apic.c revision c8589f13ba961772dd5a0d699c5bb926f3006c33
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* PSMI 1.1 extensions are supported only in 2.6 and later versions.
* PSMI 1.2 extensions are supported only in 2.7 and later versions.
* PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
* PSMI 1.5 extensions are supported in Solaris Nevada.
*/
#define PSMI_1_5
#include <sys/processor.h>
#include <sys/time.h>
#include <sys/psm.h>
#include <sys/smp_impldefs.h>
#include <sys/cram.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/psm_common.h>
#include <sys/apic.h>
#include <sys/pit.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/pci.h>
#include <sys/promif.h>
#include <sys/x86_archext.h>
#include <sys/cpc_impl.h>
#include <sys/uadmin.h>
#include <sys/panic.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/trap.h>
#include <sys/machsystm.h>
#include <sys/sysmacros.h>
#include <sys/cpuvar.h>
#include <sys/rm_platter.h>
#include <sys/privregs.h>
#include <sys/cyclic.h>
#include <sys/note.h>
#include <sys/pci_intr_lib.h>
#include <sys/spl.h>
/*
* Local Function Prototypes
*/
static void apic_init_intr();
static void apic_ret();
static int get_apic_cmd1();
static int get_apic_pri();
static void apic_nmi_intr(caddr_t arg);
/*
* standard MP entries
*/
static int apic_probe();
static int apic_clkinit();
static int apic_getclkirq(int ipl);
static uint_t apic_calibrate(volatile uint32_t *addr,
uint16_t *pit_ticks_adj);
static hrtime_t apic_gettime();
static hrtime_t apic_gethrtime();
static void apic_init();
static void apic_picinit(void);
static int apic_cpu_start(processorid_t, caddr_t);
static int apic_post_cpu_start(void);
static void apic_send_ipi(int cpun, int ipl);
static void apic_set_softintr(int softintr);
static void apic_set_idlecpu(processorid_t cpun);
static void apic_unset_idlecpu(processorid_t cpun);
static int apic_softlvl_to_irq(int ipl);
static int apic_intr_enter(int ipl, int *vect);
static void apic_setspl(int ipl);
static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
static void apic_shutdown(int cmd, int fcn);
static void apic_preshutdown(int cmd, int fcn);
static int apic_disable_intr(processorid_t cpun);
static void apic_enable_intr(processorid_t cpun);
static processorid_t apic_get_next_processorid(processorid_t cpun);
static int apic_get_ipivect(int ipl, int type);
static void apic_timer_reprogram(hrtime_t time);
static void apic_timer_enable(void);
static void apic_timer_disable(void);
static void apic_post_cyclic_setup(void *arg);
static int apic_oneshot = 0;
int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */
/* Now the ones for Dynamic Interrupt distribution */
int apic_enable_dynamic_migration = 0;
/*
* These variables are frequently accessed in apic_intr_enter(),
* apic_intr_exit and apic_setspl, so group them together
*/
volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */
int apic_setspl_delay = 1; /* apic_setspl - delay enable */
int apic_clkvect;
/* vector at which error interrupts come in */
int apic_errvect;
int apic_enable_error_intr = 1;
int apic_error_display_delay = 100;
/* vector at which performance counter overflow interrupts come in */
int apic_cpcovf_vect;
int apic_enable_cpcovf_intr = 1;
/*
* The following vector assignments influence the value of ipltopri and
* vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
* idle to 0 and IPL 0 to 0xf to differentiate idle in case
* we care to do so in future. Note some IPLs which are rarely used
* will share the vector ranges and heavily used IPLs (5 and 6) have
* a wide range.
*
* This array is used to initialize apic_ipls[] (in apic_init()).
*
* IPL Vector range. as passed to intr_enter
* 0 none.
* 1,2,3 0x20-0x2f 0x0-0xf
* 4 0x30-0x3f 0x10-0x1f
* 5 0x40-0x5f 0x20-0x3f
* 6 0x60-0x7f 0x40-0x5f
* 7,8,9 0x80-0x8f 0x60-0x6f
* 10 0x90-0x9f 0x70-0x7f
* 11 0xa0-0xaf 0x80-0x8f
* ... ...
* 15 0xe0-0xef 0xc0-0xcf
* 15 0xf0-0xff 0xd0-0xdf
*/
uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
};
/*
* The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
* NOTE that this is vector as passed into intr_enter which is
* programmed vector - 0x20 (APIC_BASE_VECT)
*/
uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */
/* The taskpri to be programmed into apic to mask given ipl */
#if defined(__amd64)
uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */
#endif
/*
* Correlation of the hardware vector to the IPL in use, initialized
* from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate
* to the IPLs in apic_vectortoipl on some systems that share interrupt lines
* connected to errata-stricken IOAPICs
*/
uchar_t apic_ipls[APIC_AVAIL_VECTOR];
/*
* Patchable global variables.
