apic_introp.c revision 86a9c507121ec77a92601d8844a5ca82373cd4aa
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* apic_introp.c:
* Has code for Advanced DDI interrupt framework support.
*/
#include <sys/cpuvar.h>
#include <sys/psm.h>
#include <sys/archsystm.h>
#include <sys/apic.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/mach_intr.h>
#include <sys/sysmacros.h>
#include <sys/trap.h>
#include <sys/pci.h>
#include <sys/pci_intr_lib.h>
extern struct av_head autovect[];
/*
* Local Function Prototypes
*/
apic_irq_t *apic_find_irq(dev_info_t *, struct intrspec *, int);
/*
* MSI support flag:
* reflects whether MSI is supported at APIC level
* it can also be patched through /etc/system
*
* 0 = default value - don't know and need to call apic_check_msi_support()
* to find out then set it accordingly
* 1 = supported
* -1 = not supported
*/
int apic_support_msi = 0;
/* Multiple vector support for MSI */
int apic_multi_msi_enable = 1;
/* Multiple vector support for MSI-X */
int apic_msix_enable = 1;
/*
* apic_pci_msi_enable_vector:
* Set the address/data fields in the MSI/X capability structure
* XXX: MSI-X support
*/
/* ARGSUSED */
void
apic_pci_msi_enable_vector(apic_irq_t *irq_ptr, int type, int inum, int vector,
int count, int target_apic_id)
{
uint64_t msi_addr, msi_data;
ushort_t msi_ctrl;
dev_info_t *dip = irq_ptr->airq_dip;
int cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(dip);
#if !defined(__xpv)
msi_regs_t msi_regs;
#endif /* ! __xpv */
DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
"\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
ddi_driver_name(dip), inum, vector, target_apic_id));
ASSERT((handle != NULL) && (cap_ptr != 0));
#if !defined(__xpv)
msi_regs.mr_data = vector;
msi_regs.mr_addr = target_apic_id;
apic_vt_ops->apic_intrr_alloc_entry(irq_ptr);
apic_vt_ops->apic_intrr_map_entry(irq_ptr, (void *)&msi_regs);
apic_vt_ops->apic_intrr_record_msi(irq_ptr, &msi_regs);
/* MSI Address */
msi_addr = msi_regs.mr_addr;
/* MSI Data: MSI is edge triggered according to spec */
msi_data = msi_regs.mr_data;
#else
/* MSI Address */
msi_addr = (MSI_ADDR_HDR |
(target_apic_id << MSI_ADDR_DEST_SHIFT));
msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
(MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT));
/* MSI Data: MSI is edge triggered according to spec */
msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector);
#endif /* ! __xpv */
DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
"data=0x%lx\n", (long)msi_addr, (long)msi_data));
if (type == DDI_INTR_TYPE_MSI) {
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
/* Set the bits to inform how many MSIs are enabled */
msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT);
pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
#if !defined(__xpv)
/*
* Only set vector if not on hypervisor
*/
pci_config_put32(handle,
cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr);
if (msi_ctrl & PCI_MSI_64BIT_MASK) {
pci_config_put32(handle,
cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32);
pci_config_put16(handle,
cap_ptr + PCI_MSI_64BIT_DATA, msi_data);
} else {
pci_config_put16(handle,
cap_ptr + PCI_MSI_32BIT_DATA, msi_data);
}
} else if (type == DDI_INTR_TYPE_MSIX) {
uintptr_t off;
ddi_intr_msix_t *msix_p = i_ddi_get_msix(dip);
ASSERT(msix_p != NULL);
/* Offset into the "inum"th entry in the MSI-X table */
off = (uintptr_t)msix_p->msix_tbl_addr +
(inum * PCI_MSIX_VECTOR_SIZE);
ddi_put32(msix_p->msix_tbl_hdl,
(uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data);
ddi_put64(msix_p->msix_tbl_hdl,
(uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr);
#endif /* ! __xpv */
}
}
#if !defined(__xpv)
/*
* This function returns the no. of vectors available for the pri.
