cpuid.c revision 7417cfdecea1902cef03c0d61a72df97d945925d
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2009, Intel Corporation.
* All rights reserved.
*/
/*
* Portions Copyright 2009 Advanced Micro Devices, Inc.
*/
/*
* Various routines to handle identification
* and classification of x86 processors.
*/
#include <sys/types.h>
#include <sys/archsystm.h>
#include <sys/x86_archext.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/cpuvar.h>
#include <sys/processor.h>
#include <sys/sysmacros.h>
#include <sys/pg.h>
#include <sys/fp.h>
#include <sys/controlregs.h>
#include <sys/auxv_386.h>
#include <sys/bitmap.h>
#include <sys/memnode.h>
#include <sys/pci_cfgspace.h>
#ifdef __xpv
#include <sys/hypervisor.h>
#else
#include <sys/ontrap.h>
#endif
/*
* Pass 0 of cpuid feature analysis happens in locore. It contains special code
* to recognize Cyrix processors that are not cpuid-compliant, and to deal with
* them accordingly. For most modern processors, feature detection occurs here
* in pass 1.
*
* Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
* for the boot CPU and does the basic analysis that the early kernel needs.
* x86_featureset is set based on the return value of cpuid_pass1() of the boot
* CPU.
*
* Pass 1 includes:
*
* o Determining vendor/model/family/stepping and setting x86_type and
* x86_vendor accordingly.
* o Processing the feature flags returned by the cpuid instruction while
* applying any workarounds or tricks for the specific processor.
* o Mapping the feature flags into Solaris feature bits (X86_*).
* o Processing extended feature flags if supported by the processor,
* again while applying specific processor knowledge.
* o Determining the CMT characteristics of the system.
*
* Pass 1 is done on non-boot CPUs during their initialization and the results
* are used only as a meager attempt at ensuring that all processors within the
* system support the same features.
*
* Pass 2 of cpuid feature analysis happens just at the beginning
* of startup(). It just copies in and corrects the remainder
* of the cpuid data we depend on: standard cpuid functions that we didn't
* need for pass1 feature analysis, and extended cpuid functions beyond the
* simple feature processing done in pass1.
*
* Pass 3 of cpuid analysis is invoked after basic kernel services; in
* particular kernel memory allocation has been made available. It creates a
* readable brand string based on the data collected in the first two passes.
*
* Pass 4 of cpuid analysis is invoked after post_startup() when all
* the support infrastructure for various hardware features has been
* initialized. It determines which processor features will be reported
* to userland via the aux vector.
*
* All passes are executed on all CPUs, but only the boot CPU determines what
* features the kernel will use.
*
* Much of the worst junk in this file is for the support of processors
* that didn't really implement the cpuid instruction properly.
*
* NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
* the pass numbers. Accordingly, changes to the pass code may require changes
* to the accessor code.
*/
uint_t x86_vendor = X86_VENDOR_IntelClone;
uint_t x86_type = X86_TYPE_OTHER;
uint_t x86_clflush_size = 0;
uint_t pentiumpro_bug4046376;
uint_t pentiumpro_bug4064495;
#define NUM_X86_FEATURES 33
void *x86_featureset;
ulong_t x86_featureset0[BT_SIZEOFMAP(NUM_X86_FEATURES)];
char *x86_feature_names[NUM_X86_FEATURES] = {
"lgpg",
"tsc",
"msr",
"mtrr",
"pge",
"de",
"cmov",
"mmx",
"mca",
"pae",
"cv8",
"pat",
"sep",
"sse",
"sse2",
"htt",
"asysc",
"nx",
"sse3",
"cx16",
"cmp",
"tscp",
"mwait",
"sse4a",
"cpuid",
"ssse3",
"sse4_1",
"sse4_2",
"1gpg",
"clfsh",
"64",
"aes",
"pclmulqdq" };
static void *
init_x86_featureset(void)
{
return (kmem_zalloc(BT_SIZEOFMAP(NUM_X86_FEATURES), KM_SLEEP));
}
void
free_x86_featureset(void *featureset)
{
kmem_free(featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
}
boolean_t
is_x86_feature(void *featureset, uint_t feature)
{
ASSERT(feature < NUM_X86_FEATURES);
return (BT_TEST((ulong_t *)featureset, feature));
}
void
add_x86_feature(void *featureset, uint_t feature)
{
ASSERT(feature < NUM_X86_FEATURES);
BT_SET((ulong_t *)featureset, feature);
}
void
remove_x86_feature(void *featureset, uint_t feature)
{
ASSERT(feature < NUM_X86_FEATURES);
BT_CLEAR((ulong_t *)featureset, feature);
}
boolean_t
compare_x86_featureset(void *setA, void *setB)
{
/*
* We assume that the unused bits of the bitmap are always zero.
*/
if (memcmp(setA, setB, BT_SIZEOFMAP(NUM_X86_FEATURES)) == 0) {
return (B_TRUE);
} else {
return (B_FALSE);
}
}
void
print_x86_featureset(void *featureset)
{
uint_t i;
for (i = 0; i < NUM_X86_FEATURES; i++) {
if (is_x86_feature(featureset, i)) {
cmn_err(CE_CONT, "?x86_feature: %s\n",
x86_feature_names[i]);
}
}
}
uint_t enable486;
/*
* This is set to platform type Solaris is running on.
*/
static int platform_type = -1;
#if !defined(__xpv)
/*
* Variable to patch if hypervisor platform detection needs to be
* disabled (e.g. platform_type will always be HW_NATIVE if this is 0).
*/
int enable_platform_detection = 1;
#endif
/*
* monitor/mwait info.
*
* size_actual and buf_actual are the real address and size allocated to get
* proper mwait_buf alignement. buf_actual and size_actual should be passed
* to kmem_free(). Currently kmem_alloc() and mwait happen to both use
* processor cache-line alignment, but this is not guarantied in the furture.
*/
struct mwait_info {
size_t mon_min; /* min size to avoid missed wakeups */
size_t mon_max; /* size to avoid false wakeups */
size_t size_actual; /* size actually allocated */
void *buf_actual; /* memory actually allocated */
uint32_t support; /* processor support of monitor/mwait */
};
/*
* These constants determine how many of the elements of the
* cpuid we cache in the cpuid_info data structure; the
* remaining elements are accessible via the cpuid instruction.
*/
#define NMAX_CPI_STD 6 /* eax = 0 .. 5 */
#define NMAX_CPI_EXTD 0x1c /* eax = 0x80000000 .. 0x8000001b */
/*
* Some terminology needs to be explained:
* - Socket: Something that can be plugged into a motherboard.
* - Package: Same as socket
* - Chip: Same as socket. Note that AMD's documentation uses term "chip"
* differently: there, chip is the same as processor node (below)
* - Processor node: Some AMD processors have more than one
* "subprocessor" embedded in a package. These subprocessors (nodes)
* are fully-functional processors themselves with cores, caches,
* memory controllers, PCI configuration spaces. They are connected
* inside the package with Hypertransport links. On single-node
* processors, processor node is equivalent to chip/socket/package.
*/
struct cpuid_info {
uint_t cpi_pass; /* last pass completed */
/*
* standard function information
*/
uint_t cpi_maxeax; /* fn 0: %eax */
char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */
uint_t cpi_vendor; /* enum of cpi_vendorstr */
uint_t cpi_family; /* fn 1: extended family */
uint_t cpi_model; /* fn 1: extended model */
uint_t cpi_step; /* fn 1: stepping */
chipid_t cpi_chipid; /* fn 1: %ebx: Intel: chip # */
/* AMD: package/socket # */
uint_t cpi_brandid; /* fn 1: %ebx: brand ID */
int cpi_clogid; /* fn 1: %ebx: thread # */
uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */
uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */
uint_t cpi_ncache; /* fn 2: number of elements */
uint_t cpi_ncpu_shr_last_cache; /* fn 4: %eax: ncpus sharing cache */
id_t cpi_last_lvl_cacheid; /* fn 4: %eax: derived cache id */
uint_t cpi_std_4_size; /* fn 4: number of fn 4 elements */
struct cpuid_regs **cpi_std_4; /* fn 4: %ecx == 0 .. fn4_size */
struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */
/*
* extended function information
*/
uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */
char cpi_brandstr[49]; /* fn 0x8000000[234] */
uint8_t cpi_pabits; /* fn 0x80000006: %eax */
uint8_t cpi_vabits; /* fn 0x80000006: %eax */
struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x800000XX */
id_t cpi_coreid; /* same coreid => strands share core */
int cpi_pkgcoreid; /* core number within single package */
uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */
/* Intel: fn 4: %eax[31-26] */
/*
* supported feature information
*/
uint32_t cpi_support[5];
#define STD_EDX_FEATURES 0
#define AMD_EDX_FEATURES 1
#define TM_EDX_FEATURES 2
#define STD_ECX_FEATURES 3
#define AMD_ECX_FEATURES 4
/*
* Synthesized information, where known.
*/
uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */
const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */
uint32_t cpi_socket; /* Chip package/socket type */
struct mwait_info cpi_mwait; /* fn 5: monitor/mwait info */
uint32_t cpi_apicid;
uint_t cpi_procnodeid; /* AMD: nodeID on HT, Intel: chipid */
uint_t cpi_procnodes_per_pkg; /* AMD: # of nodes in the package */
/* Intel: 1 */
};
static struct cpuid_info cpuid_info0;
/*
* These bit fields are defined by the Intel Application Note AP-485
* "Intel Processor Identification and the CPUID Instruction"
*/
#define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
#define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
#define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
#define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
#define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
#define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
#define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx)
#define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx)
#define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx)
#define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx)
#define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
#define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
#define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
#define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
#define CPI_MAXEAX_MAX 0x100 /* sanity control */
#define CPI_XMAXEAX_MAX 0x80000100
#define CPI_FN4_ECX_MAX 0x20 /* sanity: max fn 4 levels */
#define CPI_FNB_ECX_MAX 0x20 /* sanity: max fn B levels */
/*
* Function 4 (Deterministic Cache Parameters) macros
* Defined by Intel Application Note AP-485
*/
#define CPI_NUM_CORES(regs) BITX((regs)->cp_eax, 31, 26)
#define CPI_NTHR_SHR_CACHE(regs) BITX((regs)->cp_eax, 25, 14)
#define CPI_FULL_ASSOC_CACHE(regs) BITX((regs)->cp_eax, 9, 9)
#define CPI_SELF_INIT_CACHE(regs) BITX((regs)->cp_eax, 8, 8)
#define CPI_CACHE_LVL(regs) BITX((regs)->cp_eax, 7, 5)
#define CPI_CACHE_TYPE(regs) BITX((regs)->cp_eax, 4, 0)
#define CPI_CPU_LEVEL_TYPE(regs) BITX((regs)->cp_ecx, 15, 8)
#define CPI_CACHE_WAYS(regs) BITX((regs)->cp_ebx, 31, 22)
#define CPI_CACHE_PARTS(regs) BITX((regs)->cp_ebx, 21, 12)
#define CPI_CACHE_COH_LN_SZ(regs) BITX((regs)->cp_ebx, 11, 0)
#define CPI_CACHE_SETS(regs) BITX((regs)->cp_ecx, 31, 0)
#define CPI_PREFCH_STRIDE(regs) BITX((regs)->cp_edx, 9, 0)
/*
* A couple of shorthand macros to identify "later" P6-family chips
* like the Pentium M and Core. First, the "older" P6-based stuff
* (loosely defined as "pre-Pentium-4"):
* P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
*/
#define IS_LEGACY_P6(cpi) ( \
cpi->cpi_family == 6 && \
(cpi->cpi_model == 1 || \
cpi->cpi_model == 3 || \
cpi->cpi_model == 5 || \
cpi->cpi_model == 6 || \
cpi->cpi_model == 7 || \
cpi->cpi_model == 8 || \
cpi->cpi_model == 0xA || \
cpi->cpi_model == 0xB) \
)
/* A "new F6" is everything with family 6 that's not the above */
#define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
/* Extended family/model support */
#define IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
cpi->cpi_family >= 0xf)
/*
* Info for monitor/mwait idle loop.
*
* See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
* Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
* 2006.
* See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
* Documentation Updates" #33633, Rev 2.05, December 2006.
*/
#define MWAIT_SUPPORT (0x00000001) /* mwait supported */
#define MWAIT_EXTENSIONS (0x00000002) /* extenstion supported */
#define MWAIT_ECX_INT_ENABLE (0x00000004) /* ecx 1 extension supported */
#define MWAIT_SUPPORTED(cpi) ((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
#define MWAIT_INT_ENABLE(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x2)
#define MWAIT_EXTENSION(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x1)
#define MWAIT_SIZE_MIN(cpi) BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
#define MWAIT_SIZE_MAX(cpi) BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
/*
* Number of sub-cstates for a given c-state.
*/
#define MWAIT_NUM_SUBC_STATES(cpi, c_state) \
BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
/*
* Functions we consune from cpuid_subr.c; don't publish these in a header
* file to try and keep people using the expected cpuid_* interfaces.
*/
extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t);
extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
/*
* Apply up various platform-dependent restrictions where the
* underlying platform restrictions mean the CPU can be marked
* as less capable than its cpuid instruction would imply.
*/
#if defined(__xpv)
static void
platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
{
switch (eax) {
case 1: {
uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
0 : CPUID_INTC_EDX_MCA;
cp->cp_edx &=
~(mcamask |
CPUID_INTC_EDX_PSE |
CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
break;
}
case 0x80000001:
cp->cp_edx &=
~(CPUID_AMD_EDX_PSE |
CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
CPUID_AMD_EDX_TSCP);
cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
break;
default:
break;
}
switch (vendor) {
case X86_VENDOR_Intel:
switch (eax) {
case 4:
/*
* Zero out the (ncores-per-chip - 1) field
*/
cp->cp_eax &= 0x03fffffff;
break;
default:
break;
}
break;
case X86_VENDOR_AMD:
switch (eax) {
case 0x80000001:
cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D;
break;
case 0x80000008:
/*
* Zero out the (ncores-per-chip - 1) field
*/
cp->cp_ecx &= 0xffffff00;
break;
default:
break;
}
break;
default:
break;
}
}
#else
#define platform_cpuid_mangle(vendor, eax, cp) /* nothing */
#endif
/*
* Some undocumented ways of patching the results of the cpuid
* instruction to permit running Solaris 10 on future cpus that
* we don't currently support. Could be set to non-zero values
* via settings in eeprom.