*/
int apic_forceload = 0;
int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */
/* 1 - use gettime() for performance */
int apic_flat_model = 0; /* 0 - clustered. 1 - flat */
int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */
int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */
int apic_panic_on_nmi = 0;
int apic_panic_on_apic_error = 0;
int apic_verbose = 0;
/* minimum number of timer ticks to program to */
int apic_min_timer_ticks = 1;
/*
* Local static data
*/
static struct psm_ops apic_ops = {
apic_probe,
apic_init,
apic_picinit,
apic_intr_enter,
apic_intr_exit,
apic_setspl,
apic_addspl,
apic_delspl,
apic_disable_intr,
apic_enable_intr,
apic_softlvl_to_irq,
apic_set_softintr,
apic_set_idlecpu,
apic_unset_idlecpu,
apic_clkinit,
apic_getclkirq,
(void (*)(void))NULL, /* psm_hrtimeinit */
apic_gethrtime,
apic_get_next_processorid,
apic_cpu_start,
apic_post_cpu_start,
apic_shutdown,
apic_get_ipivect,
apic_send_ipi,
(int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */
(void (*)(int, char *))NULL, /* psm_notify_error */
(void (*)(int))NULL, /* psm_notify_func */
apic_timer_reprogram,
apic_timer_enable,
apic_timer_disable,
apic_post_cyclic_setup,
apic_preshutdown,
apic_intr_ops /* Advanced DDI Interrupt framework */
};
static struct psm_info apic_psm_info = {
PSM_INFO_VER01_5, /* version */
PSM_OWN_EXCLUSIVE, /* ownership */
(struct psm_ops *)&apic_ops, /* operation */
"pcplusmp", /* machine name */
"pcplusmp v1.4 compatible %I%",
};
static void *apic_hdlp;
#ifdef DEBUG
int apic_debug = 0;
int apic_restrict_vector = 0;
int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
int apic_debug_msgbufindex = 0;
#endif /* DEBUG */
apic_cpus_info_t *apic_cpus;
cpuset_t apic_cpumask;
uint_t apic_flag;
/* Flag to indicate that we need to shut down all processors */
static uint_t apic_shutdown_processors;
uint_t apic_nsec_per_intr = 0;
/*
* apic_let_idle_redistribute can have the following values:
* 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
* apic_redistribute_lock prevents multiple idle cpus from redistributing
*/
int apic_num_idle_redistributions = 0;
static int apic_let_idle_redistribute = 0;
static uint_t apic_nticks = 0;
static uint_t apic_skipped_redistribute = 0;
/* to gather intr data and redistribute */
static void apic_redistribute_compute(void);
static uint_t last_count_read = 0;
static lock_t apic_gethrtime_lock;
volatile int apic_hrtime_stamp = 0;
volatile hrtime_t apic_nsec_since_boot = 0;
static uint_t apic_hertz_count;
uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */
static hrtime_t apic_nsec_max;
static hrtime_t apic_last_hrtime = 0;
int apic_hrtime_error = 0;
int apic_remote_hrterr = 0;
int apic_num_nmis = 0;
int apic_apic_error = 0;
int apic_num_apic_errors = 0;
int apic_num_cksum_errors = 0;
int apic_error = 0;
static int apic_cmos_ssb_set = 0;
/* use to make sure only one cpu handles the nmi */
static lock_t apic_nmi_lock;
/* use to make sure only one cpu handles the error interrupt */
static lock_t apic_error_lock;
static struct {
uchar_t cntl;
uchar_t data;
} aspen_bmc[] = {
{ CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */
{ CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */
{ CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */
{ CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */
{ CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */
{ CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */
{ CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */
{ CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */
{ CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */
{ CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */
};
static struct {
int port;
uchar_t data;
} sitka_bmc[] = {
{ SMS_COMMAND_REGISTER, SMS_WRITE_START },
{ SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */
{ SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */
{ SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */
{ SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */
{ SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */
{ SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */
{ SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */
{ SMS_COMMAND_REGISTER, SMS_WRITE_END },
{ SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */
{ SMS_COMMAND_REGISTER, SMS_WRITE_START },
{ SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */
{ SMS_COMMAND_REGISTER, SMS_WRITE_END },
{ SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */
};
/* Patchable global variables. */
int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */
uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */
/*
* This is the loadable module wrapper
*/
int
_init(void)
{
if (apic_coarse_hrtime)
apic_ops.psm_gethrtime = &apic_gettime;
return (psm_mod_init(&apic_hdlp, &apic_psm_info));
}
int
_fini(void)
{
return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
}
int
_info(struct modinfo *modinfop)
{
return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
}
static int
apic_probe()
{
return (apic_probe_common(apic_psm_info.p_mach_idstring));
}
void
apic_init()
{
int i;
int j = 1;
apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
(apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
/* get to highest vector at the same ipl */
continue;
for (; j <= apic_vectortoipl[i]; j++) {
apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
APIC_BASE_VECT;
}
}
for (; j < MAXIPL + 1; j++)
/* fill up any empty ipltopri slots */
apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
apic_init_common();
#if defined(__amd64)
/*
* Make cpu-specific interrupt info point to cr8pri vector
*/
for (i = 0; i <= MAXIPL; i++)
apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
CPU->cpu_pri_data = apic_cr8pri;
#endif /* __amd64 */
}
/*
* handler for APIC Error interrupt. Just print a warning and continue
*/
static int
apic_error_intr()
{
uint_t error0, error1, error;
uint_t i;
/*
* We need to write before read as per 7.4.17 of system prog manual.
* We do both and or the results to be safe
*/
error0 = apicadr[APIC_ERROR_STATUS];
apicadr[APIC_ERROR_STATUS] = 0;
error1 = apicadr[APIC_ERROR_STATUS];
error = error0 | error1;
/*
* Clear the APIC error status (do this on all cpus that enter here)
* (two writes are required due to the semantics of accessing the
* error status register.)
*/
apicadr[APIC_ERROR_STATUS] = 0;
apicadr[APIC_ERROR_STATUS] = 0;
/*
* Prevent more than 1 CPU from handling error interrupt causing
* double printing (interleave of characters from multiple
* CPU's when using prom_printf)
*/
if (lock_try(&apic_error_lock) == 0)
return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
if (error) {
#if DEBUG
if (apic_debug)
debug_enter("pcplusmp: APIC Error interrupt received");
#endif /* DEBUG */
if (apic_panic_on_apic_error)
cmn_err(CE_PANIC,
"APIC Error interrupt on CPU %d. Status = %x\n",
psm_get_cpu_id(), error);
else {
if ((error & ~APIC_CS_ERRORS) == 0) {
/* cksum error only */
apic_error |= APIC_ERR_APIC_ERROR;
apic_apic_error |= error;
apic_num_apic_errors++;
apic_num_cksum_errors++;
} else {
/*
* prom_printf is the best shot we have of
* something which is problem free from
* high level/NMI type of interrupts
*/
prom_printf("APIC Error interrupt on CPU %d. "
"Status 0 = %x, Status 1 = %x\n",
psm_get_cpu_id(), error0, error1);
apic_error |= APIC_ERR_APIC_ERROR;
apic_apic_error |= error;
apic_num_apic_errors++;
for (i = 0; i < apic_error_display_delay; i++) {
tenmicrosec();
}
/*
* provide more delay next time limited to
* roughly 1 clock tick time
*/
if (apic_error_display_delay < 500)
apic_error_display_delay *= 2;
}
}
lock_clear(&apic_error_lock);
return (DDI_INTR_CLAIMED);
} else {
lock_clear(&apic_error_lock);
return (DDI_INTR_UNCLAIMED);
}
/* NOTREACHED */
}
/*
* Turn off the mask bit in the performance counter Local Vector Table entry.