* dip is not used at this moment. If we really don't need that,
* it will be removed.
*/
/*ARGSUSED*/
int
apic_navail_vector(dev_info_t *dip, int pri)
{
int lowest, highest, i, navail, count;
DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
(void *)dip, pri));
highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
navail = count = 0;
if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
lowest -= APIC_VECTOR_PER_IPL;
/* It has to be contiguous */
for (i = lowest; i < highest; i++) {
count = 0;
while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
(i < highest)) {
if (APIC_CHECK_RESERVE_VECTORS(i))
break;
count++;
i++;
}
if (count > navail)
navail = count;
}
return (navail);
}
#endif /* ! __xpv */
/*
* Finds "count" contiguous MSI vectors starting at the proper alignment
* at "pri".
* Caller needs to make sure that count has to be power of 2 and should not
* be < 1.
*/
uchar_t
apic_find_multi_vectors(int pri, int count)
{
int lowest, highest, i, navail, start, msibits;
DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
pri, count));
highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
navail = 0;
if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
lowest -= APIC_VECTOR_PER_IPL;
/*
* msibits is the no. of lower order message data bits for the
* allocated MSI vectors and is used to calculate the aligned
* starting vector
*/
msibits = count - 1;
/* It has to be contiguous */
for (i = lowest; i < highest; i++) {
navail = 0;
/*
* starting vector has to be aligned accordingly for
* multiple MSIs
*/
if (msibits)
i = (i + msibits) & ~msibits;
start = i;
while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
(i < highest)) {
if (APIC_CHECK_RESERVE_VECTORS(i))
break;
navail++;
if (navail >= count)
return (start);
i++;
}
}
return (0);
}
/*
* It finds the apic_irq_t associates with the dip, ispec and type.
*/
apic_irq_t *
apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
{
apic_irq_t *irqp;
int i;
DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
"ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
ispec->intrspec_pri, type));
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
for (irqp = apic_irq_table[i]; irqp; irqp = irqp->airq_next) {
if ((irqp->airq_dip == dip) &&
(irqp->airq_origirq == ispec->intrspec_vec) &&
(irqp->airq_ipl == ispec->intrspec_pri)) {
if (type == DDI_INTR_TYPE_MSI) {
if (irqp->airq_mps_intr_index ==
MSI_INDEX)
return (irqp);
} else if (type == DDI_INTR_TYPE_MSIX) {
if (irqp->airq_mps_intr_index ==
MSIX_INDEX)
return (irqp);
} else
return (irqp);
}
}
}
DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
return (NULL);
}
#if !defined(__xpv)
/*
* This function will return the pending bit of the irqp.
* It either comes from the IRR register of the APIC or the RDT
* entry of the I/O APIC.
