microcode.c revision f34a71784df3fbc5d1227a7b6201fd318ad1667e
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/asm_linkage.h>
#include <sys/bootconf.h>
#include <sys/cpuvar.h>
#include <sys/cmn_err.h>
#include <sys/controlregs.h>
#include <sys/debug.h>
#include <sys/kobj.h>
#include <sys/kobj_impl.h>
#include <sys/machsystm.h>
#include <sys/param.h>
#include <sys/machparam.h>
#include <sys/promif.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/thread.h>
#include <sys/ucode.h>
#include <sys/x86_archext.h>
#include <sys/x_call.h>
#ifdef __xpv
#include <sys/hypervisor.h>
#endif
/*
* AMD-specific equivalence table
*/
static ucode_eqtbl_amd_t *ucode_eqtbl_amd;
/*
* mcpu_ucode_info for the boot CPU. Statically allocated.
*/
static struct cpu_ucode_info cpu_ucode_info0;
static ucode_file_t ucodefile;
static void* ucode_zalloc(processorid_t, size_t);
static void ucode_free(processorid_t, void *, size_t);
static int ucode_capable_amd(cpu_t *);
static int ucode_capable_intel(cpu_t *);
static ucode_errno_t ucode_extract_amd(ucode_update_t *, uint8_t *, int);
static ucode_errno_t ucode_extract_intel(ucode_update_t *, uint8_t *,
int);
static void ucode_file_reset_amd(ucode_file_t *, processorid_t);
static void ucode_file_reset_intel(ucode_file_t *, processorid_t);
static uint32_t ucode_load_amd(ucode_file_t *, cpu_ucode_info_t *, cpu_t *);
static uint32_t ucode_load_intel(ucode_file_t *, cpu_ucode_info_t *, cpu_t *);
#ifdef __xpv
static void ucode_load_xpv(ucode_update_t *);
static void ucode_chipset_amd(uint8_t *, int);
#endif
static int ucode_equiv_cpu_amd(cpu_t *, uint16_t *);
static ucode_errno_t ucode_locate_amd(cpu_t *, cpu_ucode_info_t *,
ucode_file_t *);
static ucode_errno_t ucode_locate_intel(cpu_t *, cpu_ucode_info_t *,
ucode_file_t *);
#ifndef __xpv
static ucode_errno_t ucode_match_amd(uint16_t, cpu_ucode_info_t *,
ucode_file_amd_t *, int);
#endif
static ucode_errno_t ucode_match_intel(int, cpu_ucode_info_t *,
ucode_header_intel_t *, ucode_ext_table_intel_t *);
static void ucode_read_rev_amd(cpu_ucode_info_t *);
static void ucode_read_rev_intel(cpu_ucode_info_t *);
static const struct ucode_ops ucode_amd = {
MSR_AMD_PATCHLOADER,
ucode_capable_amd,
ucode_file_reset_amd,
ucode_read_rev_amd,
ucode_load_amd,
ucode_validate_amd,
ucode_extract_amd,
ucode_locate_amd
};
static const struct ucode_ops ucode_intel = {
MSR_INTC_UCODE_WRITE,
ucode_capable_intel,
ucode_file_reset_intel,
ucode_read_rev_intel,
ucode_load_intel,
ucode_validate_intel,
ucode_extract_intel,
ucode_locate_intel
};
const struct ucode_ops *ucode;
static const char ucode_failure_fmt[] =
"cpu%d: failed to update microcode from version 0x%x to 0x%x\n";
static const char ucode_success_fmt[] =
"?cpu%d: microcode has been updated from version 0x%x to 0x%x\n";
/*
* Force flag. If set, the first microcode binary that matches
* signature and platform id will be used for microcode update,
* regardless of version. Should only be used for debugging.
*/
int ucode_force_update = 0;
/*
* Allocate space for mcpu_ucode_info in the machcpu structure
* for all non-boot CPUs.
*/
void
ucode_alloc_space(cpu_t *cp)
{
ASSERT(cp->cpu_id != 0);
cp->cpu_m.mcpu_ucode_info =
kmem_zalloc(sizeof (*cp->cpu_m.mcpu_ucode_info), KM_SLEEP);
}
void
ucode_free_space(cpu_t *cp)
{
ASSERT(cp->cpu_id != 0);
kmem_free(cp->cpu_m.mcpu_ucode_info,
sizeof (*cp->cpu_m.mcpu_ucode_info));
}
/*
* Called when we are done with microcode update on all processors to free up
* space allocated for the microcode file.
*/
void
ucode_cleanup()
{
ASSERT(ucode);
ucode->file_reset(&ucodefile, -1);
}
/*
* Allocate/free a buffer used to hold ucode data. Space for the boot CPU is
* allocated with BOP_ALLOC() and does not require a free.