*/
static void
apic_cpcovf_mask_clear(void)
{
apicadr[APIC_PCINT_VECT] &= ~APIC_LVT_MASK;
}
static void
apic_init_intr()
{
processorid_t cpun = psm_get_cpu_id();
#if defined(__amd64)
setcr8((ulong_t)(APIC_MASK_ALL >> APIC_IPL_SHIFT));
#else
apicadr[APIC_TASK_REG] = APIC_MASK_ALL;
#endif
if (apic_flat_model)
apicadr[APIC_FORMAT_REG] = APIC_FLAT_MODEL;
else
apicadr[APIC_FORMAT_REG] = APIC_CLUSTER_MODEL;
apicadr[APIC_DEST_REG] = AV_HIGH_ORDER >> cpun;
/* need to enable APIC before unmasking NMI */
apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
apicadr[APIC_LOCAL_TIMER] = AV_MASK;
apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */
apicadr[APIC_INT_VECT1] = AV_NMI; /* enable NMI */
if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS)
return;
/* Enable performance counter overflow interrupt */
if ((x86_feature & X86_MSR) != X86_MSR)
apic_enable_cpcovf_intr = 0;
if (apic_enable_cpcovf_intr) {
if (apic_cpcovf_vect == 0) {
int ipl = APIC_PCINT_IPL;
int irq = apic_get_ipivect(ipl, -1);
ASSERT(irq != -1);
apic_cpcovf_vect = apic_irq_table[irq]->airq_vector;
ASSERT(apic_cpcovf_vect);
(void) add_avintr(NULL, ipl,
(avfunc)kcpc_hw_overflow_intr,
"apic pcint", irq, NULL, NULL, NULL, NULL);
kcpc_hw_overflow_intr_installed = 1;
kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear;
}
apicadr[APIC_PCINT_VECT] = apic_cpcovf_vect;
}
/* Enable error interrupt */
if (apic_enable_error_intr) {
if (apic_errvect == 0) {
int ipl = 0xf; /* get highest priority intr */
int irq = apic_get_ipivect(ipl, -1);
ASSERT(irq != -1);
apic_errvect = apic_irq_table[irq]->airq_vector;
ASSERT(apic_errvect);
/*
* Not PSMI compliant, but we are going to merge
* with ON anyway
*/
(void) add_avintr((void *)NULL, ipl,
(avfunc)apic_error_intr, "apic error intr",
irq, NULL, NULL, NULL, NULL);
}
apicadr[APIC_ERR_VECT] = apic_errvect;
apicadr[APIC_ERROR_STATUS] = 0;
apicadr[APIC_ERROR_STATUS] = 0;
}
}
static void
apic_disable_local_apic()
{
apicadr[APIC_TASK_REG] = APIC_MASK_ALL;
apicadr[APIC_LOCAL_TIMER] = AV_MASK;
apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */
apicadr[APIC_INT_VECT1] = AV_MASK; /* disable NMI */
apicadr[APIC_ERR_VECT] = AV_MASK; /* and error interrupt */
apicadr[APIC_PCINT_VECT] = AV_MASK; /* and perf counter intr */
apicadr[APIC_SPUR_INT_REG] = APIC_SPUR_INTR;
}
static void
apic_picinit(void)
{
int i, j;
uint_t isr;
/*
* On UniSys Model 6520, the BIOS leaves vector 0x20 isr
* bit on without clearing it with EOI. Since softint
* uses vector 0x20 to interrupt itself, so softint will
* not work on this machine. In order to fix this problem
* a check is made to verify all the isr bits are clear.
* If not, EOIs are issued to clear the bits.
*/
for (i = 7; i >= 1; i--) {
if ((isr = apicadr[APIC_ISR_REG + (i * 4)]) != 0)
for (j = 0; ((j < 32) && (isr != 0)); j++)
if (isr & (1 << j)) {
apicadr[APIC_EOI_REG] = 0;
isr &= ~(1 << j);
apic_error |= APIC_ERR_BOOT_EOI;
}
}
/* set a flag so we know we have run apic_picinit() */
apic_flag = 1;
LOCK_INIT_CLEAR(&apic_gethrtime_lock);
LOCK_INIT_CLEAR(&apic_ioapic_lock);
LOCK_INIT_CLEAR(&apic_error_lock);
picsetup(); /* initialise the 8259 */
/* add nmi handler - least priority nmi handler */
LOCK_INIT_CLEAR(&apic_nmi_lock);
if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
"pcplusmp NMI handler", (caddr_t)NULL))
cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
apic_init_intr();
/* enable apic mode if imcr present */
if (apic_imcrp) {
outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
}
ioapic_init_intr(IOAPIC_MASK);
}
/*ARGSUSED1*/
static int
apic_cpu_start(processorid_t cpun, caddr_t arg)
{
int loop_count;
uint32_t vector;
uint_t cpu_id;
ulong_t iflag;
cpu_id = apic_cpus[cpun].aci_local_id;
apic_cmos_ssb_set = 1;
/*
* Interrupts on BSP cpu will be disabled during these startup
* steps in order to avoid unwanted side effects from
* executing interrupt handlers on a problematic BIOS.
*/
iflag = intr_clear();
outb(CMOS_ADDR, SSB);
outb(CMOS_DATA, BIOS_SHUTDOWN);
while (get_apic_cmd1() & AV_PENDING)
apic_ret();
/* for integrated - make sure there is one INIT IPI in buffer */
/* for external - it will wake up the cpu */
apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET;
/* If only 1 CPU is installed, PENDING bit will not go low */
for (loop_count = 0x1000; loop_count; loop_count--)
if (get_apic_cmd1() & AV_PENDING)
apic_ret();
else
break;
apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
apicadr[APIC_INT_CMD1] = AV_DEASSERT | AV_RESET;
drv_usecwait(20000); /* 20 milli sec */
if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
/* integrated apic */
vector = (rm_platter_pa >> MMU_PAGESHIFT) &
(APIC_VECTOR_MASK | APIC_IPL_MASK);
/* to offset the INIT IPI queue up in the buffer */
apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
apicadr[APIC_INT_CMD1] = vector | AV_STARTUP;
drv_usecwait(200); /* 20 micro sec */
apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET;
apicadr[APIC_INT_CMD1] = vector | AV_STARTUP;
drv_usecwait(200); /* 20 micro sec */
}
intr_restore(iflag);
return (0);
}
#ifdef DEBUG
int apic_break_on_cpu = 9;
int apic_stretch_interrupts = 0;
int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */
void
apic_break()
{
}
#endif /* DEBUG */
/*
* platform_intr_enter
*
* Called at the beginning of the interrupt service routine to
* mask all level equal to and below the interrupt priority
* of the interrupting vector. An EOI should be given to
* the interrupt controller to enable other HW interrupts.
*
* Return -1 for spurious interrupts
*
*/
/*ARGSUSED*/
static int
apic_intr_enter(int ipl, int *vectorp)
{
uchar_t vector;
int nipl;
int irq;
ulong_t iflag;
apic_cpus_info_t *cpu_infop;
/*
* The real vector delivered is (*vectorp + 0x20), but our caller
* subtracts 0x20 from the vector before passing it to us.
* (That's why APIC_BASE_VECT is 0x20.)