* For the IRR to work, it needs to be to its binding CPU
*/
static int
apic_get_pending(apic_irq_t *irqp, int type)
{
int bit, index, irr, pending;
int intin_no;
int apic_ix;
DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
"type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
type));
/* need to get on the bound cpu */
mutex_enter(&cpu_lock);
affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
index = irqp->airq_vector / 32;
bit = irqp->airq_vector % 32;
irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
affinity_clear();
mutex_exit(&cpu_lock);
pending = (irr & (1 << bit)) ? 1 : 0;
if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
/* check I/O APIC for fixed interrupt */
intin_no = irqp->airq_intin_no;
apic_ix = irqp->airq_ioapicindex;
pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) &
AV_PENDING) ? 1 : 0;
}
return (pending);
}
/*
* This function will clear the mask for the interrupt on the I/O APIC
*/
static void
apic_clear_mask(apic_irq_t *irqp)
{
int intin_no;
ulong_t iflag;
int32_t rdt_entry;
int apic_ix;
DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
(void *)irqp));
intin_no = irqp->airq_intin_no;
apic_ix = irqp->airq_ioapicindex;
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
/* clear mask */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
((~AV_MASK) & rdt_entry));
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
/*
* This function will mask the interrupt on the I/O APIC
*/
static void
apic_set_mask(apic_irq_t *irqp)
{
int intin_no;
int apic_ix;
ulong_t iflag;
int32_t rdt_entry;
DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
intin_no = irqp->airq_intin_no;
apic_ix = irqp->airq_ioapicindex;
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
/* mask it */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
(AV_MASK | rdt_entry));
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
void
apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
{
int i;
apic_irq_t *irqptr;
struct intrspec ispec;
DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
"count: %x pri: %x type: %x\n",
(void *)dip, inum, count, pri, type));
/* for MSI/X only */
if (!DDI_INTR_IS_MSI_OR_MSIX(type))
return;
for (i = 0; i < count; i++) {
DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
"pri=0x%x count=0x%x\n", inum, pri, count));
ispec.intrspec_vec = inum + i;
ispec.intrspec_pri = pri;
if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
"dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
"failed\n", (void *)dip, inum, pri));
continue;
}
irqptr->airq_mps_intr_index = FREE_INDEX;
apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
}
}
#endif /* ! __xpv */
/*
* check whether the system supports MSI
*
* If PCI-E capability is found, then this must be a PCI-E system.
* Since MSI is required for PCI-E system, it returns PSM_SUCCESS
* to indicate this system supports MSI.
*/
int
apic_check_msi_support()
{
dev_info_t *cdip;
char dev_type[16];
int dev_len;
DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n"));
/*
* check whether the first level children of root_node have
* PCI-E capability
*/
for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL;
cdip = ddi_get_next_sibling(cdip)) {
DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p,"
" driver: %s, binding: %s, nodename: %s\n", (void *)cdip,
ddi_driver_name(cdip), ddi_binding_name(cdip),
ddi_node_name(cdip)));
dev_len = sizeof (dev_type);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
"device_type", (caddr_t)dev_type, &dev_len)
!= DDI_PROP_SUCCESS)
continue;
if (strcmp(dev_type, "pciex") == 0)
return (PSM_SUCCESS);
}
/* MSI is not supported on this system */
DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
"device_type found\n"));
return (PSM_FAILURE);
}
#if !defined(__xpv)
/*
* apic_pci_msi_unconfigure:
*
* This and next two interfaces are copied from pci_intr_lib.c
* Do ensure that these two files stay in sync.
* These needed to be copied over here to avoid a deadlock situation on
* certain mp systems that use MSI interrupts.
*
* IMPORTANT regards next three interfaces:
* i) are called only for MSI/X interrupts.
* ii) called with interrupts disabled, and must not block
*/
void
apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
{
ushort_t msi_ctrl;
int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip);
ASSERT((handle != NULL) && (cap_ptr != 0));
if (type == DDI_INTR_TYPE_MSI) {
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
msi_ctrl &= (~PCI_MSI_MME_MASK);
pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0);
if (msi_ctrl & PCI_MSI_64BIT_MASK) {
pci_config_put16(handle,
cap_ptr + PCI_MSI_64BIT_DATA, 0);
pci_config_put32(handle,
cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0);
} else {
pci_config_put16(handle,
cap_ptr + PCI_MSI_32BIT_DATA, 0);
}
} else if (type == DDI_INTR_TYPE_MSIX) {
uintptr_t off;
uint32_t mask;
ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip);
ASSERT(msix_p != NULL);
/* Offset into "inum"th entry in the MSI-X table & mask it */
off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1));
/* Offset into the "inum"th entry in the MSI-X table */
off = (uintptr_t)msix_p->msix_tbl_addr +
(inum * PCI_MSIX_VECTOR_SIZE);
/* Reset the "data" and "addr" bits */
ddi_put32(msix_p->msix_tbl_hdl,
(uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0);
ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0);
}
}
#endif /* __xpv */
/*
* apic_pci_msi_enable_mode:
*/
void
apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum)
{
ushort_t msi_ctrl;
int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip);
ASSERT((handle != NULL) && (cap_ptr != 0));
if (type == DDI_INTR_TYPE_MSI) {
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
if ((msi_ctrl & PCI_MSI_ENABLE_BIT))
return;
msi_ctrl |= PCI_MSI_ENABLE_BIT;
pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
} else if (type == DDI_INTR_TYPE_MSIX) {
uintptr_t off;
uint32_t mask;
ddi_intr_msix_t *msix_p;
msix_p = i_ddi_get_msix(rdip);
ASSERT(msix_p != NULL);
/* Offset into "inum"th entry in the MSI-X table & clear mask */
off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask & ~1));
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) {
msi_ctrl |= PCI_MSIX_ENABLE_BIT;
pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
msi_ctrl);
}
}
}
/*
* apic_pci_msi_disable_mode:
*/
void
apic_pci_msi_disable_mode(dev_info_t *rdip, int type)
{
ushort_t msi_ctrl;
int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip);
ASSERT((handle != NULL) && (cap_ptr != 0));
if (type == DDI_INTR_TYPE_MSI) {
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
if (!(msi_ctrl & PCI_MSI_ENABLE_BIT))
return;
msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */
pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
} else if (type == DDI_INTR_TYPE_MSIX) {
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
if (msi_ctrl & PCI_MSIX_ENABLE_BIT) {
msi_ctrl &= ~PCI_MSIX_ENABLE_BIT;
pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
msi_ctrl);
}
}
}
#if !defined(__xpv)
static int
apic_set_cpu(int irqno, int cpu, int *result)
{
apic_irq_t *irqp;
ulong_t iflag;
int ret;
DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n"));
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
mutex_exit(&airq_mutex);
if (irqp == NULL) {
*result = ENXIO;
return (PSM_FAILURE);
}
/* Fail if this is an MSI intr and is part of a group. */
if ((irqp->airq_mps_intr_index == MSI_INDEX) &&
(irqp->airq_intin_no > 1)) {
*result = ENXIO;
return (PSM_FAILURE);
}
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
ret = apic_rebind_all(irqp, cpu);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
if (ret) {
*result = EIO;
return (PSM_FAILURE);
}
/*
* keep tracking the default interrupt cpu binding
*/
irqp->airq_cpu = cpu;
*result = 0;
return (PSM_SUCCESS);
}
static int
apic_grp_set_cpu(int irqno, int new_cpu, int *result)
{
dev_info_t *orig_dip;
uint32_t orig_cpu;
ulong_t iflag;
apic_irq_t *irqps[PCI_MSI_MAX_INTRS];
int i;
int cap_ptr;
int msi_mask_off;
ushort_t msi_ctrl;
uint32_t msi_pvm;
ddi_acc_handle_t handle;
int num_vectors = 0;
uint32_t vector;
DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n"));
/*
* Take mutex to insure that table doesn't change out from underneath
* us while we're playing with it.
*/
mutex_enter(&airq_mutex);
irqps[0] = apic_irq_table[irqno];
orig_cpu = irqps[0]->airq_temp_cpu;
orig_dip = irqps[0]->airq_dip;
num_vectors = irqps[0]->airq_intin_no;
vector = irqps[0]->airq_vector;
/* A "group" of 1 */
if (num_vectors == 1) {
mutex_exit(&airq_mutex);
return (apic_set_cpu(irqno, new_cpu, result));
}
*result = ENXIO;
if (irqps[0]->airq_mps_intr_index != MSI_INDEX) {
mutex_exit(&airq_mutex);
DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n"));
goto set_grp_intr_done;
}
if ((num_vectors < 1) || ((num_vectors - 1) & vector)) {
mutex_exit(&airq_mutex);
DDI_INTR_IMPLDBG((CE_CONT,
"set_grp: base vec not part of a grp or not aligned: "
"vec:0x%x, num_vec:0x%x\n", vector, num_vectors));
goto set_grp_intr_done;
}
DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n",
num_vectors));
ASSERT((num_vectors + vector) < APIC_MAX_VECTOR);
*result = EIO;
/*
* All IRQ entries in the table for the given device will be not
* shared. Since they are not shared, the dip in the table will
* be true to the device of interest.
