mp_machdep.c revision 7ff178cd8db129d385d3177eb20744d3b6efc59b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2009-2010, Intel Corporation.
* All rights reserved.
*/
#define PSMI_1_7
#include <sys/smp_impldefs.h>
#include <sys/psm.h>
#include <sys/psm_modctl.h>
#include <sys/pit.h>
#include <sys/cmn_err.h>
#include <sys/strlog.h>
#include <sys/clock.h>
#include <sys/debug.h>
#include <sys/rtc.h>
#include <sys/x86_archext.h>
#include <sys/cpupart.h>
#include <sys/cpuvar.h>
#include <sys/cpu_event.h>
#include <sys/cmt.h>
#include <sys/cpu.h>
#include <sys/disp.h>
#include <sys/archsystm.h>
#include <sys/machsystm.h>
#include <sys/sysmacros.h>
#include <sys/memlist.h>
#include <sys/param.h>
#include <sys/promif.h>
#include <sys/cpu_pm.h>
#if defined(__xpv)
#include <sys/hypervisor.h>
#endif
#include <sys/mach_intr.h>
#include <vm/hat_i86.h>
#include <sys/kdi_machimpl.h>
#include <sys/sdt.h>
#include <sys/hpet.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/cpc_pcbe.h>
#define OFFSETOF(s, m) (size_t)(&(((s *)0)->m))
/*
* Local function prototypes
*/
static int mp_disable_intr(processorid_t cpun);
static void mp_enable_intr(processorid_t cpun);
static void mach_init();
static void mach_picinit();
static int machhztomhz(uint64_t cpu_freq_hz);
static uint64_t mach_getcpufreq(void);
static void mach_fixcpufreq(void);
static int mach_clkinit(int, int *);
static void mach_smpinit(void);
static int mach_softlvl_to_vect(int ipl);
static void mach_get_platform(int owner);
static void mach_construct_info();
static int mach_translate_irq(dev_info_t *dip, int irqno);
static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
psm_intr_op_t, int *);
static void mach_notify_error(int level, char *errmsg);
static hrtime_t dummy_hrtime(void);
static void dummy_scalehrtime(hrtime_t *);
static uint64_t dummy_unscalehrtime(hrtime_t);
void cpu_idle(void);
static void cpu_wakeup(cpu_t *, int);
#ifndef __xpv
void cpu_idle_mwait(void);
static void cpu_wakeup_mwait(cpu_t *, int);
#endif
static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
/*
* External reference functions
*/
extern void return_instr();
extern uint64_t freq_tsc(uint32_t *);
#if defined(__i386)
extern uint64_t freq_notsc(uint32_t *);
#endif
extern void pc_gethrestime(timestruc_t *);
extern int cpuid_get_coreid(cpu_t *);
extern int cpuid_get_chipid(cpu_t *);
/*
* PSM functions initialization
*/
void (*psm_shutdownf)(int, int) = (void (*)(int, int))return_instr;
void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
void (*psm_notifyf)(int) = (void (*)(int))return_instr;
void (*psm_set_idle_cpuf)(int) = (void (*)(int))return_instr;
void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
void (*psminitf)() = mach_init;
void (*picinitf)() = return_instr;
int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr;
int (*ap_mlsetup)() = (int (*)(void))return_instr;
void (*send_dirintf)() = return_instr;
void (*setspl)(int) = (void (*)(int))return_instr;
int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
int (*get_pending_spl)(void) = (int (*)(void))return_instr;
int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
uint64_t *, dev_info_t *) = NULL;
void (*remintr)(void *, int, avfunc, int) = NULL;
void (*kdisetsoftint)(int, struct av_softinfo *)=
(void (*)(int, struct av_softinfo *))return_instr;
void (*setsoftint)(int, struct av_softinfo *)=
(void (*)(int, struct av_softinfo *))return_instr;
int (*slvltovect)(int) = (int (*)(int))return_instr;
int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr;
void (*setlvlx)(int, int) = (void (*)(int, int))return_instr;
int (*psm_disable_intr)(int) = mp_disable_intr;
void (*psm_enable_intr)(int) = mp_enable_intr;
hrtime_t (*gethrtimef)(void) = dummy_hrtime;
hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime;
void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime;
uint64_t (*unscalehrtimef)(hrtime_t) = dummy_unscalehrtime;
int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
int (*psm_get_clockirq)(int) = NULL;
int (*psm_get_ipivect)(int, int) = NULL;
uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
int (*psm_clkinit)(int) = NULL;
void (*psm_timer_reprogram)(hrtime_t) = NULL;
void (*psm_timer_enable)(void) = NULL;
void (*psm_timer_disable)(void) = NULL;
void (*psm_post_cyclic_setup)(void *arg) = NULL;
int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
int *) = mach_intr_ops;
int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
return_instr;
void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
void (*hrtime_tick)(void) = return_instr;
int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
/* global IRM pool for APIX (PSM) module */
ddi_irm_pool_t *apix_irm_pool_p = NULL;
/*
* True if the generic TSC code is our source of hrtime, rather than whatever
* the PSM can provide.
*/
#ifdef __xpv
int tsc_gethrtime_enable = 0;
#else
int tsc_gethrtime_enable = 1;
#endif
int tsc_gethrtime_initted = 0;
/*
* True if the hrtime implementation is "hires"; namely, better than microdata.
*/
int gethrtime_hires = 0;
/*
* Local Static Data
*/
static struct psm_ops mach_ops;
static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
static ushort_t mach_ver[4] = {0, 0, 0, 0};
/*
* virtualization support for psm
*/
void *psm_vt_ops = NULL;
/*
* If non-zero, idle cpus will become "halted" when there's
* no work to do.