*/
uint32_t cpuid_feature_ecx_include;
uint32_t cpuid_feature_ecx_exclude;
uint32_t cpuid_feature_edx_include;
uint32_t cpuid_feature_edx_exclude;
/*
* Allocate space for mcpu_cpi in the machcpu structure for all non-boot CPUs.
*/
void
cpuid_alloc_space(cpu_t *cpu)
{
/*
* By convention, cpu0 is the boot cpu, which is set up
* before memory allocation is available. All other cpus get
* their cpuid_info struct allocated here.
*/
ASSERT(cpu->cpu_id != 0);
ASSERT(cpu->cpu_m.mcpu_cpi == NULL);
cpu->cpu_m.mcpu_cpi =
kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
}
void
cpuid_free_space(cpu_t *cpu)
{
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
int i;
ASSERT(cpi != NULL);
ASSERT(cpi != &cpuid_info0);
/*
* Free up any function 4 related dynamic storage
*/
for (i = 1; i < cpi->cpi_std_4_size; i++)
kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
if (cpi->cpi_std_4_size > 0)
kmem_free(cpi->cpi_std_4,
cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
kmem_free(cpi, sizeof (*cpi));
cpu->cpu_m.mcpu_cpi = NULL;
}
#if !defined(__xpv)
static void
determine_platform()
{
struct cpuid_regs cp;
char *xen_str;
uint32_t xen_signature[4], base;
platform_type = HW_NATIVE;
if (!enable_platform_detection)
return;
/*
* In a fully virtualized domain, Xen's pseudo-cpuid function
* returns a string representing the Xen signature in %ebx, %ecx,
* and %edx. %eax contains the maximum supported cpuid function.
* We need at least a (base + 2) leaf value to do what we want
* to do. Try different base values, since the hypervisor might
* use a different one depending on whether hyper-v emulation
* is switched on by default or not.
*/
for (base = 0x40000000; base < 0x40010000; base += 0x100) {
cp.cp_eax = base;
(void) __cpuid_insn(&cp);
xen_signature[0] = cp.cp_ebx;
xen_signature[1] = cp.cp_ecx;
xen_signature[2] = cp.cp_edx;
xen_signature[3] = 0;
xen_str = (char *)xen_signature;
if (strcmp("XenVMMXenVMM", xen_str) == 0 &&
cp.cp_eax >= (base + 2)) {
platform_type = HW_XEN_HVM;
return;
}
}
if (vmware_platform()) /* running under vmware hypervisor? */
platform_type = HW_VMWARE;
}
int
get_hwenv(void)
{
if (platform_type == -1)
determine_platform();
return (platform_type);
}
int
is_controldom(void)
{
return (0);
}
#else
int
get_hwenv(void)
{
return (HW_XEN_PV);
}
int
is_controldom(void)
{
return (DOMAIN_IS_INITDOMAIN(xen_info));
}
#endif /* __xpv */
static void
cpuid_intel_getids(cpu_t *cpu, void *feature)
{
uint_t i;
uint_t chipid_shift = 0;
uint_t coreid_shift = 0;
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
chipid_shift++;
cpi->cpi_chipid = cpi->cpi_apicid >> chipid_shift;
cpi->cpi_clogid = cpi->cpi_apicid & ((1 << chipid_shift) - 1);
if (is_x86_feature(feature, X86FSET_CMP)) {
/*
* Multi-core (and possibly multi-threaded)
* processors.
*/
uint_t ncpu_per_core;
if (cpi->cpi_ncore_per_chip == 1)
ncpu_per_core = cpi->cpi_ncpu_per_chip;
else if (cpi->cpi_ncore_per_chip > 1)
ncpu_per_core = cpi->cpi_ncpu_per_chip /
cpi->cpi_ncore_per_chip;
/*
* 8bit APIC IDs on dual core Pentiums
* look like this:
*
* +-----------------------+------+------+
* | Physical Package ID | MC | HT |
* +-----------------------+------+------+
* <------- chipid -------->
* <------- coreid --------------->
* <--- clogid -->
* <------>
* pkgcoreid
*
* Where the number of bits necessary to
* represent MC and HT fields together equals
* to the minimum number of bits necessary to
* store the value of cpi->cpi_ncpu_per_chip.
* Of those bits, the MC part uses the number
* of bits necessary to store the value of
* cpi->cpi_ncore_per_chip.
*/
for (i = 1; i < ncpu_per_core; i <<= 1)
coreid_shift++;
cpi->cpi_coreid = cpi->cpi_apicid >> coreid_shift;
cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
} else if (is_x86_feature(feature, X86FSET_HTT)) {
/*
* Single-core multi-threaded processors.
*/
cpi->cpi_coreid = cpi->cpi_chipid;
cpi->cpi_pkgcoreid = 0;
}
cpi->cpi_procnodeid = cpi->cpi_chipid;
}
static void
cpuid_amd_getids(cpu_t *cpu)
{
int i, first_half, coreidsz;
uint32_t nb_caps_reg;
uint_t node2_1;
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
/*
* AMD CMP chips currently have a single thread per core.
*
* Since no two cpus share a core we must assign a distinct coreid
* per cpu, and we do this by using the cpu_id. This scheme does not,
* however, guarantee that sibling cores of a chip will have sequential
* coreids starting at a multiple of the number of cores per chip -
* that is usually the case, but if the ACPI MADT table is presented
* in a different order then we need to perform a few more gymnastics
* for the pkgcoreid.
*
* All processors in the system have the same number of enabled
* cores. Cores within a processor are always numbered sequentially
* from 0 regardless of how many or which are disabled, and there
* is no way for operating system to discover the real core id when some
* are disabled.
*/
cpi->cpi_coreid = cpu->cpu_id;
if (cpi->cpi_xmaxeax >= 0x80000008) {
coreidsz = BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
/*
* In AMD parlance chip is really a node while Solaris
* sees chip as equivalent to socket/package.
*/
cpi->cpi_ncore_per_chip =
BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
if (coreidsz == 0) {
/* Use legacy method */
for (i = 1; i < cpi->cpi_ncore_per_chip; i <<= 1)
coreidsz++;
if (coreidsz == 0)
coreidsz = 1;
}
} else {
/* Assume single-core part */
cpi->cpi_ncore_per_chip = 1;
coreidsz = 1;
}
cpi->cpi_clogid = cpi->cpi_pkgcoreid =
cpi->cpi_apicid & ((1<<coreidsz) - 1);
cpi->cpi_ncpu_per_chip = cpi->cpi_ncore_per_chip;
/* Get nodeID */
if (cpi->cpi_family == 0xf) {
cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7;
cpi->cpi_chipid = cpi->cpi_procnodeid;
} else if (cpi->cpi_family == 0x10) {
/*
* See if we are a multi-node processor.
* All processors in the system have the same number of nodes
*/
nb_caps_reg = pci_getl_func(0, 24, 3, 0xe8);
if ((cpi->cpi_model < 8) || BITX(nb_caps_reg, 29, 29) == 0) {
/* Single-node */
cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 5,
coreidsz);
cpi->cpi_chipid = cpi->cpi_procnodeid;
} else {
/*
* Multi-node revision D (2 nodes per package
* are supported)
*/
cpi->cpi_procnodes_per_pkg = 2;
first_half = (cpi->cpi_pkgcoreid <=
(cpi->cpi_ncore_per_chip/2 - 1));
if (cpi->cpi_apicid == cpi->cpi_pkgcoreid) {
/* We are BSP */
cpi->cpi_procnodeid = (first_half ? 0 : 1);
cpi->cpi_chipid = cpi->cpi_procnodeid >> 1;
} else {
/* We are AP */
/* NodeId[2:1] bits to use for reading F3xe8 */
node2_1 = BITX(cpi->cpi_apicid, 5, 4) << 1;
nb_caps_reg =
pci_getl_func(0, 24 + node2_1, 3, 0xe8);
/*
* Check IntNodeNum bit (31:30, but bit 31 is
* always 0 on dual-node processors)
*/
if (BITX(nb_caps_reg, 30, 30) == 0)
cpi->cpi_procnodeid = node2_1 +
!first_half;
else
cpi->cpi_procnodeid = node2_1 +
first_half;
cpi->cpi_chipid = cpi->cpi_procnodeid >> 1;
}
}
} else if (cpi->cpi_family >= 0x11) {
cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7;
cpi->cpi_chipid = cpi->cpi_procnodeid;
} else {
cpi->cpi_procnodeid = 0;
cpi->cpi_chipid = cpi->cpi_procnodeid;
}
}
void *
cpuid_pass1(cpu_t *cpu)
{
uint32_t mask_ecx, mask_edx;
void *featureset;
struct cpuid_info *cpi;
struct cpuid_regs *cp;
int xcpuid;
#if !defined(__xpv)
extern int idle_cpu_prefer_mwait;
#endif
#if !defined(__xpv)
determine_platform();
#endif
/*
* Space statically allocated for BSP, ensure pointer is set
*/
if (cpu->cpu_id == 0) {
if (cpu->cpu_m.mcpu_cpi == NULL)
cpu->cpu_m.mcpu_cpi = &cpuid_info0;
featureset = x86_featureset0;
} else {
featureset = init_x86_featureset();
}
add_x86_feature(featureset, X86FSET_CPUID);
cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpi != NULL);
cp = &cpi->cpi_std[0];
cp->cp_eax = 0;
cpi->cpi_maxeax = __cpuid_insn(cp);
{
uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
*iptr++ = cp->cp_ebx;
*iptr++ = cp->cp_edx;
*iptr++ = cp->cp_ecx;
*(char *)&cpi->cpi_vendorstr[12] = '\0';
}
cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
x86_vendor = cpi->cpi_vendor; /* for compatibility */
/*
* Limit the range in case of weird hardware
*/
if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
cpi->cpi_maxeax = CPI_MAXEAX_MAX;
if (cpi->cpi_maxeax < 1)
goto pass1_done;
cp = &cpi->cpi_std[1];
cp->cp_eax = 1;
(void) __cpuid_insn(cp);
/*
* Extract identifying constants for easy access.
*/
cpi->cpi_model = CPI_MODEL(cpi);
cpi->cpi_family = CPI_FAMILY(cpi);
if (cpi->cpi_family == 0xf)
cpi->cpi_family += CPI_FAMILY_XTD(cpi);
/*
* Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
* Intel, and presumably everyone else, uses model == 0xf, as
* one would expect (max value means possible overflow). Sigh.
*/
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (IS_EXTENDED_MODEL_INTEL(cpi))
cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
break;
case X86_VENDOR_AMD:
if (CPI_FAMILY(cpi) == 0xf)
cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
break;
default:
if (cpi->cpi_model == 0xf)
cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
break;
}
cpi->cpi_step = CPI_STEP(cpi);
cpi->cpi_brandid = CPI_BRANDID(cpi);
/*
* *default* assumptions:
* - believe %edx feature word
* - ignore %ecx feature word
* - 32-bit virtual and physical addressing
*/
mask_edx = 0xffffffff;
mask_ecx = 0;
cpi->cpi_pabits = cpi->cpi_vabits = 32;
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (cpi->cpi_family == 5)
x86_type = X86_TYPE_P5;
else if (IS_LEGACY_P6(cpi)) {
x86_type = X86_TYPE_P6;
pentiumpro_bug4046376 = 1;
pentiumpro_bug4064495 = 1;
/*
* Clear the SEP bit when it was set erroneously
*/
if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
x86_type = X86_TYPE_P4;
/*
* We don't currently depend on any of the %ecx
* features until Prescott, so we'll only check
* this from P4 onwards. We might want to revisit
* that idea later.
*/
mask_ecx = 0xffffffff;
} else if (cpi->cpi_family > 0xf)
mask_ecx = 0xffffffff;
/*
* We don't support MONITOR/MWAIT if leaf 5 is not available
* to obtain the monitor linesize.
*/
if (cpi->cpi_maxeax < 5)
mask_ecx &= ~CPUID_INTC_ECX_MON;
break;
case X86_VENDOR_IntelClone:
default:
break;
case X86_VENDOR_AMD:
#if defined(OPTERON_ERRATUM_108)
if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
cpi->cpi_model = 0xc;
} else
#endif
if (cpi->cpi_family == 5) {
/*
* AMD K5 and K6
*
* These CPUs have an incomplete implementation
* of MCA/MCE which we mask away.
*/
mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
/*
* Model 0 uses the wrong (APIC) bit
* to indicate PGE. Fix it here.
*/
if (cpi->cpi_model == 0) {
if (cp->cp_edx & 0x200) {
cp->cp_edx &= ~0x200;
cp->cp_edx |= CPUID_INTC_EDX_PGE;
}
}
/*
* Early models had problems w/ MMX; disable.
*/
if (cpi->cpi_model < 6)
mask_edx &= ~CPUID_INTC_EDX_MMX;
}
/*
* For newer families, SSE3 and CX16, at least, are valid;
* enable all
*/
if (cpi->cpi_family >= 0xf)
mask_ecx = 0xffffffff;
/*
* We don't support MONITOR/MWAIT if leaf 5 is not available
* to obtain the monitor linesize.
*/
if (cpi->cpi_maxeax < 5)
mask_ecx &= ~CPUID_INTC_ECX_MON;
#if !defined(__xpv)
/*
* Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
* processors. AMD does not intend MWAIT to be used in the cpu
* idle loop on current and future processors. 10h and future
* AMD processors use more power in MWAIT than HLT.
* Pre-family-10h Opterons do not have the MWAIT instruction.