*/
for (i = 1; i < num_vectors; i++) {
irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]];
if (irqps[i] == NULL) {
mutex_exit(&airq_mutex);
goto set_grp_intr_done;
}
#ifdef DEBUG
/* Sanity check: CPU and dip is the same for all entries. */
if ((irqps[i]->airq_dip != orig_dip) ||
(irqps[i]->airq_temp_cpu != orig_cpu)) {
mutex_exit(&airq_mutex);
DDI_INTR_IMPLDBG((CE_CONT,
"set_grp: cpu or dip for vec 0x%x difft than for "
"vec 0x%x\n", vector, vector + i));
DDI_INTR_IMPLDBG((CE_CONT,
" cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
irqps[i]->airq_temp_cpu, (void *)orig_dip,
(void *)irqps[i]->airq_dip));
goto set_grp_intr_done;
}
#endif /* DEBUG */
}
mutex_exit(&airq_mutex);
cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip);
handle = i_ddi_get_pci_config_handle(orig_dip);
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
/* MSI Per vector masking is supported. */
if (msi_ctrl & PCI_MSI_PVM_MASK) {
if (msi_ctrl & PCI_MSI_64BIT_MASK)
msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
else
msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
msi_pvm = pci_config_get32(handle, msi_mask_off);
pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
DDI_INTR_IMPLDBG((CE_CONT,
"set_grp: pvm supported. Mask set to 0x%x\n",
pci_config_get32(handle, msi_mask_off)));
}
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/*
* Do the first rebind and check for errors. Apic_rebind_all returns
* an error if the CPU is not accepting interrupts. If the first one
* succeeds they all will.
*/
if (apic_rebind_all(irqps[0], new_cpu))
(void) apic_rebind_all(irqps[0], orig_cpu);
else {
irqps[0]->airq_cpu = new_cpu;
for (i = 1; i < num_vectors; i++) {
(void) apic_rebind_all(irqps[i], new_cpu);
irqps[i]->airq_cpu = new_cpu;
}
*result = 0; /* SUCCESS */
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
/* Reenable vectors if per vector masking is supported. */
if (msi_ctrl & PCI_MSI_PVM_MASK) {
pci_config_put32(handle, msi_mask_off, msi_pvm);
DDI_INTR_IMPLDBG((CE_CONT,
"set_grp: pvm supported. Mask restored to 0x%x\n",
pci_config_get32(handle, msi_mask_off)));
}
set_grp_intr_done:
if (*result != 0)
return (PSM_FAILURE);
return (PSM_SUCCESS);
}
#else /* __xpv */
/*
* We let the hypervisor deal with msi configutation
* so just stub this out.
*/
/* ARGSUSED */
void
apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
{
}
#endif /* __xpv */
int
apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p)
{
struct autovec *av_dev;
uchar_t irqno;
int i;
apic_irq_t *irq_p;
/* Sanity check the vector/irq argument. */
ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR));
mutex_enter(&airq_mutex);
/*
* Convert the vecirq arg to an irq using vector_to_irq table
* if the arg is a vector. Pass thru if already an irq.
