startup.c revision 0e7515250c8395f368aa45fb9acae7c4f8f8b786
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/mman.h>
#include <sys/vm.h>
#include <sys/conf.h>
#include <sys/avintr.h>
#include <sys/autoconf.h>
#include <sys/disp.h>
#include <sys/class.h>
#include <sys/bitmap.h>
#include <sys/privregs.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/mem.h>
#include <sys/kstat.h>
#include <sys/reboot.h>
#include <sys/cred.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/procfs.h>
#include <sys/vfs.h>
#include <sys/cmn_err.h>
#include <sys/utsname.h>
#include <sys/debug.h>
#include <sys/kdi.h>
#include <sys/dumphdr.h>
#include <sys/bootconf.h>
#include <sys/varargs.h>
#include <sys/promif.h>
#include <sys/modctl.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ndi_impldefs.h>
#include <sys/ddidmareq.h>
#include <sys/psw.h>
#include <sys/regset.h>
#include <sys/clock.h>
#include <sys/pte.h>
#include <sys/tss.h>
#include <sys/stack.h>
#include <sys/trap.h>
#include <sys/fp.h>
#include <vm/kboot_mmu.h>
#include <vm/anon.h>
#include <vm/as.h>
#include <vm/page.h>
#include <vm/seg.h>
#include <vm/seg_dev.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kpm.h>
#include <vm/seg_map.h>
#include <vm/seg_vn.h>
#include <vm/seg_kp.h>
#include <sys/memnode.h>
#include <vm/vm_dep.h>
#include <sys/thread.h>
#include <sys/sysconf.h>
#include <sys/vm_machparam.h>
#include <sys/archsystm.h>
#include <sys/machsystm.h>
#include <vm/hat.h>
#include <vm/hat_i86.h>
#include <sys/pmem.h>
#include <sys/smp_impldefs.h>
#include <sys/x86_archext.h>
#include <sys/cpuvar.h>
#include <sys/segments.h>
#include <sys/clconf.h>
#include <sys/kobj.h>
#include <sys/kobj_lex.h>
#include <sys/cpc_impl.h>
#include <sys/x86_archext.h>
#include <sys/cpu_module.h>
#include <sys/smbios.h>
#include <sys/debug_info.h>
#include <sys/bootinfo.h>
#include <sys/ddi_timer.h>
#include <sys/systeminfo.h>
#include <sys/multiboot.h>
#ifdef __xpv
#include <sys/hypervisor.h>
#include <sys/xen_mmu.h>
#include <sys/evtchn_impl.h>
#include <sys/gnttab.h>
#include <sys/xpv_panic.h>
#include <xen/sys/xenbus_comms.h>
#include <xen/public/physdev.h>
extern void xen_late_startup(void);
struct xen_evt_data cpu0_evt_data;
#endif /* __xpv */
extern void progressbar_init(void);
extern void progressbar_start(void);
extern void brand_init(void);
extern void pcf_init(void);
extern void pg_init(void);
extern int size_pse_array(pgcnt_t, int);
#if defined(_SOFT_HOSTID)
#include <sys/rtc.h>
static int32_t set_soft_hostid(void);
static char hostid_file[] = "/etc/hostid";
#endif
void *gfx_devinfo_list;
/*
* XXX make declaration below "static" when drivers no longer use this
* interface.
*/
extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
/*
* segkp
*/
extern int segkp_fromheap;
static void kvm_init(void);
static void startup_init(void);
static void startup_memlist(void);
static void startup_kmem(void);
static void startup_modules(void);
static void startup_vm(void);
static void startup_end(void);
static void layout_kernel_va(void);
/*
* Declare these as initialized data so we can patch them.
*/
#ifdef __i386
/*
* Due to virtual address space limitations running in 32 bit mode, restrict
* the amount of physical memory configured to a max of PHYSMEM pages (16g).
*
* If the physical max memory size of 64g were allowed to be configured, the
* size of user virtual address space will be less than 1g. A limited user
* address space greatly reduces the range of applications that can run.
*
* If more physical memory than PHYSMEM is required, users should preferably
* run in 64 bit mode which has far looser virtual address space limitations.
*
* If 64 bit mode is not available (as in IA32) and/or more physical memory
* than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
* value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
* should also be carefully tuned to balance out the need of the user
* application while minimizing the risk of kernel heap exhaustion due to
* kernelbase being set too high.
*/
#define PHYSMEM 0x400000
#else /* __amd64 */
/*
* For now we can handle memory with physical addresses up to about
* 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
* half the VA space for seg_kpm. When systems get bigger than 64TB this
* code will need revisiting. There is an implicit assumption that there
* are no *huge* holes in the physical address space too.
*/
#define TERABYTE (1ul << 40)
#define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
#define PHYSMEM PHYSMEM_MAX64
#define AMD64_VA_HOLE_END 0xFFFF800000000000ul
#endif /* __amd64 */
pgcnt_t physmem = PHYSMEM;
pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
char *kobj_file_buf;
int kobj_file_bufsize; /* set in /etc/system */
/* Global variables for MP support. Used in mp_startup */
caddr_t rm_platter_va = 0;
uint32_t rm_platter_pa;
int auto_lpg_disable = 1;
/*
* Some CPUs have holes in the middle of the 64-bit virtual address range.
*/
uintptr_t hole_start, hole_end;
/*
* kpm mapping window
*/
caddr_t kpm_vbase;
size_t kpm_size;
static int kpm_desired;
#ifdef __amd64
static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
#endif
/*
* Configuration parameters set at boot time.
*/
caddr_t econtig; /* end of first block of contiguous kernel */
struct bootops *bootops = 0; /* passed in from boot */
struct bootops **bootopsp;
struct boot_syscalls *sysp; /* passed in from boot */
char bootblock_fstype[16];
char kern_bootargs[OBP_MAXPATHLEN];
char kern_bootfile[OBP_MAXPATHLEN];
/*
* ZFS zio segment. This allows us to exclude large portions of ZFS data that
* gets cached in kmem caches on the heap. If this is set to zero, we allocate
* zio buffers from their own segment, otherwise they are allocated from the
* heap. The optimization of allocating zio buffers from their own segment is
* only valid on 64-bit kernels.
*/
#if defined(__amd64)
int segzio_fromheap = 0;
#else
int segzio_fromheap = 1;
#endif
/*
* new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
* depends on number of BOP_ALLOC calls made and requested size, memory size
* combination and whether boot.bin memory needs to be freed.
*/
#define POSS_NEW_FRAGMENTS 12
/*
* VM data structures
*/
long page_hashsz; /* Size of page hash table (power of two) */
struct page *pp_base; /* Base of initial system page struct array */
struct page **page_hash; /* Page hash table */
pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
int pse_shift; /* log2(pse_table_size) */
struct seg ktextseg; /* Segment used for kernel executable image */
struct seg kvalloc; /* Segment used for "valloc" mapping */
struct seg kpseg; /* Segment used for pageable kernel virt mem */
struct seg kmapseg; /* Segment used for generic kernel mappings */
struct seg kdebugseg; /* Segment used for the kernel debugger */
struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
static struct seg *segmap = &kmapseg; /* easier to use name for in here */
struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
#if defined(__amd64)
struct seg kvseg_core; /* Segment used for the core heap */
struct seg kpmseg; /* Segment used for physical mapping */
struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
#else
struct seg *segkpm = NULL; /* Unused on IA32 */
#endif
caddr_t segkp_base; /* Base address of segkp */
caddr_t segzio_base; /* Base address of segzio */
#if defined(__amd64)
pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
#else
pgcnt_t segkpsize = 0;
#endif
pgcnt_t segziosize = 0; /* size of zio segment in pages */
/*
* VA range available to the debugger
*/
const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
const size_t kdi_segdebugsize = SEGDEBUGSIZE;
struct memseg *memseg_base;
struct vnode unused_pages_vp;
#define FOURGB 0x100000000LL
struct memlist *memlist;
caddr_t s_text; /* start of kernel text segment */
caddr_t e_text; /* end of kernel text segment */
caddr_t s_data; /* start of kernel data segment */
caddr_t e_data; /* end of kernel data segment */
caddr_t modtext; /* start of loadable module text reserved */
caddr_t e_modtext; /* end of loadable module text reserved */
caddr_t moddata; /* start of loadable module data reserved */
caddr_t e_moddata; /* end of loadable module data reserved */
struct memlist *phys_install; /* Total installed physical memory */
struct memlist *phys_avail; /* Total available physical memory */
/*
* kphysm_init returns the number of pages that were processed
*/
static pgcnt_t kphysm_init(page_t *, pgcnt_t);
#define IO_PROP_SIZE 64 /* device property size */
/*
* a couple useful roundup macros
*/
#define ROUND_UP_PAGE(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
#define ROUND_UP_LPAGE(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
#define ROUND_UP_4MEG(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
#define ROUND_UP_TOPLEVEL(x) \
((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
/*
* 32-bit Kernel's Virtual memory layout.