*/
static void*
ucode_zalloc(processorid_t id, size_t size)
{
if (id)
return (kmem_zalloc(size, KM_NOSLEEP));
/* BOP_ALLOC() failure results in panic */
return (BOP_ALLOC(bootops, NULL, size, MMU_PAGESIZE));
}
static void
ucode_free(processorid_t id, void* buf, size_t size)
{
if (id)
kmem_free(buf, size);
}
/*
* Check whether or not a processor is capable of microcode operations
* Returns 1 if it is capable, 0 if not.
*
* At this point we only support microcode update for:
* - Intel processors family 6 and above, and
* - AMD processors family 0x10 and above.
*
* We also assume that we don't support a mix of Intel and
* AMD processors in the same box.
*
* An i86xpv guest domain can't update the microcode.
*/
/*ARGSUSED*/
static int
ucode_capable_amd(cpu_t *cp)
{
int hwenv = get_hwenv();
if (hwenv == HW_XEN_HVM || (hwenv == HW_XEN_PV && !is_controldom())) {
return (0);
}
return (cpuid_getfamily(cp) >= 0x10);
}
static int
ucode_capable_intel(cpu_t *cp)
{
int hwenv = get_hwenv();
if (hwenv == HW_XEN_HVM || (hwenv == HW_XEN_PV && !is_controldom())) {
return (0);
}
return (cpuid_getfamily(cp) >= 6);
}
/*
* Called when it is no longer necessary to keep the microcode around,
* or when the cached microcode doesn't match the CPU being processed.
*/
static void
ucode_file_reset_amd(ucode_file_t *ufp, processorid_t id)
{
ucode_file_amd_t *ucodefp = ufp->amd;
if (ucodefp == NULL)
return;
ucode_free(id, ucodefp, sizeof (ucode_file_amd_t));
ufp->amd = NULL;
}
static void
ucode_file_reset_intel(ucode_file_t *ufp, processorid_t id)
{
ucode_file_intel_t *ucodefp = &ufp->intel;
int total_size, body_size;
if (ucodefp == NULL || ucodefp->uf_header == NULL)
return;
total_size = UCODE_TOTAL_SIZE_INTEL(ucodefp->uf_header->uh_total_size);
body_size = UCODE_BODY_SIZE_INTEL(ucodefp->uf_header->uh_body_size);
if (ucodefp->uf_body) {
ucode_free(id, ucodefp->uf_body, body_size);
ucodefp->uf_body = NULL;
}
if (ucodefp->uf_ext_table) {
int size = total_size - body_size - UCODE_HEADER_SIZE_INTEL;
ucode_free(id, ucodefp->uf_ext_table, size);
ucodefp->uf_ext_table = NULL;
}
ucode_free(id, ucodefp->uf_header, UCODE_HEADER_SIZE_INTEL);
ucodefp->uf_header = NULL;
}
/*
* Find the equivalent CPU id in the equivalence table.
*/
static int
ucode_equiv_cpu_amd(cpu_t *cp, uint16_t *eq_sig)
{
char name[MAXPATHLEN];
intptr_t fd;
int count;
int offset = 0, cpi_sig = cpuid_getsig(cp);
ucode_eqtbl_amd_t *eqtbl = ucode_eqtbl_amd;
(void) snprintf(name, MAXPATHLEN, "/%s/%s/equivalence-table",
UCODE_INSTALL_PATH, cpuid_getvendorstr(cp));
/*
* No kmem_zalloc() etc. available on boot cpu.
*/
if (cp->cpu_id == 0) {
if ((fd = kobj_open(name)) == -1)
return (EM_OPENFILE);
/* ucode_zalloc() cannot fail on boot cpu */
eqtbl = ucode_zalloc(cp->cpu_id, sizeof (*eqtbl));
ASSERT(eqtbl);
do {
count = kobj_read(fd, (int8_t *)eqtbl,
sizeof (*eqtbl), offset);
if (count != sizeof (*eqtbl)) {
(void) kobj_close(fd);
return (EM_HIGHERREV);
}
offset += count;
} while (eqtbl->ue_inst_cpu && eqtbl->ue_inst_cpu != cpi_sig);
(void) kobj_close(fd);
}
/*
* If not already done, load the equivalence table.
* Not done on boot CPU.
