fakebop.c revision 72a8557dc57a8bf59d6df917b4d839d5cc86d329
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2010, Intel Corporation.
* All rights reserved.
*
* Copyright 2013 Joyent, Inc. All rights reserved.
*/
/*
* This file contains the functionality that mimics the boot operations
* on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
* The x86 kernel now does everything on its own.
*/
#include <sys/types.h>
#include <sys/bootconf.h>
#include <sys/bootsvcs.h>
#include <sys/bootinfo.h>
#include <sys/multiboot.h>
#include <sys/bootvfs.h>
#include <sys/bootprops.h>
#include <sys/varargs.h>
#include <sys/param.h>
#include <sys/machparam.h>
#include <sys/machsystm.h>
#include <sys/archsystm.h>
#include <sys/boot_console.h>
#include <sys/cmn_err.h>
#include <sys/systm.h>
#include <sys/promif.h>
#include <sys/archsystm.h>
#include <sys/x86_archext.h>
#include <sys/kobj.h>
#include <sys/privregs.h>
#include <sys/sysmacros.h>
#include <sys/ctype.h>
#include <sys/fastboot.h>
#ifdef __xpv
#include <sys/hypervisor.h>
#include <net/if.h>
#endif
#include <vm/kboot_mmu.h>
#include <vm/hat_pte.h>
#include <sys/kobj.h>
#include <sys/kobj_lex.h>
#include <sys/pci_cfgspace_impl.h>
#include <sys/fastboot_impl.h>
#include <sys/acpi/acconfig.h>
#include <sys/acpi/acpi.h>
static int have_console = 0; /* set once primitive console is initialized */
static char *boot_args = "";
/*
* Debugging macros
*/
static uint_t kbm_debug = 0;
#define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); }
#define DBG(x) { if (kbm_debug) \
bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \
}
#define PUT_STRING(s) { \
char *cp; \
for (cp = (s); *cp; ++cp) \
bcons_putchar(*cp); \
}
bootops_t bootop; /* simple bootops we'll pass on to kernel */
struct bsys_mem bm;
/*
* Boot info from "glue" code in low memory. xbootp is used by:
* do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
*/
static struct xboot_info *xbootp;
static uintptr_t next_virt; /* next available virtual address */
static paddr_t next_phys; /* next available physical address from dboot */
static paddr_t high_phys = -(paddr_t)1; /* last used physical address */
/*
* buffer for vsnprintf for console I/O
*/
#define BUFFERSIZE 512
static char buffer[BUFFERSIZE];
/*
* stuff to store/report/manipulate boot property settings.
*/
typedef struct bootprop {
struct bootprop *bp_next;
char *bp_name;
uint_t bp_vlen;
char *bp_value;
} bootprop_t;
static bootprop_t *bprops = NULL;
static char *curr_page = NULL; /* ptr to avail bprop memory */
static int curr_space = 0; /* amount of memory at curr_page */
#ifdef __xpv
start_info_t *xen_info;
shared_info_t *HYPERVISOR_shared_info;
#endif
/*
* some allocator statistics
*/
static ulong_t total_bop_alloc_scratch = 0;
static ulong_t total_bop_alloc_kernel = 0;
static void build_firmware_properties(void);
static int early_allocation = 1;
int force_fastreboot = 0;
volatile int fastreboot_onpanic = 0;
int post_fastreboot = 0;
#ifdef __xpv
volatile int fastreboot_capable = 0;
#else
volatile int fastreboot_capable = 1;
#endif
/*
* Information saved from current boot for fast reboot.
* If the information size exceeds what we have allocated, fast reboot
* will not be supported.
*/
multiboot_info_t saved_mbi;
mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
int saved_cmdline_len = 0;
size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
/*
* Turn off fastreboot_onpanic to avoid panic loop.
*/
char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
/*
* Pointers to where System Resource Affinity Table (SRAT), System Locality
* Information Table (SLIT) and Maximum System Capability Table (MSCT)
* are mapped into virtual memory
*/
ACPI_TABLE_SRAT *srat_ptr = NULL;
ACPI_TABLE_SLIT *slit_ptr = NULL;
ACPI_TABLE_MSCT *msct_ptr = NULL;
/*
* Arbitrary limit on number of localities we handle; if
* this limit is raised to more than UINT16_MAX, make sure
* process_slit() knows how to handle it.
*/
#define SLIT_LOCALITIES_MAX (4096)
#define SLIT_NUM_PROPNAME "acpi-slit-localities"
#define SLIT_PROPNAME "acpi-slit"
/*
* Allocate aligned physical memory at boot time. This allocator allocates
* from the highest possible addresses. This avoids exhausting memory that
* would be useful for DMA buffers.
*/
paddr_t
do_bop_phys_alloc(uint64_t size, uint64_t align)
{
paddr_t pa = 0;
paddr_t start;
paddr_t end;
struct memlist *ml = (struct memlist *)xbootp->bi_phys_install;
/*
* Be careful if high memory usage is limited in startup.c
* Since there are holes in the low part of the physical address
* space we can treat physmem as a pfn (not just a pgcnt) and
* get a conservative upper limit.
*/
if (physmem != 0 && high_phys > pfn_to_pa(physmem))
high_phys = pfn_to_pa(physmem);
/*
* find the lowest or highest available memory in physinstalled
* On 32 bit avoid physmem above 4Gig if PAE isn't enabled
*/
#if defined(__i386)
if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
high_phys = FOUR_GIG;
#endif
/*
* find the highest available memory in physinstalled
*/
size = P2ROUNDUP(size, align);
for (; ml; ml = ml->ml_next) {
start = P2ROUNDUP(ml->ml_address, align);
end = P2ALIGN(ml->ml_address + ml->ml_size, align);
if (start < next_phys)
start = P2ROUNDUP(next_phys, align);
if (end > high_phys)
end = P2ALIGN(high_phys, align);
if (end <= start)
continue;
if (end - start < size)
continue;
/*
* Early allocations need to use low memory, since
* physmem might be further limited by bootenv.rc
*/
if (early_allocation) {
if (pa == 0 || start < pa)
pa = start;
} else {
if (end - size > pa)
pa = end - size;
}
}
if (pa != 0) {
if (early_allocation)
next_phys = pa + size;
else
high_phys = pa;
return (pa);
}
bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
") Out of memory\n", size, align);
/*NOTREACHED*/
}
uintptr_t
alloc_vaddr(size_t size, paddr_t align)
{
uintptr_t rv;
next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
rv = (uintptr_t)next_virt;
next_virt += size;
return (rv);
}
/*
* Allocate virtual memory. The size is always rounded up to a multiple
* of base pagesize.
*/
/*ARGSUSED*/
static caddr_t
do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
{
paddr_t a = align; /* same type as pa for masking */
uint_t pgsize;
paddr_t pa;
uintptr_t va;
ssize_t s; /* the aligned size */
uint_t level;
uint_t is_kernel = (virthint != 0);
if (a < MMU_PAGESIZE)
a = MMU_PAGESIZE;
else if (!ISP2(a))
prom_panic("do_bsys_alloc() incorrect alignment");
size = P2ROUNDUP(size, MMU_PAGESIZE);
/*
* Use the next aligned virtual address if we weren't given one.
*/
if (virthint == NULL) {
virthint = (caddr_t)alloc_vaddr(size, a);
total_bop_alloc_scratch += size;
} else {
total_bop_alloc_kernel += size;
}
/*
* allocate the physical memory
*/
pa = do_bop_phys_alloc(size, a);
/*
* Add the mappings to the page tables, try large pages first.
