cpr_impl.c revision 7417cfdecea1902cef03c0d61a72df97d945925d
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Platform specific implementation code
* Currently only suspend to RAM is supported (ACPI S3)
*/
#define SUNDDI_IMPL
#include <sys/types.h>
#include <sys/promif.h>
#include <sys/prom_isa.h>
#include <sys/prom_plat.h>
#include <sys/cpuvar.h>
#include <sys/pte.h>
#include <vm/hat.h>
#include <vm/page.h>
#include <vm/as.h>
#include <sys/cpr.h>
#include <sys/kmem.h>
#include <sys/clock.h>
#include <sys/kmem.h>
#include <sys/panic.h>
#include <vm/seg_kmem.h>
#include <sys/cpu_module.h>
#include <sys/callb.h>
#include <sys/machsystm.h>
#include <sys/vmsystm.h>
#include <sys/systm.h>
#include <sys/archsystm.h>
#include <sys/stack.h>
#include <sys/fs/ufs_fs.h>
#include <sys/memlist.h>
#include <sys/bootconf.h>
#include <sys/thread.h>
#include <sys/x_call.h>
#include <sys/smp_impldefs.h>
#include <vm/vm_dep.h>
#include <sys/psm.h>
#include <sys/epm.h>
#include <sys/cpr_wakecode.h>
#include <sys/x86_archext.h>
#include <sys/reboot.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#define AFMT "%lx"
extern int flushes_require_xcalls;
extern cpuset_t cpu_ready_set;
#if defined(__amd64)
extern void *wc_long_mode_64(void);
#endif /* __amd64 */
extern int tsc_gethrtime_enable;
extern void i_cpr_start_cpu(void);
ushort_t cpr_mach_type = CPR_MACHTYPE_X86;
void (*cpr_start_cpu_func)(void) = i_cpr_start_cpu;
static wc_cpu_t *wc_other_cpus = NULL;
static cpuset_t procset;
static void
init_real_mode_platter(int cpun, uint32_t offset, uint_t cr4, wc_desctbr_t gdt);
static int i_cpr_platform_alloc(psm_state_request_t *req);
static void i_cpr_platform_free(psm_state_request_t *req);
static int i_cpr_save_apic(psm_state_request_t *req);
static int i_cpr_restore_apic(psm_state_request_t *req);
static int wait_for_set(cpuset_t *set, int who);
static void i_cpr_save_stack(kthread_t *t, wc_cpu_t *wc_cpu);
void i_cpr_restore_stack(kthread_t *t, greg_t *save_stack);
#ifdef STACK_GROWTH_DOWN
#define CPR_GET_STACK_START(t) ((t)->t_stkbase)
#define CPR_GET_STACK_END(t) ((t)->t_stk)
#else
#define CPR_GET_STACK_START(t) ((t)->t_stk)
#define CPR_GET_STACK_END(t) ((t)->t_stkbase)
#endif /* STACK_GROWTH_DOWN */
/*
* restart paused slave cpus
*/
void
i_cpr_machdep_setup(void)
{
if (ncpus > 1) {
CPR_DEBUG(CPR_DEBUG1, ("MP restarted...\n"));
mutex_enter(&cpu_lock);
start_cpus();
mutex_exit(&cpu_lock);
}
}
/*
* Stop all interrupt activities in the system
*/
void
i_cpr_stop_intr(void)
{
(void) spl7();
}
/*
* Set machine up to take interrupts
*/
void
i_cpr_enable_intr(void)
{
(void) spl0();
}
/*
* Save miscellaneous information which needs to be written to the
* state file. This information is required to re-initialize
* kernel/prom handshaking.