*/
idle_cpu_prefer_mwait = 0;
#endif
break;
case X86_VENDOR_TM:
/*
* workaround the NT workaround in CMS 4.1
*/
if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
(cpi->cpi_step == 2 || cpi->cpi_step == 3))
cp->cp_edx |= CPUID_INTC_EDX_CX8;
break;
case X86_VENDOR_Centaur:
/*
* workaround the NT workarounds again
*/
if (cpi->cpi_family == 6)
cp->cp_edx |= CPUID_INTC_EDX_CX8;
break;
case X86_VENDOR_Cyrix:
/*
* We rely heavily on the probing in locore
* to actually figure out what parts, if any,
* of the Cyrix cpuid instruction to believe.
*/
switch (x86_type) {
case X86_TYPE_CYRIX_486:
mask_edx = 0;
break;
case X86_TYPE_CYRIX_6x86:
mask_edx = 0;
break;
case X86_TYPE_CYRIX_6x86L:
mask_edx =
CPUID_INTC_EDX_DE |
CPUID_INTC_EDX_CX8;
break;
case X86_TYPE_CYRIX_6x86MX:
mask_edx =
CPUID_INTC_EDX_DE |
CPUID_INTC_EDX_MSR |
CPUID_INTC_EDX_CX8 |
CPUID_INTC_EDX_PGE |
CPUID_INTC_EDX_CMOV |
CPUID_INTC_EDX_MMX;
break;
case X86_TYPE_CYRIX_GXm:
mask_edx =
CPUID_INTC_EDX_MSR |
CPUID_INTC_EDX_CX8 |
CPUID_INTC_EDX_CMOV |
CPUID_INTC_EDX_MMX;
break;
case X86_TYPE_CYRIX_MediaGX:
break;
case X86_TYPE_CYRIX_MII:
case X86_TYPE_VIA_CYRIX_III:
mask_edx =
CPUID_INTC_EDX_DE |
CPUID_INTC_EDX_TSC |
CPUID_INTC_EDX_MSR |
CPUID_INTC_EDX_CX8 |
CPUID_INTC_EDX_PGE |
CPUID_INTC_EDX_CMOV |
CPUID_INTC_EDX_MMX;
break;
default:
break;
}
break;
}
#if defined(__xpv)
/*
* Do not support MONITOR/MWAIT under a hypervisor
*/
mask_ecx &= ~CPUID_INTC_ECX_MON;
#endif /* __xpv */
/*
* Now we've figured out the masks that determine
* which bits we choose to believe, apply the masks
* to the feature words, then map the kernel's view
* of these feature words into its feature word.
*/
cp->cp_edx &= mask_edx;
cp->cp_ecx &= mask_ecx;
/*
* apply any platform restrictions (we don't call this
* immediately after __cpuid_insn here, because we need the
* workarounds applied above first)
*/
platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
/*
* fold in overrides from the "eeprom" mechanism
*/
cp->cp_edx |= cpuid_feature_edx_include;
cp->cp_edx &= ~cpuid_feature_edx_exclude;
cp->cp_ecx |= cpuid_feature_ecx_include;
cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
if (cp->cp_edx & CPUID_INTC_EDX_PSE) {
add_x86_feature(featureset, X86FSET_LARGEPAGE);
}
if (cp->cp_edx & CPUID_INTC_EDX_TSC) {
add_x86_feature(featureset, X86FSET_TSC);
}
if (cp->cp_edx & CPUID_INTC_EDX_MSR) {
add_x86_feature(featureset, X86FSET_MSR);
}
if (cp->cp_edx & CPUID_INTC_EDX_MTRR) {
add_x86_feature(featureset, X86FSET_MTRR);
}
if (cp->cp_edx & CPUID_INTC_EDX_PGE) {
add_x86_feature(featureset, X86FSET_PGE);
}
if (cp->cp_edx & CPUID_INTC_EDX_CMOV) {
add_x86_feature(featureset, X86FSET_CMOV);
}
if (cp->cp_edx & CPUID_INTC_EDX_MMX) {
add_x86_feature(featureset, X86FSET_MMX);
}
if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
(cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) {
add_x86_feature(featureset, X86FSET_MCA);
}
if (cp->cp_edx & CPUID_INTC_EDX_PAE) {
add_x86_feature(featureset, X86FSET_PAE);
}
if (cp->cp_edx & CPUID_INTC_EDX_CX8) {
add_x86_feature(featureset, X86FSET_CX8);
}
if (cp->cp_ecx & CPUID_INTC_ECX_CX16) {
add_x86_feature(featureset, X86FSET_CX16);
}
if (cp->cp_edx & CPUID_INTC_EDX_PAT) {
add_x86_feature(featureset, X86FSET_PAT);
}
if (cp->cp_edx & CPUID_INTC_EDX_SEP) {
add_x86_feature(featureset, X86FSET_SEP);
}
if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
/*
* In our implementation, fxsave/fxrstor
* are prerequisites before we'll even
* try and do SSE things.
*/
if (cp->cp_edx & CPUID_INTC_EDX_SSE) {
add_x86_feature(featureset, X86FSET_SSE);
}
if (cp->cp_edx & CPUID_INTC_EDX_SSE2) {
add_x86_feature(featureset, X86FSET_SSE2);
}
if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) {
add_x86_feature(featureset, X86FSET_SSE3);
}
if (cpi->cpi_vendor == X86_VENDOR_Intel) {
if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3) {
add_x86_feature(featureset, X86FSET_SSSE3);
}
if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1) {
add_x86_feature(featureset, X86FSET_SSE4_1);
}
if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2) {
add_x86_feature(featureset, X86FSET_SSE4_2);
}
if (cp->cp_ecx & CPUID_INTC_ECX_AES) {
add_x86_feature(featureset, X86FSET_AES);
}
if (cp->cp_ecx & CPUID_INTC_ECX_PCLMULQDQ) {
add_x86_feature(featureset, X86FSET_PCLMULQDQ);
}
}
}
if (cp->cp_edx & CPUID_INTC_EDX_DE) {
add_x86_feature(featureset, X86FSET_DE);
}
#if !defined(__xpv)
if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
/*
* We require the CLFLUSH instruction for erratum workaround
* to use MONITOR/MWAIT.
*/
if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
cpi->cpi_mwait.support |= MWAIT_SUPPORT;
add_x86_feature(featureset, X86FSET_MWAIT);
} else {
extern int idle_cpu_assert_cflush_monitor;
/*
* All processors we are aware of which have
* MONITOR/MWAIT also have CLFLUSH.
*/
if (idle_cpu_assert_cflush_monitor) {
ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
(cp->cp_edx & CPUID_INTC_EDX_CLFSH));
}
}
}
#endif /* __xpv */
/*
* Only need it first time, rest of the cpus would follow suite.
* we only capture this for the bootcpu.
*/
if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
add_x86_feature(featureset, X86FSET_CLFSH);
x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
}
if (is_x86_feature(featureset, X86FSET_PAE))
cpi->cpi_pabits = 36;
/*
* Hyperthreading configuration is slightly tricky on Intel
* and pure clones, and even trickier on AMD.
*
* (AMD chose to set the HTT bit on their CMP processors,
* even though they're not actually hyperthreaded. Thus it
* takes a bit more work to figure out what's really going
* on ... see the handling of the CMP_LGCY bit below)
*/
if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
if (cpi->cpi_ncpu_per_chip > 1)
add_x86_feature(featureset, X86FSET_HTT);
} else {
cpi->cpi_ncpu_per_chip = 1;
}
/*
* Work on the "extended" feature information, doing
* some basic initialization for cpuid_pass2()
*/
xcpuid = 0;
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
xcpuid++;
break;
case X86_VENDOR_AMD:
if (cpi->cpi_family > 5 ||
(cpi->cpi_family == 5 && cpi->cpi_model >= 1))
xcpuid++;
break;
case X86_VENDOR_Cyrix:
/*
* Only these Cyrix CPUs are -known- to support
* extended cpuid operations.
*/
if (x86_type == X86_TYPE_VIA_CYRIX_III ||
x86_type == X86_TYPE_CYRIX_GXm)
xcpuid++;
break;
case X86_VENDOR_Centaur:
case X86_VENDOR_TM:
default:
xcpuid++;
break;
}
if (xcpuid) {
cp = &cpi->cpi_extd[0];
cp->cp_eax = 0x80000000;
cpi->cpi_xmaxeax = __cpuid_insn(cp);
}
if (cpi->cpi_xmaxeax & 0x80000000) {
if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
case X86_VENDOR_AMD:
if (cpi->cpi_xmaxeax < 0x80000001)
break;
cp = &cpi->cpi_extd[1];
cp->cp_eax = 0x80000001;
(void) __cpuid_insn(cp);
if (cpi->cpi_vendor == X86_VENDOR_AMD &&
cpi->cpi_family == 5 &&
cpi->cpi_model == 6 &&
cpi->cpi_step == 6) {
/*
* K6 model 6 uses bit 10 to indicate SYSC
* Later models use bit 11. Fix it here.
*/
if (cp->cp_edx & 0x400) {
cp->cp_edx &= ~0x400;
cp->cp_edx |= CPUID_AMD_EDX_SYSC;
}
}
platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
/*
* Compute the additions to the kernel's feature word.
*/
if (cp->cp_edx & CPUID_AMD_EDX_NX) {
add_x86_feature(featureset, X86FSET_NX);
}
/*
* Regardless whether or not we boot 64-bit,
* we should have a way to identify whether
* the CPU is capable of running 64-bit.
*/
if (cp->cp_edx & CPUID_AMD_EDX_LM) {
add_x86_feature(featureset, X86FSET_64);
}
#if defined(__amd64)
/* 1 GB large page - enable only for 64 bit kernel */
if (cp->cp_edx & CPUID_AMD_EDX_1GPG) {
add_x86_feature(featureset, X86FSET_1GPG);
}
#endif
if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
(cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
(cp->cp_ecx & CPUID_AMD_ECX_SSE4A)) {
add_x86_feature(featureset, X86FSET_SSE4A);
}
/*
* If both the HTT and CMP_LGCY bits are set,
* then we're not actually HyperThreaded. Read
* "AMD CPUID Specification" for more details.
*/
if (cpi->cpi_vendor == X86_VENDOR_AMD &&
is_x86_feature(featureset, X86FSET_HTT) &&
(cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
remove_x86_feature(featureset, X86FSET_HTT);
add_x86_feature(featureset, X86FSET_CMP);
}
#if defined(__amd64)
/*
* It's really tricky to support syscall/sysret in
* the i386 kernel; we rely on sysenter/sysexit
* instead. In the amd64 kernel, things are -way-
* better.
*/
if (cp->cp_edx & CPUID_AMD_EDX_SYSC) {
add_x86_feature(featureset, X86FSET_ASYSC);
}
/*
* While we're thinking about system calls, note
* that AMD processors don't support sysenter
* in long mode at all, so don't try to program them.
*/
if (x86_vendor == X86_VENDOR_AMD) {
remove_x86_feature(featureset, X86FSET_SEP);
}
#endif
if (cp->cp_edx & CPUID_AMD_EDX_TSCP) {
add_x86_feature(featureset, X86FSET_TSCP);
}
break;
default:
break;
}
/*
* Get CPUID data about processor cores and hyperthreads.
*/
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (cpi->cpi_maxeax >= 4) {
cp = &cpi->cpi_std[4];
cp->cp_eax = 4;
cp->cp_ecx = 0;
(void) __cpuid_insn(cp);
platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
}
/*FALLTHROUGH*/
case X86_VENDOR_AMD:
if (cpi->cpi_xmaxeax < 0x80000008)
break;
cp = &cpi->cpi_extd[8];
cp->cp_eax = 0x80000008;
(void) __cpuid_insn(cp);
platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
/*
* Virtual and physical address limits from
* cpuid override previously guessed values.
*/
cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
break;
default:
break;
}
/*
* Derive the number of cores per chip
*/
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (cpi->cpi_maxeax < 4) {
cpi->cpi_ncore_per_chip = 1;
break;
} else {
cpi->cpi_ncore_per_chip =
BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
}
break;
case X86_VENDOR_AMD:
if (cpi->cpi_xmaxeax < 0x80000008) {
cpi->cpi_ncore_per_chip = 1;
break;
} else {
/*
* On family 0xf cpuid fn 2 ECX[7:0] "NC" is
* 1 less than the number of physical cores on
* the chip. In family 0x10 this value can
* be affected by "downcoring" - it reflects
* 1 less than the number of cores actually
* enabled on this node.
*/
cpi->cpi_ncore_per_chip =
BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
}
break;
default:
cpi->cpi_ncore_per_chip = 1;
break;
}
/*
* Get CPUID data about TSC Invariance in Deep C-State.
*/
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (cpi->cpi_maxeax >= 7) {
cp = &cpi->cpi_extd[7];
cp->cp_eax = 0x80000007;
cp->cp_ecx = 0;
(void) __cpuid_insn(cp);
}
break;
default:
break;
}
} else {
cpi->cpi_ncore_per_chip = 1;
}
/*
* If more than one core, then this processor is CMP.
*/
if (cpi->cpi_ncore_per_chip > 1) {
add_x86_feature(featureset, X86FSET_CMP);
}
/*
* If the number of cores is the same as the number
* of CPUs, then we cannot have HyperThreading.
*/
if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) {
remove_x86_feature(featureset, X86FSET_HTT);
}
cpi->cpi_apicid = CPI_APIC_ID(cpi);
cpi->cpi_procnodes_per_pkg = 1;
if (is_x86_feature(featureset, X86FSET_HTT) == B_FALSE &&
is_x86_feature(featureset, X86FSET_CMP) == B_FALSE) {
/*
* Single-core single-threaded processors.
*/
cpi->cpi_chipid = -1;
cpi->cpi_clogid = 0;
cpi->cpi_coreid = cpu->cpu_id;
cpi->cpi_pkgcoreid = 0;
if (cpi->cpi_vendor == X86_VENDOR_AMD)
cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 3, 0);
else
cpi->cpi_procnodeid = cpi->cpi_chipid;
} else if (cpi->cpi_ncpu_per_chip > 1) {
if (cpi->cpi_vendor == X86_VENDOR_Intel)
cpuid_intel_getids(cpu, featureset);
else if (cpi->cpi_vendor == X86_VENDOR_AMD)
cpuid_amd_getids(cpu);
else {
/*
* All other processors are currently
* assumed to have single cores.