*/
va = (uintptr_t)virthint;
s = size;
level = 1;
pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
if (xbootp->bi_use_largepage && a == pgsize) {
while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
s >= pgsize) {
kbm_map(va, pa, level, is_kernel);
va += pgsize;
pa += pgsize;
s -= pgsize;
}
}
/*
* Map remaining pages use small mappings
*/
level = 0;
pgsize = MMU_PAGESIZE;
while (s > 0) {
kbm_map(va, pa, level, is_kernel);
va += pgsize;
pa += pgsize;
s -= pgsize;
}
return (virthint);
}
/*
* Free virtual memory - we'll just ignore these.
*/
/*ARGSUSED*/
static void
do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
{
bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
(void *)virt, size);
}
/*
* Old interface
*/
/*ARGSUSED*/
static caddr_t
do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
int align, int flags)
{
prom_panic("unsupported call to BOP_EALLOC()\n");
return (0);
}
static void
bsetprop(char *name, int nlen, void *value, int vlen)
{
uint_t size;
uint_t need_size;
bootprop_t *b;
/*
* align the size to 16 byte boundary
*/
size = sizeof (bootprop_t) + nlen + 1 + vlen;
size = (size + 0xf) & ~0xf;
if (size > curr_space) {
need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
curr_space = need_size;
}
/*
* use a bootprop_t at curr_page and link into list
*/
b = (bootprop_t *)curr_page;
curr_page += sizeof (bootprop_t);
curr_space -= sizeof (bootprop_t);
b->bp_next = bprops;
bprops = b;
/*
* follow by name and ending zero byte
*/
b->bp_name = curr_page;
bcopy(name, curr_page, nlen);
curr_page += nlen;
*curr_page++ = 0;
curr_space -= nlen + 1;
/*
* copy in value, but no ending zero byte
*/
b->bp_value = curr_page;
b->bp_vlen = vlen;
if (vlen > 0) {
bcopy(value, curr_page, vlen);
curr_page += vlen;
curr_space -= vlen;
}
/*
* align new values of curr_page, curr_space
*/
while (curr_space & 0xf) {
++curr_page;
--curr_space;
}
}
static void
bsetprops(char *name, char *value)
{
bsetprop(name, strlen(name), value, strlen(value) + 1);
}
static void
bsetprop64(char *name, uint64_t value)
{
bsetprop(name, strlen(name), (void *)&value, sizeof (value));
}
static void
bsetpropsi(char *name, int value)
{
char prop_val[32];
(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
bsetprops(name, prop_val);
}
/*
* to find the size of the buffer to allocate
*/
/*ARGSUSED*/
int
do_bsys_getproplen(bootops_t *bop, const char *name)
{
bootprop_t *b;
for (b = bprops; b; b = b->bp_next) {
if (strcmp(name, b->bp_name) != 0)
continue;
return (b->bp_vlen);
}
return (-1);
}
/*
* get the value associated with this name
*/
/*ARGSUSED*/
int
do_bsys_getprop(bootops_t *bop, const char *name, void *value)
{
bootprop_t *b;
for (b = bprops; b; b = b->bp_next) {
if (strcmp(name, b->bp_name) != 0)
continue;
bcopy(b->bp_value, value, b->bp_vlen);
return (0);
}
return (-1);
}
/*
* get the name of the next property in succession from the standalone
*/
/*ARGSUSED*/
static char *
do_bsys_nextprop(bootops_t *bop, char *name)
{
bootprop_t *b;
/*
* A null name is a special signal for the 1st boot property
*/
if (name == NULL || strlen(name) == 0) {
if (bprops == NULL)
return (NULL);
return (bprops->bp_name);
}
for (b = bprops; b; b = b->bp_next) {
if (name != b->bp_name)
continue;
b = b->bp_next;
if (b == NULL)
return (NULL);
return (b->bp_name);
}
return (NULL);
}
/*
* Parse numeric value from a string. Understands decimal, hex, octal, - and ~
*/
static int
parse_value(char *p, uint64_t *retval)
{
int adjust = 0;
uint64_t tmp = 0;
int digit;
int radix = 10;
*retval = 0;
if (*p == '-' || *p == '~')
adjust = *p++;
if (*p == '0') {
++p;
if (*p == 0)
return (0);
if (*p == 'x' || *p == 'X') {
radix = 16;
++p;
} else {
radix = 8;
++p;
}
}
while (*p) {
if ('0' <= *p && *p <= '9')
digit = *p - '0';
else if ('a' <= *p && *p <= 'f')
digit = 10 + *p - 'a';
else if ('A' <= *p && *p <= 'F')
digit = 10 + *p - 'A';
else
return (-1);
if (digit >= radix)
return (-1);
tmp = tmp * radix + digit;
++p;
}
if (adjust == '-')
tmp = -tmp;
else if (adjust == '~')
tmp = ~tmp;
*retval = tmp;
return (0);
}
/*
* 2nd part of building the table of boot properties. This includes:
* - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
*
* lines look like one of:
* ^$
* ^# comment till end of line
* setprop name 'value'
* setprop name value
* setprop name "value"
*
* we do single character I/O since this is really just looking at memory
*/
void
boot_prop_finish(void)
{
int fd;
char *line;
int c;
int bytes_read;
char *name;
int n_len;
char *value;
int v_len;
char *inputdev; /* these override the command line if serial ports */
char *outputdev;
char *consoledev;
uint64_t lvalue;
int use_xencons = 0;
#ifdef __xpv
if (!DOMAIN_IS_INITDOMAIN(xen_info))
use_xencons = 1;
#endif /* __xpv */
DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
DBG(fd);
line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
while (fd >= 0) {
/*
* get a line
*/
for (c = 0; ; ++c) {
bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
if (bytes_read == 0) {
if (c == 0)
goto done;
break;
}
if (line[c] == '\n')
break;
}
line[c] = 0;
/*
* ignore comment lines
*/
c = 0;
while (ISSPACE(line[c]))
++c;
if (line[c] == '#' || line[c] == 0)
continue;
/*
* must have "setprop " or "setprop\t"
*/
if (strncmp(line + c, "setprop ", 8) != 0 &&
strncmp(line + c, "setprop\t", 8) != 0)
continue;
c += 8;
while (ISSPACE(line[c]))
++c;
if (line[c] == 0)
continue;
/*
* gather up the property name
*/
name = line + c;
n_len = 0;
while (line[c] && !ISSPACE(line[c]))
++n_len, ++c;
/*
* gather up the value, if any
*/
value = "";
v_len = 0;
while (ISSPACE(line[c]))
++c;
if (line[c] != 0) {
value = line + c;
while (line[c] && !ISSPACE(line[c]))
++v_len, ++c;
}
if (v_len >= 2 && value[0] == value[v_len - 1] &&
(value[0] == '\'' || value[0] == '"')) {
++value;
v_len -= 2;
}
name[n_len] = 0;
if (v_len > 0)
value[v_len] = 0;
else
continue;
/*
* ignore "boot-file" property, it's now meaningless
*/
if (strcmp(name, "boot-file") == 0)
continue;
if (strcmp(name, "boot-args") == 0 &&
strlen(boot_args) > 0)
continue;
/*
* If a property was explicitly set on the command line
* it will override a setting in bootenv.rc
*/
if (do_bsys_getproplen(NULL, name) > 0)
continue;
bsetprop(name, n_len, value, v_len + 1);
}
done:
if (fd >= 0)
(void) BRD_CLOSE(bfs_ops, fd);
/*
* Check if we have to limit the boot time allocator
*/
if (do_bsys_getproplen(NULL, "physmem") != -1 &&
do_bsys_getprop(NULL, "physmem", line) >= 0 &&
parse_value(line, &lvalue) != -1) {
if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
physmem = (pgcnt_t)lvalue;
DBG(physmem);
}
}
early_allocation = 0;
/*
* check to see if we have to override the default value of the console
*/
if (!use_xencons) {
inputdev = line;
v_len = do_bsys_getproplen(NULL, "input-device");
if (v_len > 0)
(void) do_bsys_getprop(NULL, "input-device", inputdev);
else
v_len = 0;
inputdev[v_len] = 0;
outputdev = inputdev + v_len + 1;
v_len = do_bsys_getproplen(NULL, "output-device");
if (v_len > 0)
(void) do_bsys_getprop(NULL, "output-device",
outputdev);
else
v_len = 0;
outputdev[v_len] = 0;
consoledev = outputdev + v_len + 1;
v_len = do_bsys_getproplen(NULL, "console");
if (v_len > 0) {
(void) do_bsys_getprop(NULL, "console", consoledev);
if (post_fastreboot &&
strcmp(consoledev, "graphics") == 0) {
bsetprops("console", "text");
v_len = strlen("text");
bcopy("text", consoledev, v_len);
}
} else {
v_len = 0;
}
consoledev[v_len] = 0;
bcons_init2(inputdev, outputdev, consoledev);
} else {
/*
* Ensure console property exists
* If not create it as "hypervisor"
*/
v_len = do_bsys_getproplen(NULL, "console");
if (v_len < 0)
bsetprops("console", "hypervisor");
inputdev = outputdev = consoledev = "hypervisor";
bcons_init2(inputdev, outputdev, consoledev);
}
if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
value = line;
bop_printf(NULL, "\nBoot properties:\n");
name = "";
while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
(void) do_bsys_getprop(NULL, name, value);
v_len = do_bsys_getproplen(NULL, name);
bop_printf(NULL, "len=%d ", v_len);
value[v_len] = 0;
bop_printf(NULL, "%s\n", value);
}
}
}
/*
* print formatted output
*/
/*PRINTFLIKE2*/
/*ARGSUSED*/
void
bop_printf(bootops_t *bop, const char *fmt, ...)
