cmi.c revision 20c794b39650d115e17a15983b6b82e46238cf45
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Public interface to routines implemented by CPU modules
*/
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/x86_archext.h>
#include <sys/cpu_module_impl.h>
#include <sys/cpu_module_ms.h>
#include <sys/fm/util.h>
#include <sys/reboot.h>
#include <sys/modctl.h>
#include <sys/param.h>
#include <sys/cmn_err.h>
#include <sys/systm.h>
#include <sys/fm/protocol.h>
#include <sys/pcb.h>
#include <sys/ontrap.h>
#include <sys/psw.h>
#include <sys/privregs.h>
/*
* Set to force cmi_init to fail.
*/
int cmi_no_init = 0;
/*
* Set to avoid MCA initialization.
*/
int cmi_no_mca_init = 0;
/*
* If cleared for debugging we will not attempt to load a model-specific
* cpu module but will load the generic cpu module instead.
*/
int cmi_force_generic = 0;
/*
* If cleared for debugging, we will suppress panicking on fatal hardware
* errors. This should *only* be used for debugging; it use can and will
* cause data corruption if actual hardware errors are detected by the system.
*/
int cmi_panic_on_uncorrectable_error = 1;
/*
* Subdirectory (relative to the module search path) in which we will
* look for cpu modules.
*/
#define CPUMOD_SUBDIR "cpu"
/*
* CPU modules have a filenames such as "cpu.AuthenticAMD.15" and
* "cpu.generic" - the "cpu" prefix is specified by the following.
*/
#define CPUMOD_PREFIX "cpu"
/*
* Structure used to keep track of cpu modules we have loaded and their ops
*/
typedef struct cmi {
struct cmi *cmi_next;
struct cmi *cmi_prev;
const cmi_ops_t *cmi_ops;
struct modctl *cmi_modp;
uint_t cmi_refcnt;
} cmi_t;
static cmi_t *cmi_list;
static kmutex_t cmi_load_lock;
/*
* Functions we need from cmi_hw.c that are not part of the cpu_module.h
* interface.
*/
extern cmi_hdl_t cmi_hdl_create(enum cmi_hdl_class, uint_t, uint_t, uint_t);
extern void cmi_hdl_setcmi(cmi_hdl_t, void *, void *);
extern void *cmi_hdl_getcmi(cmi_hdl_t);
extern void cmi_hdl_setmc(cmi_hdl_t, const struct cmi_mc_ops *, void *);
#define HDL2CMI(hdl) cmi_hdl_getcmi(hdl)
#define CMI_OPS(cmi) (cmi)->cmi_ops
#define CMI_OP_PRESENT(cmi, op) ((cmi) && CMI_OPS(cmi)->op != NULL)
#define CMI_MATCH_VENDOR 0 /* Just match on vendor */
#define CMI_MATCH_FAMILY 1 /* Match down to family */
#define CMI_MATCH_MODEL 2 /* Match down to model */
#define CMI_MATCH_STEPPING 3 /* Match down to stepping */
static void
cmi_link(cmi_t *cmi)
{
ASSERT(MUTEX_HELD(&cmi_load_lock));
cmi->cmi_prev = NULL;
cmi->cmi_next = cmi_list;
if (cmi_list != NULL)
cmi_list->cmi_prev = cmi;
cmi_list = cmi;
}
static void
cmi_unlink(cmi_t *cmi)
{
ASSERT(MUTEX_HELD(&cmi_load_lock));
ASSERT(cmi->cmi_refcnt == 0);
if (cmi->cmi_prev != NULL)
cmi->cmi_prev = cmi->cmi_next;
if (cmi->cmi_next != NULL)
cmi->cmi_next->cmi_prev = cmi->cmi_prev;
if (cmi_list == cmi)
cmi_list = cmi->cmi_next;
}
/*
* Hold the module in memory. We call to CPU modules without using the
* stubs mechanism, so these modules must be manually held in memory.
* The mod_ref acts as if another loaded module has a dependency on us.