*/
if (eqtbl == NULL) {
struct _buf *eq;
uint64_t size;
if ((eq = kobj_open_file(name)) == (struct _buf *)-1)
return (EM_OPENFILE);
if (kobj_get_filesize(eq, &size) < 0) {
kobj_close_file(eq);
return (EM_OPENFILE);
}
ucode_eqtbl_amd = kmem_zalloc(size, KM_NOSLEEP);
if (ucode_eqtbl_amd == NULL) {
kobj_close_file(eq);
return (EM_NOMEM);
}
count = kobj_read_file(eq, (char *)ucode_eqtbl_amd, size, 0);
kobj_close_file(eq);
if (count != size)
return (EM_FILESIZE);
}
/* Get the equivalent CPU id. */
if (cp->cpu_id)
for (eqtbl = ucode_eqtbl_amd;
eqtbl->ue_inst_cpu && eqtbl->ue_inst_cpu != cpi_sig;
eqtbl++)
;
*eq_sig = eqtbl->ue_equiv_cpu;
/* No equivalent CPU id found, assume outdated microcode file. */
if (*eq_sig == 0)
return (EM_HIGHERREV);
return (EM_OK);
}
/*
* xVM cannot check for the presence of PCI devices. Look for chipset-
* specific microcode patches in the container file and disable them
* by setting their CPU revision to an invalid value.
*/
#ifdef __xpv
static void
ucode_chipset_amd(uint8_t *buf, int size)
{
ucode_header_amd_t *uh;
uint32_t *ptr = (uint32_t *)buf;
int len = 0;
/* skip to first microcode patch */
ptr += 2; len = *ptr++; ptr += len >> 2; size -= len;
while (size >= sizeof (ucode_header_amd_t) + 8) {
ptr++; len = *ptr++;
uh = (ucode_header_amd_t *)ptr;
ptr += len >> 2; size -= len;
if (uh->uh_nb_id) {
cmn_err(CE_WARN, "ignoring northbridge-specific ucode: "
"chipset id %x, revision %x",
uh->uh_nb_id, uh->uh_nb_rev);
uh->uh_cpu_rev = 0xffff;
}
if (uh->uh_sb_id) {
cmn_err(CE_WARN, "ignoring southbridge-specific ucode: "
"chipset id %x, revision %x",
uh->uh_sb_id, uh->uh_sb_rev);
uh->uh_cpu_rev = 0xffff;
}
}
}
#endif
/*
* Populate the ucode file structure from microcode file corresponding to
* this CPU, if exists.
*
* Return EM_OK on success, corresponding error code on failure.
*/
/*ARGSUSED*/
static ucode_errno_t
ucode_locate_amd(cpu_t *cp, cpu_ucode_info_t *uinfop, ucode_file_t *ufp)
{
char name[MAXPATHLEN];
intptr_t fd;
int count, rc;
ucode_file_amd_t *ucodefp = ufp->amd;
#ifndef __xpv
uint16_t eq_sig = 0;
int i;
/* get equivalent CPU id */
if ((rc = ucode_equiv_cpu_amd(cp, &eq_sig)) != EM_OK)
return (rc);
/*
* Allocate a buffer for the microcode patch. If the buffer has been
* allocated before, check for a matching microcode to avoid loading
* the file again.
*/
if (ucodefp == NULL)
ucodefp = ucode_zalloc(cp->cpu_id, sizeof (*ucodefp));
else if (ucode_match_amd(eq_sig, uinfop, ucodefp, sizeof (*ucodefp))
== EM_OK)
return (EM_OK);
if (ucodefp == NULL)
return (EM_NOMEM);
ufp->amd = ucodefp;
/*
* Find the patch for this CPU. The patch files are named XXXX-YY, where
* XXXX is the equivalent CPU id and YY is the running patch number.
* Patches specific to certain chipsets are guaranteed to have lower
* numbers than less specific patches, so we can just load the first
* patch that matches.
*/
for (i = 0; i < 0xff; i++) {
(void) snprintf(name, MAXPATHLEN, "/%s/%s/%04X-%02X",
UCODE_INSTALL_PATH, cpuid_getvendorstr(cp), eq_sig, i);
if ((fd = kobj_open(name)) == -1)
return (EM_NOMATCH);
count = kobj_read(fd, (char *)ucodefp, sizeof (*ucodefp), 0);
(void) kobj_close(fd);
if (ucode_match_amd(eq_sig, uinfop, ucodefp, count) == EM_OK)
return (EM_OK);
}
return (EM_NOMATCH);
#else
int size = 0;
char c;
/*
* The xVM case is special. To support mixed-revision systems, the
* hypervisor will choose which patch to load for which CPU, so the
* whole microcode patch container file will have to be loaded.
*
* Since this code is only run on the boot cpu, we don't have to care
* about failing ucode_zalloc() or freeing allocated memory.