*/
vector = (uchar_t)*vectorp;
/* if interrupted by the clock, increment apic_nsec_since_boot */
if (vector == apic_clkvect) {
if (!apic_oneshot) {
/* NOTE: this is not MT aware */
apic_hrtime_stamp++;
apic_nsec_since_boot += apic_nsec_per_intr;
apic_hrtime_stamp++;
last_count_read = apic_hertz_count;
apic_redistribute_compute();
}
/* We will avoid all the book keeping overhead for clock */
nipl = apic_ipls[vector];
#if defined(__amd64)
setcr8((ulong_t)apic_cr8pri[nipl]);
#else
apicadr[APIC_TASK_REG] = apic_ipltopri[nipl];
#endif
*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
apicadr[APIC_EOI_REG] = 0;
return (nipl);
}
cpu_infop = &apic_cpus[psm_get_cpu_id()];
if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
cpu_infop->aci_spur_cnt++;
return (APIC_INT_SPURIOUS);
}
/* Check if the vector we got is really what we need */
if (apic_revector_pending) {
/*
* Disable interrupts for the duration of
* the vector translation to prevent a self-race for
* the apic_revector_lock. This cannot be done
* in apic_xlate_vector because it is recursive and
* we want the vector translation to be atomic with
* respect to other (higher-priority) interrupts.
*/
iflag = intr_clear();
vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
APIC_BASE_VECT;
intr_restore(iflag);
}
nipl = apic_ipls[vector];
*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
#if defined(__amd64)
setcr8((ulong_t)apic_cr8pri[nipl]);
#else
apicadr[APIC_TASK_REG] = apic_ipltopri[nipl];
#endif
cpu_infop->aci_current[nipl] = (uchar_t)irq;
cpu_infop->aci_curipl = (uchar_t)nipl;
cpu_infop->aci_ISR_in_progress |= 1 << nipl;
/*
* apic_level_intr could have been assimilated into the irq struct.
* but, having it as a character array is more efficient in terms of
* cache usage. So, we leave it as is.
*/
if (!apic_level_intr[irq])
apicadr[APIC_EOI_REG] = 0;
#ifdef DEBUG
APIC_DEBUG_BUF_PUT(vector);
APIC_DEBUG_BUF_PUT(irq);
APIC_DEBUG_BUF_PUT(nipl);
APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
drv_usecwait(apic_stretch_interrupts);
if (apic_break_on_cpu == psm_get_cpu_id())
apic_break();
#endif /* DEBUG */
return (nipl);
}
void
apic_intr_exit(int prev_ipl, int irq)
{
apic_cpus_info_t *cpu_infop;
#if defined(__amd64)
setcr8((ulong_t)apic_cr8pri[prev_ipl]);
#else
apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
#endif
cpu_infop = &apic_cpus[psm_get_cpu_id()];
if (apic_level_intr[irq])
apicadr[APIC_EOI_REG] = 0;
cpu_infop->aci_curipl = (uchar_t)prev_ipl;
/* ISR above current pri could not be in progress */
cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
}
/*
* Mask all interrupts below or equal to the given IPL
*/
static void
apic_setspl(int ipl)
{
#if defined(__amd64)
setcr8((ulong_t)apic_cr8pri[ipl]);
#else
apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
#endif
/* interrupts at ipl above this cannot be in progress */
apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
/*
* this is a patch fix for the ALR QSMP P5 machine, so that interrupts
* have enough time to come in before the priority is raised again
* during the idle() loop.
*/
if (apic_setspl_delay)
(void) get_apic_pri();
}
/*
* trigger a software interrupt at the given IPL
*/
static void
apic_set_softintr(int ipl)
{
int vector;
ulong_t flag;
vector = apic_resv_vector[ipl];
flag = intr_clear();
while (get_apic_cmd1() & AV_PENDING)
apic_ret();
/* generate interrupt at vector on itself only */
apicadr[APIC_INT_CMD1] = AV_SH_SELF | vector;
intr_restore(flag);
}
/*
* generates an interprocessor interrupt to another CPU
*/
static void
apic_send_ipi(int cpun, int ipl)
{
int vector;
ulong_t flag;
vector = apic_resv_vector[ipl];
flag = intr_clear();
while (get_apic_cmd1() & AV_PENDING)
apic_ret();
apicadr[APIC_INT_CMD2] =
apic_cpus[cpun].aci_local_id << APIC_ICR_ID_BIT_OFFSET;
apicadr[APIC_INT_CMD1] = vector;
intr_restore(flag);
}
/*ARGSUSED*/
static void
apic_set_idlecpu(processorid_t cpun)
{
}
/*ARGSUSED*/
static void
apic_unset_idlecpu(processorid_t cpun)
{
}
static void
apic_ret()
{
}
static int
get_apic_cmd1()
{
return (apicadr[APIC_INT_CMD1]);
}
static int
get_apic_pri()
{
#if defined(__amd64)
return ((int)getcr8());
#else
return (apicadr[APIC_TASK_REG]);
#endif
}
/*
* If apic_coarse_time == 1, then apic_gettime() is used instead of
* apic_gethrtime(). This is used for performance instead of accuracy.
*/
static hrtime_t
apic_gettime()
{
int old_hrtime_stamp;
hrtime_t temp;
/*
* In one-shot mode, we do not keep time, so if anyone
* calls psm_gettime() directly, we vector over to
* gethrtime().
* one-shot mode MUST NOT be enabled if this psm is the source of
* hrtime.
*/
if (apic_oneshot)
return (gethrtime());
gettime_again:
while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
apic_ret();
temp = apic_nsec_since_boot;
if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */
goto gettime_again;
}
return (temp);
}
/*
* Here we return the number of nanoseconds since booting. Note every
* clock interrupt increments apic_nsec_since_boot by the appropriate
* amount.
*/
static hrtime_t
apic_gethrtime()
{
int curr_timeval, countval, elapsed_ticks;
int old_hrtime_stamp, status;
hrtime_t temp;
uchar_t cpun;
ulong_t oflags;
/*
* In one-shot mode, we do not keep time, so if anyone
* calls psm_gethrtime() directly, we vector over to
* gethrtime().
* one-shot mode MUST NOT be enabled if this psm is the source of
* hrtime.
*/
if (apic_oneshot)
return (gethrtime());
oflags = intr_clear(); /* prevent migration */
cpun = (uchar_t)((uint_t)apicadr[APIC_LID_REG] >> APIC_ID_BIT_OFFSET);
lock_set(&apic_gethrtime_lock);
gethrtime_again:
while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
apic_ret();
/*
* Check to see which CPU we are on. Note the time is kept on
* the local APIC of CPU 0. If on CPU 0, simply read the current
* counter. If on another CPU, issue a remote read command to CPU 0.