*/
static void
cmi_hold(cmi_t *cmi)
{
ASSERT(MUTEX_HELD(&cmi_load_lock));
mutex_enter(&mod_lock);
cmi->cmi_modp->mod_ref++;
mutex_exit(&mod_lock);
cmi->cmi_refcnt++;
}
static void
cmi_rele(cmi_t *cmi)
{
ASSERT(MUTEX_HELD(&cmi_load_lock));
mutex_enter(&mod_lock);
cmi->cmi_modp->mod_ref--;
mutex_exit(&mod_lock);
if (--cmi->cmi_refcnt == 0) {
cmi_unlink(cmi);
kmem_free(cmi, sizeof (cmi_t));
}
}
static cmi_ops_t *
cmi_getops(modctl_t *modp)
{
cmi_ops_t *ops;
if ((ops = (cmi_ops_t *)modlookup_by_modctl(modp, "_cmi_ops")) ==
NULL) {
cmn_err(CE_WARN, "cpu module '%s' is invalid: no _cmi_ops "
"found", modp->mod_modname);
return (NULL);
}
if (ops->cmi_init == NULL) {
cmn_err(CE_WARN, "cpu module '%s' is invalid: no cmi_init "
"entry point", modp->mod_modname);
return (NULL);
}
return (ops);
}
static cmi_t *
cmi_load_modctl(modctl_t *modp)
{
cmi_ops_t *ops;
uintptr_t ver;
cmi_t *cmi;
cmi_api_ver_t apiver;
ASSERT(MUTEX_HELD(&cmi_load_lock));
for (cmi = cmi_list; cmi != NULL; cmi = cmi->cmi_next) {
if (cmi->cmi_modp == modp)
return (cmi);
}
if ((ver = modlookup_by_modctl(modp, "_cmi_api_version")) == NULL) {
/*
* Apparently a cpu module before versioning was introduced -
* we call this version 0.
*/
apiver = CMI_API_VERSION_0;
} else {
apiver = *((cmi_api_ver_t *)ver);
if (!CMI_API_VERSION_CHKMAGIC(apiver)) {
cmn_err(CE_WARN, "cpu module '%s' is invalid: "
"_cmi_api_version 0x%x has bad magic",
modp->mod_modname, apiver);
return (NULL);
}
}
if (apiver != CMI_API_VERSION) {
cmn_err(CE_WARN, "cpu module '%s' has API version %d, "
"kernel requires API version %d", modp->mod_modname,
CMI_API_VERSION_TOPRINT(apiver),
CMI_API_VERSION_TOPRINT(CMI_API_VERSION));
return (NULL);
}
if ((ops = cmi_getops(modp)) == NULL)
return (NULL);
cmi = kmem_zalloc(sizeof (*cmi), KM_SLEEP);
cmi->cmi_ops = ops;
cmi->cmi_modp = modp;
cmi_link(cmi);
return (cmi);
}
static int
cmi_cpu_match(cmi_hdl_t hdl1, cmi_hdl_t hdl2, int match)
{
if (match >= CMI_MATCH_VENDOR &&
cmi_hdl_vendor(hdl1) != cmi_hdl_vendor(hdl2))
return (0);
if (match >= CMI_MATCH_FAMILY &&
cmi_hdl_family(hdl1) != cmi_hdl_family(hdl2))
return (0);
if (match >= CMI_MATCH_MODEL &&
cmi_hdl_model(hdl1) != cmi_hdl_model(hdl2))
return (0);
if (match >= CMI_MATCH_STEPPING &&
cmi_hdl_stepping(hdl1) != cmi_hdl_stepping(hdl2))
return (0);
return (1);
}
static int
cmi_search_list_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
{
cmi_hdl_t thdl = (cmi_hdl_t)arg1;
int match = *((int *)arg2);
cmi_hdl_t *rsltp = (cmi_hdl_t *)arg3;
if (cmi_cpu_match(thdl, whdl, match)) {
cmi_hdl_hold(whdl); /* short-term hold */
*rsltp = whdl;
return (CMI_HDL_WALK_DONE);
} else {
return (CMI_HDL_WALK_NEXT);
}
}
static cmi_t *
cmi_search_list(cmi_hdl_t hdl, int match)
{
cmi_hdl_t dhdl = NULL;
cmi_t *cmi = NULL;
ASSERT(MUTEX_HELD(&cmi_load_lock));
cmi_hdl_walk(cmi_search_list_cb, (void *)hdl, (void *)&match, &dhdl);
if (dhdl) {
cmi = HDL2CMI(dhdl);
cmi_hdl_rele(dhdl); /* held in cmi_search_list_cb */
}
return (cmi);
}
static cmi_t *
cmi_load_module(cmi_hdl_t hdl, int match, int *chosenp)
{
modctl_t *modp;
cmi_t *cmi;
int modid;
uint_t s[3];
ASSERT(MUTEX_HELD(&cmi_load_lock));
ASSERT(match == CMI_MATCH_STEPPING || match == CMI_MATCH_MODEL ||
match == CMI_MATCH_FAMILY || match == CMI_MATCH_VENDOR);
/*
* Have we already loaded a module for a cpu with the same
* vendor/family/model/stepping?