*/
if (cp->cpu_id != 0)
return (EM_INVALIDARG);
(void) snprintf(name, MAXPATHLEN, "/%s/%s/container",
UCODE_INSTALL_PATH, cpuid_getvendorstr(cp));
if ((fd = kobj_open(name)) == -1)
return (EM_OPENFILE);
/* get the file size by counting bytes */
do {
count = kobj_read(fd, &c, 1, size);
size += count;
} while (count);
ucodefp = ucode_zalloc(cp->cpu_id, sizeof (*ucodefp));
ASSERT(ucodefp);
ufp->amd = ucodefp;
ucodefp->usize = size;
ucodefp->ucodep = ucode_zalloc(cp->cpu_id, size);
ASSERT(ucodefp->ucodep);
/* load the microcode patch container file */
count = kobj_read(fd, (char *)ucodefp->ucodep, size, 0);
(void) kobj_close(fd);
if (count != size)
return (EM_FILESIZE);
/* make sure the container file is valid */
rc = ucode->validate(ucodefp->ucodep, ucodefp->usize);
if (rc != EM_OK)
return (rc);
/* disable chipset-specific patches */
ucode_chipset_amd(ucodefp->ucodep, ucodefp->usize);
return (EM_OK);
#endif
}
static ucode_errno_t
ucode_locate_intel(cpu_t *cp, cpu_ucode_info_t *uinfop, ucode_file_t *ufp)
{
char name[MAXPATHLEN];
intptr_t fd;
int count;
int header_size = UCODE_HEADER_SIZE_INTEL;
int cpi_sig = cpuid_getsig(cp);
ucode_errno_t rc = EM_OK;
ucode_file_intel_t *ucodefp = &ufp->intel;
ASSERT(ucode);
/*
* If the microcode matches the CPU we are processing, use it.
*/
if (ucode_match_intel(cpi_sig, uinfop, ucodefp->uf_header,
ucodefp->uf_ext_table) == EM_OK && ucodefp->uf_body != NULL) {
return (EM_OK);
}
/*
* Look for microcode file with the right name.
*/
(void) snprintf(name, MAXPATHLEN, "/%s/%s/%08X-%02X",
UCODE_INSTALL_PATH, cpuid_getvendorstr(cp), cpi_sig,
uinfop->cui_platid);
if ((fd = kobj_open(name)) == -1) {
return (EM_OPENFILE);
}
/*
* We found a microcode file for the CPU we are processing,
* reset the microcode data structure and read in the new
* file.
*/
ucode->file_reset(ufp, cp->cpu_id);
ucodefp->uf_header = ucode_zalloc(cp->cpu_id, header_size);
if (ucodefp->uf_header == NULL)
return (EM_NOMEM);
count = kobj_read(fd, (char *)ucodefp->uf_header, header_size, 0);
switch (count) {
case UCODE_HEADER_SIZE_INTEL: {
ucode_header_intel_t *uhp = ucodefp->uf_header;
uint32_t offset = header_size;
int total_size, body_size, ext_size;
uint32_t sum = 0;
/*
* Make sure that the header contains valid fields.
*/
if ((rc = ucode_header_validate_intel(uhp)) == EM_OK) {
total_size = UCODE_TOTAL_SIZE_INTEL(uhp->uh_total_size);
body_size = UCODE_BODY_SIZE_INTEL(uhp->uh_body_size);
ucodefp->uf_body = ucode_zalloc(cp->cpu_id, body_size);
if (ucodefp->uf_body == NULL) {
rc = EM_NOMEM;
break;
}
if (kobj_read(fd, (char *)ucodefp->uf_body,
body_size, offset) != body_size)
rc = EM_FILESIZE;
}
if (rc)
break;
sum = ucode_checksum_intel(0, header_size,
(uint8_t *)ucodefp->uf_header);
if (ucode_checksum_intel(sum, body_size, ucodefp->uf_body)) {
rc = EM_CHECKSUM;
break;
}
/*
* Check to see if there is extended signature table.
*/
offset = body_size + header_size;
ext_size = total_size - offset;
if (ext_size <= 0)
break;
ucodefp->uf_ext_table = ucode_zalloc(cp->cpu_id, ext_size);
if (ucodefp->uf_ext_table == NULL) {
rc = EM_NOMEM;
break;
}
if (kobj_read(fd, (char *)ucodefp->uf_ext_table,
ext_size, offset) != ext_size) {
rc = EM_FILESIZE;
} else if (ucode_checksum_intel(0, ext_size,
(uint8_t *)(ucodefp->uf_ext_table))) {
rc = EM_CHECKSUM;
} else {
int i;
ext_size -= UCODE_EXT_TABLE_SIZE_INTEL;
for (i = 0; i < ucodefp->uf_ext_table->uet_count;
i++) {
if (ucode_checksum_intel(0,
UCODE_EXT_SIG_SIZE_INTEL,
(uint8_t *)(&(ucodefp->uf_ext_table->
uet_ext_sig[i])))) {
rc = EM_CHECKSUM;
break;
}
}
}
break;
}
default:
rc = EM_FILESIZE;
break;
}
kobj_close(fd);
if (rc != EM_OK)
return (rc);
rc = ucode_match_intel(cpi_sig, uinfop, ucodefp->uf_header,
ucodefp->uf_ext_table);
return (rc);
}
#ifndef __xpv
static ucode_errno_t
ucode_match_amd(uint16_t eq_sig, cpu_ucode_info_t *uinfop,
ucode_file_amd_t *ucodefp, int size)
{
ucode_header_amd_t *uh;
if (ucodefp == NULL || size < sizeof (ucode_header_amd_t))
return (EM_NOMATCH);
/*
* Don't even think about loading patches that would require code
* execution.
