pci.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Host to PCI local bus driver
*/
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/modctl.h>
#include <sys/autoconf.h>
#include <sys/ddi_impldefs.h>
#include <sys/ddi_subrdefs.h>
#include <sys/pci.h>
#include <sys/pci_impl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/hotplug/pci/pcihp.h>
#include <sys/pci_cfgspace.h>
#include <sys/avintr.h>
#include <sys/psm.h>
#include <sys/pci_intr_lib.h>
#include <sys/policy.h>
#include <sys/pci_tools.h>
#include <sys/pci_tools_var.h>
#include "pci_var.h"
/* Save minimal state. */
void *pci_statep;
/*
* Bus Operation functions
*/
static int pci_bus_map(dev_info_t *, dev_info_t *, ddi_map_req_t *,
off_t, off_t, caddr_t *);
static int pci_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t,
void *, void *);
static int pci_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
ddi_intr_handle_impl_t *, void *);
static int pci_get_priority(dev_info_t *, int, int *);
static int pci_get_nintrs(dev_info_t *, int, int *);
static int pci_enable_intr(dev_info_t *, dev_info_t *,
ddi_intr_handle_impl_t *, uint32_t);
static void pci_disable_intr(dev_info_t *, dev_info_t *,
ddi_intr_handle_impl_t *, uint32_t);
/* Extern decalrations */
extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
psm_intr_op_t, int *);
struct bus_ops pci_bus_ops = {
BUSO_REV,
pci_bus_map,
NULL,
NULL,
NULL,
i_ddi_map_fault,
ddi_dma_map,
ddi_dma_allochdl,
ddi_dma_freehdl,
ddi_dma_bindhdl,
ddi_dma_unbindhdl,
ddi_dma_flush,
ddi_dma_win,
ddi_dma_mctl,
pci_ctlops,
ddi_bus_prop_op,
0, /* (*bus_get_eventcookie)(); */
0, /* (*bus_add_eventcall)(); */
0, /* (*bus_remove_eventcall)(); */
0, /* (*bus_post_event)(); */
0, /* (*bus_intr_ctl)(); */
0, /* (*bus_config)(); */
0, /* (*bus_unconfig)(); */
NULL, /* (*bus_fm_init)(); */
NULL, /* (*bus_fm_fini)(); */
NULL, /* (*bus_fm_access_enter)(); */
NULL, /* (*bus_fm_access_exit)(); */
NULL, /* (*bus_power)(); */
pci_intr_ops /* (*bus_intr_op)(); */
};
static int pci_open(dev_t *devp, int flags, int otyp, cred_t *credp);
static int pci_close(dev_t dev, int flags, int otyp, cred_t *credp);
static int pci_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp);
static int pci_prop_op(dev_t dev, dev_info_t *devi, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp);
/*
* One goal here is to leverage off of the pcihp.c source without making
* changes to it. Call into it's cb_ops directly if needed, piggybacking
* anything else needed by the pci_tools.c module. Only pci_tools and pcihp
* will be using the PCI devctl node.
*/
struct cb_ops pci_cb_ops = {
pci_open, /* open */
pci_close, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
pci_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
pci_prop_op, /* cb_prop_op */
NULL, /* streamtab */
D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/*
* Device Node Operation functions
*/
static int pci_info(dev_info_t *devi, ddi_info_cmd_t cmd, void *arg,
void **result);
static int pci_attach(dev_info_t *devi, ddi_attach_cmd_t cmd);
static int pci_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
struct dev_ops pci_ops = {
DEVO_REV, /* devo_rev */
0, /* refcnt */
pci_info, /* info */
nulldev, /* identify */
nulldev, /* probe */
pci_attach, /* attach */
pci_detach, /* detach */
nulldev, /* reset */
&pci_cb_ops, /* driver operations */
&pci_bus_ops /* bus operations */
};
/*
* Internal routines in support of particular pci_ctlops.
*/
static int pci_removechild(dev_info_t *child);
static int pci_initchild(dev_info_t *child);
/*
* Miscellaneous internal function
*/
static int pci_get_reg_prop(dev_info_t *dip, pci_regspec_t *pci_rp);
/*
* These are the access routines. The pci_bus_map sets the handle
* to point to these.