*/
void
i_cpr_save_machdep_info(void)
{
int notcalled = 0;
ASSERT(notcalled);
}
void
i_cpr_set_tbr(void)
{
}
processorid_t
i_cpr_bootcpuid(void)
{
return (0);
}
/*
* cpu0 should contain bootcpu info
*/
cpu_t *
i_cpr_bootcpu(void)
{
ASSERT(MUTEX_HELD(&cpu_lock));
return (cpu_get(i_cpr_bootcpuid()));
}
/*
* Save context for the specified CPU
*/
void *
i_cpr_save_context(void *arg)
{
long index = (long)arg;
psm_state_request_t *papic_state;
int resuming;
int ret;
wc_cpu_t *wc_cpu = wc_other_cpus + index;
PMD(PMD_SX, ("i_cpr_save_context() index = %ld\n", index))
ASSERT(index < NCPU);
papic_state = &(wc_cpu)->wc_apic_state;
ret = i_cpr_platform_alloc(papic_state);
ASSERT(ret == 0);
ret = i_cpr_save_apic(papic_state);
ASSERT(ret == 0);
i_cpr_save_stack(curthread, wc_cpu);
/*
* wc_save_context returns twice, once when susending and
* once when resuming, wc_save_context() returns 0 when
* suspending and non-zero upon resume
*/
resuming = (wc_save_context(wc_cpu) == 0);
/*
* do NOT call any functions after this point, because doing so
* will modify the stack that we are running on
*/
if (resuming) {
ret = i_cpr_restore_apic(papic_state);
ASSERT(ret == 0);
i_cpr_platform_free(papic_state);
/*
* Enable interrupts on this cpu.
* Do not bind interrupts to this CPU's local APIC until
* the CPU is ready to receive interrupts.
*/
ASSERT(CPU->cpu_id != i_cpr_bootcpuid());
mutex_enter(&cpu_lock);
cpu_enable_intr(CPU);
mutex_exit(&cpu_lock);
/*
* Setting the bit in cpu_ready_set must be the last operation
* in processor initialization; the boot CPU will continue to
* boot once it sees this bit set for all active CPUs.
*/
CPUSET_ATOMIC_ADD(cpu_ready_set, CPU->cpu_id);
PMD(PMD_SX,
("i_cpr_save_context() resuming cpu %d in cpu_ready_set\n",
CPU->cpu_id))
} else {
/*
* Disable interrupts on this CPU so that PSM knows not to bind
* interrupts here on resume until the CPU has executed
* cpu_enable_intr() (above) in the resume path.
* We explicitly do not grab cpu_lock here because at this point
* in the suspend process, the boot cpu owns cpu_lock and all
* other cpus are also executing in the pause thread (only
* modifying their respective CPU structure).
*/
(void) cpu_disable_intr(CPU);
}
PMD(PMD_SX, ("i_cpr_save_context: wc_save_context returns %d\n",
resuming))
return (NULL);
}
static ushort_t *warm_reset_vector = NULL;
static ushort_t *
map_warm_reset_vector()
{
/*LINTED*/
if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
return (NULL);
/*
* setup secondary cpu bios boot up vector
*/
*warm_reset_vector = (ushort_t)((caddr_t)
/*LINTED*/
((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
+ ((ulong_t)rm_platter_va & 0xf));
warm_reset_vector++;
*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
--warm_reset_vector;
return (warm_reset_vector);
}
void
i_cpr_pre_resume_cpus()
{
/*
* this is a cut down version of start_other_cpus()
* just do the initialization to wake the other cpus
*/
unsigned who;
int boot_cpuid = i_cpr_bootcpuid();
uint32_t code_length = 0;
caddr_t wakevirt = rm_platter_va;
/*LINTED*/
wakecode_t *wp = (wakecode_t *)wakevirt;
char *str = "i_cpr_pre_resume_cpus";
extern int get_tsc_ready();
int err;
/*LINTED*/
rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
/*
* If startup wasn't able to find a page under 1M, we cannot
* proceed.
*/
if (rm_platter_va == 0) {
cmn_err(CE_WARN, "Cannot suspend the system because no "
"memory below 1M could be found for processor startup");
return;
}
/*
* Copy the real mode code at "real_mode_start" to the
* page at rm_platter_va.
*/
warm_reset_vector = map_warm_reset_vector();
if (warm_reset_vector == NULL) {
PMD(PMD_SX, ("i_cpr_pre_resume_cpus() returning #2\n"))
return;
}
flushes_require_xcalls = 1;
/*
* We lock our affinity to the master CPU to ensure that all slave CPUs
* do their TSC syncs with the same CPU.
*/
affinity_set(CPU_CURRENT);
/*
* Mark the boot cpu as being ready and in the procset, since we are
* running on that cpu.