* +-----------------------+
* | |
* 0xFFC00000 -|-----------------------|- ARGSBASE
* | debugger |
* 0xFF800000 -|-----------------------|- SEGDEBUGBASE
* | Kernel Data |
* 0xFEC00000 -|-----------------------|
* | Kernel Text |
* 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
* |--- GDT ---|- GDT page (GDT_VA)
* |--- debug info ---|- debug info (DEBUG_INFO_VA)
* | |
* | page_t structures |
* | memsegs, memlists, |
* | page hash, etc. |
* --- -|-----------------------|- ekernelheap, valloc_base (floating)
* | | (segkp is just an arena in the heap)
* | |
* | kvseg |
* | |
* | |
* --- -|-----------------------|- kernelheap (floating)
* | Segkmap |
* 0xC3002000 -|-----------------------|- segmap_start (floating)
* | Red Zone |
* 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
* | | ||
* | Shared objects | \/
* | |
* : :
* | user data |
* |-----------------------|
* | user text |
* 0x08048000 -|-----------------------|
* | user stack |
* : :
* | invalid |
* 0x00000000 +-----------------------+
*
*
* 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
* +-----------------------+
* | |
* 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
* | debugger (?) |
* 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
* | unused |
* +-----------------------+
* | Kernel Data |
* 0xFFFFFFFF.FBC00000 |-----------------------|
* | Kernel Text |
* 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
* |--- GDT ---|- GDT page (GDT_VA)
* |--- debug info ---|- debug info (DEBUG_INFO_VA)
* | |
* | Core heap | (used for loadable modules)
* 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
* | Kernel |
* | heap |
* 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
* | segmap |
* 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
* | device mappings |
* 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
* | segzio |
* 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
* | segkp |
* --- |-----------------------|- segkp_base (floating)
* | page_t structures | valloc_base + valloc_sz
* | memsegs, memlists, |
* | page hash, etc. |
* 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB)
* | segkpm |
* 0xFFFFFE00.00000000 |-----------------------|
* | Red Zone |
* 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB)
* | User stack |- User space memory
* | |
* | shared objects, etc | (grows downwards)
* : :
* | |
* 0xFFFF8000.00000000 |-----------------------|
* | |
* | VA Hole / unused |
* | |
* 0x00008000.00000000 |-----------------------|
* | |
* | |
* : :
* | user heap | (grows upwards)
* | |
* | user data |
* |-----------------------|
* | user text |
* 0x00000000.04000000 |-----------------------|
* | invalid |
* 0x00000000.00000000 +-----------------------+
*
* A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
* kernel, except that userlimit is raised to 0xfe000000
*
* Floating values:
*
* valloc_base: start of the kernel's memory management/tracking data
* structures. This region contains page_t structures for
* physical memory, memsegs, memlists, and the page hash.
*
* core_base: start of the kernel's "core" heap area on 64-bit systems.
* This area is intended to be used for global data as well as for module
* text/data that does not fit into the nucleus pages. The core heap is
* restricted to a 2GB range, allowing every address within it to be
* accessed using rip-relative addressing
*
* ekernelheap: end of kernelheap and start of segmap.
*
* kernelheap: start of kernel heap. On 32-bit systems, this starts right
* above a red zone that separates the user's address space from the
* kernel's. On 64-bit systems, it sits above segkp and segkpm.
*
* segmap_start: start of segmap. The length of segmap can be modified
* through eeprom. The default length is 16MB on 32-bit systems and 64MB
* on 64-bit systems.
*
* kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
* decreased by 2X the size required for page_t. This allows the kernel
* heap to grow in size with physical memory. With sizeof(page_t) == 80
* bytes, the following shows the values of kernelbase and kernel heap
* sizes for different memory configurations (assuming default segmap and
* segkp sizes).
*
* mem size for kernelbase kernel heap
* size page_t's size
* ---- --------- ---------- -----------
* 1gb 0x01400000 0xd1800000 684MB
* 2gb 0x02800000 0xcf000000 704MB
* 4gb 0x05000000 0xca000000 744MB
* 6gb 0x07800000 0xc5000000 784MB
* 8gb 0x0a000000 0xc0000000 824MB
* 16gb 0x14000000 0xac000000 984MB
* 32gb 0x28000000 0x84000000 1304MB
* 64gb 0x50000000 0x34000000 1944MB (*)
*
* kernelbase is less than the abi minimum of 0xc0000000 for memory
* configurations above 8gb.
*
* (*) support for memory configurations above 32gb will require manual tuning
* of kernelbase to balance out the need of user applications.
*/
/* real-time-clock initialization parameters */
extern time_t process_rtc_config_file(void);
uintptr_t kernelbase;
uintptr_t postbootkernelbase; /* not set till boot loader is gone */
uintptr_t eprom_kernelbase;
size_t segmapsize;
uintptr_t segmap_start;
int segmapfreelists;
pgcnt_t npages;
pgcnt_t orig_npages;
size_t core_size; /* size of "core" heap */
uintptr_t core_base; /* base address of "core" heap */
/*
* List of bootstrap pages. We mark these as allocated in startup.
* release_bootstrap() will free them when we're completely done with
* the bootstrap.
*/
static page_t *bootpages;
/*
* boot time pages that have a vnode from the ramdisk will keep that forever.
*/
static page_t *rd_pages;
/*
* Lower 64K
*/
static page_t *lower_pages = NULL;
static int lower_pages_count = 0;
struct system_hardware system_hardware;
/*
* Is this Solaris instance running in a fully virtualized xVM domain?
*/
int xpv_is_hvm = 0;
/*
* Enable some debugging messages concerning memory usage...
*/
static void
print_memlist(char *title, struct memlist *mp)
{
prom_printf("MEMLIST: %s:\n", title);
while (mp != NULL) {
prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
mp->address, mp->size);
mp = mp->next;
}
}
/*
* XX64 need a comment here.. are these just default values, surely
* we read the "cpuid" type information to figure this out.
*/
int l2cache_sz = 0x80000;
int l2cache_linesz = 0x40;
int l2cache_assoc = 1;
static size_t textrepl_min_gb = 10;
/*
* on 64 bit we use a predifined VA range for mapping devices in the kernel
* on 32 bit the mappings are intermixed in the heap, so we use a bit map
*/
#ifdef __amd64
vmem_t *device_arena;
uintptr_t toxic_addr = (uintptr_t)NULL;
size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
#else /* __i386 */
ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
size_t toxic_bit_map_len = 0; /* in bits */
#endif /* __i386 */
/*
* Simple boot time debug facilities
*/
static char *prm_dbg_str[] = {
"%s:%d: '%s' is 0x%x\n",
"%s:%d: '%s' is 0x%llx\n"
};
int prom_debug;
#define PRM_DEBUG(q) if (prom_debug) \
prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
#define PRM_POINT(q) if (prom_debug) \
prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
/*
* This structure is used to keep track of the intial allocations
* done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
* be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
*/
#define NUM_ALLOCATIONS 7
int num_allocations = 0;
struct {
void **al_ptr;
size_t al_size;
} allocations[NUM_ALLOCATIONS];
size_t valloc_sz = 0;
uintptr_t valloc_base;
#define ADD_TO_ALLOCATIONS(ptr, size) { \
size = ROUND_UP_PAGE(size); \
if (num_allocations == NUM_ALLOCATIONS) \
panic("too many ADD_TO_ALLOCATIONS()"); \
allocations[num_allocations].al_ptr = (void**)&ptr; \
allocations[num_allocations].al_size = size; \
valloc_sz += size; \
++num_allocations; \
}
/*
* Allocate all the initial memory needed by the page allocator.
*/
static void
perform_allocations(void)
{
caddr_t mem;
int i;
int valloc_align;
PRM_DEBUG(valloc_base);
PRM_DEBUG(valloc_sz);
valloc_align = mmu.level_size[mmu.max_page_level > 0];
mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
if (mem != (caddr_t)valloc_base)
panic("BOP_ALLOC() failed");
bzero(mem, valloc_sz);
for (i = 0; i < num_allocations; ++i) {
*allocations[i].al_ptr = (void *)mem;
mem += allocations[i].al_size;
}
}
/*
* Our world looks like this at startup time.
*
* In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
* at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
* 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
* addresses are fixed in the binary at link time.
*
* On the text page:
* unix/genunix/krtld/module text loads.
*
* On the data page:
* unix/genunix/krtld/module data loads.
*
* Machine-dependent startup code
*/
void
startup(void)
{
#if !defined(__xpv)
extern void startup_bios_disk(void);
extern void startup_pci_bios(void);
extern int post_fastreboot;
#endif
extern cpuset_t cpu_ready_set;
/*
* Make sure that nobody tries to use sekpm until we have
* initialized it properly.
*/
#if defined(__amd64)
kpm_desired = 1;
#endif
kpm_enable = 0;
CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
#if defined(__xpv) /* XXPV fix me! */
{
extern int segvn_use_regions;
segvn_use_regions = 0;
}
#endif
progressbar_init();
startup_init();
#if defined(__xpv)
startup_xen_version();
#endif
startup_memlist();
startup_kmem();
startup_vm();
#if !defined(__xpv)
if (!post_fastreboot)
startup_pci_bios();
#endif
#if defined(__xpv)
startup_xen_mca();
#endif
startup_modules();
#if !defined(__xpv)
if (!post_fastreboot)
startup_bios_disk();
#endif
startup_end();
progressbar_start();
}
static void
startup_init()
{
PRM_POINT("startup_init() starting...");
/*
* Complete the extraction of cpuid data
*/
cpuid_pass2(CPU);
(void) check_boot_version(BOP_GETVERSION(bootops));
/*
* Check for prom_debug in boot environment
*/
if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
++prom_debug;
PRM_POINT("prom_debug found in boot enviroment");
}
/*
* Collect node, cpu and memory configuration information.
