apic.c revision 636dfb4b6ac0749387c883053011a3afb4b4893b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2010, Intel Corporation.
* All rights reserved.
*/
/*
* To understand how the pcplusmp module interacts with the interrupt subsystem
* read the theory statement in uts/i86pc/os/intr.c.
*/
/*
* PSMI 1.1 extensions are supported only in 2.6 and later versions.
* PSMI 1.2 extensions are supported only in 2.7 and later versions.
* PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
* PSMI 1.5 extensions are supported in Solaris Nevada.
* PSMI 1.6 extensions are supported in Solaris Nevada.
* PSMI 1.7 extensions are supported in Solaris Nevada.
*/
#define PSMI_1_7
#include <sys/processor.h>
#include <sys/time.h>
#include <sys/psm.h>
#include <sys/smp_impldefs.h>
#include <sys/cram.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/psm_common.h>
#include <sys/apic.h>
#include <sys/pit.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/pci.h>
#include <sys/promif.h>
#include <sys/x86_archext.h>
#include <sys/cpc_impl.h>
#include <sys/uadmin.h>
#include <sys/panic.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/trap.h>
#include <sys/machsystm.h>
#include <sys/sysmacros.h>
#include <sys/cpuvar.h>
#include <sys/rm_platter.h>
#include <sys/privregs.h>
#include <sys/note.h>
#include <sys/pci_intr_lib.h>
#include <sys/spl.h>
#include <sys/clock.h>
#include <sys/dditypes.h>
#include <sys/sunddi.h>
#include <sys/x_call.h>
#include <sys/reboot.h>
#include <sys/hpet.h>
#include <sys/apic_common.h>
#include <sys/apic_timer.h>
/*
* Local Function Prototypes
*/
static void apic_init_intr(void);
/*
* standard MP entries
*/
static int apic_probe(void);
static int apic_getclkirq(int ipl);
static void apic_init(void);
static void apic_picinit(void);
static int apic_post_cpu_start(void);
static int apic_intr_enter(int ipl, int *vect);
static void apic_setspl(int ipl);
static void x2apic_setspl(int ipl);
static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
static int apic_disable_intr(processorid_t cpun);
static void apic_enable_intr(processorid_t cpun);
static int apic_get_ipivect(int ipl, int type);
static void apic_post_cyclic_setup(void *arg);
/*
* The following vector assignments influence the value of ipltopri and
* vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
* idle to 0 and IPL 0 to 0xf to differentiate idle in case
* we care to do so in future. Note some IPLs which are rarely used
* will share the vector ranges and heavily used IPLs (5 and 6) have
* a wide range.
*
* This array is used to initialize apic_ipls[] (in apic_init()).
*
* IPL Vector range. as passed to intr_enter
* 0 none.
* 1,2,3 0x20-0x2f 0x0-0xf
* 4 0x30-0x3f 0x10-0x1f
* 5 0x40-0x5f 0x20-0x3f
* 6 0x60-0x7f 0x40-0x5f
* 7,8,9 0x80-0x8f 0x60-0x6f
* 10 0x90-0x9f 0x70-0x7f
* 11 0xa0-0xaf 0x80-0x8f
* ... ...
* 15 0xe0-0xef 0xc0-0xcf
* 15 0xf0-0xff 0xd0-0xdf
*/
uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
};
/*
* The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
* NOTE that this is vector as passed into intr_enter which is
* programmed vector - 0x20 (APIC_BASE_VECT)
*/
uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */
/* The taskpri to be programmed into apic to mask given ipl */
#if defined(__amd64)
uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */
#endif
/*
* Correlation of the hardware vector to the IPL in use, initialized
* from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate
* to the IPLs in apic_vectortoipl on some systems that share interrupt lines
* connected to errata-stricken IOAPICs
*/
uchar_t apic_ipls[APIC_AVAIL_VECTOR];
/*
* Patchable global variables.