*/
CPUSET_ONLY(cpu_ready_set, boot_cpuid);
CPUSET_ONLY(procset, boot_cpuid);
for (who = 0; who < max_ncpus; who++) {
wc_cpu_t *cpup = wc_other_cpus + who;
wc_desctbr_t gdt;
if (who == boot_cpuid)
continue;
if (!CPU_IN_SET(mp_cpus, who))
continue;
PMD(PMD_SX, ("%s() waking up %d cpu\n", str, who))
bcopy(cpup, &(wp->wc_cpu), sizeof (wc_cpu_t));
gdt.base = cpup->wc_gdt_base;
gdt.limit = cpup->wc_gdt_limit;
#if defined(__amd64)
code_length = (uint32_t)wc_long_mode_64 - (uint32_t)wc_rm_start;
#else
code_length = 0;
#endif
init_real_mode_platter(who, code_length, cpup->wc_cr4, gdt);
mutex_enter(&cpu_lock);
err = mach_cpuid_start(who, rm_platter_va);
mutex_exit(&cpu_lock);
if (err != 0) {
cmn_err(CE_WARN, "cpu%d: failed to start during "
"suspend/resume error %d", who, err);
continue;
}
PMD(PMD_SX, ("%s() #1 waiting for %d in procset\n", str, who))
if (!wait_for_set(&procset, who))
continue;
PMD(PMD_SX, ("%s() %d cpu started\n", str, who))
PMD(PMD_SX, ("%s() tsc_ready = %d\n", str, get_tsc_ready()))
if (tsc_gethrtime_enable) {
PMD(PMD_SX, ("%s() calling tsc_sync_master\n", str))
tsc_sync_master(who);
}
PMD(PMD_SX, ("%s() waiting for %d in cpu_ready_set\n", str,
who))
/*
* Wait for cpu to declare that it is ready, we want the
* cpus to start serially instead of in parallel, so that
* they do not contend with each other in wc_rm_start()
*/
if (!wait_for_set(&cpu_ready_set, who))
continue;
/*
* do not need to re-initialize dtrace using dtrace_cpu_init
* function
*/
PMD(PMD_SX, ("%s() cpu %d now ready\n", str, who))
}
affinity_clear();
PMD(PMD_SX, ("%s() all cpus now ready\n", str))
}
static void
unmap_warm_reset_vector(ushort_t *warm_reset_vector)
{
psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
}
/*
* We need to setup a 1:1 (virtual to physical) mapping for the
* page containing the wakeup code.
*/
static struct as *save_as; /* when switching to kas */
static void
unmap_wakeaddr_1to1(uint64_t wakephys)
{
uintptr_t wp = (uintptr_t)wakephys;
hat_setup(save_as->a_hat, 0); /* switch back from kernel hat */
hat_unload(kas.a_hat, (caddr_t)wp, PAGESIZE, HAT_UNLOAD);
}
void
i_cpr_post_resume_cpus()
{
uint64_t wakephys = rm_platter_pa;
if (warm_reset_vector != NULL)
unmap_warm_reset_vector(warm_reset_vector);
hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
HAT_UNLOAD);
/*
* cmi_post_mpstartup() is only required upon boot not upon
* resume from RAM
*/
PT(PT_UNDO1to1);
/* Tear down 1:1 mapping for wakeup code */
unmap_wakeaddr_1to1(wakephys);
}
/* ARGSUSED */
void
i_cpr_handle_xc(int flag)
{
}
int
i_cpr_reusable_supported(void)
{
return (0);
}
static void
map_wakeaddr_1to1(uint64_t wakephys)
{
uintptr_t wp = (uintptr_t)wakephys;
hat_devload(kas.a_hat, (caddr_t)wp, PAGESIZE, btop(wakephys),
(PROT_READ|PROT_WRITE|PROT_EXEC|HAT_STORECACHING_OK|HAT_NOSYNC),
HAT_LOAD);
save_as = curthread->t_procp->p_as;
hat_setup(kas.a_hat, 0); /* switch to kernel-only hat */
}
void
prt_other_cpus()
{
int who;
if (ncpus == 1) {
PMD(PMD_SX, ("prt_other_cpus() other cpu table empty for "
"uniprocessor machine\n"))
return;
}
for (who = 0; who < max_ncpus; who++) {
wc_cpu_t *cpup = wc_other_cpus + who;
if (!CPU_IN_SET(mp_cpus, who))
continue;
PMD(PMD_SX, ("prt_other_cpus() who = %d, gdt=%p:%x, "
"idt=%p:%x, ldt=%lx, tr=%lx, kgsbase="
AFMT ", sp=%lx\n", who,
(void *)cpup->wc_gdt_base, cpup->wc_gdt_limit,
(void *)cpup->wc_idt_base, cpup->wc_idt_limit,
(long)cpup->wc_ldt, (long)cpup->wc_tr,
(long)cpup->wc_kgsbase, (long)cpup->wc_rsp))
}
}
/*
* Power down the system.