*/
if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) ==
PSMGI_INTRBY_VEC)
irqno = apic_vector_to_irq[vecirq];
else
irqno = vecirq;
irq_p = apic_irq_table[irqno];
if ((irq_p == NULL) ||
(irq_p->airq_temp_cpu == IRQ_UNBOUND) ||
(irq_p->airq_temp_cpu == IRQ_UNINIT)) {
mutex_exit(&airq_mutex);
return (PSM_FAILURE);
}
if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
/* Get the (temp) cpu from apic_irq table, indexed by irq. */
intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu;
/* Return user bound info for intrd. */
if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
}
}
if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
intr_params_p->avgi_vector = irq_p->airq_vector;
if (intr_params_p->avgi_req_flags &
(PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
/* Get number of devices from apic_irq table shared field. */
intr_params_p->avgi_num_devs = irq_p->airq_share;
if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) {
intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS;
/* Some devices have NULL dip. Don't count these. */
if (intr_params_p->avgi_num_devs > 0) {
for (i = 0, av_dev = autovect[irqno].avh_link;
av_dev; av_dev = av_dev->av_link)
if (av_dev->av_vector && av_dev->av_dip)
i++;
intr_params_p->avgi_num_devs =
MIN(intr_params_p->avgi_num_devs, i);
}
/* There are no viable dips to return. */
if (intr_params_p->avgi_num_devs == 0)
intr_params_p->avgi_dip_list = NULL;
else { /* Return list of dips */
/* Allocate space in array for that number of devs. */
intr_params_p->avgi_dip_list = kmem_zalloc(
intr_params_p->avgi_num_devs *
sizeof (dev_info_t *),
KM_SLEEP);
/*
* Loop through the device list of the autovec table
* filling in the dip array.
*
* Note that the autovect table may have some special
* entries which contain NULL dips. These will be
* ignored.
*/
for (i = 0, av_dev = autovect[irqno].avh_link;
av_dev; av_dev = av_dev->av_link)
if (av_dev->av_vector && av_dev->av_dip)
intr_params_p->avgi_dip_list[i++] =
av_dev->av_dip;
}
}
mutex_exit(&airq_mutex);
return (PSM_SUCCESS);
}
#if !defined(__xpv)
/*
* This function provides external interface to the nexus for all
* functionalities related to the new DDI interrupt framework.
*
* Input:
* dip - pointer to the dev_info structure of the requested device
* hdlp - pointer to the internal interrupt handle structure for the
* requested interrupt
* intr_op - opcode for this call
* result - pointer to the integer that will hold the result to be
* passed back if return value is PSM_SUCCESS
*
* Output:
* return value is either PSM_SUCCESS or PSM_FAILURE
*/
int
apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
psm_intr_op_t intr_op, int *result)
{
int cap;
int count_vec;
int old_priority;
int new_priority;
int new_cpu;
apic_irq_t *irqp;
struct intrspec *ispec, intr_spec;
DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
"intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
ispec = &intr_spec;
ispec->intrspec_pri = hdlp->ih_pri;
ispec->intrspec_vec = hdlp->ih_inum;
ispec->intrspec_func = hdlp->ih_cb_func;
switch (intr_op) {
case PSM_INTR_OP_CHECK_MSI:
/*
* Check MSI/X is supported or not at APIC level and
* masked off the MSI/X bits in hdlp->ih_type if not
* supported before return. If MSI/X is supported,
* leave the ih_type unchanged and return.
*
* hdlp->ih_type passed in from the nexus has all the
* interrupt types supported by the device.