*/
if ((cmi = cmi_search_list(hdl, match)) != NULL) {
cmi_hold(cmi);
return (cmi);
}
s[0] = cmi_hdl_family(hdl);
s[1] = cmi_hdl_model(hdl);
s[2] = cmi_hdl_stepping(hdl);
modid = modload_qualified(CPUMOD_SUBDIR, CPUMOD_PREFIX,
cmi_hdl_vendorstr(hdl), ".", s, match, chosenp);
if (modid == -1)
return (NULL);
modp = mod_hold_by_id(modid);
cmi = cmi_load_modctl(modp);
if (cmi)
cmi_hold(cmi);
mod_release_mod(modp);
return (cmi);
}
/*
* Try to load a cpu module with specific support for this chip type.
*/
static cmi_t *
cmi_load_specific(cmi_hdl_t hdl, void **datap)
{
cmi_t *cmi;
int err;
int i;
ASSERT(MUTEX_HELD(&cmi_load_lock));
for (i = CMI_MATCH_STEPPING; i >= CMI_MATCH_VENDOR; i--) {
int suffixlevel;
if ((cmi = cmi_load_module(hdl, i, &suffixlevel)) == NULL)
return (NULL);
/*
* A module has loaded and has a _cmi_ops structure, and the
* module has been held for this instance. Call its cmi_init
* entry point - we expect success (0) or ENOTSUP.
*/
if ((err = cmi->cmi_ops->cmi_init(hdl, datap)) == 0) {
if (boothowto & RB_VERBOSE) {
printf("initialized cpu module '%s' on "
"chip %d core %d strand %d\n",
cmi->cmi_modp->mod_modname,
cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl),
cmi_hdl_strandid(hdl));
}
return (cmi);
} else if (err != ENOTSUP) {
cmn_err(CE_WARN, "failed to init cpu module '%s' on "
"chip %d core %d strand %d: err=%d\n",
cmi->cmi_modp->mod_modname,
cmi_hdl_chipid(hdl), cmi_hdl_coreid(hdl),
cmi_hdl_strandid(hdl), err);
}
/*
* The module failed or declined to init, so release
* it and update i to be equal to the number
* of suffices actually used in the last module path.
*/
cmi_rele(cmi);
i = suffixlevel;
}
return (NULL);
}
/*
* Load the generic IA32 MCA cpu module, which may still supplement
* itself with model-specific support through cpu model-specific modules.
*/
static cmi_t *
cmi_load_generic(cmi_hdl_t hdl, void **datap)
{
modctl_t *modp;
cmi_t *cmi;
int modid;
int err;
ASSERT(MUTEX_HELD(&cmi_load_lock));
if ((modid = modload(CPUMOD_SUBDIR, CPUMOD_PREFIX ".generic")) == -1)
return (NULL);
modp = mod_hold_by_id(modid);
cmi = cmi_load_modctl(modp);
if (cmi)
cmi_hold(cmi);
mod_release_mod(modp);
if (cmi == NULL)
return (NULL);
if ((err = cmi->cmi_ops->cmi_init(hdl, datap)) != 0) {
if (err != ENOTSUP)
cmn_err(CE_WARN, CPUMOD_PREFIX ".generic failed to "
"init: err=%d", err);
cmi_rele(cmi);
return (NULL);
}
return (cmi);
}
cmi_hdl_t
cmi_init(enum cmi_hdl_class class, uint_t chipid, uint_t coreid,
uint_t strandid)
{
cmi_t *cmi = NULL;
cmi_hdl_t hdl;
void *data;
if (cmi_no_init) {
cmi_no_mca_init = 1;
return (NULL);
}
mutex_enter(&cmi_load_lock);
if ((hdl = cmi_hdl_create(class, chipid, coreid, strandid)) == NULL) {
mutex_exit(&cmi_load_lock);
cmn_err(CE_WARN, "There will be no MCA support on chip %d "
"core %d strand %d (cmi_hdl_create returned NULL)\n",
chipid, coreid, strandid);
return (NULL);
}
if (!cmi_force_generic)
cmi = cmi_load_specific(hdl, &data);
if (cmi == NULL && (cmi = cmi_load_generic(hdl, &data)) == NULL) {
cmn_err(CE_WARN, "There will be no MCA support on chip %d "
"core %d strand %d\n", chipid, coreid, strandid);
cmi_hdl_rele(hdl);
mutex_exit(&cmi_load_lock);
return (NULL);
}
cmi_hdl_setcmi(hdl, cmi, data);
cms_init(hdl);
mutex_exit(&cmi_load_lock);
return (hdl);
}
/*
* cmi_fini is not called at the moment. It is intended to be called
* on DR deconfigure of a cpu resource. It should not be called at
* simple offline of a cpu.