*/
get_system_configuration();
/*
* Halt if this is an unsupported processor.
*/
if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
printf("\n486 processor (\"%s\") detected.\n",
CPU->cpu_brandstr);
halt("This processor is not supported by this release "
"of Solaris.");
}
PRM_POINT("startup_init() done");
}
/*
* Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
* everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
* also filters out physical page zero. There is some reliance on the
* boot loader allocating only a few contiguous physical memory chunks.
*/
static void
avail_filter(uint64_t *addr, uint64_t *size)
{
uintptr_t va;
uintptr_t next_va;
pfn_t pfn;
uint64_t pfn_addr;
uint64_t pfn_eaddr;
uint_t prot;
size_t len;
uint_t change;
if (prom_debug)
prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
*addr, *size);
/*
* page zero is required for BIOS.. never make it available
*/
if (*addr == 0) {
*addr += MMU_PAGESIZE;
*size -= MMU_PAGESIZE;
}
/*
* First we trim from the front of the range. Since kbm_probe()
* walks ranges in virtual order, but addr/size are physical, we need
* to the list until no changes are seen. This deals with the case
* where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
* but w < v.
*/
do {
change = 0;
for (va = KERNEL_TEXT;
*size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
va = next_va) {
next_va = va + len;
pfn_addr = pfn_to_pa(pfn);
pfn_eaddr = pfn_addr + len;
if (pfn_addr <= *addr && pfn_eaddr > *addr) {
change = 1;
while (*size > 0 && len > 0) {
*addr += MMU_PAGESIZE;
*size -= MMU_PAGESIZE;
len -= MMU_PAGESIZE;
}
}
}
if (change && prom_debug)
prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
*addr, *size);
} while (change);
/*
* Trim pages from the end of the range.
*/
for (va = KERNEL_TEXT;
*size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
va = next_va) {
next_va = va + len;
pfn_addr = pfn_to_pa(pfn);
if (pfn_addr >= *addr && pfn_addr < *addr + *size)
*size = pfn_addr - *addr;
}
if (prom_debug)
prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
*addr, *size);
}
static void
kpm_init()
{
struct segkpm_crargs b;
/*
* These variables were all designed for sfmmu in which segkpm is
* mapped using a single pagesize - either 8KB or 4MB. On x86, we
* might use 2+ page sizes on a single machine, so none of these
* variables have a single correct value. They are set up as if we
* always use a 4KB pagesize, which should do no harm. In the long
* run, we should get rid of KPM's assumption that only a single
* pagesize is used.
*/
kpm_pgshft = MMU_PAGESHIFT;
kpm_pgsz = MMU_PAGESIZE;
kpm_pgoff = MMU_PAGEOFFSET;
kpmp2pshft = 0;
kpmpnpgs = 1;
ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
PRM_POINT("about to create segkpm");
rw_enter(&kas.a_lock, RW_WRITER);
if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
panic("cannot attach segkpm");
b.prot = PROT_READ | PROT_WRITE;
b.nvcolors = 1;
if (segkpm_create(segkpm, (caddr_t)&b) != 0)
panic("segkpm_create segkpm");
rw_exit(&kas.a_lock);
}
/*
* The debug info page provides enough information to allow external
* inspectors (e.g. when running under a hypervisor) to bootstrap
* themselves into allowing full-blown kernel debugging.
*/
static void
init_debug_info(void)
{
caddr_t mem;
debug_info_t *di;
#ifndef __lint
ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
#endif
mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
MMU_PAGESIZE);
if (mem != (caddr_t)DEBUG_INFO_VA)
panic("BOP_ALLOC() failed");
bzero(mem, MMU_PAGESIZE);
di = (debug_info_t *)mem;
di->di_magic = DEBUG_INFO_MAGIC;
di->di_version = DEBUG_INFO_VERSION;
di->di_modules = (uintptr_t)&modules;
di->di_s_text = (uintptr_t)s_text;
di->di_e_text = (uintptr_t)e_text;
di->di_s_data = (uintptr_t)s_data;
di->di_e_data = (uintptr_t)e_data;
di->di_hat_htable_off = offsetof(hat_t, hat_htable);
di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
}
/*
* Build the memlists and other kernel essential memory system data structures.
* This is everything at valloc_base.
*/
static void
startup_memlist(void)
{
size_t memlist_sz;
size_t memseg_sz;
size_t pagehash_sz;
size_t pp_sz;
uintptr_t va;
size_t len;
uint_t prot;
pfn_t pfn;
int memblocks;
caddr_t pagecolor_mem;
size_t pagecolor_memsz;
caddr_t page_ctrs_mem;
size_t page_ctrs_size;
size_t pse_table_alloc_size;
struct memlist *current;
extern void startup_build_mem_nodes(struct memlist *);
/* XX64 fix these - they should be in include files */
extern size_t page_coloring_init(uint_t, int, int);
extern void page_coloring_setup(caddr_t);
PRM_POINT("startup_memlist() starting...");
/*
* Use leftover large page nucleus text/data space for loadable modules.
* Use at most MODTEXT/MODDATA.
*/
len = kbm_nucleus_size;
ASSERT(len > MMU_PAGESIZE);
moddata = (caddr_t)ROUND_UP_PAGE(e_data);
e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
if (e_moddata - moddata > MODDATA)
e_moddata = moddata + MODDATA;
modtext = (caddr_t)ROUND_UP_PAGE(e_text);
e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
if (e_modtext - modtext > MODTEXT)
e_modtext = modtext + MODTEXT;
econtig = e_moddata;
PRM_DEBUG(modtext);
PRM_DEBUG(e_modtext);
PRM_DEBUG(moddata);
PRM_DEBUG(e_moddata);
PRM_DEBUG(econtig);
/*
* Examine the boot loader physical memory map to find out:
* - total memory in system - physinstalled
* - the max physical address - physmax
* - the number of discontiguous segments of memory.
*/
if (prom_debug)
print_memlist("boot physinstalled",
bootops->boot_mem->physinstalled);
installed_top_size(bootops->boot_mem->physinstalled, &physmax,
&physinstalled, &memblocks);
PRM_DEBUG(physmax);
PRM_DEBUG(physinstalled);
PRM_DEBUG(memblocks);
/*
* Initialize hat's mmu parameters.
* Check for enforce-prot-exec in boot environment. It's used to
* enable/disable support for the page table entry NX bit.
* The default is to enforce PROT_EXEC on processors that support NX.
* Boot seems to round up the "len", but 8 seems to be big enough.
*/
mmu_init();
#ifdef __i386
/*
* physmax is lowered if there is more memory than can be
* physically addressed in 32 bit (PAE/non-PAE) modes.
*/
if (mmu.pae_hat) {
if (PFN_ABOVE64G(physmax)) {
physinstalled -= (physmax - (PFN_64G - 1));
physmax = PFN_64G - 1;
}
} else {
if (PFN_ABOVE4G(physmax)) {
physinstalled -= (physmax - (PFN_4G - 1));
physmax = PFN_4G - 1;
}
}
#endif
startup_build_mem_nodes(bootops->boot_mem->physinstalled);
if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
char value[8];
if (len < 8)
(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
else
(void) strcpy(value, "");
if (strcmp(value, "off") == 0)
mmu.pt_nx = 0;
}
PRM_DEBUG(mmu.pt_nx);
/*
* We will need page_t's for every page in the system, except for
* memory mapped at or above above the start of the kernel text segment.
*
* pages above e_modtext are attributed to kernel debugger (obp_pages)
*/
npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
obp_pages = 0;
va = KERNEL_TEXT;
while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
npages -= len >> MMU_PAGESHIFT;
if (va >= (uintptr_t)e_moddata)
obp_pages += len >> MMU_PAGESHIFT;
va += len;
}
PRM_DEBUG(npages);
PRM_DEBUG(obp_pages);
/*
* If physmem is patched to be non-zero, use it instead of the computed
* value unless it is larger than the actual amount of memory on hand.
*/
if (physmem == 0 || physmem > npages) {
physmem = npages;
} else if (physmem < npages) {
orig_npages = npages;
npages = physmem;
}
PRM_DEBUG(physmem);
/*
* We now compute the sizes of all the initial allocations for
* structures the kernel needs in order do kmem_alloc(). These
* include:
* memsegs
* memlists
* page hash table
* page_t's
* page coloring data structs
*/
memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
PRM_DEBUG(memseg_sz);
/*
* Reserve space for memlists. There's no real good way to know exactly
* how much room we'll need, but this should be a good upper bound.
*/
memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
(memblocks + POSS_NEW_FRAGMENTS));
ADD_TO_ALLOCATIONS(memlist, memlist_sz);
PRM_DEBUG(memlist_sz);
/*
* The page structure hash table size is a power of 2
* such that the average hash chain length is PAGE_HASHAVELEN.