{
va_list ap;
if (have_console == 0)
return;
va_start(ap, fmt);
(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
va_end(ap);
PUT_STRING(buffer);
}
/*
* Another panic() variant; this one can be used even earlier during boot than
* prom_panic().
*/
/*PRINTFLIKE1*/
void
bop_panic(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
bop_printf(NULL, fmt, ap);
va_end(ap);
bop_printf(NULL, "\nPress any key to reboot.\n");
(void) bcons_getchar();
bop_printf(NULL, "Resetting...\n");
pc_reset();
}
/*
* Do a real mode interrupt BIOS call
*/
typedef struct bios_regs {
unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
} bios_regs_t;
typedef int (*bios_func_t)(int, bios_regs_t *);
/*ARGSUSED*/
static void
do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
{
#if defined(__xpv)
prom_panic("unsupported call to BOP_DOINT()\n");
#else /* __xpv */
static int firsttime = 1;
bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
bios_regs_t br;
/*
* The first time we do this, we have to copy the pre-packaged
* low memory bios call code image into place.
*/
if (firsttime) {
extern char bios_image[];
extern uint32_t bios_size;
bcopy(bios_image, (void *)bios_func, bios_size);
firsttime = 0;
}
br.ax = rp->eax.word.ax;
br.bx = rp->ebx.word.bx;
br.cx = rp->ecx.word.cx;
br.dx = rp->edx.word.dx;
br.bp = rp->ebp.word.bp;
br.si = rp->esi.word.si;
br.di = rp->edi.word.di;
br.ds = rp->ds;
br.es = rp->es;
DBG_MSG("Doing BIOS call...");
DBG(br.ax);
DBG(br.bx);
DBG(br.dx);
rp->eflags = bios_func(intnum, &br);
DBG_MSG("done\n");
rp->eax.word.ax = br.ax;
rp->ebx.word.bx = br.bx;
rp->ecx.word.cx = br.cx;
rp->edx.word.dx = br.dx;
rp->ebp.word.bp = br.bp;
rp->esi.word.si = br.si;
rp->edi.word.di = br.di;
rp->ds = br.ds;
rp->es = br.es;
#endif /* __xpv */
}
static struct boot_syscalls bop_sysp = {
bcons_getchar,
bcons_putchar,
bcons_ischar,
};
static char *whoami;
#define BUFLEN 64
#if defined(__xpv)
static char namebuf[32];
static void
xen_parse_props(char *s, char *prop_map[], int n_prop)
{
char **prop_name = prop_map;
char *cp = s, *scp;
do {
scp = cp;
while ((*cp != NULL) && (*cp != ':'))
cp++;
if ((scp != cp) && (*prop_name != NULL)) {
*cp = NULL;
bsetprops(*prop_name, scp);
}
cp++;
prop_name++;
n_prop--;
} while (n_prop > 0);
}
#define VBDPATHLEN 64
/*
* parse the 'xpv-root' property to create properties used by
* ufs_mountroot.
*/
static void
xen_vbdroot_props(char *s)
{
char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
const char lnamefix[] = "/dev/dsk/c0d";
char *pnp;
char *prop_p;
char mi;
short minor;
long addr = 0;
pnp = vbdpath + strlen(vbdpath);
prop_p = s + strlen(lnamefix);
while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
addr = addr * 10 + *prop_p++ - '0';
(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
pnp = vbdpath + strlen(vbdpath);
if (*prop_p == 's')
mi = 'a';
else if (*prop_p == 'p')
mi = 'q';
else
ASSERT(0); /* shouldn't be here */
prop_p++;
ASSERT(*prop_p != '\0');
if (ISDIGIT(*prop_p)) {
minor = *prop_p - '0';
prop_p++;
if (ISDIGIT(*prop_p)) {
minor = minor * 10 + *prop_p - '0';
}
} else {
/* malformed root path, use 0 as default */
minor = 0;
}
ASSERT(minor < 16); /* at most 16 partitions */
mi += minor;
*pnp++ = ':';
*pnp++ = mi;
*pnp++ = '\0';
bsetprops("fstype", "ufs");
bsetprops("bootpath", vbdpath);
DBG_MSG("VBD bootpath set to ");
DBG_MSG(vbdpath);
DBG_MSG("\n");
}
/*
* parse the xpv-nfsroot property to create properties used by
* nfs_mountroot.
*/
static void
xen_nfsroot_props(char *s)
{
char *prop_map[] = {
BP_SERVER_IP, /* server IP address */
BP_SERVER_NAME, /* server hostname */
BP_SERVER_PATH, /* root path */
};
int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
bsetprop("fstype", 6, "nfs", 4);
xen_parse_props(s, prop_map, n_prop);
/*
* If a server name wasn't specified, use a default.
*/
if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
bsetprops(BP_SERVER_NAME, "unknown");
}
/*
* Extract our IP address, etc. from the "xpv-ip" property.
*/
static void
xen_ip_props(char *s)
{
char *prop_map[] = {
BP_HOST_IP, /* IP address */
NULL, /* NFS server IP address (ignored in */
/* favour of xpv-nfsroot) */
BP_ROUTER_IP, /* IP gateway */
BP_SUBNET_MASK, /* IP subnet mask */
"xpv-hostname", /* hostname (ignored) */
BP_NETWORK_INTERFACE, /* interface name */
"xpv-hcp", /* host configuration protocol */
};
int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
char ifname[IFNAMSIZ];
xen_parse_props(s, prop_map, n_prop);
/*
* A Linux dom0 administrator expects all interfaces to be
* called "ethX", which is not the case here.
*
* If the interface name specified is "eth0", presume that
* this is really intended to be "xnf0" (the first domU ->
* dom0 interface for this domain).