*/
if (size > offsetof(ucode_file_amd_t, uf_code_present) &&
ucodefp->uf_code_present)
return (EM_NOMATCH);
uh = &ucodefp->uf_header;
if (eq_sig != uh->uh_cpu_rev)
return (EM_NOMATCH);
if (uh->uh_nb_id) {
cmn_err(CE_WARN, "ignoring northbridge-specific ucode: "
"chipset id %x, revision %x", uh->uh_nb_id, uh->uh_nb_rev);
return (EM_NOMATCH);
}
if (uh->uh_sb_id) {
cmn_err(CE_WARN, "ignoring southbridge-specific ucode: "
"chipset id %x, revision %x", uh->uh_sb_id, uh->uh_sb_rev);
return (EM_NOMATCH);
}
if (uh->uh_patch_id <= uinfop->cui_rev)
return (EM_HIGHERREV);
return (EM_OK);
}
#endif
/*
* Returns 1 if the microcode is for this processor; 0 otherwise.
*/
static ucode_errno_t
ucode_match_intel(int cpi_sig, cpu_ucode_info_t *uinfop,
ucode_header_intel_t *uhp, ucode_ext_table_intel_t *uetp)
{
if (uhp == NULL)
return (EM_NOMATCH);
if (UCODE_MATCH_INTEL(cpi_sig, uhp->uh_signature,
uinfop->cui_platid, uhp->uh_proc_flags)) {
if (uinfop->cui_rev >= uhp->uh_rev && !ucode_force_update)
return (EM_HIGHERREV);
return (EM_OK);
}
if (uetp != NULL) {
int i;
for (i = 0; i < uetp->uet_count; i++) {
ucode_ext_sig_intel_t *uesp;
uesp = &uetp->uet_ext_sig[i];
if (UCODE_MATCH_INTEL(cpi_sig, uesp->ues_signature,
uinfop->cui_platid, uesp->ues_proc_flags)) {
if (uinfop->cui_rev >= uhp->uh_rev &&
!ucode_force_update)
return (EM_HIGHERREV);
return (EM_OK);
}
}
}
return (EM_NOMATCH);
}
/*ARGSUSED*/
static int
ucode_write(xc_arg_t arg1, xc_arg_t unused2, xc_arg_t unused3)
{
ucode_update_t *uusp = (ucode_update_t *)arg1;
cpu_ucode_info_t *uinfop = CPU->cpu_m.mcpu_ucode_info;
ASSERT(ucode);
ASSERT(uusp->ucodep);
#ifndef __xpv
/*
* Check one more time to see if it is really necessary to update
* microcode just in case this is a hyperthreaded processor where
* the threads share the same microcode.
*/
if (!ucode_force_update) {
ucode->read_rev(uinfop);
uusp->new_rev = uinfop->cui_rev;
if (uinfop->cui_rev >= uusp->expected_rev)
return (0);
}
wrmsr(ucode->write_msr, (uintptr_t)uusp->ucodep);
#endif
ucode->read_rev(uinfop);
uusp->new_rev = uinfop->cui_rev;
return (0);
}
/*ARGSUSED*/
static uint32_t
ucode_load_amd(ucode_file_t *ufp, cpu_ucode_info_t *uinfop, cpu_t *cp)
{
ucode_file_amd_t *ucodefp = ufp->amd;
#ifdef __xpv
ucode_update_t uus;
#endif
ASSERT(ucode);
ASSERT(ucodefp);
#ifndef __xpv
kpreempt_disable();
wrmsr(ucode->write_msr, (uintptr_t)ucodefp);
ucode->read_rev(uinfop);
kpreempt_enable();
return (ucodefp->uf_header.uh_patch_id);
#else
uus.ucodep = ucodefp->ucodep;
uus.usize = ucodefp->usize;
ucode_load_xpv(&uus);
ucode->read_rev(uinfop);
uus.new_rev = uinfop->cui_rev;
return (uus.new_rev);
#endif
}
/*ARGSUSED2*/
static uint32_t
ucode_load_intel(ucode_file_t *ufp, cpu_ucode_info_t *uinfop, cpu_t *cp)
{
ucode_file_intel_t *ucodefp = &ufp->intel;
#ifdef __xpv
uint32_t ext_offset;
uint32_t body_size;
uint32_t ext_size;
uint8_t *ustart;
uint32_t usize;
ucode_update_t uus;
#endif
ASSERT(ucode);
#ifdef __xpv
/*
* the hypervisor wants the header, data, and extended
* signature tables. We can only get here from the boot
* CPU (cpu #0), we don't need to free as ucode_zalloc() will
* use BOP_ALLOC().