*/
page_hashsz = npages / PAGE_HASHAVELEN;
page_hashsz = 1 << highbit(page_hashsz);
pagehash_sz = sizeof (struct page *) * page_hashsz;
ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
PRM_DEBUG(pagehash_sz);
/*
* Set aside room for the page structures themselves.
*/
PRM_DEBUG(npages);
pp_sz = sizeof (struct page) * npages;
ADD_TO_ALLOCATIONS(pp_base, pp_sz);
PRM_DEBUG(pp_sz);
/*
* determine l2 cache info and memory size for page coloring
*/
(void) getl2cacheinfo(CPU,
&l2cache_sz, &l2cache_linesz, &l2cache_assoc);
pagecolor_memsz =
page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
PRM_DEBUG(pagecolor_memsz);
page_ctrs_size = page_ctrs_sz();
ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
PRM_DEBUG(page_ctrs_size);
/*
* Allocate the array that protects pp->p_selock.
*/
pse_shift = size_pse_array(physmem, max_ncpus);
pse_table_size = 1 << pse_shift;
pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
#if defined(__amd64)
valloc_sz = ROUND_UP_LPAGE(valloc_sz);
valloc_base = VALLOC_BASE;
/*
* The default values of VALLOC_BASE and SEGKPM_BASE should work
* for values of physmax up to 1 Terabyte. They need adjusting when
* memory is at addresses above 1 TB.
*/
if (physmax + 1 > mmu_btop(TERABYTE)) {
uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
/* Round to largest possible pagesize for now */
kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG);
segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */
/* make sure we leave some space for user apps above hole */
segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
if (segkpm_base > SEGKPM_BASE)
segkpm_base = SEGKPM_BASE;
PRM_DEBUG(segkpm_base);
valloc_base = segkpm_base + kpm_resv_amount;
PRM_DEBUG(valloc_base);
}
#else /* __i386 */
valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
PRM_DEBUG(valloc_base);
#endif /* __i386 */
/*
* do all the initial allocations
*/
perform_allocations();
/*
* Build phys_install and phys_avail in kernel memspace.
* - phys_install should be all memory in the system.
* - phys_avail is phys_install minus any memory mapped before this
* point above KERNEL_TEXT.
*/
current = phys_install = memlist;
copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
panic("physinstalled was too big!");
if (prom_debug)
print_memlist("phys_install", phys_install);
phys_avail = current;
PRM_POINT("Building phys_avail:\n");
copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
avail_filter);
if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
panic("physavail was too big!");
if (prom_debug)
print_memlist("phys_avail", phys_avail);
/*
* setup page coloring
*/
page_coloring_setup(pagecolor_mem);
page_lock_init(); /* currently a no-op */
/*
* free page list counters
*/
(void) page_ctrs_alloc(page_ctrs_mem);
/*
* Size the pcf array based on the number of cpus in the box at
* boot time.
*/
pcf_init();
/*
* Initialize the page structures from the memory lists.
*/
availrmem_initial = availrmem = freemem = 0;
PRM_POINT("Calling kphysm_init()...");
npages = kphysm_init(pp_base, npages);
PRM_POINT("kphysm_init() done");
PRM_DEBUG(npages);
init_debug_info();
/*
* Now that page_t's have been initialized, remove all the
* initial allocation pages from the kernel free page lists.
*/
boot_mapin((caddr_t)valloc_base, valloc_sz);
boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
PRM_POINT("startup_memlist() done");
PRM_DEBUG(valloc_sz);
#if defined(__amd64)
if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
textrepl_min_gb && l2cache_sz <= 2 << 20) {
extern size_t textrepl_size_thresh;
textrepl_size_thresh = (16 << 20) - 1;
}
#endif
}
/*
* Layout the kernel's part of address space and initialize kmem allocator.
*/
static void
startup_kmem(void)
{
extern void page_set_colorequiv_arr(void);
PRM_POINT("startup_kmem() starting...");
#if defined(__amd64)
if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
"systems.");
kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
core_base = (uintptr_t)COREHEAP_BASE;
core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
#else /* __i386 */
/*
* We configure kernelbase based on:
*
* 1. user specified kernelbase via eeprom command. Value cannot exceed
* KERNELBASE_MAX. we large page align eprom_kernelbase
*
* 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
* On large memory systems we must lower kernelbase to allow
* enough room for page_t's for all of memory.
*
* The value set here, might be changed a little later.
*/
if (eprom_kernelbase) {
kernelbase = eprom_kernelbase & mmu.level_mask[1];
if (kernelbase > KERNELBASE_MAX)
kernelbase = KERNELBASE_MAX;
} else {
kernelbase = (uintptr_t)KERNELBASE;
kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
}
ASSERT((kernelbase & mmu.level_offset[1]) == 0);
core_base = valloc_base;
core_size = 0;
#endif /* __i386 */
PRM_DEBUG(core_base);
PRM_DEBUG(core_size);
PRM_DEBUG(kernelbase);
#if defined(__i386)
segkp_fromheap = 1;
#endif /* __i386 */
ekernelheap = (char *)core_base;
PRM_DEBUG(ekernelheap);
/*
* Now that we know the real value of kernelbase,
* update variables that were initialized with a value of
* KERNELBASE (in common/conf/param.c).
*
* XXX The problem with this sort of hackery is that the
* compiler just may feel like putting the const declarations
* (in param.c) into the .text section. Perhaps they should
* just be declared as variables there?
*/
*(uintptr_t *)&_kernelbase = kernelbase;
*(uintptr_t *)&_userlimit = kernelbase;
#if defined(__amd64)
*(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
#else
*(uintptr_t *)&_userlimit32 = _userlimit;
#endif
PRM_DEBUG(_kernelbase);
PRM_DEBUG(_userlimit);
PRM_DEBUG(_userlimit32);
layout_kernel_va();
#if defined(__i386)
/*
* If segmap is too large we can push the bottom of the kernel heap
* higher than the base. Or worse, it could exceed the top of the
* VA space entirely, causing it to wrap around.
*/
if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
panic("too little address space available for kernelheap,"
" use eeprom for lower kernelbase or smaller segmapsize");
#endif /* __i386 */
/*
* Initialize the kernel heap. Note 3rd argument must be > 1st.
*/
kernelheap_init(kernelheap, ekernelheap,
kernelheap + MMU_PAGESIZE,
(void *)core_base, (void *)(core_base + core_size));
#if defined(__xpv)
/*
* Link pending events struct into cpu struct
*/
CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
#endif
/*
* Initialize kernel memory allocator.
*/
kmem_init();
/*
* Factor in colorequiv to check additional 'equivalent' bins
*/
page_set_colorequiv_arr();
/*
* print this out early so that we know what's going on
*/
cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
/*
* Initialize bp_mapin().
*/
bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
/*
* orig_npages is non-zero if physmem has been configured for less
* than the available memory.
*/
if (orig_npages) {
cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
(npages == PHYSMEM ? "Due to virtual address space " : ""),
npages, orig_npages);
}
#if defined(__i386)
if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
"System using 0x%lx",
(uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
#endif
#ifdef KERNELBASE_ABI_MIN
if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
"i386 ABI compliant.", (uintptr_t)kernelbase);
}
#endif
#ifdef __xpv
/*
* Some of the xen start information has to be relocated up
* into the kernel's permanent address space.
*/
PRM_POINT("calling xen_relocate_start_info()");
xen_relocate_start_info();
PRM_POINT("xen_relocate_start_info() done");
/*
* (Update the vcpu pointer in our cpu structure to point into
* the relocated shared info.)
*/
CPU->cpu_m.mcpu_vcpu_info =
&HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
#endif
PRM_POINT("startup_kmem() done");
}
#ifndef __xpv
/*
* If we have detected that we are running in an HVM environment, we need
* to prepend the PV driver directory to the module search path.
*/
#define HVM_MOD_DIR "/platform/i86hvm/kernel"
static void
update_default_path()
{
char *current, *newpath;
int newlen;
/*
* We are about to resync with krtld. krtld will reset its
* internal module search path iff Solaris has set default_path.
* We want to be sure we're prepending this new directory to the
* right search path.
*/
current = (default_path == NULL) ? kobj_module_path : default_path;
newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1;
newpath = kmem_alloc(newlen, KM_SLEEP);
(void) strcpy(newpath, HVM_MOD_DIR);
(void) strcat(newpath, " ");
(void) strcat(newpath, current);
default_path = newpath;
}
#endif
static void
startup_modules(void)
{
int cnt;
extern void prom_setup(void);
int32_t v, h;
char d[11];
char *cp;
cmi_hdl_t hdl;
PRM_POINT("startup_modules() starting...");
#ifndef __xpv
/*
* Initialize ten-micro second timer so that drivers will
* not get short changed in their init phase. This was
* not getting called until clkinit which, on fast cpu's
* caused the drv_usecwait to be way too short.
*/
microfind();
if (xpv_is_hvm)
update_default_path();
#endif
/*
* Read the GMT lag from /etc/rtc_config.