*/
if (cpun == apic_cpus[0].aci_local_id) {
countval = apicadr[APIC_CURR_COUNT];
} else {
while (get_apic_cmd1() & AV_PENDING)
apic_ret();
apicadr[APIC_INT_CMD2] =
apic_cpus[0].aci_local_id << APIC_ICR_ID_BIT_OFFSET;
apicadr[APIC_INT_CMD1] = APIC_CURR_ADD|AV_REMOTE;
while ((status = get_apic_cmd1()) & AV_READ_PENDING)
apic_ret();
if (status & AV_REMOTE_STATUS) /* 1 = valid */
countval = apicadr[APIC_REMOTE_READ];
else { /* 0 = invalid */
apic_remote_hrterr++;
/*
* return last hrtime right now, will need more
* testing if change to retry
*/
temp = apic_last_hrtime;
lock_clear(&apic_gethrtime_lock);
intr_restore(oflags);
return (temp);
}
}
if (countval > last_count_read)
countval = 0;
else
last_count_read = countval;
elapsed_ticks = apic_hertz_count - countval;
curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
temp = apic_nsec_since_boot + curr_timeval;
if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */
/* we might have clobbered last_count_read. Restore it */
last_count_read = apic_hertz_count;
goto gethrtime_again;
}
if (temp < apic_last_hrtime) {
/* return last hrtime if error occurs */
apic_hrtime_error++;
temp = apic_last_hrtime;
}
else
apic_last_hrtime = temp;
lock_clear(&apic_gethrtime_lock);
intr_restore(oflags);
return (temp);
}
/* apic NMI handler */
/*ARGSUSED*/
static void
apic_nmi_intr(caddr_t arg)
{
if (apic_shutdown_processors) {
apic_disable_local_apic();
return;
}
if (lock_try(&apic_nmi_lock)) {
if (apic_kmdb_on_nmi) {
if (psm_debugger() == 0) {
cmn_err(CE_PANIC,
"NMI detected, kmdb is not available.");
} else {
debug_enter("\nNMI detected, entering kmdb.\n");
}
} else {
if (apic_panic_on_nmi) {
/* Keep panic from entering kmdb. */
nopanicdebug = 1;
cmn_err(CE_PANIC, "pcplusmp: NMI received");
} else {
/*
* prom_printf is the best shot we have
* of something which is problem free from
* high level/NMI type of interrupts
*/
prom_printf("pcplusmp: NMI received\n");
apic_error |= APIC_ERR_NMI;
apic_num_nmis++;
}
}
lock_clear(&apic_nmi_lock);
}
}
/*ARGSUSED*/
static int
apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
{
return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
}
static int
apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
{
return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl));
}
/*
* Return HW interrupt number corresponding to the given IPL
*/
/*ARGSUSED*/
static int
apic_softlvl_to_irq(int ipl)
{
/*
* Do not use apic to trigger soft interrupt.
* It will cause the system to hang when 2 hardware interrupts
* at the same priority with the softint are already accepted
* by the apic. Cause the AV_PENDING bit will not be cleared
* until one of the hardware interrupt is eoi'ed. If we need
* to send an ipi at this time, we will end up looping forever
* to wait for the AV_PENDING bit to clear.
*/
return (PSM_SV_SOFTWARE);
}
static int
apic_post_cpu_start()
{
int i, cpun;
ulong_t iflag;
apic_irq_t *irq_ptr;
splx(ipltospl(LOCK_LEVEL));
apic_init_intr();
/*
* since some systems don't enable the internal cache on the non-boot
* cpus, so we have to enable them here
*/
setcr0(getcr0() & ~(CR0_CD | CR0_NW));
while (get_apic_cmd1() & AV_PENDING)
apic_ret();
cpun = psm_get_cpu_id();
apic_cpus[cpun].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
irq_ptr = apic_irq_table[i];
if ((irq_ptr == NULL) ||
((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) != cpun))
continue;
while (irq_ptr) {
if (irq_ptr->airq_temp_cpu != IRQ_UNINIT) {
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
(void) apic_rebind(irq_ptr, cpun, NULL);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
irq_ptr = irq_ptr->airq_next;
}
}
apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init;
return (PSM_SUCCESS);
}
processorid_t
apic_get_next_processorid(processorid_t cpu_id)
{
int i;
if (cpu_id == -1)
return ((processorid_t)0);
for (i = cpu_id + 1; i < NCPU; i++) {
if (CPU_IN_SET(apic_cpumask, i))
return (i);
}
return ((processorid_t)-1);
}
/*
* type == -1 indicates it is an internal request. Do not change
* resv_vector for these requests
*/
static int
apic_get_ipivect(int ipl, int type)
{
uchar_t vector;
int irq;
if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) {
if (vector = apic_allocate_vector(ipl, irq, 1)) {
apic_irq_table[irq]->airq_mps_intr_index =
RESERVE_INDEX;
apic_irq_table[irq]->airq_vector = vector;
if (type != -1) {
apic_resv_vector[ipl] = vector;
}
return (irq);
}
}
apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
return (-1); /* shouldn't happen */
}
static int
apic_getclkirq(int ipl)
{
int irq;
if ((irq = apic_get_ipivect(ipl, -1)) == -1)
return (-1);
/*
* Note the vector in apic_clkvect for per clock handling.
*/
apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
apic_clkvect));
return (irq);
}
/*
* Return the number of APIC clock ticks elapsed for 8245 to decrement
* (APIC_TIME_COUNT + pit_ticks_adj) ticks.
*/
static uint_t
apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
{
uint8_t pit_tick_lo;
uint16_t pit_tick, target_pit_tick;
uint32_t start_apic_tick, end_apic_tick;
ulong_t iflag;
addr += APIC_CURR_COUNT;
iflag = intr_clear();
do {
pit_tick_lo = inb(PITCTR0_PORT);
pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
} while (pit_tick < APIC_TIME_MIN ||
pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
/*
* Wait for the 8254 to decrement by 5 ticks to ensure
* we didn't start in the middle of a tick.
* Compare with 0x10 for the wrap around case.
*/
target_pit_tick = pit_tick - 5;
do {
pit_tick_lo = inb(PITCTR0_PORT);
pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
start_apic_tick = *addr;
/*
* Wait for the 8254 to decrement by
* (APIC_TIME_COUNT + pit_ticks_adj) ticks
*/
target_pit_tick = pit_tick - APIC_TIME_COUNT;
do {
pit_tick_lo = inb(PITCTR0_PORT);
pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
end_apic_tick = *addr;
*pit_ticks_adj = target_pit_tick - pit_tick;
intr_restore(iflag);
return (start_apic_tick - end_apic_tick);
}
/*
* Initialise the APIC timer on the local APIC of CPU 0 to the desired
* frequency. Note at this stage in the boot sequence, the boot processor
* is the only active processor.
* hertz value of 0 indicates a one-shot mode request. In this case
* the function returns the resolution (in nanoseconds) for the hardware
* timer interrupt. If one-shot mode capability is not available,
* the return value will be 0. apic_enable_oneshot is a global switch
* for disabling the functionality.