*/
usize = UCODE_TOTAL_SIZE_INTEL(ucodefp->uf_header->uh_total_size);
ustart = ucode_zalloc(cp->cpu_id, usize);
ASSERT(ustart);
body_size = UCODE_BODY_SIZE_INTEL(ucodefp->uf_header->uh_body_size);
ext_offset = body_size + UCODE_HEADER_SIZE_INTEL;
ext_size = usize - ext_offset;
ASSERT(ext_size >= 0);
(void) memcpy(ustart, ucodefp->uf_header, UCODE_HEADER_SIZE_INTEL);
(void) memcpy(&ustart[UCODE_HEADER_SIZE_INTEL], ucodefp->uf_body,
body_size);
if (ext_size > 0) {
(void) memcpy(&ustart[ext_offset],
ucodefp->uf_ext_table, ext_size);
}
uus.ucodep = ustart;
uus.usize = usize;
ucode_load_xpv(&uus);
ucode->read_rev(uinfop);
uus.new_rev = uinfop->cui_rev;
#else
kpreempt_disable();
wrmsr(ucode->write_msr, (uintptr_t)ucodefp->uf_body);
ucode->read_rev(uinfop);
kpreempt_enable();
#endif
return (ucodefp->uf_header->uh_rev);
}
#ifdef __xpv
static void
ucode_load_xpv(ucode_update_t *uusp)
{
xen_platform_op_t op;
int e;
ASSERT(DOMAIN_IS_INITDOMAIN(xen_info));
kpreempt_disable();
op.cmd = XENPF_microcode_update;
op.interface_version = XENPF_INTERFACE_VERSION;
/*LINTED: constant in conditional context*/
set_xen_guest_handle(op.u.microcode.data, uusp->ucodep);
op.u.microcode.length = uusp->usize;
e = HYPERVISOR_platform_op(&op);
if (e != 0) {
cmn_err(CE_WARN, "hypervisor failed to accept uCode update");
}
kpreempt_enable();
}
#endif /* __xpv */
static void
ucode_read_rev_amd(cpu_ucode_info_t *uinfop)
{
uinfop->cui_rev = rdmsr(MSR_AMD_PATCHLEVEL);
}
static void
ucode_read_rev_intel(cpu_ucode_info_t *uinfop)
{
struct cpuid_regs crs;
/*
* The Intel 64 and IA-32 Architecture Software Developer's Manual
* recommends that MSR_INTC_UCODE_REV be loaded with 0 first, then
* execute cpuid to guarantee the correct reading of this register.
*/
wrmsr(MSR_INTC_UCODE_REV, 0);
(void) __cpuid_insn(&crs);
uinfop->cui_rev = (rdmsr(MSR_INTC_UCODE_REV) >> INTC_UCODE_REV_SHIFT);
}
static ucode_errno_t
ucode_extract_amd(ucode_update_t *uusp, uint8_t *ucodep, int size)
{
#ifndef __xpv
uint32_t *ptr = (uint32_t *)ucodep;
ucode_eqtbl_amd_t *eqtbl;
ucode_file_amd_t *ufp;
int count;
int higher = 0;
ucode_errno_t rc = EM_NOMATCH;
uint16_t eq_sig;
/* skip over magic number & equivalence table header */
ptr += 2; size -= 8;
count = *ptr++; size -= 4;
for (eqtbl = (ucode_eqtbl_amd_t *)ptr;
eqtbl->ue_inst_cpu && eqtbl->ue_inst_cpu != uusp->sig;
eqtbl++)
;
eq_sig = eqtbl->ue_equiv_cpu;
/* No equivalent CPU id found, assume outdated microcode file. */
if (eq_sig == 0)
return (EM_HIGHERREV);
/* Use the first microcode patch that matches. */
do {
ptr += count >> 2; size -= count;
if (!size)
return (higher ? EM_HIGHERREV : EM_NOMATCH);
ptr++; size -= 4;
count = *ptr++; size -= 4;
ufp = (ucode_file_amd_t *)ptr;
rc = ucode_match_amd(eq_sig, &uusp->info, ufp, count);
if (rc == EM_HIGHERREV)
higher = 1;
} while (rc != EM_OK);
uusp->ucodep = (uint8_t *)ufp;
uusp->usize = count;
uusp->expected_rev = ufp->uf_header.uh_patch_id;
#else
/*
* The hypervisor will choose the patch to load, so there is no way to
* know the "expected revision" in advance. This is especially true on
* mixed-revision systems where more than one patch will be loaded.
