len);
ASSERT(end < toxic_bit_map_len);
while (start <= end) {
BT_ATOMIC_SET(toxic_bit_map, start);
++start;
}
return (vaddr);
}
void
device_arena_free(void *vaddr, size_t size)
{
uintptr_t v = (uintptr_t)vaddr;
size_t start;
size_t end;
ASSERT(v >= kernelbase);
ASSERT(v + size <= ptable_va);
start = btop(v - kernelbase);
end = btop(v + size - 1 - kernelbase);
ASSERT(start < toxic_bit_map_len);
ASSERT(end < toxic_bit_map_len);
while (start <= end) {
ASSERT(BT_TEST(toxic_bit_map, start) != 0);
BT_ATOMIC_CLEAR(toxic_bit_map, start);
++start;
}
vmem_free(heap_arena, vaddr, size);
}
/*
* returns 1st address in range that is in device arena, or NULL
* if len is not NULL it returns the length of the toxic range
*/
void *
device_arena_contains(void *vaddr, size_t size, size_t *len)
{
uintptr_t v = (uintptr_t)vaddr;
uintptr_t eaddr = v + size;
size_t start;
size_t end;
/*
* if called very early by kmdb, just return NULL
*/
if (toxic_bit_map == NULL)
return (NULL);
/*
* First check if we're completely outside the bitmap range.
*/
if (v >= ptable_va || eaddr < kernelbase)
return (NULL);
/*
* Trim ends of search to look at only what the bitmap covers.
*/
if (v < kernelbase)
v = kernelbase;
start = btop(v - kernelbase);
end = btop(eaddr - kernelbase);
if (end >= toxic_bit_map_len)
end = toxic_bit_map_len;
if (bt_range(toxic_bit_map, &start, &end, end) == 0)
return (NULL);
v = kernelbase + ptob(start);
if (len != NULL)
*len = ptob(end - start);
return ((void *)v);
}
#endif