*/
int idle_cpu_use_hlt = 1;
#ifndef __xpv
/*
* If non-zero, idle cpus will use mwait if available to halt instead of hlt.
*/
int idle_cpu_prefer_mwait = 1;
/*
* Set to 0 to avoid MONITOR+CLFLUSH assertion.
*/
int idle_cpu_assert_cflush_monitor = 1;
/*
* If non-zero, idle cpus will not use power saving Deep C-States idle loop.
*/
int idle_cpu_no_deep_c = 0;
/*
* Non-power saving idle loop and wakeup pointers.
* Allows user to toggle Deep Idle power saving feature on/off.
*/
void (*non_deep_idle_cpu)() = cpu_idle;
void (*non_deep_idle_disp_enq_thread)(cpu_t *, int);
/*
* Object for the kernel to access the HPET.
*/
hpet_t hpet;
#endif /* ifndef __xpv */
uint_t cp_haltset_fanout = 0;
/*ARGSUSED*/
int
pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
{
switch (hw) {
case PGHW_IPIPE:
if (x86_feature & (X86_HTT)) {
/*
* Hyper-threading is SMT
*/
return (1);
} else {
return (0);
}
case PGHW_PROCNODE:
if (cpuid_get_procnodes_per_pkg(cp) > 1)
return (1);
else
return (0);
case PGHW_CHIP:
if (x86_feature & (X86_CMP|X86_HTT))
return (1);
else
return (0);
case PGHW_CACHE:
if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
return (1);
else
return (0);
case PGHW_POW_ACTIVE:
if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
return (1);
else
return (0);
case PGHW_POW_IDLE:
if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
return (1);
else
return (0);
default:
return (0);
}
}
/*
* Compare two CPUs and see if they have a pghw_type_t sharing relationship
* If pghw_type_t is an unsupported hardware type, then return -1
*/
int
pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
{
id_t pgp_a, pgp_b;
pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
if (pgp_a == -1 || pgp_b == -1)
return (-1);
return (pgp_a == pgp_b);
}
/*
* Return a physical instance identifier for known hardware sharing
* relationships
*/
id_t
pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
{
switch (hw) {
case PGHW_IPIPE:
return (cpuid_get_coreid(cpu));
case PGHW_CACHE:
return (cpuid_get_last_lvl_cacheid(cpu));
case PGHW_PROCNODE:
return (cpuid_get_procnodeid(cpu));
case PGHW_CHIP:
return (cpuid_get_chipid(cpu));
case PGHW_POW_ACTIVE:
return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
case PGHW_POW_IDLE:
return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
default:
return (-1);
}
}
/*
* Express preference for optimizing for sharing relationship
* hw1 vs hw2
*/
pghw_type_t
pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
{
int i, rank1, rank2;
static pghw_type_t hw_hier[] = {
PGHW_IPIPE,
PGHW_CACHE,
PGHW_PROCNODE,
PGHW_CHIP,
PGHW_POW_IDLE,
PGHW_POW_ACTIVE,
PGHW_NUM_COMPONENTS
};
for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
if (hw_hier[i] == hw1)
rank1 = i;
if (hw_hier[i] == hw2)
rank2 = i;
}
if (rank1 > rank2)
return (hw1);
else
return (hw2);
}
/*
* Override the default CMT dispatcher policy for the specified
* hardware sharing relationship
*/
pg_cmt_policy_t
pg_plat_cmt_policy(pghw_type_t hw)
{
/*
* For shared caches, also load balance across them to
* maximize aggregate cache capacity
*/
switch (hw) {
case PGHW_CACHE:
return (CMT_BALANCE|CMT_AFFINITY);
default:
return (CMT_NO_POLICY);
}
}
id_t
pg_plat_get_core_id(cpu_t *cpu)
{
return ((id_t)cpuid_get_coreid(cpu));
}
void
cmp_set_nosteal_interval(void)
{
/* Set the nosteal interval (used by disp_getbest()) to 100us */
nosteal_nsec = 100000UL;
}
/*
* Routine to ensure initial callers to hrtime gets 0 as return
*/
static hrtime_t
dummy_hrtime(void)
{
return (0);
}
/* ARGSUSED */
static void
dummy_scalehrtime(hrtime_t *ticks)
{}
static uint64_t
dummy_unscalehrtime(hrtime_t nsecs)
{
return ((uint64_t)nsecs);
}
/*
* Supports Deep C-State power saving idle loop.
*/
void
cpu_idle_adaptive(void)
{
(*CPU->cpu_m.mcpu_idle_cpu)();
}
/*
* Function called by CPU idle notification framework to check whether CPU
* has been awakened. It will be called with interrupt disabled.
* If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
* notification framework.
*/
/*ARGSUSED*/
static void
cpu_idle_check_wakeup(void *arg)
{
/*
* Toggle interrupt flag to detect pending interrupts.
* If interrupt happened, do_interrupt() will notify CPU idle
* notification framework so no need to call cpu_idle_exit() here.
*/
sti();
SMT_PAUSE();
cli();
}
/*
* Idle the present CPU until wakened via an interrupt
*/
void
cpu_idle(void)
{
cpu_t *cpup = CPU;
processorid_t cpu_sid = cpup->cpu_seqid;
cpupart_t *cp = cpup->cpu_part;
int hset_update = 1;
/*
* If this CPU is online, and there's multiple CPUs
* in the system, then we should notate our halting
* by adding ourselves to the partition's halted CPU
* bitmap. This allows other CPUs to find/awaken us when
* work becomes available.
*/
if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
hset_update = 0;
/*
* Add ourselves to the partition's halted CPUs bitmap
* and set our HALTED flag, if necessary.