*/
if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
(strcmp("eth0", ifname) == 0)) {
bsetprops(BP_NETWORK_INTERFACE, "xnf0");
bop_printf(NULL,
"network interface name 'eth0' replaced with 'xnf0'\n");
}
}
#else /* __xpv */
static void
setup_rarp_props(struct sol_netinfo *sip)
{
char buf[BUFLEN]; /* to hold ip/mac addrs */
uint8_t *val;
val = (uint8_t *)&sip->sn_ciaddr;
(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
val[0], val[1], val[2], val[3]);
bsetprops(BP_HOST_IP, buf);
val = (uint8_t *)&sip->sn_siaddr;
(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
val[0], val[1], val[2], val[3]);
bsetprops(BP_SERVER_IP, buf);
if (sip->sn_giaddr != 0) {
val = (uint8_t *)&sip->sn_giaddr;
(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
val[0], val[1], val[2], val[3]);
bsetprops(BP_ROUTER_IP, buf);
}
if (sip->sn_netmask != 0) {
val = (uint8_t *)&sip->sn_netmask;
(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
val[0], val[1], val[2], val[3]);
bsetprops(BP_SUBNET_MASK, buf);
}
if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
sip->sn_mactype, sip->sn_maclen);
} else {
val = sip->sn_macaddr;
(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
val[0], val[1], val[2], val[3], val[4], val[5]);
bsetprops(BP_BOOT_MAC, buf);
}
}
#endif /* __xpv */
static void
build_panic_cmdline(const char *cmd, int cmdlen)
{
int proplen;
size_t arglen;
arglen = sizeof (fastreboot_onpanic_args);
/*
* If we allready have fastreboot-onpanic set to zero,
* don't add them again.
*/
if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
proplen <= sizeof (fastreboot_onpanic_cmdline)) {
(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
fastreboot_onpanic_cmdline);
if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
arglen = 1;
}
/*
* construct fastreboot_onpanic_cmdline
*/
if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
DBG_MSG("Command line too long: clearing "
FASTREBOOT_ONPANIC "\n");
fastreboot_onpanic = 0;
} else {
bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
if (arglen != 1)
bcopy(fastreboot_onpanic_args,
fastreboot_onpanic_cmdline + cmdlen, arglen);
else
fastreboot_onpanic_cmdline[cmdlen] = 0;
}
}
#ifndef __xpv
/*
* Construct boot command line for Fast Reboot
*/
static void
build_fastboot_cmdline(struct xboot_info *xbp)
{
saved_cmdline_len = strlen(xbp->bi_cmdline) + 1;
if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
DBG(saved_cmdline_len);
DBG_MSG("Command line too long: clearing fastreboot_capable\n");
fastreboot_capable = 0;
} else {
bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
saved_cmdline_len);
saved_cmdline[saved_cmdline_len - 1] = '\0';
build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
}
}
/*
* Save memory layout, disk drive information, unix and boot archive sizes for
* Fast Reboot.
*/
static void
save_boot_info(struct xboot_info *xbi)
{
multiboot_info_t *mbi = xbi->bi_mb_info;
struct boot_modules *modp;
int i;
bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
if (mbi->mmap_length > sizeof (saved_mmap)) {
DBG_MSG("mbi->mmap_length too big: clearing "
"fastreboot_capable\n");
fastreboot_capable = 0;
} else {
bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
mbi->mmap_length);
}
if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
if (mbi->drives_length > sizeof (saved_drives)) {
DBG(mbi->drives_length);
DBG_MSG("mbi->drives_length too big: clearing "
"fastreboot_capable\n");
fastreboot_capable = 0;
} else {
bcopy((void *)(uintptr_t)mbi->drives_addr,
(void *)saved_drives, mbi->drives_length);
}
} else {
saved_mbi.drives_length = 0;
saved_mbi.drives_addr = NULL;
}
/*
* Current file sizes. Used by fastboot.c to figure out how much
* memory to reserve for panic reboot.
* Use the module list from the dboot-constructed xboot_info
* instead of the list referenced by the multiboot structure
* because that structure may not be addressable now.
*/
saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
i < xbi->bi_module_cnt; i++, modp++) {
saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
}
}
#endif /* __xpv */
/*
* 1st pass at building the table of boot properties. This includes:
* - values set on the command line: -B a=x,b=y,c=z ....
* - known values we just compute (ie. from xbp)
* - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
*
* the grub command line looked like:
* kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
*
* whoami is the same as boot-file
*/
static void
build_boot_properties(struct xboot_info *xbp)
{
char *name;
int name_len;
char *value;
int value_len;
struct boot_modules *bm, *rdbm;
char *propbuf;
int quoted = 0;
int boot_arg_len;
uint_t i, midx;
char modid[32];
#ifndef __xpv
static int stdout_val = 0;
uchar_t boot_device;
char str[3];
multiboot_info_t *mbi;
int netboot;
struct sol_netinfo *sip;
#endif
/*
* These have to be done first, so that kobj_mount_root() works
*/
DBG_MSG("Building boot properties\n");
propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
DBG((uintptr_t)propbuf);
if (xbp->bi_module_cnt > 0) {
bm = xbp->bi_modules;
rdbm = NULL;
for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
if (bm[i].bm_type == BMT_ROOTFS) {
rdbm = &bm[i];
continue;
}
if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
continue;
(void) snprintf(modid, sizeof (modid),
"module-name-%u", midx);
bsetprops(modid, (char *)bm[i].bm_name);
(void) snprintf(modid, sizeof (modid),
"module-addr-%u", midx);
bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
(void) snprintf(modid, sizeof (modid),
"module-size-%u", midx);
bsetprop64(modid, (uint64_t)bm[i].bm_size);
++midx;
}
if (rdbm != NULL) {
bsetprop64("ramdisk_start",
(uint64_t)(uintptr_t)rdbm->bm_addr);
bsetprop64("ramdisk_end",
(uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
}
}
/*
* If there are any boot time modules or hashes present, then disable
* fast reboot.
*/
if (xbp->bi_module_cnt > 1) {
fastreboot_disable(FBNS_BOOTMOD);
}
DBG_MSG("Parsing command line for boot properties\n");
value = xbp->bi_cmdline;
/*
* allocate memory to collect boot_args into
*/
boot_arg_len = strlen(xbp->bi_cmdline) + 1;
boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
boot_args[0] = 0;
boot_arg_len = 0;
#ifdef __xpv
/*
* Xen puts a lot of device information in front of the kernel name
* let's grab them and make them boot properties. The first
* string w/o an "=" in it will be the boot-file property.
*/
(void) strcpy(namebuf, "xpv-");
for (;;) {
/*
* get to next property
*/
while (ISSPACE(*value))
++value;
name = value;
/*
* look for an "="
*/
while (*value && !ISSPACE(*value) && *value != '=') {
value++;
}
if (*value != '=') { /* no "=" in the property */
value = name;
break;
}
name_len = value - name;
value_len = 0;
/*
* skip over the "="
*/
value++;
while (value[value_len] && !ISSPACE(value[value_len])) {
++value_len;
}
/*
* build property name with "xpv-" prefix
*/
if (name_len + 4 > 32) { /* skip if name too long */
value += value_len;
continue;
}
bcopy(name, &namebuf[4], name_len);
name_len += 4;
namebuf[name_len] = 0;
bcopy(value, propbuf, value_len);
propbuf[value_len] = 0;
bsetprops(namebuf, propbuf);
/*
* xpv-root is set to the logical disk name of the xen
* VBD when booting from a disk-based filesystem.
*/
if (strcmp(namebuf, "xpv-root") == 0)
xen_vbdroot_props(propbuf);
/*
* While we're here, if we have a "xpv-nfsroot" property
* then we need to set "fstype" to "nfs" so we mount
* our root from the nfs server. Also parse the xpv-nfsroot
* property to create the properties that nfs_mountroot will
* need to find the root and mount it.