*/
int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */
int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */
/*
* Local static data
*/
static struct psm_ops apic_ops = {
apic_probe,
apic_init,
apic_picinit,
apic_intr_enter,
apic_intr_exit,
apic_setspl,
apic_addspl,
apic_delspl,
apic_disable_intr,
apic_enable_intr,
(int (*)(int))NULL, /* psm_softlvl_to_irq */
(void (*)(int))NULL, /* psm_set_softintr */
apic_set_idlecpu,
apic_unset_idlecpu,
apic_clkinit,
apic_getclkirq,
(void (*)(void))NULL, /* psm_hrtimeinit */
apic_gethrtime,
apic_get_next_processorid,
apic_cpu_start,
apic_post_cpu_start,
apic_shutdown,
apic_get_ipivect,
apic_send_ipi,
(int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */
(void (*)(int, char *))NULL, /* psm_notify_error */
(void (*)(int))NULL, /* psm_notify_func */
apic_timer_reprogram,
apic_timer_enable,
apic_timer_disable,
apic_post_cyclic_setup,
apic_preshutdown,
apic_intr_ops, /* Advanced DDI Interrupt framework */
apic_state, /* save, restore apic state for S3 */
apic_cpu_ops, /* CPU control interface. */
};
struct psm_ops *psmops = &apic_ops;
static struct psm_info apic_psm_info = {
PSM_INFO_VER01_7, /* version */
PSM_OWN_EXCLUSIVE, /* ownership */
(struct psm_ops *)&apic_ops, /* operation */
APIC_PCPLUSMP_NAME, /* machine name */
"pcplusmp v1.4 compatible",
};
static void *apic_hdlp;
/*
* apic_let_idle_redistribute can have the following values:
* 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
* apic_redistribute_lock prevents multiple idle cpus from redistributing
*/
int apic_num_idle_redistributions = 0;
static int apic_let_idle_redistribute = 0;
/* to gather intr data and redistribute */
static void apic_redistribute_compute(void);
/*
* This is the loadable module wrapper
*/
int
_init(void)
{
if (apic_coarse_hrtime)
apic_ops.psm_gethrtime = &apic_gettime;
return (psm_mod_init(&apic_hdlp, &apic_psm_info));
}
int
_fini(void)
{
return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
}
int
_info(struct modinfo *modinfop)
{
return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
}
static int
apic_probe(void)
{
/* check if apix is initialized */
if (apix_enable && apix_loaded())
return (PSM_FAILURE);
else
apix_enable = 0; /* continue using pcplusmp PSM */
return (apic_probe_common(apic_psm_info.p_mach_idstring));
}
static uchar_t
apic_xlate_vector_by_irq(uchar_t irq)
{
if (apic_irq_table[irq] == NULL)
return (0);
return (apic_irq_table[irq]->airq_vector);
}
void
apic_init(void)
{
int i;
int j = 1;
psm_get_ioapicid = apic_get_ioapicid;
psm_get_localapicid = apic_get_localapicid;
psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
(apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
/* get to highest vector at the same ipl */
continue;
for (; j <= apic_vectortoipl[i]; j++) {
apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
APIC_BASE_VECT;
}
}
for (; j < MAXIPL + 1; j++)
/* fill up any empty ipltopri slots */
apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
apic_init_common();
#if defined(__amd64)
/*
* Make cpu-specific interrupt info point to cr8pri vector
*/
for (i = 0; i <= MAXIPL; i++)
apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
CPU->cpu_pri_data = apic_cr8pri;
#else
if (cpuid_have_cr8access(CPU))
apic_have_32bit_cr8 = 1;
#endif /* __amd64 */
}
static void
apic_init_intr(void)
{
processorid_t cpun = psm_get_cpu_id();
uint_t nlvt;
uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
if (apic_mode == LOCAL_APIC) {
/*
* We are running APIC in MMIO mode.
*/
if (apic_flat_model) {
apic_reg_ops->apic_write(APIC_FORMAT_REG,
APIC_FLAT_MODEL);
} else {
apic_reg_ops->apic_write(APIC_FORMAT_REG,
APIC_CLUSTER_MODEL);
}
apic_reg_ops->apic_write(APIC_DEST_REG,
AV_HIGH_ORDER >> cpun);
}
if (apic_directed_EOI_supported()) {
/*
* Setting the 12th bit in the Spurious Interrupt Vector
* Register suppresses broadcast EOIs generated by the local
* APIC. The suppression of broadcast EOIs happens only when
* interrupts are level-triggered.