*
* When a thread becomes runnable, it is placed on the queue
* and then the halted CPU bitmap is checked to determine who
* (if anyone) should be awakened. We therefore need to first
* add ourselves to the bitmap, and and then check if there
* is any work available. The order is important to prevent a race
* that can lead to work languishing on a run queue somewhere while
* this CPU remains halted.
*
* Either the producing CPU will see we're halted and will awaken us,
* or this CPU will see the work available in disp_anywork().
*
* Note that memory barriers after updating the HALTED flag
* are not necessary since an atomic operation (updating the bitset)
* immediately follows. On x86 the atomic operation acts as a
* memory barrier for the update of cpu_disp_flags.
*/
if (hset_update) {
cpup->cpu_disp_flags |= CPU_DISP_HALTED;
bitset_atomic_add(&cp->cp_haltset, cpu_sid);
}
/*
* Check to make sure there's really nothing to do.
* Work destined for this CPU may become available after
* this check. We'll be notified through the clearing of our
* bit in the halted CPU bitmap, and a poke.
*/
if (disp_anywork()) {
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
return;
}
/*
* We're on our way to being halted.
*
* Disable interrupts now, so that we'll awaken immediately
* after halting if someone tries to poke us between now and
* the time we actually halt.
*
* We check for the presence of our bit after disabling interrupts.
* If it's cleared, we'll return. If the bit is cleared after
* we check then the poke will pop us out of the halted state.
*
* This means that the ordering of the poke and the clearing
* of the bit by cpu_wakeup is important.
* cpu_wakeup() must clear, then poke.
* cpu_idle() must disable interrupts, then check for the bit.
*/
cli();
if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
sti();
return;
}
/*
* The check for anything locally runnable is here for performance
* and isn't needed for correctness. disp_nrunnable ought to be
* in our cache still, so it's inexpensive to check, and if there
* is anything runnable we won't have to wait for the poke.
*/
if (cpup->cpu_disp->disp_nrunnable != 0) {
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
sti();
return;
}
if (cpu_idle_enter(IDLE_STATE_C1, 0,
cpu_idle_check_wakeup, NULL) == 0) {
mach_cpu_idle();
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
}
/*
* We're no longer halted
*/
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
}
/*
* If "cpu" is halted, then wake it up clearing its halted bit in advance.
* Otherwise, see if other CPUs in the cpu partition are halted and need to
* be woken up so that they can steal the thread we placed on this CPU.
* This function is only used on MP systems.
*/
static void
cpu_wakeup(cpu_t *cpu, int bound)
{
uint_t cpu_found;
processorid_t cpu_sid;
cpupart_t *cp;
cp = cpu->cpu_part;
cpu_sid = cpu->cpu_seqid;
if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
/*
* Clear the halted bit for that CPU since it will be
* poked in a moment.
*/
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
/*
* We may find the current CPU present in the halted cpuset
* if we're in the context of an interrupt that occurred
* before we had a chance to clear our bit in cpu_idle().
* Poking ourself is obviously unnecessary, since if
* we're here, we're not halted.
*/
if (cpu != CPU)
poke_cpu(cpu->cpu_id);
return;
} else {
/*
* This cpu isn't halted, but it's idle or undergoing a
* context switch. No need to awaken anyone else.
*/
if (cpu->cpu_thread == cpu->cpu_idle_thread ||
cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
return;
}
/*
* No need to wake up other CPUs if this is for a bound thread.
*/
if (bound)
return;
/*
* The CPU specified for wakeup isn't currently halted, so check
* to see if there are any other halted CPUs in the partition,
* and if there are then awaken one.
*/
do {
cpu_found = bitset_find(&cp->cp_haltset);
if (cpu_found == (uint_t)-1)
return;
} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
if (cpu_found != CPU->cpu_seqid) {
poke_cpu(cpu_seq[cpu_found]->cpu_id);
}
}
#ifndef __xpv
/*
* Function called by CPU idle notification framework to check whether CPU
* has been awakened. It will be called with interrupt disabled.
* If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
* notification framework.
*/
static void
cpu_idle_mwait_check_wakeup(void *arg)
{
volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
ASSERT(arg != NULL);
if (*mcpu_mwait != MWAIT_HALTED) {
/*
* CPU has been awakened, notify CPU idle notification system.
*/
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
} else {
/*
* Toggle interrupt flag to detect pending interrupts.
* If interrupt happened, do_interrupt() will notify CPU idle
* notification framework so no need to call cpu_idle_exit()
* here.
*/
sti();
SMT_PAUSE();
cli();
}
}
/*
* Idle the present CPU until awakened via touching its monitored line
*/
void
cpu_idle_mwait(void)
{
volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait;
cpu_t *cpup = CPU;
processorid_t cpu_sid = cpup->cpu_seqid;
cpupart_t *cp = cpup->cpu_part;
int hset_update = 1;
/*
* Set our mcpu_mwait here, so we can tell if anyone tries to
* wake us between now and when we call mwait. No other cpu will
* attempt to set our mcpu_mwait until we add ourself to the halted
* CPU bitmap.
*/
*mcpu_mwait = MWAIT_HALTED;
/*
* If this CPU is online, and there's multiple CPUs
* in the system, then we should note our halting
* by adding ourselves to the partition's halted CPU
* bitmap. This allows other CPUs to find/awaken us when
* work becomes available.
*/
if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
hset_update = 0;
/*
* Add ourselves to the partition's halted CPUs bitmap
* and set our HALTED flag, if necessary.
*
* When a thread becomes runnable, it is placed on the queue
* and then the halted CPU bitmap is checked to determine who
* (if anyone) should be awakened. We therefore need to first
* add ourselves to the bitmap, and and then check if there
* is any work available.
*
* Note that memory barriers after updating the HALTED flag
* are not necessary since an atomic operation (updating the bitmap)
* immediately follows. On x86 the atomic operation acts as a
* memory barrier for the update of cpu_disp_flags.