*/
void
cmi_fini(cmi_hdl_t hdl)
{
cmi_t *cmi = HDL2CMI(hdl);
if (cms_present(hdl))
cms_fini(hdl);
if (CMI_OP_PRESENT(cmi, cmi_fini))
CMI_OPS(cmi)->cmi_fini(hdl);
cmi_hdl_rele(hdl); /* release hold obtained in cmi_hdl_create */
}
/*
* cmi_post_startup is called from post_startup for the boot cpu only.
*/
void
cmi_post_startup(void)
{
cmi_hdl_t hdl;
cmi_t *cmi;
if (cmi_no_mca_init != 0 ||
(hdl = cmi_hdl_any()) == NULL) /* short-term hold */
return;
cmi = HDL2CMI(hdl);
if (CMI_OP_PRESENT(cmi, cmi_post_startup))
CMI_OPS(cmi)->cmi_post_startup(hdl);
cmi_hdl_rele(hdl);
}
/*
* Called just once from start_other_cpus when all processors are started.
* This will not be called for each cpu, so the registered op must not
* assume it is called as such.
*/
void
cmi_post_mpstartup(void)
{
cmi_hdl_t hdl;
cmi_t *cmi;
if (cmi_no_mca_init != 0 ||
(hdl = cmi_hdl_any()) == NULL) /* short-term hold */
return;
cmi = HDL2CMI(hdl);
if (CMI_OP_PRESENT(cmi, cmi_post_mpstartup))
CMI_OPS(cmi)->cmi_post_mpstartup(hdl);
cmi_hdl_rele(hdl);
}
void
cmi_faulted_enter(cmi_hdl_t hdl)
{
cmi_t *cmi = HDL2CMI(hdl);
if (cmi_no_mca_init != 0)
return;
if (CMI_OP_PRESENT(cmi, cmi_faulted_enter))
CMI_OPS(cmi)->cmi_faulted_enter(hdl);
}
void
cmi_faulted_exit(cmi_hdl_t hdl)
{
cmi_t *cmi = HDL2CMI(hdl);
if (cmi_no_mca_init != 0)
return;
if (CMI_OP_PRESENT(cmi, cmi_faulted_exit))
CMI_OPS(cmi)->cmi_faulted_exit(hdl);
}
void
cmi_mca_init(cmi_hdl_t hdl)
{
cmi_t *cmi;
if (cmi_no_mca_init != 0)
return;
cmi = HDL2CMI(hdl);
if (CMI_OP_PRESENT(cmi, cmi_mca_init))
CMI_OPS(cmi)->cmi_mca_init(hdl);
}
#define CMI_RESPONSE_PANIC 0x0 /* panic must have value 0 */
#define CMI_RESPONSE_NONE 0x1
#define CMI_RESPONSE_CKILL 0x2
#define CMI_RESPONSE_REBOOT 0x3 /* not implemented */
#define CMI_RESPONSE_ONTRAP_PROT 0x4
#define CMI_RESPONSE_LOFAULT_PROT 0x5
/*
* Return 0 if we will panic in response to this machine check, otherwise
* non-zero. If the caller is cmi_mca_trap in this file then the nonzero
* return values are to be interpreted from CMI_RESPONSE_* above.