*/
svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
}
/* need to enable APIC before unmasking NMI */
apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
/*
* Presence of an invalid vector with delivery mode AV_FIXED can
* cause an error interrupt, even if the entry is masked...so
* write a valid vector to LVT entries along with the mask bit
*/
/* All APICs have timer and LINT0/1 */
apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */
/*
* On integrated APICs, the number of LVT entries is
* 'Max LVT entry' + 1; on 82489DX's (non-integrated
* APICs), nlvt is "3" (LINT0, LINT1, and timer)
*/
if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
nlvt = 3;
} else {
nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
0xFF) + 1;
}
if (nlvt >= 5) {
/* Enable performance counter overflow interrupt */
if (!is_x86_feature(x86_featureset, X86FSET_MSR))
apic_enable_cpcovf_intr = 0;
if (apic_enable_cpcovf_intr) {
if (apic_cpcovf_vect == 0) {
int ipl = APIC_PCINT_IPL;
int irq = apic_get_ipivect(ipl, -1);
ASSERT(irq != -1);
apic_cpcovf_vect =
apic_irq_table[irq]->airq_vector;
ASSERT(apic_cpcovf_vect);
(void) add_avintr(NULL, ipl,
(avfunc)kcpc_hw_overflow_intr,
"apic pcint", irq, NULL, NULL, NULL, NULL);
kcpc_hw_overflow_intr_installed = 1;
kcpc_hw_enable_cpc_intr =
apic_cpcovf_mask_clear;
}
apic_reg_ops->apic_write(APIC_PCINT_VECT,
apic_cpcovf_vect);
}
}
if (nlvt >= 6) {
/* Only mask TM intr if the BIOS apparently doesn't use it */
uint32_t lvtval;
lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
if (((lvtval & AV_MASK) == AV_MASK) ||
((lvtval & AV_DELIV_MODE) != AV_SMI)) {
apic_reg_ops->apic_write(APIC_THERM_VECT,
AV_MASK|APIC_RESV_IRQ);
}
}
/* Enable error interrupt */
if (nlvt >= 4 && apic_enable_error_intr) {
if (apic_errvect == 0) {
int ipl = 0xf; /* get highest priority intr */
int irq = apic_get_ipivect(ipl, -1);
ASSERT(irq != -1);
apic_errvect = apic_irq_table[irq]->airq_vector;
ASSERT(apic_errvect);
/*
* Not PSMI compliant, but we are going to merge
* with ON anyway
*/
(void) add_avintr((void *)NULL, ipl,
(avfunc)apic_error_intr, "apic error intr",
irq, NULL, NULL, NULL, NULL);
}
apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
}
/* Enable CMCI interrupt */
if (cmi_enable_cmci) {
mutex_enter(&cmci_cpu_setup_lock);
if (cmci_cpu_setup_registered == 0) {
mutex_enter(&cpu_lock);
register_cpu_setup_func(cmci_cpu_setup, NULL);
mutex_exit(&cpu_lock);
cmci_cpu_setup_registered = 1;
}
mutex_exit(&cmci_cpu_setup_lock);
if (apic_cmci_vect == 0) {
int ipl = 0x2;
int irq = apic_get_ipivect(ipl, -1);
ASSERT(irq != -1);
apic_cmci_vect = apic_irq_table[irq]->airq_vector;
ASSERT(apic_cmci_vect);
(void) add_avintr(NULL, ipl,
(avfunc)cmi_cmci_trap,
"apic cmci intr", irq, NULL, NULL, NULL, NULL);
}
apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
}
}
static void
apic_picinit(void)
{
int i, j;
uint_t isr;
/*
* Initialize and enable interrupt remapping before apic
* hardware initialization
*/
apic_intrmap_init(apic_mode);
/*
* On UniSys Model 6520, the BIOS leaves vector 0x20 isr
* bit on without clearing it with EOI. Since softint
* uses vector 0x20 to interrupt itself, so softint will
* not work on this machine. In order to fix this problem
* a check is made to verify all the isr bits are clear.
* If not, EOIs are issued to clear the bits.