*/
if (strcmp(namebuf, "xpv-nfsroot") == 0)
xen_nfsroot_props(propbuf);
if (strcmp(namebuf, "xpv-ip") == 0)
xen_ip_props(propbuf);
value += value_len;
}
#endif
while (ISSPACE(*value))
++value;
/*
* value now points at the boot-file
*/
value_len = 0;
while (value[value_len] && !ISSPACE(value[value_len]))
++value_len;
if (value_len > 0) {
whoami = propbuf;
bcopy(value, whoami, value_len);
whoami[value_len] = 0;
bsetprops("boot-file", whoami);
/*
* strip leading path stuff from whoami, so running from
* PXE/miniroot makes sense.
*/
if (strstr(whoami, "/platform/") != NULL)
whoami = strstr(whoami, "/platform/");
bsetprops("whoami", whoami);
}
/*
* Values forcibly set boot properties on the command line via -B.
* Allow use of quotes in values. Other stuff goes on kernel
* command line.
*/
name = value + value_len;
while (*name != 0) {
/*
* anything not " -B" is copied to the command line
*/
if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
boot_args[boot_arg_len++] = *name;
boot_args[boot_arg_len] = 0;
++name;
continue;
}
/*
* skip the " -B" and following white space
*/
name += 3;
while (ISSPACE(*name))
++name;
while (*name && !ISSPACE(*name)) {
value = strstr(name, "=");
if (value == NULL)
break;
name_len = value - name;
++value;
value_len = 0;
quoted = 0;
for (; ; ++value_len) {
if (!value[value_len])
break;
/*
* is this value quoted?
*/
if (value_len == 0 &&
(value[0] == '\'' || value[0] == '"')) {
quoted = value[0];
++value_len;
}
/*
* In the quote accept any character,
* but look for ending quote.
*/
if (quoted) {
if (value[value_len] == quoted)
quoted = 0;
continue;
}
/*
* a comma or white space ends the value
*/
if (value[value_len] == ',' ||
ISSPACE(value[value_len]))
break;
}
if (value_len == 0) {
bsetprop(name, name_len, "true", 5);
} else {
char *v = value;
int l = value_len;
if (v[0] == v[l - 1] &&
(v[0] == '\'' || v[0] == '"')) {
++v;
l -= 2;
}
bcopy(v, propbuf, l);
propbuf[l] = '\0';
bsetprop(name, name_len, propbuf,
l + 1);
}
name = value + value_len;
while (*name == ',')
++name;
}
}
/*
* set boot-args property
* 1275 name is bootargs, so set
* that too
*/
bsetprops("boot-args", boot_args);
bsetprops("bootargs", boot_args);
#ifndef __xpv
/*
* set the BIOS boot device from GRUB
*/
netboot = 0;
mbi = xbp->bi_mb_info;
/*
* Build boot command line for Fast Reboot
*/
build_fastboot_cmdline(xbp);
/*
* Save various boot information for Fast Reboot
*/
save_boot_info(xbp);
if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
boot_device = mbi->boot_device >> 24;
if (boot_device == 0x20)
netboot++;
str[0] = (boot_device >> 4) + '0';
str[1] = (boot_device & 0xf) + '0';
str[2] = 0;
bsetprops("bios-boot-device", str);
} else {
netboot = 1;
}
/*
* In the netboot case, drives_info is overloaded with the dhcp ack.
* This is not multiboot compliant and requires special pxegrub!
*/
if (netboot && mbi->drives_length != 0) {
sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
if (sip->sn_infotype == SN_TYPE_BOOTP)
bsetprop("bootp-response", sizeof ("bootp-response"),
(void *)(uintptr_t)mbi->drives_addr,
mbi->drives_length);
else if (sip->sn_infotype == SN_TYPE_RARP)
setup_rarp_props(sip);
}
bsetprop("stdout", strlen("stdout"),
&stdout_val, sizeof (stdout_val));
#endif /* __xpv */
/*
* more conjured up values for made up things....
*/
#if defined(__xpv)
bsetprops("mfg-name", "i86xpv");
bsetprops("impl-arch-name", "i86xpv");
#else
bsetprops("mfg-name", "i86pc");
bsetprops("impl-arch-name", "i86pc");
#endif
/*
* Build firmware-provided system properties
*/
build_firmware_properties();
/*
* XXPV
*
* Find out what these are:
* - cpuid_feature_ecx_include
* - cpuid_feature_ecx_exclude
* - cpuid_feature_edx_include
* - cpuid_feature_edx_exclude
*
* Find out what these are in multiboot:
* - netdev-path
* - fstype
*/
}
#ifdef __xpv
/*
* Under the Hypervisor, memory usable for DMA may be scarce. One
* very likely large pool of DMA friendly memory is occupied by
* the boot_archive, as it was loaded by grub into low MFNs.
*
* Here we free up that memory by copying the boot archive to what are
* likely higher MFN pages and then swapping the mfn/pfn mappings.
*/
#define PFN_2GIG 0x80000
static void
relocate_boot_archive(struct xboot_info *xbp)
{
mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
struct boot_modules *bm = xbp->bi_modules;
uintptr_t va;
pfn_t va_pfn;
mfn_t va_mfn;
caddr_t copy;
pfn_t copy_pfn;
mfn_t copy_mfn;
size_t len;
int slop;
int total = 0;
int relocated = 0;
int mmu_update_return;
mmu_update_t t[2];
x86pte_t pte;
/*
* If all MFN's are below 2Gig, don't bother doing this.
*/
if (max_mfn < PFN_2GIG)
return;
if (xbp->bi_module_cnt < 1) {
DBG_MSG("no boot_archive!");
return;
}
DBG_MSG("moving boot_archive to high MFN memory\n");
va = (uintptr_t)bm->bm_addr;
len = bm->bm_size;
slop = va & MMU_PAGEOFFSET;
if (slop) {
va += MMU_PAGESIZE - slop;
len -= MMU_PAGESIZE - slop;
}
len = P2ALIGN(len, MMU_PAGESIZE);
/*
* Go through all boot_archive pages, swapping any low MFN pages
* with memory at next_phys.
*/
while (len != 0) {
++total;
va_pfn = mmu_btop(va - ONE_GIG);
va_mfn = mfn_list[va_pfn];
if (mfn_list[va_pfn] < PFN_2GIG) {
copy = kbm_remap_window(next_phys, 1);
bcopy((void *)va, copy, MMU_PAGESIZE);
copy_pfn = mmu_btop(next_phys);
copy_mfn = mfn_list[copy_pfn];
pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
if (HYPERVISOR_update_va_mapping(va, pte,
UVMF_INVLPG | UVMF_LOCAL))
bop_panic("relocate_boot_archive(): "
"HYPERVISOR_update_va_mapping() failed");
mfn_list[va_pfn] = copy_mfn;
mfn_list[copy_pfn] = va_mfn;
t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
t[0].val = va_pfn;
t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
t[1].val = copy_pfn;
if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
DOMID_SELF) != 0 || mmu_update_return != 2)
bop_panic("relocate_boot_archive(): "
"HYPERVISOR_mmu_update() failed");
next_phys += MMU_PAGESIZE;
++relocated;
}
len -= MMU_PAGESIZE;
va += MMU_PAGESIZE;
}
DBG_MSG("Relocated pages:\n");
DBG(relocated);
DBG_MSG("Out of total pages:\n");
DBG(total);
}
#endif /* __xpv */
#if !defined(__xpv)
/*
* Install a temporary IDT that lets us catch errors in the boot time code.
* We shouldn't get any faults at all while this is installed, so we'll
* just generate a traceback and exit.