*/
int
i_cpr_power_down(int sleeptype)
{
caddr_t wakevirt = rm_platter_va;
uint64_t wakephys = rm_platter_pa;
ulong_t saved_intr;
uint32_t code_length = 0;
wc_desctbr_t gdt;
/*LINTED*/
wakecode_t *wp = (wakecode_t *)wakevirt;
/*LINTED*/
rm_platter_t *wcpp = (rm_platter_t *)wakevirt;
wc_cpu_t *cpup = &(wp->wc_cpu);
dev_info_t *ppm;
int ret = 0;
power_req_t power_req;
char *str = "i_cpr_power_down";
#if defined(__amd64)
/*LINTED*/
rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
#endif
extern int cpr_suspend_succeeded;
extern void kernel_wc_code();
ASSERT(sleeptype == CPR_TORAM);
ASSERT(CPU->cpu_id == 0);
if ((ppm = PPM(ddi_root_node())) == NULL) {
PMD(PMD_SX, ("%s: root node not claimed\n", str))
return (ENOTTY);
}
PMD(PMD_SX, ("Entering %s()\n", str))
PT(PT_IC);
saved_intr = intr_clear();
PT(PT_1to1);
/* Setup 1:1 mapping for wakeup code */
map_wakeaddr_1to1(wakephys);
PMD(PMD_SX, ("ncpus=%d\n", ncpus))
PMD(PMD_SX, ("wc_rm_end - wc_rm_start=%lx WC_CODESIZE=%x\n",
((size_t)((uint_t)wc_rm_end - (uint_t)wc_rm_start)), WC_CODESIZE))
PMD(PMD_SX, ("wakevirt=%p, wakephys=%x\n",
(void *)wakevirt, (uint_t)wakephys))
ASSERT(((size_t)((uint_t)wc_rm_end - (uint_t)wc_rm_start)) <
WC_CODESIZE);
bzero(wakevirt, PAGESIZE);
/* Copy code to rm_platter */
bcopy((caddr_t)wc_rm_start, wakevirt,
(size_t)((uint_t)wc_rm_end - (uint_t)wc_rm_start));
prt_other_cpus();
#if defined(__amd64)
PMD(PMD_SX, ("real_mode_platter->rm_cr4=%lx, getcr4()=%lx\n",
(ulong_t)real_mode_platter->rm_cr4, (ulong_t)getcr4()))
PMD(PMD_SX, ("real_mode_platter->rm_pdbr=%lx, getcr3()=%lx\n",
(ulong_t)real_mode_platter->rm_pdbr, getcr3()))
real_mode_platter->rm_cr4 = getcr4();
real_mode_platter->rm_pdbr = getcr3();
rmp_gdt_init(real_mode_platter);
/*
* Since the CPU needs to jump to protected mode using an identity
* mapped address, we need to calculate it here.