*/
if (hset_update) {
cpup->cpu_disp_flags |= CPU_DISP_HALTED;
bitset_atomic_add(&cp->cp_haltset, cpu_sid);
}
/*
* Check to make sure there's really nothing to do.
* Work destined for this CPU may become available after
* this check. We'll be notified through the clearing of our
* bit in the halted CPU bitmap, and a write to our mcpu_mwait.
*
* disp_anywork() checks disp_nrunnable, so we do not have to later.
*/
if (disp_anywork()) {
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
return;
}
/*
* We're on our way to being halted.
* To avoid a lost wakeup, arm the monitor before checking if another
* cpu wrote to mcpu_mwait to wake us up.
*/
i86_monitor(mcpu_mwait, 0, 0);
if (*mcpu_mwait == MWAIT_HALTED) {
if (cpu_idle_enter(IDLE_STATE_C1, 0,
cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
if (*mcpu_mwait == MWAIT_HALTED) {
i86_mwait(0, 0);
}
cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
}
}
/*
* We're no longer halted
*/
if (hset_update) {
cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
bitset_atomic_del(&cp->cp_haltset, cpu_sid);
}
}
/*
* If "cpu" is halted in mwait, then wake it up clearing its halted bit in
* advance. Otherwise, see if other CPUs in the cpu partition are halted and
* need to be woken up so that they can steal the thread we placed on this CPU.
* This function is only used on MP systems.
*/
static void
cpu_wakeup_mwait(cpu_t *cp, int bound)
{
cpupart_t *cpu_part;
uint_t cpu_found;
processorid_t cpu_sid;
cpu_part = cp->cpu_part;
cpu_sid = cp->cpu_seqid;
/*
* Clear the halted bit for that CPU since it will be woken up
* in a moment.
*/
if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
/*
* Clear the halted bit for that CPU since it will be
* poked in a moment.
*/
bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
/*
* We may find the current CPU present in the halted cpuset
* if we're in the context of an interrupt that occurred
* before we had a chance to clear our bit in cpu_idle().
* Waking ourself is obviously unnecessary, since if
* we're here, we're not halted.
*
* monitor/mwait wakeup via writing to our cache line is
* harmless and less expensive than always checking if we
* are waking ourself which is an uncommon case.
*/
MWAIT_WAKEUP(cp); /* write to monitored line */
return;
} else {
/*
* This cpu isn't halted, but it's idle or undergoing a
* context switch. No need to awaken anyone else.
*/
if (cp->cpu_thread == cp->cpu_idle_thread ||
cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
return;
}
/*
* No need to wake up other CPUs if the thread we just enqueued
* is bound.
*/
if (bound || ncpus == 1)
return;
/*
* See if there's any other halted CPUs. If there are, then
* select one, and awaken it.
* It's possible that after we find a CPU, somebody else
* will awaken it before we get the chance.
* In that case, look again.
*/
do {
cpu_found = bitset_find(&cpu_part->cp_haltset);
if (cpu_found == (uint_t)-1)
return;
} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
cpu_found) < 0);
/*
* Do not check if cpu_found is ourself as monitor/mwait
* wakeup is cheap.
*/
MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
}
#endif
void (*cpu_pause_handler)(volatile char *) = NULL;
static int
mp_disable_intr(int cpun)
{
/*
* switch to the offline cpu
*/
affinity_set(cpun);
/*
* raise ipl to just below cross call
*/
splx(XC_SYS_PIL - 1);
/*
* set base spl to prevent the next swtch to idle from
* lowering back to ipl 0
*/
CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
set_base_spl();
affinity_clear();
return (DDI_SUCCESS);
}
static void
mp_enable_intr(int cpun)
{
/*
* switch to the online cpu
*/
affinity_set(cpun);
/*
* clear the interrupt active mask
*/
CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
set_base_spl();
(void) spl0();
affinity_clear();
}
static void
mach_get_platform(int owner)
{
void **srv_opsp;
void **clt_opsp;
int i;
int total_ops;
/* fix up psm ops */
srv_opsp = (void **)mach_set[0];
clt_opsp = (void **)mach_set[owner];
if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
total_ops = sizeof (struct psm_ops_ver01) /
sizeof (void (*)(void));
else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
/* no psm_notify_func */
total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
sizeof (void (*)(void));
else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
/* no psm_timer funcs */
total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
sizeof (void (*)(void));
else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
/* no psm_preshutdown function */
total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
sizeof (void (*)(void));
else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
/* no psm_intr_ops function */
total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
sizeof (void (*)(void));
else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
/* no psm_state function */
total_ops = OFFSETOF(struct psm_ops, psm_state) /
sizeof (void (*)(void));
else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
/* no psm_cpu_ops function */
total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
sizeof (void (*)(void));
else
total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
/*
* Save the version of the PSM module, in case we need to
* behave differently based on version.