*/
sgmtl(process_rtc_config_file());
/*
* Calculate default settings of system parameters based upon
* maxusers, yet allow to be overridden via the /etc/system file.
*/
param_calc(0);
mod_setup();
/*
* Initialize system parameters.
*/
param_init();
/*
* Initialize the default brands
*/
brand_init();
/*
* maxmem is the amount of physical memory we're playing with.
*/
maxmem = physmem;
/*
* Initialize segment management stuff.
*/
seg_init();
if (modload("fs", "specfs") == -1)
halt("Can't load specfs");
if (modload("fs", "devfs") == -1)
halt("Can't load devfs");
if (modload("fs", "dev") == -1)
halt("Can't load dev");
(void) modloadonly("sys", "lbl_edition");
dispinit();
/*
* This is needed here to initialize hw_serial[] for cluster booting.
*/
if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
cmn_err(CE_WARN, "Unable to set hostid");
} else {
for (v = h, cnt = 0; cnt < 10; cnt++) {
d[cnt] = (char)(v % 10);
v /= 10;
if (v == 0)
break;
}
for (cp = hw_serial; cnt >= 0; cnt--)
*cp++ = d[cnt] + '0';
*cp = 0;
}
/* Read cluster configuration data. */
clconf_init();
#if defined(__xpv)
ec_init();
gnttab_init();
(void) xs_early_init();
#endif /* __xpv */
/*
* Create a kernel device tree. First, create rootnex and
* then invoke bus specific code to probe devices.
*/
setup_ddi();
/*
* Set up the CPU module subsystem for the boot cpu in the native
* case, and all physical cpu resource in the xpv dom0 case.
* Modifies the device tree, so this must be done after
* setup_ddi().
*/
#ifdef __xpv
/*
* If paravirtualized and on dom0 then we initialize all physical
* cpu handles now; if paravirtualized on a domU then do not
* initialize.
*/
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
xen_mc_lcpu_cookie_t cpi;
for (cpi = xen_physcpu_next(NULL); cpi != NULL;
cpi = xen_physcpu_next(cpi)) {
if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
xen_physcpu_strandid(cpi))) != NULL &&
(x86_feature & X86_MCA))
cmi_mca_init(hdl);
}
}
#else
/*
* Initialize a handle for the boot cpu - others will initialize
* as they startup. Do not do this if we know we are in an HVM domU.
*/
if (!xpv_is_hvm &&
(hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
(x86_feature & X86_MCA))
cmi_mca_init(hdl);
#endif /* __xpv */
/*
* Fake a prom tree such that /dev/openprom continues to work
*/
PRM_POINT("startup_modules: calling prom_setup...");
prom_setup();
PRM_POINT("startup_modules: done");
/*
* Load all platform specific modules
*/
PRM_POINT("startup_modules: calling psm_modload...");
psm_modload();
PRM_POINT("startup_modules() done");
}
/*
* claim a "setaside" boot page for use in the kernel
*/
page_t *
boot_claim_page(pfn_t pfn)
{
page_t *pp;
pp = page_numtopp_nolock(pfn);
ASSERT(pp != NULL);
if (PP_ISBOOTPAGES(pp)) {
if (pp->p_next != NULL)
pp->p_next->p_prev = pp->p_prev;
if (pp->p_prev == NULL)
bootpages = pp->p_next;
else
pp->p_prev->p_next = pp->p_next;
} else {
/*
* htable_attach() expects a base pagesize page
*/
if (pp->p_szc != 0)
page_boot_demote(pp);
pp = page_numtopp(pfn, SE_EXCL);
}
return (pp);
}
/*
* Walk through the pagetables looking for pages mapped in by boot. If the
* setaside flag is set the pages are expected to be returned to the
* kernel later in boot, so we add them to the bootpages list.
*/
static void
protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
{
uintptr_t va = low;
size_t len;
uint_t prot;
pfn_t pfn;
page_t *pp;
pgcnt_t boot_protect_cnt = 0;
while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
if (va + len >= high)
panic("0x%lx byte mapping at 0x%p exceeds boot's "
"legal range.", len, (void *)va);
while (len > 0) {
pp = page_numtopp_alloc(pfn);
if (pp != NULL) {
if (setaside == 0)
panic("Unexpected mapping by boot. "
"addr=%p pfn=%lx\n",
(void *)va, pfn);
pp->p_next = bootpages;
pp->p_prev = NULL;
PP_SETBOOTPAGES(pp);
if (bootpages != NULL) {
bootpages->p_prev = pp;
}
bootpages = pp;
++boot_protect_cnt;
}
++pfn;
len -= MMU_PAGESIZE;
va += MMU_PAGESIZE;
}
}
PRM_DEBUG(boot_protect_cnt);
}
/*
*
*/
static void
layout_kernel_va(void)
{
PRM_POINT("layout_kernel_va() starting...");
/*
* Establish the final size of the kernel's heap, size of segmap,
* segkp, etc.
*/
#if defined(__amd64)
kpm_vbase = (caddr_t)segkpm_base;
kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
panic("not enough room for kpm!");
PRM_DEBUG(kpm_size);
PRM_DEBUG(kpm_vbase);
/*
* By default we create a seg_kp in 64 bit kernels, it's a little
* faster to access than embedding it in the heap.
*/
segkp_base = (caddr_t)valloc_base + valloc_sz;
if (!segkp_fromheap) {
size_t sz = mmu_ptob(segkpsize);
/*
* determine size of segkp
*/
if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
sz = SEGKPDEFSIZE;
cmn_err(CE_WARN, "!Illegal value for segkpsize. "
"segkpsize has been reset to %ld pages",
mmu_btop(sz));
}
sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
}
PRM_DEBUG(segkp_base);
PRM_DEBUG(segkpsize);
/*
* segzio is used for ZFS cached data. It uses a distinct VA
* segment (from kernel heap) so that we can easily tell not to
* include it in kernel crash dumps on 64 bit kernels. The trick is
* to give it lots of VA, but not constrain the kernel heap.
* We scale the size of segzio linearly with physmem up to
* SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
*/
segzio_base = segkp_base + mmu_ptob(segkpsize);
if (segzio_fromheap) {
segziosize = 0;
} else {
size_t physmem_size = mmu_ptob(physmem);
size_t size = (segziosize == 0) ?
physmem_size : mmu_ptob(segziosize);
if (size < SEGZIOMINSIZE)
size = SEGZIOMINSIZE;
if (size > SEGZIOMAXSIZE) {
size = SEGZIOMAXSIZE;
if (physmem_size > size)
size += (physmem_size - size) / 2;
}
segziosize = mmu_btop(ROUND_UP_LPAGE(size));
}
PRM_DEBUG(segziosize);
PRM_DEBUG(segzio_base);
/*
* Put the range of VA for device mappings next, kmdb knows to not
* grep in this range of addresses.
*/
toxic_addr =
ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
PRM_DEBUG(toxic_addr);
segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
#else /* __i386 */
segmap_start = ROUND_UP_LPAGE(kernelbase);
#endif /* __i386 */
PRM_DEBUG(segmap_start);
/*
* Users can change segmapsize through eeprom. If the variable
* is tuned through eeprom, there is no upper bound on the
* size of segmap.
*/
segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
#if defined(__i386)
/*
* 32-bit systems don't have segkpm or segkp, so segmap appears at
* the bottom of the kernel's address range. Set aside space for a
* small red zone just below the start of segmap.
*/
segmap_start += KERNEL_REDZONE_SIZE;
segmapsize -= KERNEL_REDZONE_SIZE;
#endif
PRM_DEBUG(segmap_start);
PRM_DEBUG(segmapsize);
kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
PRM_DEBUG(kernelheap);
PRM_POINT("layout_kernel_va() done...");
}
/*
* Finish initializing the VM system, now that we are no longer
* relying on the boot time memory allocators.
*/
static void
startup_vm(void)
{
struct segmap_crargs a;
extern int use_brk_lpg, use_stk_lpg;
PRM_POINT("startup_vm() starting...");
/*
* Initialize the hat layer.
*/
hat_init();
/*
* Do final allocations of HAT data structures that need to
* be allocated before quiescing the boot loader.
*/
PRM_POINT("Calling hat_kern_alloc()...");
hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
PRM_POINT("hat_kern_alloc() done");
#ifndef __xpv
/*
* Setup Page Attribute Table
*/
pat_sync();
#endif
/*
* The next two loops are done in distinct steps in order
* to be sure that any page that is doubly mapped (both above
* KERNEL_TEXT and below kernelbase) is dealt with correctly.
* Note this may never happen, but it might someday.
*/
bootpages = NULL;
PRM_POINT("Protecting boot pages");
/*
* Protect any pages mapped above KERNEL_TEXT that somehow have
* page_t's. This can only happen if something weird allocated
* in this range (like kadb/kmdb).
*/
protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
/*
* Before we can take over memory allocation/mapping from the boot
* loader we must remove from our free page lists any boot allocated
* pages that stay mapped until release_bootstrap().
*/
protect_boot_range(0, kernelbase, 1);
/*
* Switch to running on regular HAT (not boot_mmu)
*/
PRM_POINT("Calling hat_kern_setup()...");
hat_kern_setup();
/*
* It is no longer safe to call BOP_ALLOC(), so make sure we don't.