* A non-zero positive value for hertz indicates a periodic mode request.
* In this case the hardware will be programmed to generate clock interrupts
* at hertz frequency and returns the resolution of interrupts in
* nanosecond.
*/
static int
apic_clkinit(int hertz)
{
uint_t apic_ticks = 0;
uint_t pit_ticks;
int ret;
uint16_t pit_ticks_adj;
static int firsttime = 1;
if (firsttime) {
/* first time calibrate on CPU0 only */
apicadr[APIC_DIVIDE_REG] = apic_divide_reg_init;
apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj);
/* total number of PIT ticks corresponding to apic_ticks */
pit_ticks = APIC_TIME_COUNT + pit_ticks_adj;
/*
* Determine the number of nanoseconds per APIC clock tick
* and then determine how many APIC ticks to interrupt at the
* desired frequency
* apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s
* (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s
* apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9)
* pic_ticks_per_SFns =
* (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9)
*/
apic_ticks_per_SFnsecs =
((SF * apic_ticks * PIT_HZ) /
((uint64_t)pit_ticks * NANOSEC));
/* the interval timer initial count is 32 bit max */
apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL);
firsttime = 0;
}
if (hertz != 0) {
/* periodic */
apic_nsec_per_intr = NANOSEC / hertz;
apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr);
}
apic_int_busy_mark = (apic_int_busy_mark *
apic_sample_factor_redistribution) / 100;
apic_int_free_mark = (apic_int_free_mark *
apic_sample_factor_redistribution) / 100;
apic_diff_for_redistribution = (apic_diff_for_redistribution *
apic_sample_factor_redistribution) / 100;
if (hertz == 0) {
/* requested one_shot */
if (!apic_oneshot_enable)
return (0);
apic_oneshot = 1;
ret = (int)APIC_TICKS_TO_NSECS(1);
} else {
/* program the local APIC to interrupt at the given frequency */
apicadr[APIC_INIT_COUNT] = apic_hertz_count;
apicadr[APIC_LOCAL_TIMER] =
(apic_clkvect + APIC_BASE_VECT) | AV_TIME;
apic_oneshot = 0;
ret = NANOSEC / hertz;
}
return (ret);
}
/*
* apic_preshutdown:
* Called early in shutdown whilst we can still access filesystems to do
* things like loading modules which will be required to complete shutdown
* after filesystems are all unmounted.
*/
static void
apic_preshutdown(int cmd, int fcn)
{
APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
cmd, fcn, apic_poweroff_method, apic_enable_acpi));
}
static void
apic_shutdown(int cmd, int fcn)
{
int restarts, attempts;
int i;
uchar_t byte;
ulong_t iflag;
/* Send NMI to all CPUs except self to do per processor shutdown */
iflag = intr_clear();
while (get_apic_cmd1() & AV_PENDING)
apic_ret();
apic_shutdown_processors = 1;
apicadr[APIC_INT_CMD1] = AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF;
/* restore cmos shutdown byte before reboot */
if (apic_cmos_ssb_set) {
outb(CMOS_ADDR, SSB);
outb(CMOS_DATA, 0);
}
ioapic_disable_redirection();
/* disable apic mode if imcr present */
if (apic_imcrp) {
outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
}
apic_disable_local_apic();
intr_restore(iflag);
/* remainder of function is for shutdown cases only */
if (cmd != A_SHUTDOWN)
return;
/* switch system back into Legacy Mode if using ACPI */
if (apic_enable_acpi)
(void) AcpiDisable();
/* remainder of function is for shutdown+poweroff case only */
if (fcn != AD_POWEROFF)
return;
switch (apic_poweroff_method) {
case APIC_POWEROFF_VIA_RTC:
/* select the extended NVRAM bank in the RTC */
outb(CMOS_ADDR, RTC_REGA);
byte = inb(CMOS_DATA);
outb(CMOS_DATA, (byte | EXT_BANK));
outb(CMOS_ADDR, PFR_REG);
/* for Predator must toggle the PAB bit */
byte = inb(CMOS_DATA);
/*
* clear power active bar, wakeup alarm and
* kickstart
*/
byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
outb(CMOS_DATA, byte);
/* delay before next write */
drv_usecwait(1000);
/* for S40 the following would suffice */
byte = inb(CMOS_DATA);
/* power active bar control bit */
byte |= PAB_CBIT;
outb(CMOS_DATA, byte);
break;
case APIC_POWEROFF_VIA_ASPEN_BMC:
restarts = 0;
restart_aspen_bmc:
if (++restarts == 3)
break;
attempts = 0;
do {
byte = inb(MISMIC_FLAG_REGISTER);
byte &= MISMIC_BUSY_MASK;
if (byte != 0) {
drv_usecwait(1000);
if (attempts >= 3)
goto restart_aspen_bmc;
++attempts;
}
} while (byte != 0);
outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
byte = inb(MISMIC_FLAG_REGISTER);
byte |= 0x1;
outb(MISMIC_FLAG_REGISTER, byte);
i = 0;
for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
i++) {
attempts = 0;
do {
byte = inb(MISMIC_FLAG_REGISTER);
byte &= MISMIC_BUSY_MASK;
if (byte != 0) {
drv_usecwait(1000);
if (attempts >= 3)
goto restart_aspen_bmc;
++attempts;
}
} while (byte != 0);
outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
byte = inb(MISMIC_FLAG_REGISTER);
byte |= 0x1;
outb(MISMIC_FLAG_REGISTER, byte);
}
break;
case APIC_POWEROFF_VIA_SITKA_BMC:
restarts = 0;
restart_sitka_bmc:
if (++restarts == 3)
break;
attempts = 0;
do {
byte = inb(SMS_STATUS_REGISTER);
byte &= SMS_STATE_MASK;
if ((byte == SMS_READ_STATE) ||
(byte == SMS_WRITE_STATE)) {
drv_usecwait(1000);
if (attempts >= 3)
goto restart_sitka_bmc;
++attempts;
}
} while ((byte == SMS_READ_STATE) ||
(byte == SMS_WRITE_STATE));
outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
i = 0;
for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
i++) {
attempts = 0;
do {
byte = inb(SMS_STATUS_REGISTER);
byte &= SMS_IBF_MASK;
if (byte != 0) {
drv_usecwait(1000);
if (attempts >= 3)
goto restart_sitka_bmc;
++attempts;
}
} while (byte != 0);
outb(sitka_bmc[i].port, sitka_bmc[i].data);
}
break;
case APIC_POWEROFF_NONE:
/* If no APIC direct method, we will try using ACPI */
if (apic_enable_acpi) {
if (acpi_poweroff() == 1)
return;
} else
return;
break;
}
/*
* Wait a limited time here for power to go off.