*
* This function must just return what will be done without actually
* doing anything; this includes not changing the regs.
*/
int
cmi_mce_response(struct regs *rp, uint64_t disp)
{
int panicrsp = cmi_panic_on_uncorrectable_error ? CMI_RESPONSE_PANIC :
CMI_RESPONSE_NONE;
on_trap_data_t *otp;
ASSERT(rp != NULL); /* don't call for polling, only on #MC */
/*
* If no bits are set in the disposition then there is nothing to
* worry about and we do not need to trampoline to ontrap or
* lofault handlers.
*/
if (disp == 0)
return (CMI_RESPONSE_NONE);
/*
* Unconstrained errors cannot be forgiven, even by ontrap or
* lofault protection. The data is not poisoned and may not
* even belong to the trapped context - eg a writeback of
* data that is found to be bad.
*/
if (disp & CMI_ERRDISP_UC_UNCONSTRAINED)
return (panicrsp);
/*
* ontrap OT_DATA_EC and lofault protection forgive any disposition
* other than unconstrained, even those normally forced fatal.
*/
if ((otp = curthread->t_ontrap) != NULL && otp->ot_prot & OT_DATA_EC)
return (CMI_RESPONSE_ONTRAP_PROT);
else if (curthread->t_lofault)
return (CMI_RESPONSE_LOFAULT_PROT);
/*
* Forced-fatal errors are terminal even in user mode.
*/
if (disp & CMI_ERRDISP_FORCEFATAL)
return (panicrsp);
/*
* If the trapped context is corrupt or we have no instruction pointer
* to resume at (and aren't trampolining to a fault handler)
* then in the kernel case we must panic and in usermode we
* kill the affected contract.
*/
if (disp & (CMI_ERRDISP_CURCTXBAD | CMI_ERRDISP_RIPV_INVALID))
return (USERMODE(rp->r_cs) ? CMI_RESPONSE_CKILL : panicrsp);
/*
* Anything else is harmless
*/
return (CMI_RESPONSE_NONE);
}
int cma_mca_trap_panic_suppressed = 0;
static void
cmi_mca_panic(void)
{
if (cmi_panic_on_uncorrectable_error) {
fm_panic("Unrecoverable Machine-Check Exception");
} else {
cmn_err(CE_WARN, "suppressing panic from fatal #mc");
cma_mca_trap_panic_suppressed++;
}
}
int cma_mca_trap_contract_kills = 0;
int cma_mca_trap_ontrap_forgiven = 0;
int cma_mca_trap_lofault_forgiven = 0;
/*
* Native #MC handler - we branch to here from mcetrap
*/
/*ARGSUSED*/
void
cmi_mca_trap(struct regs *rp)
{
#ifndef __xpv
cmi_hdl_t hdl = NULL;
uint64_t disp;
cmi_t *cmi;
int s;
if (cmi_no_mca_init != 0)
return;
/*
* This function can call cmn_err, and the cpu module cmi_mca_trap
* entry point may also elect to call cmn_err (e.g., if it can't
* log the error onto an errorq, say very early in boot).
* We need to let cprintf know that we must not block.