*/
mach_ver[0] = mach_ver[owner];
for (i = 0; i < total_ops; i++)
if (clt_opsp[i] != NULL)
srv_opsp[i] = clt_opsp[i];
}
static void
mach_construct_info()
{
struct psm_sw *swp;
int mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
int conflict_owner = 0;
if (psmsw->psw_forw == psmsw)
panic("No valid PSM modules found");
mutex_enter(&psmsw_lock);
for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
continue;
mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
mach_cnt[swp->psw_infop->p_owner]++;
}
mutex_exit(&psmsw_lock);
mach_get_platform(PSM_OWN_SYS_DEFAULT);
/* check to see are there any conflicts */
if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
conflict_owner = PSM_OWN_EXCLUSIVE;
if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
conflict_owner = PSM_OWN_OVERRIDE;
if (conflict_owner) {
/* remove all psm modules except uppc */
cmn_err(CE_WARN,
"Conflicts detected on the following PSM modules:");
mutex_enter(&psmsw_lock);
for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
if (swp->psw_infop->p_owner == conflict_owner)
cmn_err(CE_WARN, "%s ",
swp->psw_infop->p_mach_idstring);
}
mutex_exit(&psmsw_lock);
cmn_err(CE_WARN,
"Setting the system back to SINGLE processor mode!");
cmn_err(CE_WARN,
"Please edit /etc/mach to remove the invalid PSM module.");
return;
}
if (mach_set[PSM_OWN_EXCLUSIVE])
mach_get_platform(PSM_OWN_EXCLUSIVE);
if (mach_set[PSM_OWN_OVERRIDE])
mach_get_platform(PSM_OWN_OVERRIDE);
}
static void
mach_init()
{
struct psm_ops *pops;
mach_construct_info();
pops = mach_set[0];
/* register the interrupt and clock initialization rotuines */
picinitf = mach_picinit;
clkinitf = mach_clkinit;
psm_get_clockirq = pops->psm_get_clockirq;
/* register the interrupt setup code */
slvltovect = mach_softlvl_to_vect;
addspl = pops->psm_addspl;
delspl = pops->psm_delspl;
if (pops->psm_translate_irq)
psm_translate_irq = pops->psm_translate_irq;
if (pops->psm_intr_ops)
psm_intr_ops = pops->psm_intr_ops;
#if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
/*
* Time-of-day functionality now handled in TOD modules.
* (Warn about PSM modules that think that we're going to use
* their ops vectors.)
*/
if (pops->psm_tod_get)
cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
(void *)pops->psm_tod_get);
if (pops->psm_tod_set)
cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
(void *)pops->psm_tod_set);
#endif
if (pops->psm_notify_error) {
psm_notify_error = mach_notify_error;
notify_error = pops->psm_notify_error;
}
(*pops->psm_softinit)();
/*
* Initialize the dispatcher's function hooks to enable CPU halting
* when idle. Set both the deep-idle and non-deep-idle hooks.
*
* Assume we can use power saving deep-idle loop cpu_idle_adaptive.
* Platform deep-idle driver will reset our idle loop to
* non_deep_idle_cpu if power saving deep-idle feature is not available.
*
* Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
* or idle_cpu_prefer_mwait is not set.
* Allocate monitor/mwait buffer for cpu0.
*/
#ifndef __xpv
non_deep_idle_disp_enq_thread = disp_enq_thread;
#endif
if (idle_cpu_use_hlt) {
idle_cpu = cpu_idle_adaptive;
CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
#ifndef __xpv
if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
/*
* Protect ourself from insane mwait size.
*/
if (CPU->cpu_m.mcpu_mwait == NULL) {
#ifdef DEBUG
cmn_err(CE_NOTE, "Using hlt idle. Cannot "
"handle cpu 0 mwait size.");
#endif
idle_cpu_prefer_mwait = 0;
CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
} else {
CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
}
} else {
CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
}
non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
/*
* Disable power saving deep idle loop?
*/
if (idle_cpu_no_deep_c) {
idle_cpu = non_deep_idle_cpu;
}
#endif
}
mach_smpinit();
}
static void
mach_smpinit(void)
{
struct psm_ops *pops;
processorid_t cpu_id;
int cnt;
cpuset_t cpumask;
pops = mach_set[0];
CPUSET_ZERO(cpumask);
cpu_id = -1;
cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
/*
* Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
* by CPU DR driver at runtime.
*/
for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
CPUSET_ADD(cpumask, cpu_id);
cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
}
mp_cpus = cpumask;
/* MP related routines */
ap_mlsetup = pops->psm_post_cpu_start;
send_dirintf = pops->psm_send_ipi;
/* optional MP related routines */
if (pops->psm_shutdown)
psm_shutdownf = pops->psm_shutdown;
if (pops->psm_preshutdown)
psm_preshutdownf = pops->psm_preshutdown;
if (pops->psm_notify_func)
psm_notifyf = pops->psm_notify_func;
if (pops->psm_set_idlecpu)
psm_set_idle_cpuf = pops->psm_set_idlecpu;
if (pops->psm_unset_idlecpu)
psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
psm_clkinit = pops->psm_clkinit;
if (pops->psm_timer_reprogram)
psm_timer_reprogram = pops->psm_timer_reprogram;
if (pops->psm_timer_enable)
psm_timer_enable = pops->psm_timer_enable;
if (pops->psm_timer_disable)
psm_timer_disable = pops->psm_timer_disable;
if (pops->psm_post_cyclic_setup)
psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
if (pops->psm_state)
psm_state = pops->psm_state;
/*
* Set these vectors here so they can be used by Suspend/Resume
* on UP machines.
*/
if (pops->psm_disable_intr)
psm_disable_intr = pops->psm_disable_intr;
if (pops->psm_enable_intr)
psm_enable_intr = pops->psm_enable_intr;
/* check for multiple CPUs */
if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
return;
/* check for MP platforms */
if (pops->psm_cpu_start == NULL)
return;
/*
* Set the dispatcher hook to enable cpu "wake up"
* when a thread becomes runnable.