* If the power does not go off, then there was a
* problem and we should continue to the halt which
* prints a message for the user to press a key to
* reboot.
*/
drv_usecwait(7000000); /* wait seven seconds */
}
/*
* Try and disable all interrupts. We just assign interrupts to other
* processors based on policy. If any were bound by user request, we
* let them continue and return failure. We do not bother to check
* for cache affinity while rebinding.
*/
static int
apic_disable_intr(processorid_t cpun)
{
int bind_cpu = 0, i, hardbound = 0;
apic_irq_t *irq_ptr;
ulong_t iflag;
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
for (i = 0; i <= APIC_MAX_VECTOR; i++) {
if (apic_reprogram_info[i].done == B_FALSE) {
if (apic_reprogram_info[i].bindcpu == cpun) {
/*
* CPU is busy -- it's the target of
* a pending reprogramming attempt
*/
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
return (PSM_FAILURE);
}
}
}
apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
apic_cpus[cpun].aci_curipl = 0;
i = apic_min_device_irq;
for (; i <= apic_max_device_irq; i++) {
/*
* If there are bound interrupts on this cpu, then
* rebind them to other processors.
*/
if ((irq_ptr = apic_irq_table[i]) != NULL) {
ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
(irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) <
apic_nproc));
if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
hardbound = 1;
continue;
}
if (irq_ptr->airq_temp_cpu == cpun) {
do {
bind_cpu = apic_next_bind_cpu++;
if (bind_cpu >= apic_nproc) {
apic_next_bind_cpu = 1;
bind_cpu = 0;
}
} while (apic_rebind_all(irq_ptr, bind_cpu));
}
}
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
if (hardbound) {
cmn_err(CE_WARN, "Could not disable interrupts on %d"
"due to user bound interrupts", cpun);
return (PSM_FAILURE);
}
else
return (PSM_SUCCESS);
}
static void
apic_enable_intr(processorid_t cpun)
{
int i;
apic_irq_t *irq_ptr;
ulong_t iflag;
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
i = apic_min_device_irq;
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
if ((irq_ptr = apic_irq_table[i]) != NULL) {
if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
(void) apic_rebind_all(irq_ptr,
irq_ptr->airq_cpu);
}
}
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
/*
* This function will reprogram the timer.
*
* When in oneshot mode the argument is the absolute time in future to
* generate the interrupt at.
*
* When in periodic mode, the argument is the interval at which the
* interrupts should be generated. There is no need to support the periodic
* mode timer change at this time.
*/
static void
apic_timer_reprogram(hrtime_t time)
{
hrtime_t now;
uint_t ticks;
int64_t delta;
/*
* We should be called from high PIL context (CBE_HIGH_PIL),
* so kpreempt is disabled.
*/
if (!apic_oneshot) {
/* time is the interval for periodic mode */
ticks = APIC_NSECS_TO_TICKS(time);
} else {
/* one shot mode */
now = gethrtime();
delta = time - now;
if (delta <= 0) {
/*
* requested to generate an interrupt in the past
* generate an interrupt as soon as possible
*/
ticks = apic_min_timer_ticks;
} else if (delta > apic_nsec_max) {
/*
* requested to generate an interrupt at a time
* further than what we are capable of. Set to max
* the hardware can handle
*/
ticks = APIC_MAXVAL;
#ifdef DEBUG
cmn_err(CE_CONT, "apic_timer_reprogram, request at"
" %lld too far in future, current time"
" %lld \n", time, now);
#endif
} else
ticks = APIC_NSECS_TO_TICKS(delta);
}
if (ticks < apic_min_timer_ticks)
ticks = apic_min_timer_ticks;
apicadr[APIC_INIT_COUNT] = ticks;
}
/*
* This function will enable timer interrupts.
*/
static void
apic_timer_enable(void)
{
/*
* We should be Called from high PIL context (CBE_HIGH_PIL),
* so kpreempt is disabled.
*/
if (!apic_oneshot)
apicadr[APIC_LOCAL_TIMER] =
(apic_clkvect + APIC_BASE_VECT) | AV_TIME;
else {
/* one shot */
apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT);
}
}
/*
* This function will disable timer interrupts.
*/
static void
apic_timer_disable(void)
{
/*
* We should be Called from high PIL context (CBE_HIGH_PIL),
* so kpreempt is disabled.
*/
apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK;
}
cyclic_id_t apic_cyclic_id;
/*
* If this module needs to be a consumer of cyclic subsystem, they
* can be added here, since at this time kernel cyclic subsystem is initialized
* argument is not currently used, and is reserved for future.
*/
static void
apic_post_cyclic_setup(void *arg)
{
_NOTE(ARGUNUSED(arg))
cyc_handler_t hdlr;
cyc_time_t when;
/* cpu_lock is held */
/* set up cyclics for intr redistribution */
/*
* In peridoc mode intr redistribution processing is done in
* apic_intr_enter during clk intr processing
*/
if (!apic_oneshot)
return;
hdlr.cyh_level = CY_LOW_LEVEL;
hdlr.cyh_func = (cyc_func_t)apic_redistribute_compute;
hdlr.cyh_arg = NULL;
when.cyt_when = 0;
when.cyt_interval = apic_redistribute_sample_interval;
apic_cyclic_id = cyclic_add(&hdlr, &when);
}
static void
apic_redistribute_compute(void)
{
int i, j, max_busy;
if (apic_enable_dynamic_migration) {
if (++apic_nticks == apic_sample_factor_redistribution) {
/*
* Time to call apic_intr_redistribute().
* reset apic_nticks. This will cause max_busy
* to be calculated below and if it is more than
* apic_int_busy, we will do the whole thing
*/
apic_nticks = 0;
}
max_busy = 0;
for (i = 0; i < apic_nproc; i++) {
/*
* Check if curipl is non zero & if ISR is in
* progress
*/
if (((j = apic_cpus[i].aci_curipl) != 0) &&
(apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
int irq;
apic_cpus[i].aci_busy++;
irq = apic_cpus[i].aci_current[j];
apic_irq_table[irq]->airq_busy++;
}
if (!apic_nticks &&
(apic_cpus[i].aci_busy > max_busy))
max_busy = apic_cpus[i].aci_busy;
}
if (!apic_nticks) {
if (max_busy > apic_int_busy_mark) {
/*
* We could make the following check be
* skipped > 1 in which case, we get a
* redistribution at half the busy mark (due to
* double interval). Need to be able to collect
* more empirical data to decide if that is a
* good strategy. Punt for now.