*/
for (i = 7; i >= 1; i--) {
isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
if (isr != 0)
for (j = 0; ((j < 32) && (isr != 0)); j++)
if (isr & (1 << j)) {
apic_reg_ops->apic_write(
APIC_EOI_REG, 0);
isr &= ~(1 << j);
apic_error |= APIC_ERR_BOOT_EOI;
}
}
/* set a flag so we know we have run apic_picinit() */
apic_picinit_called = 1;
LOCK_INIT_CLEAR(&apic_gethrtime_lock);
LOCK_INIT_CLEAR(&apic_ioapic_lock);
LOCK_INIT_CLEAR(&apic_error_lock);
LOCK_INIT_CLEAR(&apic_mode_switch_lock);
picsetup(); /* initialise the 8259 */
/* add nmi handler - least priority nmi handler */
LOCK_INIT_CLEAR(&apic_nmi_lock);
if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
"pcplusmp NMI handler", (caddr_t)NULL))
cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
/*
* Check for directed-EOI capability in the local APIC.
*/
if (apic_directed_EOI_supported() == 1) {
apic_set_directed_EOI_handler();
}
apic_init_intr();
/* enable apic mode if imcr present */
if (apic_imcrp) {
outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
}
ioapic_init_intr(IOAPIC_MASK);
}
#ifdef DEBUG
void
apic_break(void)
{
}
#endif /* DEBUG */
/*
* platform_intr_enter
*
* Called at the beginning of the interrupt service routine to
* mask all level equal to and below the interrupt priority
* of the interrupting vector. An EOI should be given to
* the interrupt controller to enable other HW interrupts.
*
* Return -1 for spurious interrupts
*
*/
/*ARGSUSED*/
static int
apic_intr_enter(int ipl, int *vectorp)
{
uchar_t vector;
int nipl;
int irq;
ulong_t iflag;
apic_cpus_info_t *cpu_infop;
/*
* The real vector delivered is (*vectorp + 0x20), but our caller
* subtracts 0x20 from the vector before passing it to us.
* (That's why APIC_BASE_VECT is 0x20.)
*/
vector = (uchar_t)*vectorp;
/* if interrupted by the clock, increment apic_nsec_since_boot */
if (vector == apic_clkvect) {
if (!apic_oneshot) {
/* NOTE: this is not MT aware */
apic_hrtime_stamp++;
apic_nsec_since_boot += apic_nsec_per_intr;
apic_hrtime_stamp++;
last_count_read = apic_hertz_count;
apic_redistribute_compute();
}
/* We will avoid all the book keeping overhead for clock */
nipl = apic_ipls[vector];
*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
if (apic_mode == LOCAL_APIC) {
#if defined(__amd64)
setcr8((ulong_t)(apic_ipltopri[nipl] >>
APIC_IPL_SHIFT));
#else
if (apic_have_32bit_cr8)
setcr8((ulong_t)(apic_ipltopri[nipl] >>
APIC_IPL_SHIFT));
else
LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
(uint32_t)apic_ipltopri[nipl]);
#endif
LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
} else {
X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
X2APIC_WRITE(APIC_EOI_REG, 0);
}
return (nipl);
}
cpu_infop = &apic_cpus[psm_get_cpu_id()];
if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
cpu_infop->aci_spur_cnt++;
return (APIC_INT_SPURIOUS);
}
/* Check if the vector we got is really what we need */
if (apic_revector_pending) {
/*
* Disable interrupts for the duration of
* the vector translation to prevent a self-race for
* the apic_revector_lock. This cannot be done
* in apic_xlate_vector because it is recursive and
* we want the vector translation to be atomic with
* respect to other (higher-priority) interrupts.
*/
iflag = intr_clear();
vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
APIC_BASE_VECT;
intr_restore(iflag);
}
nipl = apic_ipls[vector];
*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
if (apic_mode == LOCAL_APIC) {
#if defined(__amd64)
setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
#else
if (apic_have_32bit_cr8)
setcr8((ulong_t)(apic_ipltopri[nipl] >>
APIC_IPL_SHIFT));
else
LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
(uint32_t)apic_ipltopri[nipl]);
#endif
} else {
X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
}
cpu_infop->aci_current[nipl] = (uchar_t)irq;
cpu_infop->aci_curipl = (uchar_t)nipl;
cpu_infop->aci_ISR_in_progress |= 1 << nipl;
/*
* apic_level_intr could have been assimilated into the irq struct.