*/
real_mode_platter->rm_longmode64_addr = rm_platter_pa +
((uint32_t)wc_long_mode_64 - (uint32_t)wc_rm_start);
PMD(PMD_SX, ("real_mode_platter->rm_cr4=%lx, getcr4()=%lx\n",
(ulong_t)real_mode_platter->rm_cr4, getcr4()))
PMD(PMD_SX, ("real_mode_platter->rm_pdbr=%lx, getcr3()=%lx\n",
(ulong_t)real_mode_platter->rm_pdbr, getcr3()))
PMD(PMD_SX, ("real_mode_platter->rm_longmode64_addr=%lx\n",
(ulong_t)real_mode_platter->rm_longmode64_addr))
#endif
PT(PT_SC);
if (wc_save_context(cpup)) {
ret = i_cpr_platform_alloc(&(wc_other_cpus->wc_apic_state));
if (ret != 0)
return (ret);
ret = i_cpr_save_apic(&(wc_other_cpus->wc_apic_state));
PMD(PMD_SX, ("%s: i_cpr_save_apic() returned %d\n", str, ret))
if (ret != 0)
return (ret);
PMD(PMD_SX, ("wakephys=%x, kernel_wc_code=%p\n",
(uint_t)wakephys, (void *)&kernel_wc_code))
PMD(PMD_SX, ("virtaddr=%lx, retaddr=%lx\n",
(long)cpup->wc_virtaddr, (long)cpup->wc_retaddr))
PMD(PMD_SX, ("ebx=%x, edi=%x, esi=%x, ebp=%x, esp=%x\n",
cpup->wc_ebx, cpup->wc_edi, cpup->wc_esi, cpup->wc_ebp,
cpup->wc_esp))
PMD(PMD_SX, ("cr0=%lx, cr3=%lx, cr4=%lx\n",
(long)cpup->wc_cr0, (long)cpup->wc_cr3,
(long)cpup->wc_cr4))
PMD(PMD_SX, ("cs=%x, ds=%x, es=%x, ss=%x, fs=%lx, gs=%lx, "
"flgs=%lx\n", cpup->wc_cs, cpup->wc_ds, cpup->wc_es,
cpup->wc_ss, (long)cpup->wc_fs, (long)cpup->wc_gs,
(long)cpup->wc_eflags))
PMD(PMD_SX, ("gdt=%p:%x, idt=%p:%x, ldt=%lx, tr=%lx, "
"kgbase=%lx\n", (void *)cpup->wc_gdt_base,
cpup->wc_gdt_limit, (void *)cpup->wc_idt_base,
cpup->wc_idt_limit, (long)cpup->wc_ldt,
(long)cpup->wc_tr, (long)cpup->wc_kgsbase))
gdt.base = cpup->wc_gdt_base;
gdt.limit = cpup->wc_gdt_limit;
#if defined(__amd64)
code_length = (uint32_t)wc_long_mode_64 -
(uint32_t)wc_rm_start;
#else
code_length = 0;
#endif
init_real_mode_platter(0, code_length, cpup->wc_cr4, gdt);
#if defined(__amd64)
PMD(PMD_SX, ("real_mode_platter->rm_cr4=%lx, getcr4()=%lx\n",
(ulong_t)wcpp->rm_cr4, getcr4()))
PMD(PMD_SX, ("real_mode_platter->rm_pdbr=%lx, getcr3()=%lx\n",
(ulong_t)wcpp->rm_pdbr, getcr3()))
PMD(PMD_SX, ("real_mode_platter->rm_longmode64_addr=%lx\n",
(ulong_t)wcpp->rm_longmode64_addr))
PMD(PMD_SX,
("real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64]=%lx\n",
(ulong_t)wcpp->rm_temp_gdt[TEMPGDT_KCODE64]))
#endif
PMD(PMD_SX, ("gdt=%p:%x, idt=%p:%x, ldt=%lx, tr=%lx, "
"kgsbase=%lx\n", (void *)wcpp->rm_gdt_base,
wcpp->rm_gdt_lim, (void *)wcpp->rm_idt_base,
wcpp->rm_idt_lim, (long)cpup->wc_ldt, (long)cpup->wc_tr,
(long)cpup->wc_kgsbase))
power_req.request_type = PMR_PPM_ENTER_SX;
power_req.req.ppm_power_enter_sx_req.sx_state = S3;
power_req.req.ppm_power_enter_sx_req.test_point =
cpr_test_point;
power_req.req.ppm_power_enter_sx_req.wakephys = wakephys;
PMD(PMD_SX, ("%s: pm_ctlops PMR_PPM_ENTER_SX\n", str))
PT(PT_PPMCTLOP);
(void) pm_ctlops(ppm, ddi_root_node(), DDI_CTLOPS_POWER,
&power_req, &ret);
PMD(PMD_SX, ("%s: returns %d\n", str, ret))
/*
* If it works, we get control back to the else branch below
* If we get control back here, it didn't work.