*/
if (apic_skipped_redistribute) {
apic_cleanup_busy();
apic_skipped_redistribute = 0;
} else {
apic_intr_redistribute();
}
} else
apic_skipped_redistribute++;
}
}
}
/*
* The following functions are in the platform specific file so that they
* can be different functions depending on whether we are running on
* bare metal or a hypervisor.
*/
/*
* map an apic for memory-mapped access
*/
uint32_t *
mapin_apic(uint32_t addr, size_t len, int flags)
{
/*LINTED: pointer cast may result in improper alignment */
return ((uint32_t *)psm_map_phys(addr, len, flags));
}
uint32_t *
mapin_ioapic(uint32_t addr, size_t len, int flags)
{
return (mapin_apic(addr, len, flags));
}
/*
* unmap an apic
*/
void
mapout_apic(caddr_t addr, size_t len)
{
psm_unmap_phys(addr, len);
}
void
mapout_ioapic(caddr_t addr, size_t len)
{
mapout_apic(addr, len);
}
/*
* This function allocate "count" vector(s) for the given "dip/pri/type"
*/
int
apic_alloc_vectors(dev_info_t *dip, int inum, int count, int pri, int type,
int behavior)
{
int rcount, i;
uchar_t start, irqno, cpu;
major_t major;
apic_irq_t *irqptr;
/* only supports MSI at the moment, will add MSI-X support later */
if (type != DDI_INTR_TYPE_MSI)
return (0);
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: dip=0x%p type=%d "
"inum=0x%x pri=0x%x count=0x%x behavior=%d\n",
(void *)dip, type, inum, pri, count, behavior));
if (count > 1) {
if (behavior == DDI_INTR_ALLOC_STRICT &&
(apic_multi_msi_enable == 0 || count > apic_multi_msi_max))
return (0);
if (apic_multi_msi_enable == 0)
count = 1;
else if (count > apic_multi_msi_max)
count = apic_multi_msi_max;
}
if ((rcount = apic_navail_vector(dip, pri)) > count)
rcount = count;
else if (rcount == 0 || (rcount < count &&
behavior == DDI_INTR_ALLOC_STRICT))
return (0);
/* if not ISP2, then round it down */
if (!ISP2(rcount))
rcount = 1 << (highbit(rcount) - 1);
mutex_enter(&airq_mutex);
for (start = 0; rcount > 0; rcount >>= 1) {
if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
behavior == DDI_INTR_ALLOC_STRICT)
break;
}
if (start == 0) {
/* no vector available */
mutex_exit(&airq_mutex);
return (0);
}
major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
for (i = 0; i < rcount; i++) {
if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
(uchar_t)-1) {
mutex_exit(&airq_mutex);
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
"apic_allocate_irq failed\n"));
return (i);
}
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
irqptr = apic_irq_table[irqno];
#ifdef DEBUG
if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
"apic_vector_to_irq is not APIC_RESV_IRQ\n"));
#endif
apic_vector_to_irq[start + i] = (uchar_t)irqno;
irqptr->airq_vector = (uchar_t)(start + i);
irqptr->airq_ioapicindex = (uchar_t)inum; /* start */
irqptr->airq_intin_no = (uchar_t)rcount;
irqptr->airq_ipl = pri;
irqptr->airq_vector = start + i;
irqptr->airq_origirq = (uchar_t)(inum + i);
irqptr->airq_share_id = 0;
irqptr->airq_mps_intr_index = MSI_INDEX;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
if (i == 0) /* they all bound to the same cpu */
cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
0xff, 0xff);
else
irqptr->airq_cpu = cpu;
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: irq=0x%x "
"dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
(void *)irqptr->airq_dip, irqptr->airq_vector,
irqptr->airq_origirq, pri));
}
mutex_exit(&airq_mutex);
return (rcount);
}
/*
* Allocate a free vector for irq at ipl. Takes care of merging of multiple
* IPLs into a single APIC level as well as stretching some IPLs onto multiple
* levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
* requests and allocated only when pri is set.
*/
uchar_t
apic_allocate_vector(int ipl, int irq, int pri)
{
int lowest, highest, i;
highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
lowest -= APIC_VECTOR_PER_IPL;
#ifdef DEBUG
if (apic_restrict_vector) /* for testing shared interrupt logic */
highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
#endif /* DEBUG */
if (pri == 0)
highest -= APIC_HI_PRI_VECTS;
for (i = lowest; i < highest; i++) {
if (APIC_CHECK_RESERVE_VECTORS(i))
continue;
if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
apic_vector_to_irq[i] = (uchar_t)irq;
return (i);
}
}
return (0);
}
/* Mark vector as not being used by any irq */
void
apic_free_vector(uchar_t vector)
{
apic_vector_to_irq[vector] = APIC_RESV_IRQ;
}
uint32_t
ioapic_read(int ioapic_ix, uint32_t reg)
{
volatile uint32_t *ioapic;
ioapic = apicioadr[ioapic_ix];
ioapic[APIC_IO_REG] = reg;
return (ioapic[APIC_IO_DATA]);
}
void
ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
{
volatile uint32_t *ioapic;
ioapic = apicioadr[ioapic_ix];
ioapic[APIC_IO_REG] = reg;
ioapic[APIC_IO_DATA] = value;
}
static processorid_t
apic_find_cpu(int flag)
{
processorid_t acid = 0;
int i;
/* Find the first CPU with the passed-in flag set */
for (i = 0; i < apic_nproc; i++) {
if (apic_cpus[i].aci_status & flag) {
acid = i;
break;
}
}
ASSERT((apic_cpus[acid].aci_status & flag) != 0);
return (acid);
}
/*
* Call rebind to do the actual programming.
* Must be called with interrupts disabled and apic_ioapic_lock held
* 'p' is polymorphic -- if this function is called to process a deferred
* reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
* the irq pointer is retrieved. If not doing deferred reprogramming,
* p is of the type 'apic_irq_t *'.
*
* apic_ioapic_lock must be held across this call, as it protects apic_rebind
* and it protects apic_find_cpu() from a race in which a CPU can be taken
* offline after a cpu is selected, but before apic_rebind is called to
* bind interrupts to it.
*/
int
apic_setup_io_intr(void *p, int irq, boolean_t deferred)
{
apic_irq_t *irqptr;
struct ioapic_reprogram_data *drep = NULL;
int rv;
if (deferred) {
drep = (struct ioapic_reprogram_data *)p;
ASSERT(drep != NULL);
irqptr = drep->irqp;
} else
irqptr = (apic_irq_t *)p;
ASSERT(irqptr != NULL);
rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
if (rv) {
/*
* CPU is not up or interrupts are disabled. Fall back to
* the first available CPU
*/
rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
drep);
}
return (rv);
}
uchar_t
apic_modify_vector(uchar_t vector, int irq)
{
apic_vector_to_irq[vector] = (uchar_t)irq;
return (vector);
}