*/
if (idle_cpu_use_hlt) {
disp_enq_thread = cpu_wakeup;
#ifndef __xpv
if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
disp_enq_thread = cpu_wakeup_mwait;
non_deep_idle_disp_enq_thread = disp_enq_thread;
#endif
}
psm_get_ipivect = pops->psm_get_ipivect;
(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
(*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
NULL, NULL, NULL, NULL);
(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
}
static void
mach_picinit()
{
struct psm_ops *pops;
pops = mach_set[0];
/* register the interrupt handlers */
setlvl = pops->psm_intr_enter;
setlvlx = pops->psm_intr_exit;
/* initialize the interrupt hardware */
(*pops->psm_picinit)();
/* set interrupt mask for current ipl */
setspl = pops->psm_setspl;
cli();
setspl(CPU->cpu_pri);
}
uint_t cpu_freq; /* MHz */
uint64_t cpu_freq_hz; /* measured (in hertz) */
#define MEGA_HZ 1000000
#ifdef __xpv
int xpv_cpufreq_workaround = 1;
int xpv_cpufreq_verbose = 0;
#else /* __xpv */
static uint64_t
mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
{
uint64_t cpu_hz;
if ((pit_counter == 0) || (*processor_clks == 0) ||
(*processor_clks > (((uint64_t)-1) / PIT_HZ)))
return (0);
cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
return (cpu_hz);
}
#endif /* __xpv */
static uint64_t
mach_getcpufreq(void)
{
#if defined(__xpv)
vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
uint64_t cpu_hz;
/*
* During dom0 bringup, it was noted that on at least one older
* Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
* value that is quite wrong (the 3.06GHz clock was reported
* as 4.77GHz)
*
* The curious thing is, that if you stop the kernel at entry,
* breakpoint here and inspect the value with kmdb, the value
* is correct - but if you don't stop and simply enable the
* printf statement (below), you can see the bad value printed
* here. Almost as if something kmdb did caused the hypervisor to
* figure it out correctly. And, note that the hypervisor
* eventually -does- figure it out correctly ... if you look at
* the field later in the life of dom0, it is correct.
*
* For now, on dom0, we employ a slightly cheesy workaround of
* using the DOM0_PHYSINFO hypercall.
*/
if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
cpu_hz = 1000 * xpv_cpu_khz();
} else {
cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
if (vti->tsc_shift < 0)
cpu_hz <<= -vti->tsc_shift;
else
cpu_hz >>= vti->tsc_shift;
}
if (xpv_cpufreq_verbose)
printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
"cpu_hz %" PRId64 "Hz\n",
vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
return (cpu_hz);
#else /* __xpv */
uint32_t pit_counter;
uint64_t processor_clks;
if (x86_feature & X86_TSC) {
/*
* We have a TSC. freq_tsc() knows how to measure the number
* of clock cycles sampled against the PIT.
*/
ulong_t flags = clear_int_flag();
processor_clks = freq_tsc(&pit_counter);
restore_int_flag(flags);
return (mach_calchz(pit_counter, &processor_clks));
} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
#if defined(__amd64)
panic("mach_getcpufreq: no TSC!");
#elif defined(__i386)
/*
* We are a Cyrix based on a 6x86 core or an Intel Pentium
* for which freq_notsc() knows how to measure the number of
* elapsed clock cycles sampled against the PIT
*/
ulong_t flags = clear_int_flag();
processor_clks = freq_notsc(&pit_counter);
restore_int_flag(flags);
return (mach_calchz(pit_counter, &processor_clks));
#endif /* __i386 */
}
/* We do not know how to calculate cpu frequency for this cpu. */
return (0);
#endif /* __xpv */
}
/*
* If the clock speed of a cpu is found to be reported incorrectly, do not add
* to this array, instead improve the accuracy of the algorithm that determines
* the clock speed of the processor or extend the implementation to support the
* vendor as appropriate. This is here only to support adjusting the speed on
* older slower processors that mach_fixcpufreq() would not be able to account
* for otherwise.
*/
static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
/*
* On fast processors the clock frequency that is measured may be off by
* a few MHz from the value printed on the part. This is a combination of
* the factors that for such fast parts being off by this much is within
* the tolerances for manufacture and because of the difficulties in the
* measurement that can lead to small error. This function uses some
* heuristics in order to tweak the value that was measured to match what
* is most likely printed on the part.
*
* Some examples:
* AMD Athlon 1000 mhz measured as 998 mhz
* Intel Pentium III Xeon 733 mhz measured as 731 mhz
* Intel Pentium IV 1500 mhz measured as 1495mhz
*
* If in the future this function is no longer sufficient to correct
* for the error in the measurement, then the algorithm used to perform
* the measurement will have to be improved in order to increase accuracy
* rather than adding horrible and questionable kludges here.
*
* This is called after the cyclics subsystem because of the potential
* that the heuristics within may give a worse estimate of the clock
* frequency than the value that was measured.
*/
static void
mach_fixcpufreq(void)
{
uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
freq = (uint32_t)cpu_freq;
/*
* Find the nearest integer multiple of 200/3 (about 66) MHz to the
* measured speed taking into account that the 667 MHz parts were
* the first to round-up.
*/
mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
/* Find the nearest integer multiple of 50 MHz to the measured speed */
mul = (freq + 25) / 50;
near50 = mul * 50;
delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
/* Find the closer of the two */
if (delta66 < delta50) {
fixed = near66;
delta = delta66;
} else {
fixed = near50;
delta = delta50;
}
if (fixed > INT_MAX)
return;
/*
* Some older parts have a core clock frequency that is not an
* integral multiple of 50 or 66 MHz. Check if one of the old
* clock frequencies is closer to the measured value than any
* of the integral multiples of 50 an 66, and if so set fixed
* and delta appropriately to represent the closest value.
*/
i = sizeof (x86_cpu_freq) / sizeof (int);
while (i > 0) {
i--;
if (x86_cpu_freq[i] <= freq) {
mul = freq - x86_cpu_freq[i];
if (mul < delta) {
fixed = x86_cpu_freq[i];
delta = mul;
}
break;
}
mul = x86_cpu_freq[i] - freq;
if (mul < delta) {
fixed = x86_cpu_freq[i];
delta = mul;
}
}
/*
* Set a reasonable maximum for how much to correct the measured
* result by. This check is here to prevent the adjustment made
* by this function from being more harm than good. It is entirely
* possible that in the future parts will be made that are not
* integral multiples of 66 or 50 in clock frequency or that
* someone may overclock a part to some odd frequency. If the
* measured value is farther from the corrected value than
* allowed, then assume the corrected value is in error and use
* the measured value.