* XXX return EINVAL here?
*/
unmap_wakeaddr_1to1(wakephys);
intr_restore(saved_intr);
return (ret);
} else {
cpr_suspend_succeeded = 1;
power_req.request_type = PMR_PPM_EXIT_SX;
power_req.req.ppm_power_enter_sx_req.sx_state = S3;
PMD(PMD_SX, ("%s: pm_ctlops PMR_PPM_EXIT_SX\n", str))
PT(PT_PPMCTLOP);
(void) pm_ctlops(ppm, ddi_root_node(), DDI_CTLOPS_POWER,
&power_req, &ret);
PMD(PMD_SX, ("%s: returns %d\n", str, ret))
ret = i_cpr_restore_apic(&(wc_other_cpus->wc_apic_state));
/*
* the restore should never fail, if the saved suceeded
*/
ASSERT(ret == 0);
i_cpr_platform_free(&(wc_other_cpus->wc_apic_state));
/*
* Enable interrupts on boot cpu.
*/
ASSERT(CPU->cpu_id == i_cpr_bootcpuid());
mutex_enter(&cpu_lock);
cpu_enable_intr(CPU);
mutex_exit(&cpu_lock);
PT(PT_INTRRESTORE);
intr_restore(saved_intr);
PT(PT_CPU);
return (ret);
}
}
/*
* Stop all other cpu's before halting or rebooting. We pause the cpu's
* instead of sending a cross call.
* Stolen from sun4/os/mp_states.c
*/
static int cpu_are_paused; /* sic */
void
i_cpr_stop_other_cpus(void)
{
mutex_enter(&cpu_lock);
if (cpu_are_paused) {
mutex_exit(&cpu_lock);
return;
}
pause_cpus(NULL);
cpu_are_paused = 1;
mutex_exit(&cpu_lock);
}
int
i_cpr_is_supported(int sleeptype)
{
extern int cpr_supported_override;
extern int cpr_platform_enable;
extern int pm_S3_enabled;
if (sleeptype != CPR_TORAM)
return (0);
/*
* The next statement tests if a specific platform has turned off
* cpr support.
*/
if (cpr_supported_override)
return (0);
/*
* If a platform has specifically turned on cpr support ...
*/
if (cpr_platform_enable)
return (1);
return (pm_S3_enabled);
}
void
i_cpr_bitmap_cleanup(void)
{
}
void
i_cpr_free_memory_resources(void)
{
}
/*
* Needed only for S3 so far
*/
static int
i_cpr_platform_alloc(psm_state_request_t *req)
{
#ifdef DEBUG
char *str = "i_cpr_platform_alloc";
#endif
PMD(PMD_SX, ("cpu = %d, %s(%p) \n", CPU->cpu_id, str, (void *)req))
if (psm_state == NULL) {
PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
return (0);
}
req->psr_cmd = PSM_STATE_ALLOC;
return ((*psm_state)(req));
}
/*
* Needed only for S3 so far
*/
static void
i_cpr_platform_free(psm_state_request_t *req)
{
#ifdef DEBUG
char *str = "i_cpr_platform_free";
#endif
PMD(PMD_SX, ("cpu = %d, %s(%p) \n", CPU->cpu_id, str, (void *)req))
if (psm_state == NULL) {
PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
return;
}
req->psr_cmd = PSM_STATE_FREE;
(void) (*psm_state)(req);
}
static int
i_cpr_save_apic(psm_state_request_t *req)
{
#ifdef DEBUG
char *str = "i_cpr_save_apic";
#endif
if (psm_state == NULL) {
PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
return (0);
}
req->psr_cmd = PSM_STATE_SAVE;
return ((*psm_state)(req));
}
static int
i_cpr_restore_apic(psm_state_request_t *req)
{
#ifdef DEBUG
char *str = "i_cpr_restore_apic";
#endif
if (psm_state == NULL) {
PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
return (0);
}
req->psr_cmd = PSM_STATE_RESTORE;
return ((*psm_state)(req));
}
/* stop lint complaining about offset not being used in 32bit mode */
#if !defined(__amd64)
/*ARGSUSED*/
#endif
static void
init_real_mode_platter(int cpun, uint32_t offset, uint_t cr4, wc_desctbr_t gdt)
{
/*LINTED*/
rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
/*
* Fill up the real mode platter to make it easy for real mode code to
* kick it off. This area should really be one passed by boot to kernel
* and guaranteed to be below 1MB and aligned to 16 bytes. Should also
* have identical physical and virtual address in paged mode.