* but, having it as a character array is more efficient in terms of
* cache usage. So, we leave it as is.
*/
if (!apic_level_intr[irq]) {
if (apic_mode == LOCAL_APIC) {
LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
} else {
X2APIC_WRITE(APIC_EOI_REG, 0);
}
}
#ifdef DEBUG
APIC_DEBUG_BUF_PUT(vector);
APIC_DEBUG_BUF_PUT(irq);
APIC_DEBUG_BUF_PUT(nipl);
APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
drv_usecwait(apic_stretch_interrupts);
if (apic_break_on_cpu == psm_get_cpu_id())
apic_break();
#endif /* DEBUG */
return (nipl);
}
/*
* This macro is a common code used by MMIO local apic and X2APIC
* local apic.
*/
#define APIC_INTR_EXIT() \
{ \
cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
if (apic_level_intr[irq]) \
apic_reg_ops->apic_send_eoi(irq); \
cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
/* ISR above current pri could not be in progress */ \
cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
}
/*
* Any changes made to this function must also change X2APIC
* version of intr_exit.
*/
void
apic_intr_exit(int prev_ipl, int irq)
{
apic_cpus_info_t *cpu_infop;
#if defined(__amd64)
setcr8((ulong_t)apic_cr8pri[prev_ipl]);
#else
if (apic_have_32bit_cr8)
setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT));
else
apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
#endif
APIC_INTR_EXIT();
}
/*
* Same as apic_intr_exit() except it uses MSR rather than MMIO
* to access local apic registers.
*/
void
x2apic_intr_exit(int prev_ipl, int irq)
{
apic_cpus_info_t *cpu_infop;
X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
APIC_INTR_EXIT();
}
intr_exit_fn_t
psm_intr_exit_fn(void)
{
if (apic_mode == LOCAL_X2APIC)
return (x2apic_intr_exit);
return (apic_intr_exit);
}
/*
* Mask all interrupts below or equal to the given IPL.
* Any changes made to this function must also change X2APIC
* version of setspl.
*/
static void
apic_setspl(int ipl)
{
#if defined(__amd64)
setcr8((ulong_t)apic_cr8pri[ipl]);
#else
if (apic_have_32bit_cr8)
setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT));
else
apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
#endif
/* interrupts at ipl above this cannot be in progress */
apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
/*
* this is a patch fix for the ALR QSMP P5 machine, so that interrupts
* have enough time to come in before the priority is raised again
* during the idle() loop.
*/
if (apic_setspl_delay)
(void) apic_reg_ops->apic_get_pri();
}
/*
* X2APIC version of setspl.
* Mask all interrupts below or equal to the given IPL
*/
static void
x2apic_setspl(int ipl)
{
X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
/* interrupts at ipl above this cannot be in progress */
apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
}
/*ARGSUSED*/
static int
apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
{
return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
}
static int
apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
{
return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl));
}
static int
apic_post_cpu_start(void)
{
int cpun;
static int cpus_started = 1;
/* We know this CPU + BSP started successfully. */
cpus_started++;
/*
* On BSP we would have enabled X2APIC, if supported by processor,
* in acpi_probe(), but on AP we do it here.
*
* We enable X2APIC mode only if BSP is running in X2APIC & the
* local APIC mode of the current CPU is MMIO (xAPIC).
*/
if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
apic_local_mode() == LOCAL_APIC) {
apic_enable_x2apic();
}
/*
* Switch back to x2apic IPI sending method for performance when target
* CPU has entered x2apic mode.
*/
if (apic_mode == LOCAL_X2APIC) {
apic_switch_ipi_callback(B_FALSE);
}
splx(ipltospl(LOCK_LEVEL));
apic_init_intr();
/*
* since some systems don't enable the internal cache on the non-boot
* cpus, so we have to enable them here
*/
setcr0(getcr0() & ~(CR0_CD | CR0_NW));
#ifdef DEBUG
APIC_AV_PENDING_SET();
#else
if (apic_mode == LOCAL_APIC)
APIC_AV_PENDING_SET();
#endif /* DEBUG */
/*
* We may be booting, or resuming from suspend; aci_status will
* be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
* APIC_CPU_ONLINE flag here rather than setting aci_status completely.