*/
bop_no_more_mem();
PRM_POINT("hat_kern_setup() done");
hat_cpu_online(CPU);
/*
* Initialize VM system
*/
PRM_POINT("Calling kvm_init()...");
kvm_init();
PRM_POINT("kvm_init() done");
/*
* Tell kmdb that the VM system is now working
*/
if (boothowto & RB_DEBUG)
kdi_dvec_vmready();
#if defined(__xpv)
/*
* Populate the I/O pool on domain 0
*/
if (DOMAIN_IS_INITDOMAIN(xen_info)) {
extern long populate_io_pool(void);
long init_io_pool_cnt;
PRM_POINT("Populating reserve I/O page pool");
init_io_pool_cnt = populate_io_pool();
PRM_DEBUG(init_io_pool_cnt);
}
#endif
/*
* Mangle the brand string etc.
*/
cpuid_pass3(CPU);
#if defined(__amd64)
/*
* Create the device arena for toxic (to dtrace/kmdb) mappings.
*/
device_arena = vmem_create("device", (void *)toxic_addr,
toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
#else /* __i386 */
/*
* allocate the bit map that tracks toxic pages
*/
toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
PRM_DEBUG(toxic_bit_map_len);
toxic_bit_map =
kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
ASSERT(toxic_bit_map != NULL);
PRM_DEBUG(toxic_bit_map);
#endif /* __i386 */
/*
* Now that we've got more VA, as well as the ability to allocate from
* it, tell the debugger.
*/
if (boothowto & RB_DEBUG)
kdi_dvec_memavail();
/*
* The following code installs a special page fault handler (#pf)
* to work around a pentium bug.
*/
#if !defined(__amd64) && !defined(__xpv)
if (x86_type == X86_TYPE_P5) {
desctbr_t idtr;
gate_desc_t *newidt;
if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
panic("failed to install pentium_pftrap");
bcopy(idt0, newidt, NIDT * sizeof (*idt0));
set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
PROT_READ | PROT_EXEC);
CPU->cpu_idt = newidt;
idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
wr_idtr(&idtr);
}
#endif /* !__amd64 */
#if !defined(__xpv)
/*
* Map page pfn=0 for drivers, such as kd, that need to pick up
* parameters left there by controllers/BIOS.
*/
PRM_POINT("setup up p0_va");
p0_va = i86devmap(0, 1, PROT_READ);
PRM_DEBUG(p0_va);
#endif
cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
/*
* disable automatic large pages for small memory systems or
* when the disable flag is set.
*
* Do not yet consider page sizes larger than 2m/4m.
*/
if (!auto_lpg_disable && mmu.max_page_level > 0) {
max_uheap_lpsize = LEVEL_SIZE(1);
max_ustack_lpsize = LEVEL_SIZE(1);
max_privmap_lpsize = LEVEL_SIZE(1);
max_uidata_lpsize = LEVEL_SIZE(1);
max_utext_lpsize = LEVEL_SIZE(1);
max_shm_lpsize = LEVEL_SIZE(1);
}
if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
auto_lpg_disable) {
use_brk_lpg = 0;
use_stk_lpg = 0;
}
mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
PRM_POINT("Calling hat_init_finish()...");
hat_init_finish();
PRM_POINT("hat_init_finish() done");
/*
* Initialize the segkp segment type.
*/
rw_enter(&kas.a_lock, RW_WRITER);
PRM_POINT("Attaching segkp");
if (segkp_fromheap) {
segkp->s_as = &kas;
} else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
segkp) < 0) {
panic("startup: cannot attach segkp");
/*NOTREACHED*/
}
PRM_POINT("Doing segkp_create()");
if (segkp_create(segkp) != 0) {
panic("startup: segkp_create failed");
/*NOTREACHED*/
}
PRM_DEBUG(segkp);
rw_exit(&kas.a_lock);
/*
* kpm segment
*/
segmap_kpm = 0;
if (kpm_desired) {
kpm_init();
kpm_enable = 1;
vpm_enable = 1;
}
/*
* Now create segmap segment.
*/
rw_enter(&kas.a_lock, RW_WRITER);
if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
panic("cannot attach segmap");
/*NOTREACHED*/
}
PRM_DEBUG(segmap);
a.prot = PROT_READ | PROT_WRITE;
a.shmsize = 0;
a.nfreelist = segmapfreelists;
if (segmap_create(segmap, (caddr_t)&a) != 0)
panic("segmap_create segmap");
rw_exit(&kas.a_lock);
setup_vaddr_for_ppcopy(CPU);
segdev_init();
#if defined(__xpv)
if (DOMAIN_IS_INITDOMAIN(xen_info))
#endif
pmem_init();
PRM_POINT("startup_vm() done");
}
/*
* Load a tod module for the non-standard tod part found on this system.
*/
static void
load_tod_module(char *todmod)
{
if (modload("tod", todmod) == -1)
halt("Can't load TOD module");
}
static void
startup_end(void)
{
int i;
extern void setx86isalist(void);
PRM_POINT("startup_end() starting...");
/*
* Perform tasks that get done after most of the VM
* initialization has been done but before the clock
* and other devices get started.
*/
kern_setup1();
/*
* Perform CPC initialization for this CPU.
*/
kcpc_hw_init(CPU);
#if defined(OPTERON_WORKAROUND_6323525)
if (opteron_workaround_6323525)
patch_workaround_6323525();
#endif
/*
* If needed, load TOD module now so that ddi_get_time(9F) etc. work
* (For now, "needed" is defined as set tod_module_name in /etc/system)
*/
if (tod_module_name != NULL) {
PRM_POINT("load_tod_module()");
load_tod_module(tod_module_name);
}
#if defined(__xpv)
/*
* Forceload interposing TOD module for the hypervisor.
*/
PRM_POINT("load_tod_module()");
load_tod_module("xpvtod");
#endif
/*
* Configure the system.
*/
PRM_POINT("Calling configure()...");
configure(); /* set up devices */
PRM_POINT("configure() done");
/*
* Set the isa_list string to the defined instruction sets we
* support.
*/
setx86isalist();
cpu_intr_alloc(CPU, NINTR_THREADS);
psm_install();
/*
* We're done with bootops. We don't unmap the bootstrap yet because
* we're still using bootsvcs.
*/
PRM_POINT("NULLing out bootops");
*bootopsp = (struct bootops *)NULL;
bootops = (struct bootops *)NULL;
#if defined(__xpv)
ec_init_debug_irq();
xs_domu_init();
#endif
PRM_POINT("Enabling interrupts");
(*picinitf)();
sti();
#if defined(__xpv)
ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
xen_late_startup();
#endif
(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
"softlevel1", NULL, NULL); /* XXX to be moved later */
/*
* Register these software interrupts for ddi timer.
* Software interrupts up to the level 10 are supported.
*/
for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
char name[sizeof ("timer_softintr") + 2];
(void) sprintf(name, "timer_softintr%02d", i);
(void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
(avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL);
}
#if !defined(__xpv)
if (modload("drv", "amd_iommu") < 0) {
PRM_POINT("No AMD IOMMU present\n");
} else if (ddi_hold_installed_driver(ddi_name_to_major(
"amd_iommu")) == NULL) {
prom_printf("ERROR: failed to attach AMD IOMMU\n");
}
#endif
PRM_POINT("startup_end() done");
}
/*
* Don't remove the following 2 variables. They are necessary
* for reading the hostid from the legacy file (/kernel/misc/sysinit).
*/
char *_hs1107 = hw_serial;
ulong_t _bdhs34;
void
post_startup(void)
{
extern void cpupm_init(cpu_t *);
/*
* Set the system wide, processor-specific flags to be passed
* to userland via the aux vector for performance hints and
* instruction set extensions.
*/
bind_hwcap();
#ifdef __xpv
if (DOMAIN_IS_INITDOMAIN(xen_info))
#endif
{
/*
* Load the System Management BIOS into the global ksmbios
* handle, if an SMBIOS is present on this system.
*/
ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
#if defined(__xpv)
xpv_panic_init();
#else
/*
* Startup the memory scrubber.
* XXPV This should be running somewhere ..
*/
if (!xpv_is_hvm)
memscrub_init();
#endif
}
/*
* Complete CPU module initialization
*/
cmi_post_startup();
/*
* Perform forceloading tasks for /etc/system.
*/
(void) mod_sysctl(SYS_FORCELOAD, NULL);
/*
* ON4.0: Force /proc module in until clock interrupt handle fixed
* ON4.0: This must be fixed or restated in /etc/systems.
*/
(void) modload("fs", "procfs");
(void) i_ddi_attach_hw_nodes("pit_beep");
#if defined(__i386)
/*
* Check for required functional Floating Point hardware,
* unless FP hardware explicitly disabled.