*/
#ifdef __amd64
static const int bcode_sel = B64CODE_SEL;
#else
static const int bcode_sel = B32CODE_SEL;
#endif
/*
* simple description of a stack frame (args are 32 bit only currently)
*/
typedef struct bop_frame {
struct bop_frame *old_frame;
pc_t retaddr;
long arg[1];
} bop_frame_t;
void
bop_traceback(bop_frame_t *frame)
{
pc_t pc;
int cnt;
char *ksym;
ulong_t off;
#if defined(__i386)
int a;
#endif
bop_printf(NULL, "Stack traceback:\n");
for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */
pc = frame->retaddr;
if (pc == 0)
break;
ksym = kobj_getsymname(pc, &off);
if (ksym)
bop_printf(NULL, " %s+%lx", ksym, off);
else
bop_printf(NULL, " 0x%lx", pc);
frame = frame->old_frame;
if (frame == 0) {
bop_printf(NULL, "\n");
break;
}
#if defined(__i386)
for (a = 0; a < 6; ++a) { /* try for 6 args */
if ((void *)&frame->arg[a] == (void *)frame->old_frame)
break;
if (a == 0)
bop_printf(NULL, "(");
else
bop_printf(NULL, ",");
bop_printf(NULL, "0x%lx", frame->arg[a]);
}
bop_printf(NULL, ")");
#endif
bop_printf(NULL, "\n");
}
}
struct trapframe {
ulong_t error_code; /* optional */
ulong_t inst_ptr;
ulong_t code_seg;
ulong_t flags_reg;
#ifdef __amd64
ulong_t stk_ptr;
ulong_t stk_seg;
#endif
};
void
bop_trap(ulong_t *tfp)
{
struct trapframe *tf = (struct trapframe *)tfp;
bop_frame_t fakeframe;
static int depth = 0;
/*
* Check for an infinite loop of traps.
*/
if (++depth > 2)
bop_panic("Nested trap");
bop_printf(NULL, "Unexpected trap\n");
/*
* adjust the tf for optional error_code by detecting the code selector
*/
if (tf->code_seg != bcode_sel)
tf = (struct trapframe *)(tfp - 1);
else
bop_printf(NULL, "error code 0x%lx\n",
tf->error_code & 0xffffffff);
bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr);
bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff);
bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg);
#ifdef __amd64
bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr);
bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff);
#endif
/* grab %[er]bp pushed by our code from the stack */
fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
fakeframe.retaddr = (pc_t)tf->inst_ptr;
bop_printf(NULL, "Attempting stack backtrace:\n");
bop_traceback(&fakeframe);
bop_panic("unexpected trap in early boot");
}
extern void bop_trap_handler(void);
static gate_desc_t *bop_idt;
static desctbr_t bop_idt_info;
static void
bop_idt_init(void)
{
int t;
bop_idt = (gate_desc_t *)
do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
bzero(bop_idt, MMU_PAGESIZE);
for (t = 0; t < NIDT; ++t) {
/*
* Note that since boot runs without a TSS, the
* double fault handler cannot use an alternate stack
* (64-bit) or a task gate (32-bit).
*/
set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
SDT_SYSIGT, TRP_KPL, 0);
}
bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
bop_idt_info.dtr_base = (uintptr_t)bop_idt;
wr_idtr(&bop_idt_info);
}
#endif /* !defined(__xpv) */
/*
* This is where we enter the kernel. It dummies up the boot_ops and
* boot_syscalls vectors and jumps off to _kobj_boot()
*/
void
_start(struct xboot_info *xbp)
{
bootops_t *bops = &bootop;
extern void _kobj_boot();
/*
* 1st off - initialize the console for any error messages
*/
xbootp = xbp;
#ifdef __xpv
HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
xen_info = xbp->bi_xen_start_info;
#endif
#ifndef __xpv
if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
FASTBOOT_MAGIC) {
post_fastreboot = 1;
*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
}
#endif
bcons_init((void *)xbp->bi_cmdline);
have_console = 1;
/*
* enable debugging
*/
if (strstr((char *)xbp->bi_cmdline, "kbm_debug"))
kbm_debug = 1;
DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
DBG_MSG((char *)xbp->bi_cmdline);
DBG_MSG("\n\n\n");
/*
* physavail is no longer used by startup
*/
bm.physinstalled = xbp->bi_phys_install;
bm.pcimem = xbp->bi_pcimem;
bm.rsvdmem = xbp->bi_rsvdmem;
bm.physavail = NULL;
/*
* initialize the boot time allocator
*/
next_phys = xbp->bi_next_paddr;
DBG(next_phys);
next_virt = (uintptr_t)xbp->bi_next_vaddr;
DBG(next_virt);
DBG_MSG("Initializing boot time memory management...");
#ifdef __xpv
{
xen_platform_parameters_t p;
/* This call shouldn't fail, dboot already did it once. */
(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
DBG(xen_virt_start);
}
#endif
kbm_init(xbp);
DBG_MSG("done\n");
/*
* Fill in the bootops vector
*/
bops->bsys_version = BO_VERSION;
bops->boot_mem = &bm;
bops->bsys_alloc = do_bsys_alloc;
bops->bsys_free = do_bsys_free;
bops->bsys_getproplen = do_bsys_getproplen;
bops->bsys_getprop = do_bsys_getprop;
bops->bsys_nextprop = do_bsys_nextprop;
bops->bsys_printf = bop_printf;
bops->bsys_doint = do_bsys_doint;
/*
* BOP_EALLOC() is no longer needed
*/
bops->bsys_ealloc = do_bsys_ealloc;
#ifdef __xpv
/*
* On domain 0 we need to free up some physical memory that is
* usable for DMA. Since GRUB loaded the boot_archive, it is
* sitting in low MFN memory. We'll relocated the boot archive
* pages to high PFN memory.
*/
if (DOMAIN_IS_INITDOMAIN(xen_info))
relocate_boot_archive(xbp);
#endif
#ifndef __xpv
/*
* Install an IDT to catch early pagefaults (shouldn't have any).
* Also needed for kmdb.
*/
bop_idt_init();
#endif
/*
* Start building the boot properties from the command line
*/
DBG_MSG("Initializing boot properties:\n");
build_boot_properties(xbp);
if (strstr((char *)xbp->bi_cmdline, "prom_debug") || kbm_debug) {
char *name;
char *value;
char *cp;
int len;
value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
bop_printf(NULL, "\nBoot properties:\n");
name = "";
while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
(void) do_bsys_getprop(NULL, name, value);
len = do_bsys_getproplen(NULL, name);
bop_printf(NULL, "len=%d ", len);
value[len] = 0;
for (cp = value; *cp; ++cp) {
if (' ' <= *cp && *cp <= '~')
bop_printf(NULL, "%c", *cp);
else
bop_printf(NULL, "-0x%x-", *cp);
}
bop_printf(NULL, "\n");
}
}
/*
* jump into krtld...