*/
uusp->expected_rev = 0;
uusp->ucodep = ucodep;
uusp->usize = size;
ucode_chipset_amd(ucodep, size);
#endif
return (EM_OK);
}
static ucode_errno_t
ucode_extract_intel(ucode_update_t *uusp, uint8_t *ucodep, int size)
{
uint32_t header_size = UCODE_HEADER_SIZE_INTEL;
int remaining;
int found = 0;
ucode_errno_t search_rc = EM_NOMATCH; /* search result */
/*
* Go through the whole buffer in case there are
* multiple versions of matching microcode for this
* processor.
*/
for (remaining = size; remaining > 0; ) {
int total_size, body_size, ext_size;
uint8_t *curbuf = &ucodep[size - remaining];
ucode_header_intel_t *uhp = (ucode_header_intel_t *)curbuf;
ucode_ext_table_intel_t *uetp = NULL;
ucode_errno_t tmprc;
total_size = UCODE_TOTAL_SIZE_INTEL(uhp->uh_total_size);
body_size = UCODE_BODY_SIZE_INTEL(uhp->uh_body_size);
ext_size = total_size - (header_size + body_size);
if (ext_size > 0)
uetp = (ucode_ext_table_intel_t *)
&curbuf[header_size + body_size];
tmprc = ucode_match_intel(uusp->sig, &uusp->info, uhp, uetp);
/*
* Since we are searching through a big file
* containing microcode for pretty much all the
* processors, we are bound to get EM_NOMATCH
* at one point. However, if we return
* EM_NOMATCH to users, it will really confuse
* them. Therefore, if we ever find a match of
* a lower rev, we will set return code to
* EM_HIGHERREV.
*/
if (tmprc == EM_HIGHERREV)
search_rc = EM_HIGHERREV;
if (tmprc == EM_OK &&
uusp->expected_rev < uhp->uh_rev) {
#ifndef __xpv
uusp->ucodep = (uint8_t *)&curbuf[header_size];
#else
uusp->ucodep = (uint8_t *)curbuf;
#endif
uusp->usize =
UCODE_TOTAL_SIZE_INTEL(uhp->uh_total_size);
uusp->expected_rev = uhp->uh_rev;
found = 1;
}
remaining -= total_size;
}
if (!found)
return (search_rc);
return (EM_OK);
}
/*
* Entry point to microcode update from the ucode_drv driver.
*
* Returns EM_OK on success, corresponding error code on failure.
*/
ucode_errno_t
ucode_update(uint8_t *ucodep, int size)
{
int found = 0;
processorid_t id;
ucode_update_t cached = { 0 };
ucode_update_t *cachedp = NULL;
ucode_errno_t rc = EM_OK;
ucode_errno_t search_rc = EM_NOMATCH; /* search result */
cpuset_t cpuset;
ASSERT(ucode);
ASSERT(ucodep);
CPUSET_ZERO(cpuset);
if (!ucode->capable(CPU))
return (EM_NOTSUP);
mutex_enter(&cpu_lock);
for (id = 0; id < max_ncpus; id++) {
cpu_t *cpu;
ucode_update_t uus = { 0 };
ucode_update_t *uusp = &uus;
/*
* If there is no such CPU or it is not xcall ready, skip it.
*/
if ((cpu = cpu_get(id)) == NULL ||
!(cpu->cpu_flags & CPU_READY))
continue;
uusp->sig = cpuid_getsig(cpu);
bcopy(cpu->cpu_m.mcpu_ucode_info, &uusp->info,
sizeof (uusp->info));
/*
* If the current CPU has the same signature and platform
* id as the previous one we processed, reuse the information.
*/
if (cachedp && cachedp->sig == cpuid_getsig(cpu) &&
cachedp->info.cui_platid == uusp->info.cui_platid) {
uusp->ucodep = cachedp->ucodep;
uusp->expected_rev = cachedp->expected_rev;
/*
* Intuitively we should check here to see whether the
* running microcode rev is >= the expected rev, and
* quit if it is. But we choose to proceed with the
* xcall regardless of the running version so that
* the other threads in an HT processor can update
* the cpu_ucode_info structure in machcpu.