*/
cpi->cpi_coreid = cpi->cpi_chipid;
cpi->cpi_pkgcoreid = 0;
cpi->cpi_procnodeid = cpi->cpi_chipid;
}
}
/*
* Synthesize chip "revision" and socket type
*/
cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
cpi->cpi_model, cpi->cpi_step);
cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
cpi->cpi_model, cpi->cpi_step);
pass1_done:
cpi->cpi_pass = 1;
return (featureset);
}
/*
* Make copies of the cpuid table entries we depend on, in
* part for ease of parsing now, in part so that we have only
* one place to correct any of it, in part for ease of
* later export to userland, and in part so we can look at
* this stuff in a crash dump.
*/
/*ARGSUSED*/
void
cpuid_pass2(cpu_t *cpu)
{
uint_t n, nmax;
int i;
struct cpuid_regs *cp;
uint8_t *dp;
uint32_t *iptr;
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpi->cpi_pass == 1);
if (cpi->cpi_maxeax < 1)
goto pass2_done;
if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
nmax = NMAX_CPI_STD;
/*
* (We already handled n == 0 and n == 1 in pass 1)
*/
for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
cp->cp_eax = n;
/*
* CPUID function 4 expects %ecx to be initialized
* with an index which indicates which cache to return
* information about. The OS is expected to call function 4
* with %ecx set to 0, 1, 2, ... until it returns with
* EAX[4:0] set to 0, which indicates there are no more
* caches.
*
* Here, populate cpi_std[4] with the information returned by
* function 4 when %ecx == 0, and do the rest in cpuid_pass3()
* when dynamic memory allocation becomes available.
*
* Note: we need to explicitly initialize %ecx here, since
* function 4 may have been previously invoked.
*/
if (n == 4)
cp->cp_ecx = 0;
(void) __cpuid_insn(cp);
platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
switch (n) {
case 2:
/*
* "the lower 8 bits of the %eax register
* contain a value that identifies the number
* of times the cpuid [instruction] has to be
* executed to obtain a complete image of the
* processor's caching systems."
*
* How *do* they make this stuff up?
*/
cpi->cpi_ncache = sizeof (*cp) *
BITX(cp->cp_eax, 7, 0);
if (cpi->cpi_ncache == 0)
break;
cpi->cpi_ncache--; /* skip count byte */
/*
* Well, for now, rather than attempt to implement
* this slightly dubious algorithm, we just look
* at the first 15 ..
*/
if (cpi->cpi_ncache > (sizeof (*cp) - 1))
cpi->cpi_ncache = sizeof (*cp) - 1;
dp = cpi->cpi_cacheinfo;
if (BITX(cp->cp_eax, 31, 31) == 0) {
uint8_t *p = (void *)&cp->cp_eax;
for (i = 1; i < 4; i++)
if (p[i] != 0)
*dp++ = p[i];
}
if (BITX(cp->cp_ebx, 31, 31) == 0) {
uint8_t *p = (void *)&cp->cp_ebx;
for (i = 0; i < 4; i++)
if (p[i] != 0)
*dp++ = p[i];
}
if (BITX(cp->cp_ecx, 31, 31) == 0) {
uint8_t *p = (void *)&cp->cp_ecx;
for (i = 0; i < 4; i++)
if (p[i] != 0)
*dp++ = p[i];
}
if (BITX(cp->cp_edx, 31, 31) == 0) {
uint8_t *p = (void *)&cp->cp_edx;
for (i = 0; i < 4; i++)
if (p[i] != 0)
*dp++ = p[i];
}
break;
case 3: /* Processor serial number, if PSN supported */
break;
case 4: /* Deterministic cache parameters */
break;
case 5: /* Monitor/Mwait parameters */
{
size_t mwait_size;
/*
* check cpi_mwait.support which was set in cpuid_pass1
*/
if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
break;
/*
* Protect ourself from insane mwait line size.
* Workaround for incomplete hardware emulator(s).
*/
mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
if (mwait_size < sizeof (uint32_t) ||
!ISP2(mwait_size)) {
#if DEBUG
cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
"size %ld", cpu->cpu_id, (long)mwait_size);
#endif
break;
}
cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
cpi->cpi_mwait.mon_max = mwait_size;
if (MWAIT_EXTENSION(cpi)) {
cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
if (MWAIT_INT_ENABLE(cpi))
cpi->cpi_mwait.support |=
MWAIT_ECX_INT_ENABLE;
}
break;
}
default:
break;
}
}
if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
struct cpuid_regs regs;
cp = &regs;
cp->cp_eax = 0xB;
cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
(void) __cpuid_insn(cp);
/*
* Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
* indicates that the extended topology enumeration leaf is
* available.
*/
if (cp->cp_ebx) {
uint32_t x2apic_id;
uint_t coreid_shift = 0;
uint_t ncpu_per_core = 1;
uint_t chipid_shift = 0;
uint_t ncpu_per_chip = 1;
uint_t i;
uint_t level;
for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
cp->cp_eax = 0xB;
cp->cp_ecx = i;
(void) __cpuid_insn(cp);
level = CPI_CPU_LEVEL_TYPE(cp);
if (level == 1) {
x2apic_id = cp->cp_edx;
coreid_shift = BITX(cp->cp_eax, 4, 0);
ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
} else if (level == 2) {
x2apic_id = cp->cp_edx;
chipid_shift = BITX(cp->cp_eax, 4, 0);
ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
}
}
cpi->cpi_apicid = x2apic_id;
cpi->cpi_ncpu_per_chip = ncpu_per_chip;
cpi->cpi_ncore_per_chip = ncpu_per_chip /
ncpu_per_core;
cpi->cpi_chipid = x2apic_id >> chipid_shift;
cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
cpi->cpi_coreid = x2apic_id >> coreid_shift;
cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
}
/* Make cp NULL so that we don't stumble on others */
cp = NULL;
}
if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
goto pass2_done;
if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
nmax = NMAX_CPI_EXTD;
/*
* Copy the extended properties, fixing them as we go.
* (We already handled n == 0 and n == 1 in pass 1)
*/
iptr = (void *)cpi->cpi_brandstr;
for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
cp->cp_eax = 0x80000000 + n;
(void) __cpuid_insn(cp);
platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
switch (n) {
case 2:
case 3:
case 4:
/*
* Extract the brand string
*/
*iptr++ = cp->cp_eax;
*iptr++ = cp->cp_ebx;
*iptr++ = cp->cp_ecx;
*iptr++ = cp->cp_edx;
break;
case 5:
switch (cpi->cpi_vendor) {
case X86_VENDOR_AMD:
/*
* The Athlon and Duron were the first
* parts to report the sizes of the
* TLB for large pages. Before then,
* we don't trust the data.
*/
if (cpi->cpi_family < 6 ||
(cpi->cpi_family == 6 &&
cpi->cpi_model < 1))
cp->cp_eax = 0;
break;
default:
break;
}
break;
case 6:
switch (cpi->cpi_vendor) {
case X86_VENDOR_AMD:
/*
* The Athlon and Duron were the first
* AMD parts with L2 TLB's.
* Before then, don't trust the data.
*/
if (cpi->cpi_family < 6 ||
cpi->cpi_family == 6 &&
cpi->cpi_model < 1)
cp->cp_eax = cp->cp_ebx = 0;
/*
* AMD Duron rev A0 reports L2
* cache size incorrectly as 1K
* when it is really 64K
*/
if (cpi->cpi_family == 6 &&
cpi->cpi_model == 3 &&
cpi->cpi_step == 0) {
cp->cp_ecx &= 0xffff;
cp->cp_ecx |= 0x400000;
}
break;
case X86_VENDOR_Cyrix: /* VIA C3 */
/*
* VIA C3 processors are a bit messed
* up w.r.t. encoding cache sizes in %ecx
*/
if (cpi->cpi_family != 6)
break;
/*
* model 7 and 8 were incorrectly encoded
*
* xxx is model 8 really broken?
*/
if (cpi->cpi_model == 7 ||
cpi->cpi_model == 8)
cp->cp_ecx =
BITX(cp->cp_ecx, 31, 24) << 16 |
BITX(cp->cp_ecx, 23, 16) << 12 |
BITX(cp->cp_ecx, 15, 8) << 8 |
BITX(cp->cp_ecx, 7, 0);
/*
* model 9 stepping 1 has wrong associativity
*/
if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
cp->cp_ecx |= 8 << 12;
break;
case X86_VENDOR_Intel:
/*
* Extended L2 Cache features function.
* First appeared on Prescott.
*/
default:
break;
}
break;
default:
break;
}
}
pass2_done:
cpi->cpi_pass = 2;
}
static const char *
intel_cpubrand(const struct cpuid_info *cpi)
{
int i;
if (!is_x86_feature(x86_featureset, X86FSET_CPUID) ||
cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
return ("i486");
switch (cpi->cpi_family) {
case 5:
return ("Intel Pentium(r)");
case 6:
switch (cpi->cpi_model) {
uint_t celeron, xeon;
const struct cpuid_regs *cp;
case 0:
case 1:
case 2:
return ("Intel Pentium(r) Pro");
case 3:
case 4:
return ("Intel Pentium(r) II");
case 6:
return ("Intel Celeron(r)");
case 5:
case 7:
celeron = xeon = 0;
cp = &cpi->cpi_std[2]; /* cache info */
for (i = 1; i < 4; i++) {
uint_t tmp;
tmp = (cp->cp_eax >> (8 * i)) & 0xff;
if (tmp == 0x40)
celeron++;
if (tmp >= 0x44 && tmp <= 0x45)
xeon++;
}
for (i = 0; i < 2; i++) {
uint_t tmp;
tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
if (tmp == 0x40)
celeron++;
else if (tmp >= 0x44 && tmp <= 0x45)
xeon++;
}
for (i = 0; i < 4; i++) {
uint_t tmp;
tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
if (tmp == 0x40)
celeron++;
else if (tmp >= 0x44 && tmp <= 0x45)
xeon++;
}
for (i = 0; i < 4; i++) {
uint_t tmp;
tmp = (cp->cp_edx >> (8 * i)) & 0xff;
if (tmp == 0x40)
celeron++;
else if (tmp >= 0x44 && tmp <= 0x45)
xeon++;
}
if (celeron)
return ("Intel Celeron(r)");
if (xeon)
return (cpi->cpi_model == 5 ?
"Intel Pentium(r) II Xeon(tm)" :
"Intel Pentium(r) III Xeon(tm)");
return (cpi->cpi_model == 5 ?
"Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
"Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
default:
break;
}
default:
break;
}
/* BrandID is present if the field is nonzero */
if (cpi->cpi_brandid != 0) {
static const struct {
uint_t bt_bid;
const char *bt_str;
} brand_tbl[] = {
{ 0x1, "Intel(r) Celeron(r)" },
{ 0x2, "Intel(r) Pentium(r) III" },
{ 0x3, "Intel(r) Pentium(r) III Xeon(tm)" },
{ 0x4, "Intel(r) Pentium(r) III" },
{ 0x6, "Mobile Intel(r) Pentium(r) III" },
{ 0x7, "Mobile Intel(r) Celeron(r)" },
{ 0x8, "Intel(r) Pentium(r) 4" },
{ 0x9, "Intel(r) Pentium(r) 4" },
{ 0xa, "Intel(r) Celeron(r)" },
{ 0xb, "Intel(r) Xeon(tm)" },
{ 0xc, "Intel(r) Xeon(tm) MP" },
{ 0xe, "Mobile Intel(r) Pentium(r) 4" },
{ 0xf, "Mobile Intel(r) Celeron(r)" },
{ 0x11, "Mobile Genuine Intel(r)" },
{ 0x12, "Intel(r) Celeron(r) M" },
{ 0x13, "Mobile Intel(r) Celeron(r)" },
{ 0x14, "Intel(r) Celeron(r)" },
{ 0x15, "Mobile Genuine Intel(r)" },
{ 0x16, "Intel(r) Pentium(r) M" },
{ 0x17, "Mobile Intel(r) Celeron(r)" }
};
uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
uint_t sgn;
sgn = (cpi->cpi_family << 8) |
(cpi->cpi_model << 4) | cpi->cpi_step;
for (i = 0; i < btblmax; i++)
if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
break;
if (i < btblmax) {
if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
return ("Intel(r) Celeron(r)");
if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
return ("Intel(r) Xeon(tm) MP");
if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
return ("Intel(r) Xeon(tm)");
return (brand_tbl[i].bt_str);
}
}
return (NULL);
}
static const char *
amd_cpubrand(const struct cpuid_info *cpi)
{
if (!is_x86_feature(x86_featureset, X86FSET_CPUID) ||
cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
return ("i486 compatible");
switch (cpi->cpi_family) {
case 5:
switch (cpi->cpi_model) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
return ("AMD-K5(r)");
case 6:
case 7:
return ("AMD-K6(r)");
case 8:
return ("AMD-K6(r)-2");
case 9:
return ("AMD-K6(r)-III");
default:
return ("AMD (family 5)");
}
case 6:
switch (cpi->cpi_model) {
case 1:
return ("AMD-K7(tm)");
case 0:
case 2:
case 4:
return ("AMD Athlon(tm)");
case 3:
case 7:
return ("AMD Duron(tm)");
case 6:
case 8:
case 10:
/*
* Use the L2 cache size to distinguish
*/
return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
"AMD Athlon(tm)" : "AMD Duron(tm)");
default:
return ("AMD (family 6)");
}
default:
break;
}
if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
cpi->cpi_brandid != 0) {
switch (BITX(cpi->cpi_brandid, 7, 5)) {
case 3:
return ("AMD Opteron(tm) UP 1xx");
case 4:
return ("AMD Opteron(tm) DP 2xx");
case 5:
return ("AMD Opteron(tm) MP 8xx");
default:
return ("AMD Opteron(tm)");
}
}
return (NULL);
}
static const char *
cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
{
if (!is_x86_feature(x86_featureset, X86FSET_CPUID) ||
cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
type == X86_TYPE_CYRIX_486)
return ("i486 compatible");
switch (type) {
case X86_TYPE_CYRIX_6x86:
return ("Cyrix 6x86");
case X86_TYPE_CYRIX_6x86L:
return ("Cyrix 6x86L");
case X86_TYPE_CYRIX_6x86MX:
return ("Cyrix 6x86MX");
case X86_TYPE_CYRIX_GXm:
return ("Cyrix GXm");
case X86_TYPE_CYRIX_MediaGX:
return ("Cyrix MediaGX");
case X86_TYPE_CYRIX_MII:
return ("Cyrix M2");
case X86_TYPE_VIA_CYRIX_III:
return ("VIA Cyrix M3");
default:
/*
* Have another wild guess ..