*/
if (6 < delta)
return;
cpu_freq = (int)fixed;
}
static int
machhztomhz(uint64_t cpu_freq_hz)
{
uint64_t cpu_mhz;
/* Round to nearest MHZ */
cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
if (cpu_mhz > INT_MAX)
return (0);
return ((int)cpu_mhz);
}
static int
mach_clkinit(int preferred_mode, int *set_mode)
{
struct psm_ops *pops;
int resolution;
pops = mach_set[0];
cpu_freq_hz = mach_getcpufreq();
cpu_freq = machhztomhz(cpu_freq_hz);
if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
tsc_gethrtime_enable = 0;
#ifndef __xpv
if (tsc_gethrtime_enable) {
tsc_hrtimeinit(cpu_freq_hz);
} else
#endif
{
if (pops->psm_hrtimeinit)
(*pops->psm_hrtimeinit)();
gethrtimef = pops->psm_gethrtime;
gethrtimeunscaledf = gethrtimef;
/* scalehrtimef will remain dummy */
}
mach_fixcpufreq();
if (mach_ver[0] >= PSM_INFO_VER01_3) {
if (preferred_mode == TIMER_ONESHOT) {
resolution = (*pops->psm_clkinit)(0);
if (resolution != 0) {
*set_mode = TIMER_ONESHOT;
return (resolution);
}
}
/*
* either periodic mode was requested or could not set to
* one-shot mode
*/
resolution = (*pops->psm_clkinit)(hz);
/*
* psm should be able to do periodic, so we do not check
* for return value of psm_clkinit here.
*/
*set_mode = TIMER_PERIODIC;
return (resolution);
} else {
/*
* PSMI interface prior to PSMI_3 does not define a return
* value for psm_clkinit, so the return value is ignored.
*/
(void) (*pops->psm_clkinit)(hz);
*set_mode = TIMER_PERIODIC;
return (nsec_per_tick);
}
}
/*ARGSUSED*/
static int
mach_softlvl_to_vect(int ipl)
{
setsoftint = av_set_softint_pending;
kdisetsoftint = kdi_av_set_softint_pending;
return (PSM_SV_SOFTWARE);
}
#ifdef DEBUG
/*
* This is here to allow us to simulate cpus that refuse to start.
*/
cpuset_t cpufailset;
#endif
int
mach_cpu_start(struct cpu *cp, void *ctx)
{
struct psm_ops *pops = mach_set[0];
processorid_t id = cp->cpu_id;
#ifdef DEBUG
if (CPU_IN_SET(cpufailset, id))
return (0);
#endif
return ((*pops->psm_cpu_start)(id, ctx));
}
int
mach_cpuid_start(processorid_t id, void *ctx)
{
struct psm_ops *pops = mach_set[0];
#ifdef DEBUG
if (CPU_IN_SET(cpufailset, id))
return (0);
#endif
return ((*pops->psm_cpu_start)(id, ctx));
}
int
mach_cpu_stop(cpu_t *cp, void *ctx)
{
struct psm_ops *pops = mach_set[0];
psm_cpu_request_t request;
if (pops->psm_cpu_ops == NULL) {
return (ENOTSUP);
}
ASSERT(cp->cpu_id != -1);
request.pcr_cmd = PSM_CPU_STOP;
request.req.cpu_stop.cpuid = cp->cpu_id;
request.req.cpu_stop.ctx = ctx;
return ((*pops->psm_cpu_ops)(&request));
}
int
mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
{
int rc;
struct psm_ops *pops = mach_set[0];
psm_cpu_request_t request;
if (pops->psm_cpu_ops == NULL) {
return (ENOTSUP);
}
request.pcr_cmd = PSM_CPU_ADD;
request.req.cpu_add.argp = argp;
request.req.cpu_add.cpuid = -1;
rc = (*pops->psm_cpu_ops)(&request);
if (rc == 0) {
ASSERT(request.req.cpu_add.cpuid != -1);
*cpuidp = request.req.cpu_add.cpuid;
}
return (rc);
}
int
mach_cpu_remove(processorid_t cpuid)
{
struct psm_ops *pops = mach_set[0];
psm_cpu_request_t request;
if (pops->psm_cpu_ops == NULL) {
return (ENOTSUP);
}
request.pcr_cmd = PSM_CPU_REMOVE;
request.req.cpu_remove.cpuid = cpuid;
return ((*pops->psm_cpu_ops)(&request));
}
/*
* Default handler to create device node for CPU.
* One reference count will be held on created device node.
*/
static int
mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
{
int rv, circ;
dev_info_t *dip;
static kmutex_t cpu_node_lock;
static dev_info_t *cpu_nex_devi = NULL;
ASSERT(cp != NULL);
ASSERT(dipp != NULL);
*dipp = NULL;
if (cpu_nex_devi == NULL) {
mutex_enter(&cpu_node_lock);
/* First check whether cpus exists. */
cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
/* Create cpus if it doesn't exist. */
if (cpu_nex_devi == NULL) {
ndi_devi_enter(ddi_root_node(), &circ);
rv = ndi_devi_alloc(ddi_root_node(), "cpus",
(pnode_t)DEVI_SID_NODEID, &dip);
if (rv != NDI_SUCCESS) {
mutex_exit(&cpu_node_lock);
cmn_err(CE_CONT,
"?failed to create cpu nexus device.\n");
return (PSM_FAILURE);
}
ASSERT(dip != NULL);
(void) ndi_devi_online(dip, 0);
ndi_devi_exit(ddi_root_node(), circ);
cpu_nex_devi = dip;
}
mutex_exit(&cpu_node_lock);
}
/*
* create a child node for cpu identified as 'cpu_id'
*/
ndi_devi_enter(cpu_nex_devi, &circ);
dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
if (dip == NULL) {
cmn_err(CE_CONT,
"?failed to create device node for cpu%d.\n", cp->cpu_id);
rv = PSM_FAILURE;
} else {
*dipp = dip;
(void) ndi_hold_devi(dip);
rv = PSM_SUCCESS;
}
ndi_devi_exit(cpu_nex_devi, circ);
return (rv);
}
/*
* Create cpu device node in device tree and online it.