*/
if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
halt("No working FP hardware found");
#endif
maxmem = freemem;
cpupm_init(CPU);
add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
pg_init();
}
static int
pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
{
return ((pp->p_pagenum >= btop(low_addr)) &&
(pp->p_pagenum < btopr(high_addr)));
}
void
release_bootstrap(void)
{
int root_is_ramdisk;
page_t *pp;
extern void kobj_boot_unmountroot(void);
extern dev_t rootdev;
#if !defined(__xpv)
pfn_t pfn;
#endif
/* unmount boot ramdisk and release kmem usage */
kobj_boot_unmountroot();
/*
* We're finished using the boot loader so free its pages.
*/
PRM_POINT("Unmapping lower boot pages");
clear_boot_mappings(0, _userlimit);
postbootkernelbase = kernelbase;
/*
* If root isn't on ramdisk, destroy the hardcoded
* ramdisk node now and release the memory. Else,
* ramdisk memory is kept in rd_pages.
*/
root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
if (!root_is_ramdisk) {
dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
ndi_rele_devi(dip); /* held from ddi_find_devinfo */
(void) ddi_remove_child(dip, 0);
}
PRM_POINT("Releasing boot pages");
while (bootpages) {
extern uint64_t ramdisk_start, ramdisk_end;
pp = bootpages;
bootpages = pp->p_next;
/* Keep pages for the lower 64K */
if (pp_in_range(pp, 0, 0x40000)) {
pp->p_next = lower_pages;
lower_pages = pp;
lower_pages_count++;
continue;
}
if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
ramdisk_end)) {
pp->p_next = rd_pages;
rd_pages = pp;
continue;
}
pp->p_next = (struct page *)0;
pp->p_prev = (struct page *)0;
PP_CLRBOOTPAGES(pp);
page_free(pp, 1);
}
PRM_POINT("Boot pages released");
#if !defined(__xpv)
/* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
/*
* Find 1 page below 1 MB so that other processors can boot up or
* so that any processor can resume.
* Make sure it has a kernel VA as well as a 1:1 mapping.
* We should have just free'd one up.
*/
/*
* 0x10 pages is 64K. Leave the bottom 64K alone
* for BIOS.
*/
for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
if (page_numtopp_alloc(pfn) == NULL)
continue;
rm_platter_va = i86devmap(pfn, 1,
PROT_READ | PROT_WRITE | PROT_EXEC);
rm_platter_pa = ptob(pfn);
hat_devload(kas.a_hat,
(caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
HAT_LOAD_NOCONSIST);
break;
}
if (pfn == btop(1*1024*1024) && use_mp)
panic("No page below 1M available for starting "
"other processors or for resuming from system-suspend");
#endif /* !__xpv */
}
/*
* Initialize the platform-specific parts of a page_t.
*/
void
add_physmem_cb(page_t *pp, pfn_t pnum)
{
pp->p_pagenum = pnum;
pp->p_mapping = NULL;
pp->p_embed = 0;
pp->p_share = 0;
pp->p_mlentry = 0;
}
/*
* kphysm_init() initializes physical memory.
*/
static pgcnt_t
kphysm_init(
page_t *pp,
pgcnt_t npages)
{
struct memlist *pmem;
struct memseg *cur_memseg;
pfn_t base_pfn;
pgcnt_t num;
pgcnt_t pages_done = 0;
uint64_t addr;
uint64_t size;
extern pfn_t ddiphysmin;
ASSERT(page_hash != NULL && page_hashsz != 0);
cur_memseg = memseg_base;
for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
/*
* In a 32 bit kernel can't use higher memory if we're
* not booting in PAE mode. This check takes care of that.
*/
addr = pmem->address;
size = pmem->size;
if (btop(addr) > physmax)
continue;
/*
* align addr and size - they may not be at page boundaries
*/
if ((addr & MMU_PAGEOFFSET) != 0) {
addr += MMU_PAGEOFFSET;
addr &= ~(uint64_t)MMU_PAGEOFFSET;
size -= addr - pmem->address;
}
/* only process pages below or equal to physmax */
if ((btop(addr + size) - 1) > physmax)
size = ptob(physmax - btop(addr) + 1);
num = btop(size);
if (num == 0)
continue;
if (num > npages)
num = npages;
npages -= num;
pages_done += num;
base_pfn = btop(addr);
if (prom_debug)
prom_printf("MEMSEG addr=0x%" PRIx64
" pgs=0x%lx pfn 0x%lx-0x%lx\n",
addr, num, base_pfn, base_pfn + num);
/*
* Ignore pages below ddiphysmin to simplify ddi memory
* allocation with non-zero addr_lo requests.
*/
if (base_pfn < ddiphysmin) {
if (base_pfn + num <= ddiphysmin)
continue;
pp += (ddiphysmin - base_pfn);
num -= (ddiphysmin - base_pfn);
base_pfn = ddiphysmin;
}
/*
* Build the memsegs entry
*/
cur_memseg->pages = pp;
cur_memseg->epages = pp + num;
cur_memseg->pages_base = base_pfn;
cur_memseg->pages_end = base_pfn + num;
/*
* Insert into memseg list in decreasing pfn range order.
* Low memory is typically more fragmented such that this
* ordering keeps the larger ranges at the front of the list
* for code that searches memseg.
* This ASSERTS that the memsegs coming in from boot are in
* increasing physical address order and not contiguous.
*/
if (memsegs != NULL) {
ASSERT(cur_memseg->pages_base >= memsegs->pages_end);
cur_memseg->next = memsegs;
}
memsegs = cur_memseg;
/*
* add_physmem() initializes the PSM part of the page
* struct by calling the PSM back with add_physmem_cb().
* In addition it coalesces pages into larger pages as
* it initializes them.
*/
add_physmem(pp, num, base_pfn);
cur_memseg++;
availrmem_initial += num;
availrmem += num;
pp += num;
}
PRM_DEBUG(availrmem_initial);
PRM_DEBUG(availrmem);
PRM_DEBUG(freemem);
build_pfn_hash();
return (pages_done);
}
/*
* Kernel VM initialization.
*/
static void
kvm_init(void)
{
ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
/*
* Put the kernel segments in kernel address space.
*/
rw_enter(&kas.a_lock, RW_WRITER);
as_avlinit(&kas);
(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
(void) segkmem_create(&ktextseg);
(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
(void) segkmem_create(&kvalloc);
(void) seg_attach(&kas, kernelheap,
ekernelheap - kernelheap, &kvseg);
(void) segkmem_create(&kvseg);
if (core_size > 0) {
PRM_POINT("attaching kvseg_core");
(void) seg_attach(&kas, (caddr_t)core_base, core_size,
&kvseg_core);
(void) segkmem_create(&kvseg_core);
}
if (segziosize > 0) {
PRM_POINT("attaching segzio");
(void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
&kzioseg);
(void) segkmem_zio_create(&kzioseg);
/* create zio area covering new segment */
segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
}
(void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
(void) segkmem_create(&kdebugseg);
rw_exit(&kas.a_lock);
/*
* Ensure that the red zone at kernelbase is never accessible.
*/
PRM_POINT("protecting redzone");
(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
/*
* Make the text writable so that it can be hot patched by DTrace.
*/
(void) as_setprot(&kas, s_text, e_modtext - s_text,
PROT_READ | PROT_WRITE | PROT_EXEC);
/*
* Make data writable until end.
*/
(void) as_setprot(&kas, s_data, e_moddata - s_data,
PROT_READ | PROT_WRITE | PROT_EXEC);
}
#ifndef __xpv
/*
* Solaris adds an entry for Write Combining caching to the PAT
*/
static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
void
pat_sync(void)
{
ulong_t cr0, cr0_orig, cr4;
if (!(x86_feature & X86_PAT))
return;
cr0_orig = cr0 = getcr0();
cr4 = getcr4();
/* disable caching and flush all caches and TLBs */
cr0 |= CR0_CD;
cr0 &= ~CR0_NW;
setcr0(cr0);
invalidate_cache();
if (cr4 & CR4_PGE) {
setcr4(cr4 & ~(ulong_t)CR4_PGE);
setcr4(cr4);
} else {
reload_cr3();
}
/* add our entry to the PAT */
wrmsr(REG_PAT, pat_attr_reg);
/* flush TLBs and cache again, then reenable cr0 caching */
if (cr4 & CR4_PGE) {
setcr4(cr4 & ~(ulong_t)CR4_PGE);
setcr4(cr4);
} else {
reload_cr3();
}
invalidate_cache();
setcr0(cr0_orig);
}
#endif /* !__xpv */
#if defined(_SOFT_HOSTID)
/*
* On platforms that do not have a hardware serial number, attempt
* to set one based on the contents of /etc/hostid. If this file does
* not exist, assume that we are to generate a new hostid and set
* it in the kernel, for subsequent saving by a userland process
* once the system is up and the root filesystem is mounted r/w.
*
* In order to gracefully support upgrade on OpenSolaris, if
* /etc/hostid does not exist, we will attempt to get a serial number
* using the legacy method (/kernel/misc/sysinit).
*
* In an attempt to make the hostid less prone to abuse
* (for license circumvention, etc), we store it in /etc/hostid
* in rot47 format.