*/
if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
return ("Cyrix 5x86");
else if (cpi->cpi_family == 5) {
switch (cpi->cpi_model) {
case 2:
return ("Cyrix 6x86"); /* Cyrix M1 */
case 4:
return ("Cyrix MediaGX");
default:
break;
}
} else if (cpi->cpi_family == 6) {
switch (cpi->cpi_model) {
case 0:
return ("Cyrix 6x86MX"); /* Cyrix M2? */
case 5:
case 6:
case 7:
case 8:
case 9:
return ("VIA C3");
default:
break;
}
}
break;
}
return (NULL);
}
/*
* This only gets called in the case that the CPU extended
* feature brand string (0x80000002, 0x80000003, 0x80000004)
* aren't available, or contain null bytes for some reason.
*/
static void
fabricate_brandstr(struct cpuid_info *cpi)
{
const char *brand = NULL;
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
brand = intel_cpubrand(cpi);
break;
case X86_VENDOR_AMD:
brand = amd_cpubrand(cpi);
break;
case X86_VENDOR_Cyrix:
brand = cyrix_cpubrand(cpi, x86_type);
break;
case X86_VENDOR_NexGen:
if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
brand = "NexGen Nx586";
break;
case X86_VENDOR_Centaur:
if (cpi->cpi_family == 5)
switch (cpi->cpi_model) {
case 4:
brand = "Centaur C6";
break;
case 8:
brand = "Centaur C2";
break;
case 9:
brand = "Centaur C3";
break;
default:
break;
}
break;
case X86_VENDOR_Rise:
if (cpi->cpi_family == 5 &&
(cpi->cpi_model == 0 || cpi->cpi_model == 2))
brand = "Rise mP6";
break;
case X86_VENDOR_SiS:
if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
brand = "SiS 55x";
break;
case X86_VENDOR_TM:
if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
brand = "Transmeta Crusoe TM3x00 or TM5x00";
break;
case X86_VENDOR_NSC:
case X86_VENDOR_UMC:
default:
break;
}
if (brand) {
(void) strcpy((char *)cpi->cpi_brandstr, brand);
return;
}
/*
* If all else fails ...
*/
(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
"%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
cpi->cpi_model, cpi->cpi_step);
}
/*
* This routine is called just after kernel memory allocation
* becomes available on cpu0, and as part of mp_startup() on
* the other cpus.
*
* Fixup the brand string, and collect any information from cpuid
* that requires dynamicically allocated storage to represent.
*/
/*ARGSUSED*/
void
cpuid_pass3(cpu_t *cpu)
{
int i, max, shft, level, size;
struct cpuid_regs regs;
struct cpuid_regs *cp;
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpi->cpi_pass == 2);
/*
* Function 4: Deterministic cache parameters
*
* Take this opportunity to detect the number of threads
* sharing the last level cache, and construct a corresponding
* cache id. The respective cpuid_info members are initialized
* to the default case of "no last level cache sharing".
*/
cpi->cpi_ncpu_shr_last_cache = 1;
cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
/*
* Find the # of elements (size) returned by fn 4, and along
* the way detect last level cache sharing details.
*/
bzero(&regs, sizeof (regs));
cp = &regs;
for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
cp->cp_eax = 4;
cp->cp_ecx = i;
(void) __cpuid_insn(cp);
if (CPI_CACHE_TYPE(cp) == 0)
break;
level = CPI_CACHE_LVL(cp);
if (level > max) {
max = level;
cpi->cpi_ncpu_shr_last_cache =
CPI_NTHR_SHR_CACHE(cp) + 1;
}
}
cpi->cpi_std_4_size = size = i;
/*
* Allocate the cpi_std_4 array. The first element
* references the regs for fn 4, %ecx == 0, which
* cpuid_pass2() stashed in cpi->cpi_std[4].
*/
if (size > 0) {
cpi->cpi_std_4 =
kmem_alloc(size * sizeof (cp), KM_SLEEP);
cpi->cpi_std_4[0] = &cpi->cpi_std[4];
/*
* Allocate storage to hold the additional regs
* for function 4, %ecx == 1 .. cpi_std_4_size.
*
* The regs for fn 4, %ecx == 0 has already
* been allocated as indicated above.
*/
for (i = 1; i < size; i++) {
cp = cpi->cpi_std_4[i] =
kmem_zalloc(sizeof (regs), KM_SLEEP);
cp->cp_eax = 4;
cp->cp_ecx = i;
(void) __cpuid_insn(cp);
}
}
/*
* Determine the number of bits needed to represent
* the number of CPUs sharing the last level cache.
*
* Shift off that number of bits from the APIC id to
* derive the cache id.
*/
shft = 0;
for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
shft++;
cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
}
/*
* Now fixup the brand string
*/
if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
fabricate_brandstr(cpi);
} else {
/*
* If we successfully extracted a brand string from the cpuid
* instruction, clean it up by removing leading spaces and
* similar junk.
*/
if (cpi->cpi_brandstr[0]) {
size_t maxlen = sizeof (cpi->cpi_brandstr);
char *src, *dst;
dst = src = (char *)cpi->cpi_brandstr;
src[maxlen - 1] = '\0';
/*
* strip leading spaces
*/
while (*src == ' ')
src++;
/*
* Remove any 'Genuine' or "Authentic" prefixes
*/
if (strncmp(src, "Genuine ", 8) == 0)
src += 8;
if (strncmp(src, "Authentic ", 10) == 0)
src += 10;
/*
* Now do an in-place copy.
* Map (R) to (r) and (TM) to (tm).
* The era of teletypes is long gone, and there's
* -really- no need to shout.
*/
while (*src != '\0') {
if (src[0] == '(') {
if (strncmp(src + 1, "R)", 2) == 0) {
(void) strncpy(dst, "(r)", 3);
src += 3;
dst += 3;
continue;
}
if (strncmp(src + 1, "TM)", 3) == 0) {
(void) strncpy(dst, "(tm)", 4);
src += 4;
dst += 4;
continue;
}
}
*dst++ = *src++;
}
*dst = '\0';
/*
* Finally, remove any trailing spaces
*/
while (--dst > cpi->cpi_brandstr)
if (*dst == ' ')
*dst = '\0';
else
break;
} else
fabricate_brandstr(cpi);
}
cpi->cpi_pass = 3;
}
/*
* This routine is called out of bind_hwcap() much later in the life
* of the kernel (post_startup()). The job of this routine is to resolve
* the hardware feature support and kernel support for those features into
* what we're actually going to tell applications via the aux vector.
*/
uint_t
cpuid_pass4(cpu_t *cpu)
{
struct cpuid_info *cpi;
uint_t hwcap_flags = 0;
if (cpu == NULL)
cpu = CPU;
cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpi->cpi_pass == 3);
if (cpi->cpi_maxeax >= 1) {
uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
*edx = CPI_FEATURES_EDX(cpi);
*ecx = CPI_FEATURES_ECX(cpi);
/*
* [these require explicit kernel support]
*/
if (!is_x86_feature(x86_featureset, X86FSET_SEP))
*edx &= ~CPUID_INTC_EDX_SEP;
if (!is_x86_feature(x86_featureset, X86FSET_SSE))
*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
if (!is_x86_feature(x86_featureset, X86FSET_SSE2))
*edx &= ~CPUID_INTC_EDX_SSE2;
if (!is_x86_feature(x86_featureset, X86FSET_HTT))
*edx &= ~CPUID_INTC_EDX_HTT;
if (!is_x86_feature(x86_featureset, X86FSET_SSE3))
*ecx &= ~CPUID_INTC_ECX_SSE3;
if (cpi->cpi_vendor == X86_VENDOR_Intel) {
if (!is_x86_feature(x86_featureset, X86FSET_SSSE3))
*ecx &= ~CPUID_INTC_ECX_SSSE3;
if (!is_x86_feature(x86_featureset, X86FSET_SSE4_1))
*ecx &= ~CPUID_INTC_ECX_SSE4_1;
if (!is_x86_feature(x86_featureset, X86FSET_SSE4_2))
*ecx &= ~CPUID_INTC_ECX_SSE4_2;
if (!is_x86_feature(x86_featureset, X86FSET_AES))
*ecx &= ~CPUID_INTC_ECX_AES;
if (!is_x86_feature(x86_featureset, X86FSET_PCLMULQDQ))
*ecx &= ~CPUID_INTC_ECX_PCLMULQDQ;
}
/*
* [no explicit support required beyond x87 fp context]
*/
if (!fpu_exists)
*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
/*
* Now map the supported feature vector to things that we
* think userland will care about.
*/
if (*edx & CPUID_INTC_EDX_SEP)
hwcap_flags |= AV_386_SEP;
if (*edx & CPUID_INTC_EDX_SSE)
hwcap_flags |= AV_386_FXSR | AV_386_SSE;
if (*edx & CPUID_INTC_EDX_SSE2)
hwcap_flags |= AV_386_SSE2;
if (*ecx & CPUID_INTC_ECX_SSE3)
hwcap_flags |= AV_386_SSE3;
if (cpi->cpi_vendor == X86_VENDOR_Intel) {
if (*ecx & CPUID_INTC_ECX_SSSE3)
hwcap_flags |= AV_386_SSSE3;
if (*ecx & CPUID_INTC_ECX_SSE4_1)
hwcap_flags |= AV_386_SSE4_1;
if (*ecx & CPUID_INTC_ECX_SSE4_2)
hwcap_flags |= AV_386_SSE4_2;
if (*ecx & CPUID_INTC_ECX_MOVBE)
hwcap_flags |= AV_386_MOVBE;
if (*ecx & CPUID_INTC_ECX_AES)
hwcap_flags |= AV_386_AES;
if (*ecx & CPUID_INTC_ECX_PCLMULQDQ)
hwcap_flags |= AV_386_PCLMULQDQ;
}
if (*ecx & CPUID_INTC_ECX_POPCNT)
hwcap_flags |= AV_386_POPCNT;
if (*edx & CPUID_INTC_EDX_FPU)
hwcap_flags |= AV_386_FPU;
if (*edx & CPUID_INTC_EDX_MMX)
hwcap_flags |= AV_386_MMX;
if (*edx & CPUID_INTC_EDX_TSC)
hwcap_flags |= AV_386_TSC;
if (*edx & CPUID_INTC_EDX_CX8)
hwcap_flags |= AV_386_CX8;
if (*edx & CPUID_INTC_EDX_CMOV)
hwcap_flags |= AV_386_CMOV;
if (*ecx & CPUID_INTC_ECX_CX16)
hwcap_flags |= AV_386_CX16;
}
if (cpi->cpi_xmaxeax < 0x80000001)
goto pass4_done;
switch (cpi->cpi_vendor) {
struct cpuid_regs cp;
uint32_t *edx, *ecx;
case X86_VENDOR_Intel:
/*
* Seems like Intel duplicated what we necessary
* here to make the initial crop of 64-bit OS's work.
* Hopefully, those are the only "extended" bits
* they'll add.
*/
/*FALLTHROUGH*/
case X86_VENDOR_AMD:
edx = &cpi->cpi_support[AMD_EDX_FEATURES];
ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
*edx = CPI_FEATURES_XTD_EDX(cpi);
*ecx = CPI_FEATURES_XTD_ECX(cpi);
/*
* [these features require explicit kernel support]
*/
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (!is_x86_feature(x86_featureset, X86FSET_TSCP))
*edx &= ~CPUID_AMD_EDX_TSCP;
break;
case X86_VENDOR_AMD:
if (!is_x86_feature(x86_featureset, X86FSET_TSCP))
*edx &= ~CPUID_AMD_EDX_TSCP;
if (!is_x86_feature(x86_featureset, X86FSET_SSE4A))
*ecx &= ~CPUID_AMD_ECX_SSE4A;
break;
default:
break;
}
/*
* [no explicit support required beyond
* x87 fp context and exception handlers]
*/
if (!fpu_exists)
*edx &= ~(CPUID_AMD_EDX_MMXamd |
CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
if (!is_x86_feature(x86_featureset, X86FSET_NX))
*edx &= ~CPUID_AMD_EDX_NX;
#if !defined(__amd64)
*edx &= ~CPUID_AMD_EDX_LM;
#endif
/*
* Now map the supported feature vector to
* things that we think userland will care about.
*/
#if defined(__amd64)
if (*edx & CPUID_AMD_EDX_SYSC)
hwcap_flags |= AV_386_AMD_SYSC;
#endif
if (*edx & CPUID_AMD_EDX_MMXamd)
hwcap_flags |= AV_386_AMD_MMX;
if (*edx & CPUID_AMD_EDX_3DNow)
hwcap_flags |= AV_386_AMD_3DNow;
if (*edx & CPUID_AMD_EDX_3DNowx)
hwcap_flags |= AV_386_AMD_3DNowx;
switch (cpi->cpi_vendor) {
case X86_VENDOR_AMD:
if (*edx & CPUID_AMD_EDX_TSCP)
hwcap_flags |= AV_386_TSCP;
if (*ecx & CPUID_AMD_ECX_AHF64)
hwcap_flags |= AV_386_AHF;
if (*ecx & CPUID_AMD_ECX_SSE4A)
hwcap_flags |= AV_386_AMD_SSE4A;
if (*ecx & CPUID_AMD_ECX_LZCNT)
hwcap_flags |= AV_386_AMD_LZCNT;
break;
case X86_VENDOR_Intel:
if (*edx & CPUID_AMD_EDX_TSCP)
hwcap_flags |= AV_386_TSCP;
/*
* Aarrgh.