*/
s = spl8();
if ((hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) == NULL ||
(cmi = HDL2CMI(hdl)) == NULL ||
!CMI_OP_PRESENT(cmi, cmi_mca_trap)) {
cmn_err(CE_WARN, "#MC exception on cpuid %d: %s",
CPU->cpu_id,
hdl ? "handle lookup ok but no #MC handler found" :
"handle lookup failed");
if (hdl != NULL)
cmi_hdl_rele(hdl);
splx(s);
return;
}
disp = CMI_OPS(cmi)->cmi_mca_trap(hdl, rp);
switch (cmi_mce_response(rp, disp)) {
default:
cmn_err(CE_WARN, "Invalid response from cmi_mce_response");
/*FALLTHRU*/
case CMI_RESPONSE_PANIC:
cmi_mca_panic();
break;
case CMI_RESPONSE_NONE:
break;
case CMI_RESPONSE_CKILL:
ttolwp(curthread)->lwp_pcb.pcb_flags |= ASYNC_HWERR;
aston(curthread);
cma_mca_trap_contract_kills++;
break;
case CMI_RESPONSE_ONTRAP_PROT: {
on_trap_data_t *otp = curthread->t_ontrap;
otp->ot_trap = OT_DATA_EC;
rp->r_pc = otp->ot_trampoline;
cma_mca_trap_ontrap_forgiven++;
break;
}
case CMI_RESPONSE_LOFAULT_PROT:
rp->r_r0 = EFAULT;
rp->r_pc = curthread->t_lofault;
cma_mca_trap_lofault_forgiven++;
break;
}
cmi_hdl_rele(hdl);
splx(s);
#endif /* __xpv */
}
void
cmi_hdl_poke(cmi_hdl_t hdl)
{
cmi_t *cmi = HDL2CMI(hdl);
if (!CMI_OP_PRESENT(cmi, cmi_hdl_poke))
return;
CMI_OPS(cmi)->cmi_hdl_poke(hdl);
}
void
cmi_mc_register(cmi_hdl_t hdl, const cmi_mc_ops_t *mcops, void *mcdata)
{
if (!cmi_no_mca_init)
cmi_hdl_setmc(hdl, mcops, mcdata);
}
cmi_errno_t
cmi_mc_patounum(uint64_t pa, uint8_t valid_hi, uint8_t valid_lo, uint32_t synd,
int syndtype, mc_unum_t *up)
{
const struct cmi_mc_ops *mcops;
cmi_hdl_t hdl;
cmi_errno_t rv;
if (cmi_no_mca_init ||
(hdl = cmi_hdl_any()) == NULL) /* short-term hold */
return (CMIERR_MC_ABSENT);
if ((mcops = cmi_hdl_getmcops(hdl)) == NULL ||
mcops->cmi_mc_patounum == NULL) {
cmi_hdl_rele(hdl);
return (CMIERR_MC_NOTSUP);
}
rv = mcops->cmi_mc_patounum(cmi_hdl_getmcdata(hdl), pa, valid_hi,
valid_lo, synd, syndtype, up);
cmi_hdl_rele(hdl);
return (rv);
}
cmi_errno_t
cmi_mc_unumtopa(mc_unum_t *up, nvlist_t *nvl, uint64_t *pap)
{
const struct cmi_mc_ops *mcops;
cmi_hdl_t hdl;
cmi_errno_t rv;
if (up != NULL && nvl != NULL)
return (CMIERR_API); /* convert from just one form */
if (cmi_no_mca_init ||
(hdl = cmi_hdl_any()) == NULL) /* short-term hold */
return (CMIERR_MC_ABSENT);
if ((mcops = cmi_hdl_getmcops(hdl)) == NULL ||
mcops->cmi_mc_unumtopa == NULL) {
cmi_hdl_rele(hdl);
if (nvl != NULL && nvlist_lookup_uint64(nvl,
FM_FMRI_MEM_PHYSADDR, pap) == 0) {
return (CMIERR_MC_PARTIALUNUMTOPA);
} else {
return (mcops && mcops->cmi_mc_unumtopa ?
CMIERR_MC_NOTSUP : CMIERR_MC_ABSENT);
}
}
rv = mcops->cmi_mc_unumtopa(cmi_hdl_getmcdata(hdl), up, nvl, pap);
cmi_hdl_rele(hdl);
return (rv);
}
void
cmi_mc_logout(cmi_hdl_t hdl, boolean_t ismc, boolean_t sync)
{
const struct cmi_mc_ops *mcops;
if (cmi_no_mca_init || (mcops = cmi_hdl_getmcops(hdl)) == NULL)
return;
if (mcops->cmi_mc_logout != NULL)
mcops->cmi_mc_logout(hdl, ismc, sync);
}
cmi_errno_t
cmi_hdl_msrinject(cmi_hdl_t hdl, cmi_mca_regs_t *regs, uint_t nregs,
int force)
{
cmi_t *cmi = cmi_hdl_getcmi(hdl);
if (!CMI_OP_PRESENT(cmi, cmi_msrinject))
return (CMIERR_NOTSUP);
return (CMI_OPS(cmi)->cmi_msrinject(hdl, regs, nregs, force));
}
boolean_t
cmi_panic_on_ue(void)
{
return (cmi_panic_on_uncorrectable_error ? B_TRUE : B_FALSE);
}