*/
cpun = psm_get_cpu_id();
apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
return (PSM_SUCCESS);
}
/*
* type == -1 indicates it is an internal request. Do not change
* resv_vector for these requests
*/
static int
apic_get_ipivect(int ipl, int type)
{
uchar_t vector;
int irq;
if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
if (vector = apic_allocate_vector(ipl, irq, 1)) {
apic_irq_table[irq]->airq_mps_intr_index =
RESERVE_INDEX;
apic_irq_table[irq]->airq_vector = vector;
if (type != -1) {
apic_resv_vector[ipl] = vector;
}
return (irq);
}
}
apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
return (-1); /* shouldn't happen */
}
static int
apic_getclkirq(int ipl)
{
int irq;
if ((irq = apic_get_ipivect(ipl, -1)) == -1)
return (-1);
/*
* Note the vector in apic_clkvect for per clock handling.
*/
apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
apic_clkvect));
return (irq);
}
/*
* Try and disable all interrupts. We just assign interrupts to other
* processors based on policy. If any were bound by user request, we
* let them continue and return failure. We do not bother to check
* for cache affinity while rebinding.
*/
static int
apic_disable_intr(processorid_t cpun)
{
int bind_cpu = 0, i, hardbound = 0;
apic_irq_t *irq_ptr;
ulong_t iflag;
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
for (i = 0; i <= APIC_MAX_VECTOR; i++) {
if (apic_reprogram_info[i].done == B_FALSE) {
if (apic_reprogram_info[i].bindcpu == cpun) {
/*
* CPU is busy -- it's the target of
* a pending reprogramming attempt
*/
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
return (PSM_FAILURE);
}
}
}
apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
apic_cpus[cpun].aci_curipl = 0;
i = apic_min_device_irq;
for (; i <= apic_max_device_irq; i++) {
/*
* If there are bound interrupts on this cpu, then
* rebind them to other processors.
*/
if ((irq_ptr = apic_irq_table[i]) != NULL) {
ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
(irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
(apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
hardbound = 1;
continue;
}
if (irq_ptr->airq_temp_cpu == cpun) {
do {
bind_cpu =
apic_find_cpu(APIC_CPU_INTR_ENABLE);
} while (apic_rebind_all(irq_ptr, bind_cpu));
}
}
}
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
if (hardbound) {
cmn_err(CE_WARN, "Could not disable interrupts on %d"
"due to user bound interrupts", cpun);
return (PSM_FAILURE);
}
else
return (PSM_SUCCESS);
}
/*
* Bind interrupts to the CPU's local APIC.
* Interrupts should not be bound to a CPU's local APIC until the CPU
* is ready to receive interrupts.
*/
static void
apic_enable_intr(processorid_t cpun)
{
int i;
apic_irq_t *irq_ptr;
ulong_t iflag;
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
i = apic_min_device_irq;
for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
if ((irq_ptr = apic_irq_table[i]) != NULL) {
if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
(void) apic_rebind_all(irq_ptr,
irq_ptr->airq_cpu);
}
}
}
if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
/*
* If this module needs a periodic handler for the interrupt distribution, it
* can be added here. The argument to the periodic handler is not currently
* used, but is reserved for future.
*/
static void
apic_post_cyclic_setup(void *arg)
{
_NOTE(ARGUNUSED(arg))
/* cpu_lock is held */
/* set up a periodic handler for intr redistribution */
/*
* In peridoc mode intr redistribution processing is done in
* apic_intr_enter during clk intr processing
*/
if (!apic_oneshot)
return;
/*
* Register a periodical handler for the redistribution processing.
* On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so
* DDI_IPL_2 should be passed to ddi_periodic_add() here.
*/
apic_periodic_id = ddi_periodic_add(
(void (*)(void *))apic_redistribute_compute, NULL,
apic_redistribute_sample_interval, DDI_IPL_2);
}
static void
apic_redistribute_compute(void)
{
int i, j, max_busy;
if (apic_enable_dynamic_migration) {
if (++apic_nticks == apic_sample_factor_redistribution) {
/*
* Time to call apic_intr_redistribute().