* Intel uses a different bit in the same word.
*/
if (*ecx & CPUID_INTC_ECX_AHF64)
hwcap_flags |= AV_386_AHF;
break;
default:
break;
}
break;
case X86_VENDOR_TM:
cp.cp_eax = 0x80860001;
(void) __cpuid_insn(&cp);
cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
break;
default:
break;
}
pass4_done:
cpi->cpi_pass = 4;
return (hwcap_flags);
}
/*
* Simulate the cpuid instruction using the data we previously
* captured about this CPU. We try our best to return the truth
* about the hardware, independently of kernel support.
*/
uint32_t
cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
{
struct cpuid_info *cpi;
struct cpuid_regs *xcp;
if (cpu == NULL)
cpu = CPU;
cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpuid_checkpass(cpu, 3));
/*
* CPUID data is cached in two separate places: cpi_std for standard
* CPUID functions, and cpi_extd for extended CPUID functions.
*/
if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
xcp = &cpi->cpi_std[cp->cp_eax];
else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
else
/*
* The caller is asking for data from an input parameter which
* the kernel has not cached. In this case we go fetch from
* the hardware and return the data directly to the user.
*/
return (__cpuid_insn(cp));
cp->cp_eax = xcp->cp_eax;
cp->cp_ebx = xcp->cp_ebx;
cp->cp_ecx = xcp->cp_ecx;
cp->cp_edx = xcp->cp_edx;
return (cp->cp_eax);
}
int
cpuid_checkpass(cpu_t *cpu, int pass)
{
return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
}
int
cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
{
ASSERT(cpuid_checkpass(cpu, 3));
return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
}
int
cpuid_is_cmt(cpu_t *cpu)
{
if (cpu == NULL)
cpu = CPU;
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
}
/*
* AMD and Intel both implement the 64-bit variant of the syscall
* instruction (syscallq), so if there's -any- support for syscall,
* cpuid currently says "yes, we support this".
*
* However, Intel decided to -not- implement the 32-bit variant of the
* syscall instruction, so we provide a predicate to allow our caller
* to test that subtlety here.
*
* XXPV Currently, 32-bit syscall instructions don't work via the hypervisor,
* even in the case where the hardware would in fact support it.
*/
/*ARGSUSED*/
int
cpuid_syscall32_insn(cpu_t *cpu)
{
ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
#if !defined(__xpv)
if (cpu == NULL)
cpu = CPU;
/*CSTYLED*/
{
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
if (cpi->cpi_vendor == X86_VENDOR_AMD &&
cpi->cpi_xmaxeax >= 0x80000001 &&
(CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
return (1);
}
#endif
return (0);
}
int
cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
{
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
static const char fmt[] =
"x86 (%s %X family %d model %d step %d clock %d MHz)";
static const char fmt_ht[] =
"x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
ASSERT(cpuid_checkpass(cpu, 1));
if (cpuid_is_cmt(cpu))
return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
cpi->cpi_family, cpi->cpi_model,
cpi->cpi_step, cpu->cpu_type_info.pi_clock));
return (snprintf(s, n, fmt,
cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
cpi->cpi_family, cpi->cpi_model,
cpi->cpi_step, cpu->cpu_type_info.pi_clock));
}
const char *
cpuid_getvendorstr(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
}
uint_t
cpuid_getvendor(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
}
uint_t
cpuid_getfamily(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_family);
}
uint_t
cpuid_getmodel(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_model);
}
uint_t
cpuid_get_ncpu_per_chip(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
}
uint_t
cpuid_get_ncore_per_chip(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
}
uint_t
cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 2));
return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
}
id_t
cpuid_get_last_lvl_cacheid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 2));
return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
}
uint_t
cpuid_getstep(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_step);
}
uint_t
cpuid_getsig(struct cpu *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
}
uint32_t
cpuid_getchiprev(struct cpu *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
}
const char *
cpuid_getchiprevstr(struct cpu *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
}
uint32_t
cpuid_getsockettype(struct cpu *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_socket);
}
const char *
cpuid_getsocketstr(cpu_t *cpu)
{
static const char *socketstr = NULL;
struct cpuid_info *cpi;
ASSERT(cpuid_checkpass(cpu, 1));
cpi = cpu->cpu_m.mcpu_cpi;
/* Assume that socket types are the same across the system */
if (socketstr == NULL)
socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family,
cpi->cpi_model, cpi->cpi_step);
return (socketstr);
}
int
cpuid_get_chipid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
if (cpuid_is_cmt(cpu))
return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
return (cpu->cpu_id);
}
id_t
cpuid_get_coreid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
}
int
cpuid_get_pkgcoreid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
}
int
cpuid_get_clogid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
}
int
cpuid_get_cacheid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
}
uint_t
cpuid_get_procnodeid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_procnodeid);
}
uint_t
cpuid_get_procnodes_per_pkg(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
return (cpu->cpu_m.mcpu_cpi->cpi_procnodes_per_pkg);
}
/*ARGSUSED*/
int
cpuid_have_cr8access(cpu_t *cpu)
{
#if defined(__amd64)
return (1);
#else
struct cpuid_info *cpi;
ASSERT(cpu != NULL);
cpi = cpu->cpu_m.mcpu_cpi;
if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 &&
(CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0)
return (1);
return (0);
#endif
}
uint32_t
cpuid_get_apicid(cpu_t *cpu)
{
ASSERT(cpuid_checkpass(cpu, 1));
if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) {
return (UINT32_MAX);
} else {
return (cpu->cpu_m.mcpu_cpi->cpi_apicid);
}
}
void
cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
{
struct cpuid_info *cpi;
if (cpu == NULL)
cpu = CPU;
cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpuid_checkpass(cpu, 1));
if (pabits)
*pabits = cpi->cpi_pabits;
if (vabits)
*vabits = cpi->cpi_vabits;
}
/*
* Returns the number of data TLB entries for a corresponding
* pagesize. If it can't be computed, or isn't known, the
* routine returns zero. If you ask about an architecturally
* impossible pagesize, the routine will panic (so that the
* hat implementor knows that things are inconsistent.)
*/
uint_t
cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
{
struct cpuid_info *cpi;
uint_t dtlb_nent = 0;
if (cpu == NULL)
cpu = CPU;
cpi = cpu->cpu_m.mcpu_cpi;
ASSERT(cpuid_checkpass(cpu, 1));
/*
* Check the L2 TLB info
*/
if (cpi->cpi_xmaxeax >= 0x80000006) {
struct cpuid_regs *cp = &cpi->cpi_extd[6];
switch (pagesize) {
case 4 * 1024:
/*
* All zero in the top 16 bits of the register
* indicates a unified TLB. Size is in low 16 bits.
*/
if ((cp->cp_ebx & 0xffff0000) == 0)
dtlb_nent = cp->cp_ebx & 0x0000ffff;
else
dtlb_nent = BITX(cp->cp_ebx, 27, 16);
break;
case 2 * 1024 * 1024:
if ((cp->cp_eax & 0xffff0000) == 0)
dtlb_nent = cp->cp_eax & 0x0000ffff;
else
dtlb_nent = BITX(cp->cp_eax, 27, 16);
break;
default:
panic("unknown L2 pagesize");
/*NOTREACHED*/
}
}
if (dtlb_nent != 0)
return (dtlb_nent);
/*
* No L2 TLB support for this size, try L1.
*/
if (cpi->cpi_xmaxeax >= 0x80000005) {
struct cpuid_regs *cp = &cpi->cpi_extd[5];
switch (pagesize) {
case 4 * 1024:
dtlb_nent = BITX(cp->cp_ebx, 23, 16);
break;
case 2 * 1024 * 1024:
dtlb_nent = BITX(cp->cp_eax, 23, 16);
break;
default:
panic("unknown L1 d-TLB pagesize");
/*NOTREACHED*/
}
}
return (dtlb_nent);
}
/*
* Return 0 if the erratum is not present or not applicable, positive
* if it is, and negative if the status of the erratum is unknown.
*
* See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
* Processors" #25759, Rev 3.57, August 2005
*/
int
cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
{
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
uint_t eax;
/*
* Bail out if this CPU isn't an AMD CPU, or if it's
* a legacy (32-bit) AMD CPU.
*/
if (cpi->cpi_vendor != X86_VENDOR_AMD ||
cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
cpi->cpi_family == 6)
return (0);
eax = cpi->cpi_std[1].cp_eax;
#define SH_B0(eax) (eax == 0xf40 || eax == 0xf50)
#define SH_B3(eax) (eax == 0xf51)
#define B(eax) (SH_B0(eax) || SH_B3(eax))
#define SH_C0(eax) (eax == 0xf48 || eax == 0xf58)
#define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
#define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
#define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2)
#define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
#define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
#define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0)
#define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0)
#define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
#define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
#define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */
#define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0)
#define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71)
#define BH_E4(eax) (eax == 0x20fb1)
#define SH_E5(eax) (eax == 0x20f42)
#define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2)
#define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32)
#define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
DH_E6(eax) || JH_E6(eax))
#define DR_AX(eax) (eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
#define DR_B0(eax) (eax == 0x100f20)
#define DR_B1(eax) (eax == 0x100f21)
#define DR_BA(eax) (eax == 0x100f2a)
#define DR_B2(eax) (eax == 0x100f22)
#define DR_B3(eax) (eax == 0x100f23)
#define RB_C0(eax) (eax == 0x100f40)
switch (erratum) {
case 1:
return (cpi->cpi_family < 0x10);
case 51: /* what does the asterisk mean? */
return (B(eax) || SH_C0(eax) || CG(eax));
case 52:
return (B(eax));
case 57:
return (cpi->cpi_family <= 0x11);
case 58:
return (B(eax));
case 60:
return (cpi->cpi_family <= 0x11);
case 61:
case 62:
case 63:
case 64:
case 65:
case 66:
case 68:
case 69:
case 70:
case 71:
return (B(eax));
case 72:
return (SH_B0(eax));
case 74:
return (B(eax));
case 75:
return (cpi->cpi_family < 0x10);
case 76:
return (B(eax));
case 77:
return (cpi->cpi_family <= 0x11);
case 78:
return (B(eax) || SH_C0(eax));
case 79:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
case 80:
case 81:
case 82:
return (B(eax));
case 83:
return (B(eax) || SH_C0(eax) || CG(eax));
case 85:
return (cpi->cpi_family < 0x10);
case 86:
return (SH_C0(eax) || CG(eax));
case 88:
#if !defined(__amd64)
return (0);
#else
return (B(eax) || SH_C0(eax));
#endif
case 89:
return (cpi->cpi_family < 0x10);
case 90:
return (B(eax) || SH_C0(eax) || CG(eax));
case 91:
case 92:
return (B(eax) || SH_C0(eax));
case 93:
return (SH_C0(eax));
case 94:
return (B(eax) || SH_C0(eax) || CG(eax));
case 95:
#if !defined(__amd64)
return (0);
#else
return (B(eax) || SH_C0(eax));
#endif
case 96:
return (B(eax) || SH_C0(eax) || CG(eax));
case 97:
case 98:
return (SH_C0(eax) || CG(eax));
case 99:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
case 100:
return (B(eax) || SH_C0(eax));
case 101:
case 103:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
case 104:
return (SH_C0(eax) || CG(eax) || D0(eax));
case 105:
case 106:
case 107:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
case 108:
return (DH_CG(eax));
case 109:
return (SH_C0(eax) || CG(eax) || D0(eax));
case 110:
return (D0(eax) || EX(eax));
case 111:
return (CG(eax));
case 112:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
case 113:
return (eax == 0x20fc0);
case 114:
return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
case 115:
return (SH_E0(eax) || JH_E1(eax));
case 116:
return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
case 117:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
case 118:
return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
JH_E6(eax));
case 121:
return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
case 122:
return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
case 123:
return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
case 131:
return (cpi->cpi_family < 0x10);
case 6336786:
/*
* Test for AdvPowerMgmtInfo.TscPStateInvariant
* if this is a K8 family or newer processor
*/
if (CPI_FAMILY(cpi) == 0xf) {
struct cpuid_regs regs;
regs.cp_eax = 0x80000007;
(void) __cpuid_insn(&regs);
return (!(regs.cp_edx & 0x100));
}
return (0);
case 6323525:
return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
(((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
case 6671130:
/*
* check for processors (pre-Shanghai) that do not provide
* optimal management of 1gb ptes in its tlb.
*/
return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
case 298:
return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
DR_B2(eax) || RB_C0(eax));
default:
return (-1);
}
}
/*
* Determine if specified erratum is present via OSVW (OS Visible Workaround).
* Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
*/
int
osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
{
struct cpuid_info *cpi;
uint_t osvwid;
static int osvwfeature = -1;
uint64_t osvwlength;
cpi = cpu->cpu_m.mcpu_cpi;
/* confirm OSVW supported */
if (osvwfeature == -1) {
osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
} else {
/* assert that osvw feature setting is consistent on all cpus */
ASSERT(osvwfeature ==
(cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
}
if (!osvwfeature)
return (-1);
osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
switch (erratum) {
case 298: /* osvwid is 0 */
osvwid = 0;
if (osvwlength <= (uint64_t)osvwid) {
/* osvwid 0 is unknown */
return (-1);
}
/*
* Check the OSVW STATUS MSR to determine the state
* of the erratum where:
* 0 - fixed by HW
* 1 - BIOS has applied the workaround when BIOS
* workaround is available. (Or for other errata,
* OS workaround is required.)
* For a value of 1, caller will confirm that the
* erratum 298 workaround has indeed been applied by BIOS.
*
* A 1 may be set in cpus that have a HW fix
* in a mixed cpu system. Regarding erratum 298:
* In a multiprocessor platform, the workaround above
* should be applied to all processors regardless of
* silicon revision when an affected processor is
* present.