*/
extern volatile unsigned long tenmicrodata;
static int atoi(char *);
static int32_t
set_soft_hostid(void)
{
struct _buf *file;
char tokbuf[MAXNAMELEN];
token_t token;
int done = 0;
u_longlong_t tmp;
int i;
int32_t hostid = (int32_t)HW_INVALID_HOSTID;
unsigned char *c;
hrtime_t tsc;
/*
* If /etc/hostid file not found, we'd like to get a pseudo
* random number to use at the hostid. A nice way to do this
* is to read the real time clock. To remain xen-compatible,
* we can't poke the real hardware, so we use tsc_read() to
* read the real time clock. However, there is an ominous
* warning in tsc_read that says it can return zero, so we
* deal with that possibility by falling back to using the
* (hopefully random enough) value in tenmicrodata.
*/
if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
/*
* hostid file not found - try to load sysinit module
* and see if it has a nonzero hostid value...use that
* instead of generating a new hostid here if so.
*/
if ((i = modload("misc", "sysinit")) != -1) {
if (strlen(hw_serial) > 0)
hostid = (int32_t)atoi(hw_serial);
(void) modunload(i);
}
if (hostid == HW_INVALID_HOSTID) {
tsc = tsc_read();
if (tsc == 0) /* tsc_read can return zero sometimes */
hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
else
hostid = (int32_t)tsc & 0x0CFFFFF;
}
} else {
/* hostid file found */
while (!done) {
token = kobj_lex(file, tokbuf, sizeof (tokbuf));
switch (token) {
case POUND:
/*
* skip comments
*/
kobj_find_eol(file);
break;
case STRING:
/*
* un-rot47 - obviously this
* nonsense is ascii-specific
*/
for (c = (unsigned char *)tokbuf;
*c != '\0'; c++) {
*c += 47;
if (*c > '~')
*c -= 94;
else if (*c < '!')
*c += 94;
}
/*
* now we should have a real number
*/
if (kobj_getvalue(tokbuf, &tmp) != 0)
kobj_file_err(CE_WARN, file,
"Bad value %s for hostid",
tokbuf);
else
hostid = (int32_t)tmp;
break;
case EOF:
done = 1;
/* FALLTHROUGH */
case NEWLINE:
kobj_newline(file);
break;
default:
break;
}
}
if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
kobj_file_err(CE_WARN, file,
"hostid missing or corrupt");
kobj_close_file(file);
}
/*
* hostid is now the value read from /etc/hostid, or the
* new hostid we generated in this routine or HW_INVALID_HOSTID if not
* set.
*/
return (hostid);
}
static int
atoi(char *p)
{
int i = 0;
while (*p != '\0')
i = 10 * i + (*p++ - '0');
return (i);
}
#endif /* _SOFT_HOSTID */
void
get_system_configuration(void)
{
char prop[32];
u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
BOP_GETPROP(bootops, "nodes", prop) < 0 ||
kobj_getvalue(prop, &nodes_ll) == -1 ||
nodes_ll > MAXNODES ||
BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
system_hardware.hd_nodes = 1;
system_hardware.hd_cpus_per_node = 0;
} else {
system_hardware.hd_nodes = (int)nodes_ll;
system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
}
if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
kobj_getvalue(prop, &lvalue) == -1)
eprom_kernelbase = NULL;
else
eprom_kernelbase = (uintptr_t)lvalue;
if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
kobj_getvalue(prop, &lvalue) == -1)
segmapsize = SEGMAPDEFAULT;
else
segmapsize = (uintptr_t)lvalue;
if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
kobj_getvalue(prop, &lvalue) == -1)
segmapfreelists = 0; /* use segmap driver default */
else
segmapfreelists = (int)lvalue;
/* physmem used to be here, but moved much earlier to fakebop.c */
}
/*
* Add to a memory list.
* start = start of new memory segment
* len = length of new memory segment in bytes
* new = pointer to a new struct memlist
* memlistp = memory list to which to add segment.
*/
void
memlist_add(
uint64_t start,
uint64_t len,
struct memlist *new,
struct memlist **memlistp)
{
struct memlist *cur;
uint64_t end = start + len;
new->address = start;
new->size = len;
cur = *memlistp;
while (cur) {
if (cur->address >= end) {
new->next = cur;
*memlistp = new;
new->prev = cur->prev;
cur->prev = new;
return;
}
ASSERT(cur->address + cur->size <= start);
if (cur->next == NULL) {
cur->next = new;
new->prev = cur;
new->next = NULL;
return;
}
memlistp = &cur->next;
cur = cur->next;
}
}
void
kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
{
size_t tsize = e_modtext - modtext;
size_t dsize = e_moddata - moddata;
*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
}
caddr_t
kobj_text_alloc(vmem_t *arena, size_t size)
{
return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
}
/*ARGSUSED*/
caddr_t
kobj_texthole_alloc(caddr_t addr, size_t size)
{
panic("unexpected call to kobj_texthole_alloc()");
/*NOTREACHED*/
return (0);
}
/*ARGSUSED*/
void
kobj_texthole_free(caddr_t addr, size_t size)
{
panic("unexpected call to kobj_texthole_free()");
}
/*
* This is called just after configure() in startup().
*
* The ISALIST concept is a bit hopeless on Intel, because
* there's no guarantee of an ever-more-capable processor
* given that various parts of the instruction set may appear
* and disappear between different implementations.
*
* While it would be possible to correct it and even enhance
* it somewhat, the explicit hardware capability bitmask allows
* more flexibility.
*
* So, we just leave this alone.
*/
void
setx86isalist(void)
{
char *tp;
size_t len;
extern char *isa_list;
#define TBUFSIZE 1024
tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
*tp = '\0';
#if defined(__amd64)
(void) strcpy(tp, "amd64 ");
#endif
switch (x86_vendor) {
case X86_VENDOR_Intel:
case X86_VENDOR_AMD:
case X86_VENDOR_TM:
if (x86_feature & X86_CMOV) {
/*
* Pentium Pro or later
*/
(void) strcat(tp, "pentium_pro");
(void) strcat(tp, x86_feature & X86_MMX ?
"+mmx pentium_pro " : " ");
}
/*FALLTHROUGH*/
case X86_VENDOR_Cyrix:
/*
* The Cyrix 6x86 does not have any Pentium features
* accessible while not at privilege level 0.
*/
if (x86_feature & X86_CPUID) {
(void) strcat(tp, "pentium");
(void) strcat(tp, x86_feature & X86_MMX ?
"+mmx pentium " : " ");
}
break;
default:
break;
}
(void) strcat(tp, "i486 i386 i86");
len = strlen(tp) + 1; /* account for NULL at end of string */
isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
kmem_free(tp, TBUFSIZE);
#undef TBUFSIZE
}
#ifdef __amd64
void *
device_arena_alloc(size_t size, int vm_flag)
{
return (vmem_alloc(device_arena, size, vm_flag));
}
void
device_arena_free(void *vaddr, size_t size)
{
vmem_free(device_arena, vaddr, size);
}
#else /* __i386 */
void *
device_arena_alloc(size_t size, int vm_flag)
{
caddr_t vaddr;
uintptr_t v;
size_t start;
size_t end;
vaddr = vmem_alloc(heap_arena, size, vm_flag);
if (vaddr == NULL)
return (NULL);
v = (uintptr_t)vaddr;
ASSERT(v >= kernelbase);
ASSERT(v + size <= valloc_base);
start = btop(v - kernelbase);
end = btop(v + size - 1 - kernelbase);
ASSERT(start < toxic_bit_map_len);
ASSERT(end < toxic_bit_map_len);
while (start <= end) {
BT_ATOMIC_SET(toxic_bit_map, start);
++start;
}
return (vaddr);
}
void
device_arena_free(void *vaddr, size_t size)
{
uintptr_t v = (uintptr_t)vaddr;
size_t start;
size_t end;
ASSERT(v >= kernelbase);
ASSERT(v + size <= valloc_base);
start = btop(v - kernelbase);
end = btop(v + size - 1 - kernelbase);
ASSERT(start < toxic_bit_map_len);
ASSERT(end < toxic_bit_map_len);
while (start <= end) {
ASSERT(BT_TEST(toxic_bit_map, start) != 0);
BT_ATOMIC_CLEAR(toxic_bit_map, start);
++start;
}
vmem_free(heap_arena, vaddr, size);
}
/*
* returns 1st address in range that is in device arena, or NULL
* if len is not NULL it returns the length of the toxic range
*/
void *
device_arena_contains(void *vaddr, size_t size, size_t *len)
{
uintptr_t v = (uintptr_t)vaddr;
uintptr_t eaddr = v + size;
size_t start;
size_t end;
/*
* if called very early by kmdb, just return NULL
*/
if (toxic_bit_map == NULL)
return (NULL);
/*
* First check if we're completely outside the bitmap range.
*/
if (v >= valloc_base || eaddr < kernelbase)
return (NULL);
/*
* Trim ends of search to look at only what the bitmap covers.
*/
if (v < kernelbase)
v = kernelbase;
start = btop(v - kernelbase);
end = btop(eaddr - kernelbase);
if (end >= toxic_bit_map_len)
end = toxic_bit_map_len;
if (bt_range(toxic_bit_map, &start, &end, end) == 0)
return (NULL);
v = kernelbase + ptob(start);
if (len != NULL)
*len = ptob(end - start);
return ((void *)v);
}
#endif /* __i386 */