*/
if (apic_support_msi == 0) {
/*
* if apic_support_msi is not set, call
* apic_check_msi_support() to check whether msi
* is supported first
*/
if (apic_check_msi_support() == PSM_SUCCESS)
apic_support_msi = 1;
else
apic_support_msi = -1;
}
if (apic_support_msi == 1) {
if (apic_msix_enable)
*result = hdlp->ih_type;
else
*result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
} else
*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
DDI_INTR_TYPE_MSIX);
break;
case PSM_INTR_OP_ALLOC_VECTORS:
if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
*result = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
hdlp->ih_scratch1, hdlp->ih_pri,
(int)(uintptr_t)hdlp->ih_scratch2);
else
*result = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
hdlp->ih_scratch1, hdlp->ih_pri,
(int)(uintptr_t)hdlp->ih_scratch2);
break;
case PSM_INTR_OP_FREE_VECTORS:
apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
hdlp->ih_pri, hdlp->ih_type);
break;
case PSM_INTR_OP_NAVAIL_VECTORS:
*result = apic_navail_vector(dip, hdlp->ih_pri);
break;
case PSM_INTR_OP_XLATE_VECTOR:
ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
if (*result == -1)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_GET_PENDING:
if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
return (PSM_FAILURE);
*result = apic_get_pending(irqp, hdlp->ih_type);
break;
case PSM_INTR_OP_CLEAR_MASK:
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
if (irqp == NULL)
return (PSM_FAILURE);
apic_clear_mask(irqp);
break;
case PSM_INTR_OP_SET_MASK:
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
return (PSM_FAILURE);
apic_set_mask(irqp);
break;
case PSM_INTR_OP_GET_CAP:
cap = DDI_INTR_FLAG_PENDING;
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
cap |= DDI_INTR_FLAG_MASKABLE;
else if (hdlp->ih_type == DDI_INTR_TYPE_MSIX)
cap |= DDI_INTR_FLAG_RETARGETABLE;
*result = cap;
break;
case PSM_INTR_OP_GET_SHARED:
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
return (PSM_FAILURE);
*result = (irqp->airq_share > 1) ? 1: 0;
break;
case PSM_INTR_OP_SET_PRI:
old_priority = hdlp->ih_pri; /* save old value */
new_priority = *(int *)result; /* try the new value */
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
return (PSM_SUCCESS);
}
/* Now allocate the vectors */
if (hdlp->ih_type == DDI_INTR_TYPE_MSI) {
/* SET_PRI does not support the case of multiple MSI */
if (i_ddi_intr_get_current_nintrs(hdlp->ih_dip) > 1)
return (PSM_FAILURE);
count_vec = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
1, new_priority,
DDI_INTR_ALLOC_STRICT);
} else {
count_vec = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
1, new_priority,
DDI_INTR_ALLOC_STRICT);
}
/* Did we get new vectors? */
if (!count_vec)
return (PSM_FAILURE);
/* Finally, free the previously allocated vectors */
apic_free_vectors(dip, hdlp->ih_inum, count_vec,
old_priority, hdlp->ih_type);
break;
case PSM_INTR_OP_SET_CPU:
case PSM_INTR_OP_GRP_SET_CPU:
/*
* The interrupt handle given here has been allocated
* specifically for this command, and ih_private carries
* a CPU value.
*/
new_cpu = (int)(intptr_t)hdlp->ih_private;
if (!apic_cpu_in_range(new_cpu)) {
DDI_INTR_IMPLDBG((CE_CONT,
"[grp_]set_cpu: cpu out of range: %d\n", new_cpu));
*result = EINVAL;
return (PSM_FAILURE);
}
if (hdlp->ih_vector > APIC_MAX_VECTOR) {
DDI_INTR_IMPLDBG((CE_CONT,
"[grp_]set_cpu: vector out of range: %d\n",
hdlp->ih_vector));
*result = EINVAL;
return (PSM_FAILURE);
}
if (!(hdlp->ih_flags & PSMGI_INTRBY_IRQ))
hdlp->ih_vector = apic_vector_to_irq[hdlp->ih_vector];
if (intr_op == PSM_INTR_OP_SET_CPU) {
if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) !=
PSM_SUCCESS)
return (PSM_FAILURE);
} else {
if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu,
result) != PSM_SUCCESS)
return (PSM_FAILURE);
}
break;
case PSM_INTR_OP_GET_INTR:
/*
* The interrupt handle given here has been allocated
* specifically for this command, and ih_private carries
* a pointer to a apic_get_intr_t.
*/
if (apic_get_vector_intr_info(
hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_APIC_TYPE:
hdlp->ih_private = apic_get_apic_type();
hdlp->ih_ver = apic_get_apic_version();
break;
case PSM_INTR_OP_SET_CAP:
default:
return (PSM_FAILURE);
}
return (PSM_SUCCESS);
}
#endif /* !__xpv */