*/
return (rdmsr(MSR_AMD_OSVW_STATUS +
(osvwid / OSVW_ID_CNT_PER_MSR)) &
(1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
default:
return (-1);
}
}
static const char assoc_str[] = "associativity";
static const char line_str[] = "line-size";
static const char size_str[] = "size";
static void
add_cache_prop(dev_info_t *devi, const char *label, const char *type,
uint32_t val)
{
char buf[128];
/*
* ndi_prop_update_int() is used because it is desirable for
* DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
*/
if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
}
/*
* Intel-style cache/tlb description
*
* Standard cpuid level 2 gives a randomly ordered
* selection of tags that index into a table that describes
* cache and tlb properties.
*/
static const char l1_icache_str[] = "l1-icache";
static const char l1_dcache_str[] = "l1-dcache";
static const char l2_cache_str[] = "l2-cache";
static const char l3_cache_str[] = "l3-cache";
static const char itlb4k_str[] = "itlb-4K";
static const char dtlb4k_str[] = "dtlb-4K";
static const char itlb2M_str[] = "itlb-2M";
static const char itlb4M_str[] = "itlb-4M";
static const char dtlb4M_str[] = "dtlb-4M";
static const char dtlb24_str[] = "dtlb0-2M-4M";
static const char itlb424_str[] = "itlb-4K-2M-4M";
static const char itlb24_str[] = "itlb-2M-4M";
static const char dtlb44_str[] = "dtlb-4K-4M";
static const char sl1_dcache_str[] = "sectored-l1-dcache";
static const char sl2_cache_str[] = "sectored-l2-cache";
static const char itrace_str[] = "itrace-cache";
static const char sl3_cache_str[] = "sectored-l3-cache";
static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
static const struct cachetab {
uint8_t ct_code;
uint8_t ct_assoc;
uint16_t ct_line_size;
size_t ct_size;
const char *ct_label;
} intel_ctab[] = {
/*
* maintain descending order!
*
* Codes ignored - Reason
* ----------------------
* 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
* f0H/f1H - Currently we do not interpret prefetch size by design
*/
{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
{ 0xd0, 4, 64, 512*1024, l3_cache_str},
{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
{ 0xc0, 4, 0, 8, dtlb44_str },
{ 0xba, 4, 0, 64, dtlb4k_str },
{ 0xb4, 4, 0, 256, dtlb4k_str },
{ 0xb3, 4, 0, 128, dtlb4k_str },
{ 0xb2, 4, 0, 64, itlb4k_str },
{ 0xb0, 4, 0, 128, itlb4k_str },
{ 0x87, 8, 64, 1024*1024, l2_cache_str},
{ 0x86, 4, 64, 512*1024, l2_cache_str},
{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
{ 0x84, 8, 32, 1024*1024, l2_cache_str},
{ 0x83, 8, 32, 512*1024, l2_cache_str},
{ 0x82, 8, 32, 256*1024, l2_cache_str},
{ 0x80, 8, 64, 512*1024, l2_cache_str},
{ 0x7f, 2, 64, 512*1024, l2_cache_str},
{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
{ 0x79, 8, 64, 128*1024, sl2_cache_str},
{ 0x78, 8, 64, 1024*1024, l2_cache_str},
{ 0x73, 8, 0, 64*1024, itrace_str},
{ 0x72, 8, 0, 32*1024, itrace_str},
{ 0x71, 8, 0, 16*1024, itrace_str},
{ 0x70, 8, 0, 12*1024, itrace_str},
{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
{ 0x5d, 0, 0, 256, dtlb44_str},
{ 0x5c, 0, 0, 128, dtlb44_str},
{ 0x5b, 0, 0, 64, dtlb44_str},
{ 0x5a, 4, 0, 32, dtlb24_str},
{ 0x59, 0, 0, 16, dtlb4k_str},
{ 0x57, 4, 0, 16, dtlb4k_str},
{ 0x56, 4, 0, 16, dtlb4M_str},
{ 0x55, 0, 0, 7, itlb24_str},
{ 0x52, 0, 0, 256, itlb424_str},
{ 0x51, 0, 0, 128, itlb424_str},
{ 0x50, 0, 0, 64, itlb424_str},
{ 0x4f, 0, 0, 32, itlb4k_str},
{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
{ 0x44, 4, 32, 1024*1024, l2_cache_str},
{ 0x43, 4, 32, 512*1024, l2_cache_str},
{ 0x42, 4, 32, 256*1024, l2_cache_str},
{ 0x41, 4, 32, 128*1024, l2_cache_str},
{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
{ 0x39, 4, 64, 128*1024, sl2_cache_str},
{ 0x30, 8, 64, 32*1024, l1_icache_str},
{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
{ 0x22, 4, 64, 512*1024, sl3_cache_str},
{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
{ 0x0b, 4, 0, 4, itlb4M_str},
{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
{ 0x08, 4, 32, 16*1024, l1_icache_str},
{ 0x06, 4, 32, 8*1024, l1_icache_str},
{ 0x05, 4, 0, 32, dtlb4M_str},
{ 0x04, 4, 0, 8, dtlb4M_str},
{ 0x03, 4, 0, 64, dtlb4k_str},
{ 0x02, 4, 0, 2, itlb4M_str},
{ 0x01, 4, 0, 32, itlb4k_str},
{ 0 }
};
static const struct cachetab cyrix_ctab[] = {
{ 0x70, 4, 0, 32, "tlb-4K" },
{ 0x80, 4, 16, 16*1024, "l1-cache" },
{ 0 }
};
/*
* Search a cache table for a matching entry
*/
static const struct cachetab *
find_cacheent(const struct cachetab *ct, uint_t code)
{
if (code != 0) {
for (; ct->ct_code != 0; ct++)
if (ct->ct_code <= code)
break;
if (ct->ct_code == code)
return (ct);
}
return (NULL);
}
/*
* Populate cachetab entry with L2 or L3 cache-information using
* cpuid function 4. This function is called from intel_walk_cacheinfo()
* when descriptor 0x49 is encountered. It returns 0 if no such cache
* information is found.
*/
static int
intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
{
uint32_t level, i;
int ret = 0;
for (i = 0; i < cpi->cpi_std_4_size; i++) {
level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
if (level == 2 || level == 3) {
ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
ct->ct_line_size =
CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
ct->ct_size = ct->ct_assoc *
(CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
ct->ct_line_size *
(cpi->cpi_std_4[i]->cp_ecx + 1);
if (level == 2) {
ct->ct_label = l2_cache_str;
} else if (level == 3) {
ct->ct_label = l3_cache_str;
}
ret = 1;
}
}
return (ret);
}
/*
* Walk the cacheinfo descriptor, applying 'func' to every valid element
* The walk is terminated if the walker returns non-zero.
*/
static void
intel_walk_cacheinfo(struct cpuid_info *cpi,
void *arg, int (*func)(void *, const struct cachetab *))
{
const struct cachetab *ct;
struct cachetab des_49_ct, des_b1_ct;
uint8_t *dp;
int i;
if ((dp = cpi->cpi_cacheinfo) == NULL)
return;
for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
/*
* For overloaded descriptor 0x49 we use cpuid function 4
* if supported by the current processor, to create
* cache information.
* For overloaded descriptor 0xb1 we use X86_PAE flag
* to disambiguate the cache information.
*/
if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
ct = &des_49_ct;
} else if (*dp == 0xb1) {
des_b1_ct.ct_code = 0xb1;
des_b1_ct.ct_assoc = 4;
des_b1_ct.ct_line_size = 0;
if (is_x86_feature(x86_featureset, X86FSET_PAE)) {
des_b1_ct.ct_size = 8;
des_b1_ct.ct_label = itlb2M_str;
} else {
des_b1_ct.ct_size = 4;
des_b1_ct.ct_label = itlb4M_str;
}
ct = &des_b1_ct;
} else {
if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
continue;
}
}
if (func(arg, ct) != 0) {
break;
}
}
}
/*
* (Like the Intel one, except for Cyrix CPUs)
*/
static void
cyrix_walk_cacheinfo(struct cpuid_info *cpi,
void *arg, int (*func)(void *, const struct cachetab *))
{
const struct cachetab *ct;
uint8_t *dp;
int i;
if ((dp = cpi->cpi_cacheinfo) == NULL)
return;
for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
/*
* Search Cyrix-specific descriptor table first ..
*/
if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
if (func(arg, ct) != 0)
break;
continue;
}
/*
* .. else fall back to the Intel one
*/
if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
if (func(arg, ct) != 0)
break;
continue;
}
}
}
/*
* A cacheinfo walker that adds associativity, line-size, and size properties
* to the devinfo node it is passed as an argument.
*/
static int
add_cacheent_props(void *arg, const struct cachetab *ct)
{
dev_info_t *devi = arg;
add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
if (ct->ct_line_size != 0)
add_cache_prop(devi, ct->ct_label, line_str,
ct->ct_line_size);
add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
return (0);
}
static const char fully_assoc[] = "fully-associative?";
/*
* AMD style cache/tlb description
*
* Extended functions 5 and 6 directly describe properties of
* tlbs and various cache levels.
*/
static void
add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
{
switch (assoc) {
case 0: /* reserved; ignore */
break;
default:
add_cache_prop(devi, label, assoc_str, assoc);
break;
case 0xff:
add_cache_prop(devi, label, fully_assoc, 1);
break;
}
}
static void
add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
{
if (size == 0)
return;
add_cache_prop(devi, label, size_str, size);
add_amd_assoc(devi, label, assoc);
}
static void
add_amd_cache(dev_info_t *devi, const char *label,
uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
{
if (size == 0 || line_size == 0)
return;
add_amd_assoc(devi, label, assoc);
/*
* Most AMD parts have a sectored cache. Multiple cache lines are
* associated with each tag. A sector consists of all cache lines
* associated with a tag. For example, the AMD K6-III has a sector
* size of 2 cache lines per tag.
*/
if (lines_per_tag != 0)
add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
add_cache_prop(devi, label, line_str, line_size);
add_cache_prop(devi, label, size_str, size * 1024);
}
static void
add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
{
switch (assoc) {
case 0: /* off */
break;
case 1:
case 2:
case 4:
add_cache_prop(devi, label, assoc_str, assoc);
break;
case 6:
add_cache_prop(devi, label, assoc_str, 8);
break;
case 8:
add_cache_prop(devi, label, assoc_str, 16);
break;
case 0xf:
add_cache_prop(devi, label, fully_assoc, 1);
break;
default: /* reserved; ignore */
break;
}
}
static void
add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
{
if (size == 0 || assoc == 0)
return;
add_amd_l2_assoc(devi, label, assoc);
add_cache_prop(devi, label, size_str, size);
}
static void
add_amd_l2_cache(dev_info_t *devi, const char *label,
uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
{
if (size == 0 || assoc == 0 || line_size == 0)
return;
add_amd_l2_assoc(devi, label, assoc);
if (lines_per_tag != 0)
add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
add_cache_prop(devi, label, line_str, line_size);
add_cache_prop(devi, label, size_str, size * 1024);
}
static void
amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
{
struct cpuid_regs *cp;
if (cpi->cpi_xmaxeax < 0x80000005)
return;
cp = &cpi->cpi_extd[5];
/*
* 4M/2M L1 TLB configuration
*
* We report the size for 2M pages because AMD uses two
* TLB entries for one 4M page.
*/
add_amd_tlb(devi, "dtlb-2M",
BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
add_amd_tlb(devi, "itlb-2M",
BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
/*
* 4K L1 TLB configuration
*/
switch (cpi->cpi_vendor) {
uint_t nentries;
case X86_VENDOR_TM:
if (cpi->cpi_family >= 5) {
/*
* Crusoe processors have 256 TLB entries, but
* cpuid data format constrains them to only
* reporting 255 of them.
*/
if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
nentries = 256;
/*
* Crusoe processors also have a unified TLB
*/
add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
nentries);
break;
}
/*FALLTHROUGH*/
default:
add_amd_tlb(devi, itlb4k_str,
BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
add_amd_tlb(devi, dtlb4k_str,
BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
break;
}
/*
* data L1 cache configuration
*/
add_amd_cache(devi, l1_dcache_str,
BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
/*
* code L1 cache configuration
*/
add_amd_cache(devi, l1_icache_str,
BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
if (cpi->cpi_xmaxeax < 0x80000006)
return;
cp = &cpi->cpi_extd[6];
/* Check for a unified L2 TLB for large pages */
if (BITX(cp->cp_eax, 31, 16) == 0)
add_amd_l2_tlb(devi, "l2-tlb-2M",
BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
else {
add_amd_l2_tlb(devi, "l2-dtlb-2M",
BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
add_amd_l2_tlb(devi, "l2-itlb-2M",
BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
}
/* Check for a unified L2 TLB for 4K pages */
if (BITX(cp->cp_ebx, 31, 16) == 0) {
add_amd_l2_tlb(devi, "l2-tlb-4K",
BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
} else {
add_amd_l2_tlb(devi, "l2-dtlb-4K",
BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
add_amd_l2_tlb(devi, "l2-itlb-4K",
BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
}
add_amd_l2_cache(devi, l2_cache_str,
BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
}
/*
* There are two basic ways that the x86 world describes it cache
* and tlb architecture - Intel's way and AMD's way.
*
* Return which flavor of cache architecture we should use
*/
static int
x86_which_cacheinfo(struct cpuid_info *cpi)
{
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (cpi->cpi_maxeax >= 2)
return (X86_VENDOR_Intel);
break;
case X86_VENDOR_AMD:
/*
* The K5 model 1 was the first part from AMD that reported
* cache sizes via extended cpuid functions.
*/
if (cpi->cpi_family > 5 ||
(cpi->cpi_family == 5 && cpi->cpi_model >= 1))
return (X86_VENDOR_AMD);
break;
case X86_VENDOR_TM:
if (cpi->cpi_family >= 5)
return (X86_VENDOR_AMD);
/*FALLTHROUGH*/
default:
/*
* If they have extended CPU data for 0x80000005
* then we assume they have AMD-format cache
* information.
*
* If not, and the vendor happens to be Cyrix,
* then try our-Cyrix specific handler.
*
* If we're not Cyrix, then assume we're using Intel's
* table-driven format instead.