* reset apic_nticks. This will cause max_busy
* to be calculated below and if it is more than
* apic_int_busy, we will do the whole thing
*/
apic_nticks = 0;
}
max_busy = 0;
for (i = 0; i < apic_nproc; i++) {
if (!apic_cpu_in_range(i))
continue;
/*
* Check if curipl is non zero & if ISR is in
* progress
*/
if (((j = apic_cpus[i].aci_curipl) != 0) &&
(apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
int irq;
apic_cpus[i].aci_busy++;
irq = apic_cpus[i].aci_current[j];
apic_irq_table[irq]->airq_busy++;
}
if (!apic_nticks &&
(apic_cpus[i].aci_busy > max_busy))
max_busy = apic_cpus[i].aci_busy;
}
if (!apic_nticks) {
if (max_busy > apic_int_busy_mark) {
/*
* We could make the following check be
* skipped > 1 in which case, we get a
* redistribution at half the busy mark (due to
* double interval). Need to be able to collect
* more empirical data to decide if that is a
* good strategy. Punt for now.
*/
if (apic_skipped_redistribute) {
apic_cleanup_busy();
apic_skipped_redistribute = 0;
} else {
apic_intr_redistribute();
}
} else
apic_skipped_redistribute++;
}
}
}
/*
* The following functions are in the platform specific file so that they
* can be different functions depending on whether we are running on
* bare metal or a hypervisor.
*/
/*
* Check to make sure there are enough irq slots
*/
int
apic_check_free_irqs(int count)
{
int i, avail;
avail = 0;
for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
if ((apic_irq_table[i] == NULL) ||
apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
if (++avail >= count)
return (PSM_SUCCESS);
}
}
return (PSM_FAILURE);
}
/*
* This function allocates "count" MSI vector(s) for the given "dip/pri/type"
*/
int
apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
int behavior)
{
int rcount, i;
uchar_t start, irqno;
uint32_t cpu;
major_t major;
apic_irq_t *irqptr;
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
"inum=0x%x pri=0x%x count=0x%x behavior=%d\n",
(void *)dip, inum, pri, count, behavior));
if (count > 1) {
if (behavior == DDI_INTR_ALLOC_STRICT &&
apic_multi_msi_enable == 0)
return (0);
if (apic_multi_msi_enable == 0)
count = 1;
}
if ((rcount = apic_navail_vector(dip, pri)) > count)
rcount = count;
else if (rcount == 0 || (rcount < count &&
behavior == DDI_INTR_ALLOC_STRICT))
return (0);
/* if not ISP2, then round it down */
if (!ISP2(rcount))
rcount = 1 << (highbit(rcount) - 1);
mutex_enter(&airq_mutex);
for (start = 0; rcount > 0; rcount >>= 1) {
if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
behavior == DDI_INTR_ALLOC_STRICT)
break;
}
if (start == 0) {
/* no vector available */
mutex_exit(&airq_mutex);
return (0);
}
if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
/* not enough free irq slots available */
mutex_exit(&airq_mutex);
return (0);
}
major = (dip != NULL) ? ddi_driver_major(dip) : 0;
for (i = 0; i < rcount; i++) {
if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
(uchar_t)-1) {
/*
* shouldn't happen because of the
* apic_check_free_irqs() check earlier
*/
mutex_exit(&airq_mutex);
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
"apic_allocate_irq failed\n"));
return (i);
}
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
irqptr = apic_irq_table[irqno];
#ifdef DEBUG
if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
"apic_vector_to_irq is not APIC_RESV_IRQ\n"));
#endif
apic_vector_to_irq[start + i] = (uchar_t)irqno;
irqptr->airq_vector = (uchar_t)(start + i);
irqptr->airq_ioapicindex = (uchar_t)inum; /* start */
irqptr->airq_intin_no = (uchar_t)rcount;
irqptr->airq_ipl = pri;
irqptr->airq_vector = start + i;
irqptr->airq_origirq = (uchar_t)(inum + i);
irqptr->airq_share_id = 0;
irqptr->airq_mps_intr_index = MSI_INDEX;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
if (i == 0) /* they all bound to the same cpu */
cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
0xff, 0xff);
else
irqptr->airq_cpu = cpu;
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
"dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
(void *)irqptr->airq_dip, irqptr->airq_vector,
irqptr->airq_origirq, pri));
}
mutex_exit(&airq_mutex);
return (rcount);