*/
real_mode_platter->rm_pdbr = getcr3();
real_mode_platter->rm_cpu = cpun;
real_mode_platter->rm_cr4 = cr4;
real_mode_platter->rm_gdt_base = gdt.base;
real_mode_platter->rm_gdt_lim = gdt.limit;
#if defined(__amd64)
if (getcr3() > 0xffffffffUL)
panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
"located above 4G in physical memory (@ 0x%llx).",
(unsigned long long)getcr3());
/*
* Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
* by code in real_mode_start():
*
* GDT[0]: NULL selector
* GDT[1]: 64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
*
* Clear the IDT as interrupts will be off and a limit of 0 will cause
* the CPU to triple fault and reset on an NMI, seemingly as reasonable
* a course of action as any other, though it may cause the entire
* platform to reset in some cases...
*/
real_mode_platter->rm_temp_gdt[0] = 0ULL;
real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
real_mode_platter->rm_temp_gdt_lim = (ushort_t)
(sizeof (real_mode_platter->rm_temp_gdt) - 1);
real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
(uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
real_mode_platter->rm_temp_idt_lim = 0;
real_mode_platter->rm_temp_idt_base = 0;
/*
* Since the CPU needs to jump to protected mode using an identity
* mapped address, we need to calculate it here.
*/
real_mode_platter->rm_longmode64_addr = rm_platter_pa + offset;
#endif /* __amd64 */
/* return; */
}
void
i_cpr_start_cpu(void)
{
struct cpu *cp = CPU;
char *str = "i_cpr_start_cpu";
extern void init_cpu_syscall(struct cpu *cp);
PMD(PMD_SX, ("%s() called\n", str))
PMD(PMD_SX, ("%s() #0 cp->cpu_base_spl %d\n", str,
cp->cpu_base_spl))
mutex_enter(&cpu_lock);
if (cp == i_cpr_bootcpu()) {
mutex_exit(&cpu_lock);
PMD(PMD_SX,
("%s() called on bootcpu nothing to do!\n", str))
return;
}
mutex_exit(&cpu_lock);
/*
* We need to Sync PAT with cpu0's PAT. We have to do
* this with interrupts disabled.
*/
if (is_x86_feature(x86_featureset, X86FSET_PAT))
pat_sync();
/*
* Initialize this CPU's syscall handlers
*/
init_cpu_syscall(cp);
PMD(PMD_SX, ("%s() #1 cp->cpu_base_spl %d\n", str, cp->cpu_base_spl))
/*
* Do not need to call cpuid_pass2(), cpuid_pass3(), cpuid_pass4() or
* init_cpu_info(), since the work that they do is only needed to
* be done once at boot time
*/
mutex_enter(&cpu_lock);
CPUSET_ADD(procset, cp->cpu_id);
mutex_exit(&cpu_lock);
PMD(PMD_SX, ("%s() #2 cp->cpu_base_spl %d\n", str,
cp->cpu_base_spl))
if (tsc_gethrtime_enable) {
PMD(PMD_SX, ("%s() calling tsc_sync_slave\n", str))
tsc_sync_slave();
}
PMD(PMD_SX, ("%s() cp->cpu_id %d, cp->cpu_intr_actv %d\n", str,
cp->cpu_id, cp->cpu_intr_actv))
PMD(PMD_SX, ("%s() #3 cp->cpu_base_spl %d\n", str,
cp->cpu_base_spl))
(void) spl0(); /* enable interrupts */
PMD(PMD_SX, ("%s() #4 cp->cpu_base_spl %d\n", str,
cp->cpu_base_spl))
/*
* Set up the CPU module for this CPU. This can't be done before
* this CPU is made CPU_READY, because we may (in heterogeneous systems)
* need to go load another CPU module. The act of attempting to load
* a module may trigger a cross-call, which will ASSERT unless this
* cpu is CPU_READY.