*/
if (cpi->cpi_xmaxeax >= 0x80000005)
return (X86_VENDOR_AMD);
else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
return (X86_VENDOR_Cyrix);
else if (cpi->cpi_maxeax >= 2)
return (X86_VENDOR_Intel);
break;
}
return (-1);
}
void
cpuid_set_cpu_properties(void *dip, processorid_t cpu_id,
struct cpuid_info *cpi)
{
dev_info_t *cpu_devi;
int create;
cpu_devi = (dev_info_t *)dip;
/* device_type */
(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
"device_type", "cpu");
/* reg */
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"reg", cpu_id);
/* cpu-mhz, and clock-frequency */
if (cpu_freq > 0) {
long long mul;
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"cpu-mhz", cpu_freq);
if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"clock-frequency", (int)mul);
}
if (!is_x86_feature(x86_featureset, X86FSET_CPUID)) {
return;
}
/* vendor-id */
(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
"vendor-id", cpi->cpi_vendorstr);
if (cpi->cpi_maxeax == 0) {
return;
}
/*
* family, model, and step
*/
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"family", CPI_FAMILY(cpi));
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"cpu-model", CPI_MODEL(cpi));
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"stepping-id", CPI_STEP(cpi));
/* type */
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
create = 1;
break;
default:
create = 0;
break;
}
if (create)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"type", CPI_TYPE(cpi));
/* ext-family */
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
case X86_VENDOR_AMD:
create = cpi->cpi_family >= 0xf;
break;
default:
create = 0;
break;
}
if (create)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"ext-family", CPI_FAMILY_XTD(cpi));
/* ext-model */
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
create = IS_EXTENDED_MODEL_INTEL(cpi);
break;
case X86_VENDOR_AMD:
create = CPI_FAMILY(cpi) == 0xf;
break;
default:
create = 0;
break;
}
if (create)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"ext-model", CPI_MODEL_XTD(cpi));
/* generation */
switch (cpi->cpi_vendor) {
case X86_VENDOR_AMD:
/*
* AMD K5 model 1 was the first part to support this
*/
create = cpi->cpi_xmaxeax >= 0x80000001;
break;
default:
create = 0;
break;
}
if (create)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
/* brand-id */
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
/*
* brand id first appeared on Pentium III Xeon model 8,
* and Celeron model 8 processors and Opteron
*/
create = cpi->cpi_family > 6 ||
(cpi->cpi_family == 6 && cpi->cpi_model >= 8);
break;
case X86_VENDOR_AMD:
create = cpi->cpi_family >= 0xf;
break;
default:
create = 0;
break;
}
if (create && cpi->cpi_brandid != 0) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"brand-id", cpi->cpi_brandid);
}
/* chunks, and apic-id */
switch (cpi->cpi_vendor) {
/*
* first available on Pentium IV and Opteron (K8)
*/
case X86_VENDOR_Intel:
create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
break;
case X86_VENDOR_AMD:
create = cpi->cpi_family >= 0xf;
break;
default:
create = 0;
break;
}
if (create) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"chunks", CPI_CHUNKS(cpi));
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"apic-id", cpi->cpi_apicid);
if (cpi->cpi_chipid >= 0) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"chip#", cpi->cpi_chipid);
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"clog#", cpi->cpi_clogid);
}
}
/* cpuid-features */
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"cpuid-features", CPI_FEATURES_EDX(cpi));
/* cpuid-features-ecx */
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
break;
default:
create = 0;
break;
}
if (create)
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
/* ext-cpuid-features */
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
case X86_VENDOR_AMD:
case X86_VENDOR_Cyrix:
case X86_VENDOR_TM:
case X86_VENDOR_Centaur:
create = cpi->cpi_xmaxeax >= 0x80000001;
break;
default:
create = 0;
break;
}
if (create) {
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
"ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
}
/*
* Brand String first appeared in Intel Pentium IV, AMD K5
* model 1, and Cyrix GXm. On earlier models we try and
* simulate something similar .. so this string should always
* same -something- about the processor, however lame.
*/
(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
"brand-string", cpi->cpi_brandstr);
/*
* Finally, cache and tlb information
*/
switch (x86_which_cacheinfo(cpi)) {
case X86_VENDOR_Intel:
intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
break;
case X86_VENDOR_Cyrix:
cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
break;
case X86_VENDOR_AMD:
amd_cache_info(cpi, cpu_devi);
break;
default:
break;
}
}
struct l2info {
int *l2i_csz;
int *l2i_lsz;
int *l2i_assoc;
int l2i_ret;
};
/*
* A cacheinfo walker that fetches the size, line-size and associativity
* of the L2 cache
*/
static int
intel_l2cinfo(void *arg, const struct cachetab *ct)
{
struct l2info *l2i = arg;
int *ip;
if (ct->ct_label != l2_cache_str &&
ct->ct_label != sl2_cache_str)
return (0); /* not an L2 -- keep walking */
if ((ip = l2i->l2i_csz) != NULL)
*ip = ct->ct_size;
if ((ip = l2i->l2i_lsz) != NULL)
*ip = ct->ct_line_size;
if ((ip = l2i->l2i_assoc) != NULL)
*ip = ct->ct_assoc;
l2i->l2i_ret = ct->ct_size;
return (1); /* was an L2 -- terminate walk */
}
/*
* AMD L2/L3 Cache and TLB Associativity Field Definition:
*
* Unlike the associativity for the L1 cache and tlb where the 8 bit
* value is the associativity, the associativity for the L2 cache and
* tlb is encoded in the following table. The 4 bit L2 value serves as
* an index into the amd_afd[] array to determine the associativity.
* -1 is undefined. 0 is fully associative.
*/
static int amd_afd[] =
{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
static void
amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
{
struct cpuid_regs *cp;
uint_t size, assoc;
int i;
int *ip;
if (cpi->cpi_xmaxeax < 0x80000006)
return;
cp = &cpi->cpi_extd[6];
if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
(size = BITX(cp->cp_ecx, 31, 16)) != 0) {
uint_t cachesz = size * 1024;
assoc = amd_afd[i];
ASSERT(assoc != -1);
if ((ip = l2i->l2i_csz) != NULL)
*ip = cachesz;
if ((ip = l2i->l2i_lsz) != NULL)
*ip = BITX(cp->cp_ecx, 7, 0);
if ((ip = l2i->l2i_assoc) != NULL)
*ip = assoc;
l2i->l2i_ret = cachesz;
}
}
int
getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
{
struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
struct l2info __l2info, *l2i = &__l2info;
l2i->l2i_csz = csz;
l2i->l2i_lsz = lsz;
l2i->l2i_assoc = assoc;
l2i->l2i_ret = -1;
switch (x86_which_cacheinfo(cpi)) {
case X86_VENDOR_Intel:
intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
break;
case X86_VENDOR_Cyrix:
cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
break;
case X86_VENDOR_AMD:
amd_l2cacheinfo(cpi, l2i);
break;
default:
break;
}
return (l2i->l2i_ret);
}
#if !defined(__xpv)
uint32_t *
cpuid_mwait_alloc(cpu_t *cpu)
{
uint32_t *ret;
size_t mwait_size;
ASSERT(cpuid_checkpass(CPU, 2));
mwait_size = CPU->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
if (mwait_size == 0)
return (NULL);
/*
* kmem_alloc() returns cache line size aligned data for mwait_size
* allocations. mwait_size is currently cache line sized. Neither
* of these implementation details are guarantied to be true in the
* future.
*
* First try allocating mwait_size as kmem_alloc() currently returns
* correctly aligned memory. If kmem_alloc() does not return
* mwait_size aligned memory, then use mwait_size ROUNDUP.
*
* Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
* decide to free this memory.
*/
ret = kmem_zalloc(mwait_size, KM_SLEEP);
if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
*ret = MWAIT_RUNNING;
return (ret);
} else {
kmem_free(ret, mwait_size);
ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
*ret = MWAIT_RUNNING;
return (ret);
}
}
void
cpuid_mwait_free(cpu_t *cpu)
{
if (cpu->cpu_m.mcpu_cpi == NULL) {
return;
}
if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
}
cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
}
void
patch_tsc_read(int flag)
{
size_t cnt;
switch (flag) {
case X86_NO_TSC:
cnt = &_no_rdtsc_end - &_no_rdtsc_start;
(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
break;
case X86_HAVE_TSCP:
cnt = &_tscp_end - &_tscp_start;
(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
break;
case X86_TSC_MFENCE:
cnt = &_tsc_mfence_end - &_tsc_mfence_start;
(void) memcpy((void *)tsc_read,
(void *)&_tsc_mfence_start, cnt);
break;
case X86_TSC_LFENCE:
cnt = &_tsc_lfence_end - &_tsc_lfence_start;
(void) memcpy((void *)tsc_read,
(void *)&_tsc_lfence_start, cnt);
break;
default:
break;
}
}
int
cpuid_deep_cstates_supported(void)
{
struct cpuid_info *cpi;
struct cpuid_regs regs;
ASSERT(cpuid_checkpass(CPU, 1));
cpi = CPU->cpu_m.mcpu_cpi;
if (!is_x86_feature(x86_featureset, X86FSET_CPUID))
return (0);
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
if (cpi->cpi_xmaxeax < 0x80000007)
return (0);
/*
* TSC run at a constant rate in all ACPI C-states?
*/
regs.cp_eax = 0x80000007;
(void) __cpuid_insn(&regs);
return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE);
default:
return (0);
}
}
#endif /* !__xpv */
void
post_startup_cpu_fixups(void)
{
#ifndef __xpv
/*
* Some AMD processors support C1E state. Entering this state will
* cause the local APIC timer to stop, which we can't deal with at
* this time.
*/
if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) {
on_trap_data_t otd;
uint64_t reg;
if (!on_trap(&otd, OT_DATA_ACCESS)) {
reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT);
/* Disable C1E state if it is enabled by BIOS */
if ((reg >> AMD_ACTONCMPHALT_SHIFT) &
AMD_ACTONCMPHALT_MASK) {
reg &= ~(AMD_ACTONCMPHALT_MASK <<
AMD_ACTONCMPHALT_SHIFT);
wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg);
}
}
no_trap();
}
#endif /* !__xpv */
}
/*
* Starting with the Westmere processor the local
* APIC timer will continue running in all C-states,
* including the deepest C-states.
*/
int
cpuid_arat_supported(void)
{
struct cpuid_info *cpi;
struct cpuid_regs regs;
ASSERT(cpuid_checkpass(CPU, 1));
ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID));
cpi = CPU->cpu_m.mcpu_cpi;
switch (cpi->cpi_vendor) {
case X86_VENDOR_Intel:
/*
* Always-running Local APIC Timer is
* indicated by CPUID.6.EAX[2].
*/
if (cpi->cpi_maxeax >= 6) {
regs.cp_eax = 6;
(void) cpuid_insn(NULL, &regs);
return (regs.cp_eax & CPUID_CSTATE_ARAT);
} else {
return (0);
}
default:
return (0);
}
}
/*
* Check support for Intel ENERGY_PERF_BIAS feature
*/
int
cpuid_iepb_supported(struct cpu *cp)
{
struct cpuid_info *cpi = cp->cpu_m.mcpu_cpi;
struct cpuid_regs regs;
ASSERT(cpuid_checkpass(cp, 1));
if (!(is_x86_feature(x86_featureset, X86FSET_CPUID)) ||
!(is_x86_feature(x86_featureset, X86FSET_MSR))) {
return (0);
}
/*
* Intel ENERGY_PERF_BIAS MSR is indicated by
* capability bit CPUID.6.ECX.3
*/
if ((cpi->cpi_vendor != X86_VENDOR_Intel) || (cpi->cpi_maxeax < 6))
return (0);
regs.cp_eax = 0x6;
(void) cpuid_insn(NULL, &regs);
return (regs.cp_ecx & CPUID_EPB_SUPPORT);
}
#if defined(__amd64) && !defined(__xpv)
/*
* Patch in versions of bcopy for high performance Intel Nhm processors
* and later...
*/
void
patch_memops(uint_t vendor)
{
size_t cnt, i;
caddr_t to, from;
if ((vendor == X86_VENDOR_Intel) &&
is_x86_feature(x86_featureset, X86FSET_SSE4_2)) {
cnt = &bcopy_patch_end - &bcopy_patch_start;
to = &bcopy_ck_size;
from = &bcopy_patch_start;
for (i = 0; i < cnt; i++) {
*to++ = *from++;
}
}
}
#endif /* __amd64 && !__xpv */
/*
* This function finds the number of bits to represent the number of cores per
* chip and the number of strands per core for the Intel platforms.
* It re-uses the x2APIC cpuid code of the cpuid_pass2().
*/
void
cpuid_get_ext_topo(uint_t vendor, uint_t *core_nbits, uint_t *strand_nbits)
{
struct cpuid_regs regs;
struct cpuid_regs *cp = &regs;
if (vendor != X86_VENDOR_Intel) {
return;
}
/* if the cpuid level is 0xB, extended topo is available. */
cp->cp_eax = 0;
if (__cpuid_insn(cp) >= 0xB) {
cp->cp_eax = 0xB;
cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
(void) __cpuid_insn(cp);
/*
* Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
* indicates that the extended topology enumeration leaf is
* available.
*/
if (cp->cp_ebx) {
uint_t coreid_shift = 0;
uint_t chipid_shift = 0;
uint_t i;
uint_t level;
for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
cp->cp_eax = 0xB;
cp->cp_ecx = i;
(void) __cpuid_insn(cp);
level = CPI_CPU_LEVEL_TYPE(cp);
if (level == 1) {
/*
* Thread level processor topology
* Number of bits shift right APIC ID
* to get the coreid.
*/
coreid_shift = BITX(cp->cp_eax, 4, 0);
} else if (level == 2) {
/*
* Core level processor topology
* Number of bits shift right APIC ID
* to get the chipid.
*/
chipid_shift = BITX(cp->cp_eax, 4, 0);
}
}
if (coreid_shift > 0 && chipid_shift > coreid_shift) {
*strand_nbits = coreid_shift;
*core_nbits = chipid_shift - coreid_shift;
}
}
}
}