*/
} else if ((search_rc = ucode->extract(uusp, ucodep, size))
== EM_OK) {
bcopy(uusp, &cached, sizeof (cached));
cachedp = &cached;
found = 1;
}
/* Nothing to do */
if (uusp->ucodep == NULL)
continue;
#ifdef __xpv
/*
* for i86xpv, the hypervisor will update all the CPUs.
* the hypervisor wants the header, data, and extended
* signature tables. ucode_write will just read in the
* updated version on all the CPUs after the update has
* completed.
*/
if (id == 0) {
ucode_load_xpv(uusp);
}
#endif
CPUSET_ADD(cpuset, id);
kpreempt_disable();
xc_sync((xc_arg_t)uusp, 0, 0, CPUSET2BV(cpuset), ucode_write);
kpreempt_enable();
CPUSET_DEL(cpuset, id);
if (uusp->new_rev != 0 && uusp->info.cui_rev == uusp->new_rev) {
rc = EM_HIGHERREV;
} else if ((uusp->new_rev == 0) || (uusp->expected_rev != 0 &&
uusp->expected_rev != uusp->new_rev)) {
cmn_err(CE_WARN, ucode_failure_fmt,
id, uusp->info.cui_rev, uusp->expected_rev);
rc = EM_UPDATE;
} else {
cmn_err(CE_CONT, ucode_success_fmt,
id, uusp->info.cui_rev, uusp->new_rev);
}
}
mutex_exit(&cpu_lock);
if (!found)
rc = search_rc;
return (rc);
}
/*
* Initialize mcpu_ucode_info, and perform microcode update if necessary.
* This is the entry point from boot path where pointer to CPU structure
* is available.
*
* cpuid_info must be initialized before ucode_check can be called.
*/
void
ucode_check(cpu_t *cp)
{
cpu_ucode_info_t *uinfop;
ucode_errno_t rc = EM_OK;
uint32_t new_rev = 0;
ASSERT(cp);
if (cp->cpu_id == 0)
cp->cpu_m.mcpu_ucode_info = &cpu_ucode_info0;
uinfop = cp->cpu_m.mcpu_ucode_info;
ASSERT(uinfop);
/* set up function pointers if not already done */
if (!ucode)
switch (cpuid_getvendor(cp)) {
case X86_VENDOR_AMD:
ucode = &ucode_amd;
break;
case X86_VENDOR_Intel:
ucode = &ucode_intel;
break;
default:
return;
}
if (!ucode->capable(cp))
return;
/*
* The MSR_INTC_PLATFORM_ID is supported in Celeron and Xeon
* (Family 6, model 5 and above) and all processors after.
*/
if ((cpuid_getvendor(cp) == X86_VENDOR_Intel) &&
((cpuid_getmodel(cp) >= 5) || (cpuid_getfamily(cp) > 6))) {
uinfop->cui_platid = 1 << ((rdmsr(MSR_INTC_PLATFORM_ID) >>
INTC_PLATFORM_ID_SHIFT) & INTC_PLATFORM_ID_MASK);
}
ucode->read_rev(uinfop);
#ifdef __xpv
/*
* for i86xpv, the hypervisor will update all the CPUs. We only need
* do do this on one of the CPUs (and there always is a CPU 0).
*/
if (cp->cpu_id != 0) {
return;
}
#endif
/*
* Check to see if we need ucode update
*/
if ((rc = ucode->locate(cp, uinfop, &ucodefile)) == EM_OK) {
new_rev = ucode->load(&ucodefile, uinfop, cp);
if (uinfop->cui_rev != new_rev)
cmn_err(CE_WARN, ucode_failure_fmt, cp->cpu_id,
uinfop->cui_rev, new_rev);
}
/*
* If we fail to find a match for any reason, free the file structure
* just in case we have read in a partial file.
*
* Since the scratch memory for holding the microcode for the boot CPU
* came from BOP_ALLOC, we will reset the data structure as if we
* never did the allocation so we don't have to keep track of this
* special chunk of memory. We free the memory used for the rest
* of the CPUs in start_other_cpus().
*/
if (rc != EM_OK || cp->cpu_id == 0)
ucode->file_reset(&ucodefile, cp->cpu_id);
}
/*
* Returns microcode revision from the machcpu structure.
*/
ucode_errno_t
ucode_get_rev(uint32_t *revp)
{
int i;
ASSERT(ucode);
ASSERT(revp);
if (!ucode->capable(CPU))
return (EM_NOTSUP);
mutex_enter(&cpu_lock);
for (i = 0; i < max_ncpus; i++) {
cpu_t *cpu;
if ((cpu = cpu_get(i)) == NULL)
continue;
revp[i] = cpu->cpu_m.mcpu_ucode_info->cui_rev;
}
mutex_exit(&cpu_lock);
return (EM_OK);
}