*/
_kobj_boot(&bop_sysp, NULL, bops, NULL);
}
/*ARGSUSED*/
static caddr_t
no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
{
panic("Attempt to bsys_alloc() too late\n");
return (NULL);
}
/*ARGSUSED*/
static void
no_more_free(bootops_t *bop, caddr_t virt, size_t size)
{
panic("Attempt to bsys_free() too late\n");
}
void
bop_no_more_mem(void)
{
DBG(total_bop_alloc_scratch);
DBG(total_bop_alloc_kernel);
bootops->bsys_alloc = no_more_alloc;
bootops->bsys_free = no_more_free;
}
/*
* Set ACPI firmware properties
*/
static caddr_t
vmap_phys(size_t length, paddr_t pa)
{
paddr_t start, end;
caddr_t va;
size_t len, page;
#ifdef __xpv
pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
#endif
start = P2ALIGN(pa, MMU_PAGESIZE);
end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
len = end - start;
va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
for (page = 0; page < len; page += MMU_PAGESIZE)
kbm_map((uintptr_t)va + page, start + page, 0, 0);
return (va + (pa & MMU_PAGEOFFSET));
}
static uint8_t
checksum_table(uint8_t *tp, size_t len)
{
uint8_t sum = 0;
while (len-- > 0)
sum += *tp++;
return (sum);
}
static int
valid_rsdp(ACPI_TABLE_RSDP *rp)
{
/* validate the V1.x checksum */
if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
return (0);
/* If pre-ACPI 2.0, this is a valid RSDP */
if (rp->Revision < 2)
return (1);
/* validate the V2.x checksum */
if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
return (0);
return (1);
}
/*
* Scan memory range for an RSDP;
* see ACPI 3.0 Spec, 5.2.5.1
*/
static ACPI_TABLE_RSDP *
scan_rsdp(paddr_t start, paddr_t end)
{
ssize_t len = end - start;
caddr_t ptr;
ptr = vmap_phys(len, start);
while (len > 0) {
if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
valid_rsdp((ACPI_TABLE_RSDP *)ptr))
return ((ACPI_TABLE_RSDP *)ptr);
ptr += ACPI_RSDP_SCAN_STEP;
len -= ACPI_RSDP_SCAN_STEP;
}
return (NULL);
}
/*
* Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
*/
static ACPI_TABLE_RSDP *
find_rsdp()
{
ACPI_TABLE_RSDP *rsdp;
uint16_t *ebda_seg;
paddr_t ebda_addr;
/*
* Get the EBDA segment and scan the first 1K
*/
ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
ACPI_EBDA_PTR_LOCATION);
ebda_addr = *ebda_seg << 4;
rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
if (rsdp == NULL)
/* if EBDA doesn't contain RSDP, look in BIOS memory */
rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
return (rsdp);
}
static ACPI_TABLE_HEADER *
map_fw_table(paddr_t table_addr)
{
ACPI_TABLE_HEADER *tp;
size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
/*
* Map at least a page; if the table is larger than this, remap it
*/
tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
if (tp->Length > len)
tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
return (tp);
}
static ACPI_TABLE_HEADER *
find_fw_table(char *signature)
{
static int revision = 0;
static ACPI_TABLE_XSDT *xsdt;
static int len;
paddr_t xsdt_addr;
ACPI_TABLE_RSDP *rsdp;
ACPI_TABLE_HEADER *tp;
paddr_t table_addr;
int n;
if (strlen(signature) != ACPI_NAME_SIZE)
return (NULL);
/*
* Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
* understand this code. If we haven't already found the RSDT/XSDT,
* revision will be 0. Find the RSDP and check the revision
* to find out whether to use the RSDT or XSDT. If revision is
* 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
* use the XSDT. If the XSDT address is 0, though, fall back to
* revision 1 and use the RSDT.
*/
if (revision == 0) {
if ((rsdp = find_rsdp()) != NULL) {
revision = rsdp->Revision;
/*
* ACPI 6.0 states that current revision is 2
* from acpi_table_rsdp definition:
* Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
*/
if (revision > 2)
revision = 2;
switch (revision) {
case 2:
/*
* Use the XSDT unless BIOS is buggy and
* claims to be rev 2 but has a null XSDT
* address
*/
xsdt_addr = rsdp->XsdtPhysicalAddress;
if (xsdt_addr != 0)
break;
/* FALLTHROUGH */
case 0:
/* treat RSDP rev 0 as revision 1 internally */
revision = 1;
/* FALLTHROUGH */
case 1:
/* use the RSDT for rev 0/1 */
xsdt_addr = rsdp->RsdtPhysicalAddress;
break;
default:
/* unknown revision */
revision = 0;
break;
}
}
if (revision == 0)
return (NULL);
/* cache the XSDT info */
xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
}
/*
* Scan the table headers looking for a signature match
*/
for (n = 0; n < len; n++) {
ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
xsdt->TableOffsetEntry[n];
if (table_addr == 0)
continue;
tp = map_fw_table(table_addr);
if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
return (tp);
}
}
return (NULL);
}
static void
process_mcfg(ACPI_TABLE_MCFG *tp)
{
ACPI_MCFG_ALLOCATION *cfg_baap;
char *cfg_baa_endp;
int64_t ecfginfo[4];
cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
cfg_baa_endp = ((char *)tp) + tp->Header.Length;
while ((char *)cfg_baap < cfg_baa_endp) {
if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
ecfginfo[0] = cfg_baap->Address;
ecfginfo[1] = cfg_baap->PciSegment;
ecfginfo[2] = cfg_baap->StartBusNumber;
ecfginfo[3] = cfg_baap->EndBusNumber;
bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
ecfginfo, sizeof (ecfginfo));
break;
}
cfg_baap++;
}
}
#ifndef __xpv
static void
process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
{
ACPI_SUBTABLE_HEADER *item, *end;
uint32_t cpu_count = 0;
uint32_t cpu_possible_count = 0;
/*
* Determine number of CPUs and keep track of "final" APIC ID
* for each CPU by walking through ACPI MADT processor list
*/
end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
while (item < end) {
switch (item->Type) {
case ACPI_MADT_TYPE_LOCAL_APIC: {
ACPI_MADT_LOCAL_APIC *cpu =
(ACPI_MADT_LOCAL_APIC *) item;
if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
if (cpu_apicid_array != NULL)
cpu_apicid_array[cpu_count] = cpu->Id;
cpu_count++;
}
cpu_possible_count++;
break;
}
case ACPI_MADT_TYPE_LOCAL_X2APIC: {
ACPI_MADT_LOCAL_X2APIC *cpu =
(ACPI_MADT_LOCAL_X2APIC *) item;
if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
if (cpu_apicid_array != NULL)
cpu_apicid_array[cpu_count] =
cpu->LocalApicId;
cpu_count++;
}
cpu_possible_count++;
break;
}
default:
if (kbm_debug)
bop_printf(NULL, "MADT type %d\n", item->Type);
break;
}
item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
}
if (cpu_countp)
*cpu_countp = cpu_count;
if (cpu_possible_countp)
*cpu_possible_countp = cpu_possible_count;
}
static void
process_madt(ACPI_TABLE_MADT *tp)
{
uint32_t cpu_count = 0;
uint32_t cpu_possible_count = 0;
uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
if (tp != NULL) {
/* count cpu's */
process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
if (cpu_apicid_array == NULL)
bop_panic("Not enough memory for APIC ID array");
/* copy IDs */
process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
/*
* Make boot property for array of "final" APIC IDs for each
* CPU
*/
bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
}
/*
* Check whether property plat-max-ncpus is already set.
*/
if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
/*
* Set plat-max-ncpus to number of maximum possible CPUs given
* in MADT if it hasn't been set.
* There's no formal way to detect max possible CPUs supported
* by platform according to ACPI spec3.0b. So current CPU
* hotplug implementation expects that all possible CPUs will
* have an entry in MADT table and set plat-max-ncpus to number
* of entries in MADT.
* With introducing of ACPI4.0, Maximum System Capability Table
* (MSCT) provides maximum number of CPUs supported by platform.
* If MSCT is unavailable, fall back to old way.
*/
if (tp != NULL)
bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
}
/*
* Set boot property boot-max-ncpus to number of CPUs existing at
* boot time. boot-max-ncpus is mainly used for optimization.
*/
if (tp != NULL)
bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
/*
* User-set boot-ncpus overrides firmware count
*/
if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
return;
/*
* Set boot property boot-ncpus to number of active CPUs given in MADT
* if it hasn't been set yet.