}
/*
* This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
*/
int
apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
int behavior)
{
int rcount, i;
major_t major;
mutex_enter(&airq_mutex);
if ((rcount = apic_navail_vector(dip, pri)) > count)
rcount = count;
else if (rcount == 0 || (rcount < count &&
behavior == DDI_INTR_ALLOC_STRICT)) {
rcount = 0;
goto out;
}
if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
/* not enough free irq slots available */
rcount = 0;
goto out;
}
major = (dip != NULL) ? ddi_driver_major(dip) : 0;
for (i = 0; i < rcount; i++) {
uchar_t vector, irqno;
apic_irq_t *irqptr;
if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
(uchar_t)-1) {
/*
* shouldn't happen because of the
* apic_check_free_irqs() check earlier
*/
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
"apic_allocate_irq failed\n"));
rcount = i;
goto out;
}
if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
/*
* shouldn't happen because of the
* apic_navail_vector() call earlier
*/
DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
"apic_allocate_vector failed\n"));
rcount = i;
goto out;
}
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
irqptr = apic_irq_table[irqno];
irqptr->airq_vector = (uchar_t)vector;
irqptr->airq_ipl = pri;
irqptr->airq_origirq = (uchar_t)(inum + i);
irqptr->airq_share_id = 0;
irqptr->airq_mps_intr_index = MSIX_INDEX;
irqptr->airq_dip = dip;
irqptr->airq_major = major;
irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
}
out:
mutex_exit(&airq_mutex);
return (rcount);
}
/*
* Allocate a free vector for irq at ipl. Takes care of merging of multiple
* IPLs into a single APIC level as well as stretching some IPLs onto multiple
* levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
* requests and allocated only when pri is set.
*/
uchar_t
apic_allocate_vector(int ipl, int irq, int pri)
{
int lowest, highest, i;
highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
lowest -= APIC_VECTOR_PER_IPL;
#ifdef DEBUG
if (apic_restrict_vector) /* for testing shared interrupt logic */
highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
#endif /* DEBUG */
if (pri == 0)
highest -= APIC_HI_PRI_VECTS;
for (i = lowest; i <= highest; i++) {
if (APIC_CHECK_RESERVE_VECTORS(i))
continue;
if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
apic_vector_to_irq[i] = (uchar_t)irq;
return (i);
}
}
return (0);
}
/* Mark vector as not being used by any irq */
void
apic_free_vector(uchar_t vector)
{
apic_vector_to_irq[vector] = APIC_RESV_IRQ;
}
/*
* Call rebind to do the actual programming.
* Must be called with interrupts disabled and apic_ioapic_lock held
* 'p' is polymorphic -- if this function is called to process a deferred
* reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
* the irq pointer is retrieved. If not doing deferred reprogramming,
* p is of the type 'apic_irq_t *'.
*
* apic_ioapic_lock must be held across this call, as it protects apic_rebind
* and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
* taken offline after a cpu is selected, but before apic_rebind is called to
* bind interrupts to it.
*/
int
apic_setup_io_intr(void *p, int irq, boolean_t deferred)
{
apic_irq_t *irqptr;
struct ioapic_reprogram_data *drep = NULL;
int rv;
if (deferred) {
drep = (struct ioapic_reprogram_data *)p;
ASSERT(drep != NULL);
irqptr = drep->irqp;
} else
irqptr = (apic_irq_t *)p;
ASSERT(irqptr != NULL);
rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
if (rv) {
/*
* CPU is not up or interrupts are disabled. Fall back to
* the first available CPU
*/
rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
drep);
}
return (rv);
}
uchar_t
apic_modify_vector(uchar_t vector, int irq)
{
apic_vector_to_irq[vector] = (uchar_t)irq;
return (vector);
}
char *
apic_get_apic_type(void)
{
return (apic_psm_info.p_mach_idstring);
}
void
x2apic_update_psm(void)
{
struct psm_ops *pops = &apic_ops;
ASSERT(pops != NULL);
pops->psm_intr_exit = x2apic_intr_exit;
pops->psm_setspl = x2apic_setspl;
pops->psm_send_ipi = x2apic_send_ipi;
send_dirintf = pops->psm_send_ipi;
apic_mode = LOCAL_X2APIC;
apic_change_ops();
}