* Return created dip with reference count held if requested.
*/
int
mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
{
int rv;
dev_info_t *dip = NULL;
ASSERT(psm_cpu_create_devinfo != NULL);
rv = psm_cpu_create_devinfo(cp, &dip);
if (rv == PSM_SUCCESS) {
cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
/* Recursively attach driver for parent nexus device. */
if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
DDI_SUCCESS) {
/* Configure cpu itself and descendants. */
(void) ndi_devi_online(dip,
NDI_ONLINE_ATTACH | NDI_CONFIG);
}
if (dipp != NULL) {
*dipp = dip;
} else {
(void) ndi_rele_devi(dip);
}
}
return (rv);
}
/*
* The dipp contains one of following values on return:
* - NULL if no device node found
* - pointer to device node if found
*/
int
mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
{
*dipp = NULL;
if (psm_cpu_get_devinfo != NULL) {
if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
return (PSM_SUCCESS);
}
}
return (PSM_FAILURE);
}
/*ARGSUSED*/
static int
mach_translate_irq(dev_info_t *dip, int irqno)
{
return (irqno); /* default to NO translation */
}
static void
mach_notify_error(int level, char *errmsg)
{
/*
* SL_FATAL is pass in once panicstr is set, deliver it
* as CE_PANIC. Also, translate SL_ codes back to CE_
* codes for the psmi handler
*/
if (level & SL_FATAL)
(*notify_error)(CE_PANIC, errmsg);
else if (level & SL_WARN)
(*notify_error)(CE_WARN, errmsg);
else if (level & SL_NOTE)
(*notify_error)(CE_NOTE, errmsg);
else if (level & SL_CONSOLE)
(*notify_error)(CE_CONT, errmsg);
}
/*
* It provides the default basic intr_ops interface for the new DDI
* interrupt framework if the PSM doesn't have one.
*
* Input:
* dip - pointer to the dev_info structure of the requested device
* hdlp - pointer to the internal interrupt handle structure for the
* requested interrupt
* intr_op - opcode for this call
* result - pointer to the integer that will hold the result to be
* passed back if return value is PSM_SUCCESS
*
* Output:
* return value is either PSM_SUCCESS or PSM_FAILURE
*/
static int
mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
psm_intr_op_t intr_op, int *result)
{
struct intrspec *ispec;
switch (intr_op) {
case PSM_INTR_OP_CHECK_MSI:
*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
DDI_INTR_TYPE_MSIX);
break;
case PSM_INTR_OP_ALLOC_VECTORS:
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
*result = 1;
else
*result = 0;
break;
case PSM_INTR_OP_FREE_VECTORS:
break;
case PSM_INTR_OP_NAVAIL_VECTORS:
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
*result = 1;
else
*result = 0;
break;
case PSM_INTR_OP_XLATE_VECTOR:
ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
*result = psm_translate_irq(dip, ispec->intrspec_vec);
break;
case PSM_INTR_OP_GET_CAP:
*result = 0;
break;
case PSM_INTR_OP_GET_PENDING:
case PSM_INTR_OP_CLEAR_MASK:
case PSM_INTR_OP_SET_MASK:
case PSM_INTR_OP_GET_SHARED:
case PSM_INTR_OP_SET_PRI:
case PSM_INTR_OP_SET_CAP:
case PSM_INTR_OP_SET_CPU:
case PSM_INTR_OP_GET_INTR:
default:
return (PSM_FAILURE);
}
return (PSM_SUCCESS);
}
/*
* Return 1 if CMT load balancing policies should be
* implemented across instances of the specified hardware
* sharing relationship.
*/
int
pg_cmt_load_bal_hw(pghw_type_t hw)
{
if (hw == PGHW_IPIPE ||
hw == PGHW_FPU ||
hw == PGHW_PROCNODE ||
hw == PGHW_CHIP)
return (1);
else
return (0);
}
/*
* Return 1 if thread affinity polices should be implemented
* for instances of the specifed hardware sharing relationship.
*/
int
pg_cmt_affinity_hw(pghw_type_t hw)
{
if (hw == PGHW_CACHE)
return (1);
else
return (0);
}
/*
* Return number of counter events requested to measure hardware capacity and
* utilization and setup CPC requests for specified CPU as needed
*
* May return 0 when platform or processor specific code knows that no CPC
* events should be programmed on this CPU or -1 when platform or processor
* specific code doesn't know which counter events are best to use and common
* code should decide for itself
*/
int
/* LINTED E_FUNC_ARG_UNUSED */
cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
{
const char *impl_name;
/*
* Return error if pcbe_ops not set
*/
if (pcbe_ops == NULL)
return (-1);
/*
* Return that no CPC events should be programmed on hyperthreaded
* Pentium 4 and return error for all other x86 processors to tell
* common code to decide what counter events to program on those CPUs
* for measuring hardware capacity and utilization
*/
impl_name = pcbe_ops->pcbe_impl_name();
if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
return (0);
else
return (-1);
}