*/
if (tp != NULL)
bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
}
static void
process_srat(ACPI_TABLE_SRAT *tp)
{
ACPI_SUBTABLE_HEADER *item, *end;
int i;
int proc_num, mem_num;
#pragma pack(1)
struct {
uint32_t domain;
uint32_t apic_id;
uint32_t sapic_id;
} processor;
struct {
uint32_t domain;
uint32_t x2apic_id;
} x2apic;
struct {
uint32_t domain;
uint64_t addr;
uint64_t length;
uint32_t flags;
} memory;
#pragma pack()
char prop_name[30];
uint64_t maxmem = 0;
if (tp == NULL)
return;
proc_num = mem_num = 0;
end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
while (item < end) {
switch (item->Type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY: {
ACPI_SRAT_CPU_AFFINITY *cpu =
(ACPI_SRAT_CPU_AFFINITY *) item;
if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
break;
processor.domain = cpu->ProximityDomainLo;
for (i = 0; i < 3; i++)
processor.domain +=
cpu->ProximityDomainHi[i] << ((i + 1) * 8);
processor.apic_id = cpu->ApicId;
processor.sapic_id = cpu->LocalSapicEid;
(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
proc_num);
bsetprop(prop_name, strlen(prop_name), &processor,
sizeof (processor));
proc_num++;
break;
}
case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
ACPI_SRAT_MEM_AFFINITY *mem =
(ACPI_SRAT_MEM_AFFINITY *)item;
if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
break;
memory.domain = mem->ProximityDomain;
memory.addr = mem->BaseAddress;
memory.length = mem->Length;
memory.flags = mem->Flags;
(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
mem_num);
bsetprop(prop_name, strlen(prop_name), &memory,
sizeof (memory));
if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
(memory.addr + memory.length > maxmem)) {
maxmem = memory.addr + memory.length;
}
mem_num++;
break;
}
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
(ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
break;
x2apic.domain = x2cpu->ProximityDomain;
x2apic.x2apic_id = x2cpu->ApicId;
(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
proc_num);
bsetprop(prop_name, strlen(prop_name), &x2apic,
sizeof (x2apic));
proc_num++;
break;
}
default:
if (kbm_debug)
bop_printf(NULL, "SRAT type %d\n", item->Type);
break;
}
item = (ACPI_SUBTABLE_HEADER *)
(item->Length + (uintptr_t)item);
}
/*
* The maximum physical address calculated from the SRAT table is more
* accurate than that calculated from the MSCT table.
*/
if (maxmem != 0) {
plat_dr_physmax = btop(maxmem);
}
}
static void
process_slit(ACPI_TABLE_SLIT *tp)
{
/*
* Check the number of localities; if it's too huge, we just
* return and locality enumeration code will handle this later,
* if possible.
*
* Note that the size of the table is the square of the
* number of localities; if the number of localities exceeds
* UINT16_MAX, the table size may overflow an int when being
* passed to bsetprop() below.
*/
if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
return;
bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
&tp->LocalityCount, sizeof (tp->LocalityCount));
bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
tp->LocalityCount * tp->LocalityCount);
}
static ACPI_TABLE_MSCT *
process_msct(ACPI_TABLE_MSCT *tp)
{
int last_seen = 0;
int proc_num = 0;
ACPI_MSCT_PROXIMITY *item, *end;
extern uint64_t plat_dr_options;
ASSERT(tp != NULL);
end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
item < end;
item = (void *)(item->Length + (uintptr_t)item)) {
/*
* Sanity check according to section 5.2.19.1 of ACPI 4.0.
* Revision 1
* Length 22
*/
if (item->Revision != 1 || item->Length != 22) {
cmn_err(CE_CONT,
"?boot: unknown proximity domain structure in MSCT "
"with Revision(%d), Length(%d).\n",
(int)item->Revision, (int)item->Length);
return (NULL);
} else if (item->RangeStart > item->RangeEnd) {
cmn_err(CE_CONT,
"?boot: invalid proximity domain structure in MSCT "
"with RangeStart(%u), RangeEnd(%u).\n",
item->RangeStart, item->RangeEnd);
return (NULL);
} else if (item->RangeStart != last_seen) {
/*
* Items must be organized in ascending order of the
* proximity domain enumerations.
*/
cmn_err(CE_CONT,
"?boot: invalid proximity domain structure in MSCT,"
" items are not orginized in ascending order.\n");
return (NULL);
}
/*
* If ProcessorCapacity is 0 then there would be no CPUs in this
* domain.
*/
if (item->ProcessorCapacity != 0) {
proc_num += (item->RangeEnd - item->RangeStart + 1) *
item->ProcessorCapacity;
}
last_seen = item->RangeEnd - item->RangeStart + 1;
/*
* Break out if all proximity domains have been processed.
* Some BIOSes may have unused items at the end of MSCT table.
*/
if (last_seen > tp->MaxProximityDomains) {
break;
}
}
if (last_seen != tp->MaxProximityDomains + 1) {
cmn_err(CE_CONT,
"?boot: invalid proximity domain structure in MSCT, "
"proximity domain count doesn't match.\n");
return (NULL);
}
/*
* Set plat-max-ncpus property if it hasn't been set yet.
*/
if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
if (proc_num != 0) {
bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
}
}
/*
* Use Maximum Physical Address from the MSCT table as upper limit for
* memory hot-adding by default. It may be overridden by value from
* the SRAT table or the "plat-dr-physmax" boot option.
*/
plat_dr_physmax = btop(tp->MaxAddress + 1);
/*
* Existence of MSCT implies CPU/memory hotplug-capability for the
* platform.
*/
plat_dr_options |= PLAT_DR_FEATURE_CPU;
plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
return (tp);
}
#else /* __xpv */
static void
enumerate_xen_cpus()
{
processorid_t id, max_id;
/*
* User-set boot-ncpus overrides enumeration
*/
if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
return;
/*
* Probe every possible virtual CPU id and remember the
* highest id present; the count of CPUs is one greater
* than this. This tacitly assumes at least cpu 0 is present.
*/
max_id = 0;
for (id = 0; id < MAX_VIRT_CPUS; id++)
if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
max_id = id;
bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
}
#endif /* __xpv */
static void
build_firmware_properties(void)
{
ACPI_TABLE_HEADER *tp = NULL;
#ifndef __xpv
if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
else
msct_ptr = NULL;
if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
process_madt((ACPI_TABLE_MADT *)tp);
if ((srat_ptr = (ACPI_TABLE_SRAT *)
find_fw_table(ACPI_SIG_SRAT)) != NULL)
process_srat(srat_ptr);
if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
process_slit(slit_ptr);
tp = find_fw_table(ACPI_SIG_MCFG);
#else /* __xpv */
enumerate_xen_cpus();
if (DOMAIN_IS_INITDOMAIN(xen_info))
tp = find_fw_table(ACPI_SIG_MCFG);
#endif /* __xpv */
if (tp != NULL)
process_mcfg((ACPI_TABLE_MCFG *)tp);
}
/*
* fake up a boot property for deferred early console output
* this is used by both graphical boot and the (developer only)
* USB serial console
*/
void *
defcons_init(size_t size)
{
static char *p = NULL;
p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
*p = 0;
bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
&p, sizeof (p));
return (p);
}
/*ARGSUSED*/
int
boot_compinfo(int fd, struct compinfo *cbp)
{
cbp->iscmp = 0;
cbp->blksize = MAXBSIZE;
return (0);
}
#define BP_MAX_STRLEN 32
/*
* Get value for given boot property
*/
int
bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
{
int boot_prop_len;
char str[BP_MAX_STRLEN];
u_longlong_t value;
boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
BOP_GETPROP(bootops, prop_name, str) < 0 ||
kobj_getvalue(str, &value) == -1)
return (-1);
if (prop_value)
*prop_value = value;
return (0);
}