*/
/*
* cmi already been init'd (during boot), so do not need to do it again
*/
#ifdef PM_REINITMCAONRESUME
if (is_x86_feature(x86_featureset, X86FSET_MCA))
cmi_mca_init();
#endif
PMD(PMD_SX, ("%s() returning\n", str))
/* return; */
}
void
i_cpr_alloc_cpus(void)
{
char *str = "i_cpr_alloc_cpus";
PMD(PMD_SX, ("%s() CPU->cpu_id %d\n", str, CPU->cpu_id))
/*
* we allocate this only when we actually need it to save on
* kernel memory
*/
if (wc_other_cpus == NULL) {
wc_other_cpus = kmem_zalloc(max_ncpus * sizeof (wc_cpu_t),
KM_SLEEP);
}
}
void
i_cpr_free_cpus(void)
{
int index;
wc_cpu_t *wc_cpu;
if (wc_other_cpus != NULL) {
for (index = 0; index < max_ncpus; index++) {
wc_cpu = wc_other_cpus + index;
if (wc_cpu->wc_saved_stack != NULL) {
kmem_free(wc_cpu->wc_saved_stack,
wc_cpu->wc_saved_stack_size);
}
}
kmem_free((void *) wc_other_cpus,
max_ncpus * sizeof (wc_cpu_t));
wc_other_cpus = NULL;
}
}
/*
* wrapper for acpica_ddi_save_resources()
*/
void
i_cpr_save_configuration(dev_info_t *dip)
{
acpica_ddi_save_resources(dip);
}
/*
* wrapper for acpica_ddi_restore_resources()
*/
void
i_cpr_restore_configuration(dev_info_t *dip)
{
acpica_ddi_restore_resources(dip);
}
static int
wait_for_set(cpuset_t *set, int who)
{
int delays;
char *str = "wait_for_set";
for (delays = 0; !CPU_IN_SET(*set, who); delays++) {
if (delays == 500) {
/*
* After five seconds, things are probably
* looking a bit bleak - explain the hang.
*/
cmn_err(CE_NOTE, "cpu%d: started, "
"but not running in the kernel yet", who);
PMD(PMD_SX, ("%s() %d cpu started "
"but not running in the kernel yet\n",
str, who))
} else if (delays > 2000) {
/*
* We waited at least 20 seconds, bail ..
*/
cmn_err(CE_WARN, "cpu%d: timed out", who);
PMD(PMD_SX, ("%s() %d cpu timed out\n",
str, who))
return (0);
}
/*
* wait at least 10ms, then check again..
*/
drv_usecwait(10000);
}
return (1);
}
static void
i_cpr_save_stack(kthread_t *t, wc_cpu_t *wc_cpu)
{
size_t stack_size; /* size of stack */
caddr_t start = CPR_GET_STACK_START(t); /* stack start */
caddr_t end = CPR_GET_STACK_END(t); /* stack end */
stack_size = (size_t)end - (size_t)start;
if (wc_cpu->wc_saved_stack_size < stack_size) {
if (wc_cpu->wc_saved_stack != NULL) {
kmem_free(wc_cpu->wc_saved_stack,
wc_cpu->wc_saved_stack_size);
}
wc_cpu->wc_saved_stack = kmem_zalloc(stack_size, KM_SLEEP);
wc_cpu->wc_saved_stack_size = stack_size;
}
bcopy(start, wc_cpu->wc_saved_stack, stack_size);
}
void
i_cpr_restore_stack(kthread_t *t, greg_t *save_stack)
{
size_t stack_size; /* size of stack */
caddr_t start = CPR_GET_STACK_START(t); /* stack start */
caddr_t end = CPR_GET_STACK_END(t); /* stack end */
stack_size = (size_t)end - (size_t)start;
bcopy(save_stack, start, stack_size);
}