*/
static uint8_t pci_config_rd8(ddi_acc_impl_t *hdlp, uint8_t *addr);
static uint16_t pci_config_rd16(ddi_acc_impl_t *hdlp, uint16_t *addr);
static uint32_t pci_config_rd32(ddi_acc_impl_t *hdlp, uint32_t *addr);
static uint64_t pci_config_rd64(ddi_acc_impl_t *hdlp, uint64_t *addr);
static void pci_config_wr8(ddi_acc_impl_t *hdlp, uint8_t *addr,
uint8_t value);
static void pci_config_wr16(ddi_acc_impl_t *hdlp, uint16_t *addr,
uint16_t value);
static void pci_config_wr32(ddi_acc_impl_t *hdlp, uint32_t *addr,
uint32_t value);
static void pci_config_wr64(ddi_acc_impl_t *hdlp, uint64_t *addr,
uint64_t value);
static void pci_config_rep_rd8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_rd16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_rd32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_rd64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_wr8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_wr16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_wr32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);
static void pci_config_rep_wr64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);
/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {
&mod_driverops, /* Type of module */
"host to PCI nexus driver %I%",
&pci_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
int e;
/*
* Initialize per-pci bus soft state pointer.
*/
e = ddi_soft_state_init(&pci_statep, sizeof (pci_state_t), 1);
if (e != 0)
return (e);
if ((e = mod_install(&modlinkage)) != 0)
ddi_soft_state_fini(&pci_statep);
return (e);
}
int
_fini(void)
{
int rc;
rc = mod_remove(&modlinkage);
if (rc != 0)
return (rc);
ddi_soft_state_fini(&pci_statep);
return (rc);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*ARGSUSED*/
static int
pci_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
/*
* Use the minor number as constructed by pcihp, as the index value to
* ddi_soft_state_zalloc.
*/
int minor = DIP_TO_MINOR(devi);
pci_state_t *pcip = NULL;
if (ddi_prop_update_string(DDI_DEV_T_NONE, devi, "device_type", "pci")
!= DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "pci: 'device_type' prop create failed");
}
if (ddi_soft_state_zalloc(pci_statep, minor) == DDI_SUCCESS) {
pcip = ddi_get_soft_state(pci_statep, minor);
}
if (pcip == NULL) {
return (DDI_FAILURE);
}
pcip->pci_dip = devi;
/*
* Initialize hotplug support on this bus. At minimum
* (for non hotplug bus) this would create ":devctl" minor
* node to support DEVCTL_DEVICE_* and DEVCTL_BUS_* ioctls
* to this bus.
*/
if (pcihp_init(devi) != DDI_SUCCESS) {
cmn_err(CE_WARN, "pci: Failed to setup hotplug framework");
ddi_soft_state_free(pci_statep, minor);
return (DDI_FAILURE);
}
ddi_report_dev(devi);
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
pci_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
/*
* Uninitialize hotplug support on this bus.
*/
(void) pcihp_uninit(devi);
ddi_soft_state_free(pci_statep, DIP_TO_MINOR(devi));
return (DDI_SUCCESS);
}
static int
pci_get_reg_prop(dev_info_t *dip, pci_regspec_t *pci_rp)
{
pci_regspec_t *assigned_addr;
int assigned_addr_len;
uint_t phys_hi;
int i;
int rc;
int number;
phys_hi = pci_rp->pci_phys_hi;
if (((phys_hi & PCI_REG_ADDR_M) == PCI_ADDR_CONFIG) ||
(phys_hi & PCI_RELOCAT_B))
return (DDI_SUCCESS);
/*
* the "reg" property specifies relocatable, get and interpret the
* "assigned-addresses" property.
*/
rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "assigned-addresses",
(int **)&assigned_addr, (uint_t *)&assigned_addr_len);
if (rc != DDI_PROP_SUCCESS)
return (DDI_FAILURE);
/*
* Scan the "assigned-addresses" for one that matches the specified
* "reg" property entry.
*/
phys_hi &= PCI_CONF_ADDR_MASK;
number = assigned_addr_len / (sizeof (pci_regspec_t) / sizeof (int));
for (i = 0; i < number; i++) {
if ((assigned_addr[i].pci_phys_hi & PCI_CONF_ADDR_MASK) ==
phys_hi) {
pci_rp->pci_phys_mid = assigned_addr[i].pci_phys_mid;
pci_rp->pci_phys_low = assigned_addr[i].pci_phys_low;
ddi_prop_free(assigned_addr);
return (DDI_SUCCESS);
}
}
ddi_prop_free(assigned_addr);
return (DDI_FAILURE);
}
static int
pci_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
off_t offset, off_t len, caddr_t *vaddrp)
{
struct regspec reg;
ddi_map_req_t mr;
ddi_acc_hdl_t *hp;
ddi_acc_impl_t *ap;
pci_regspec_t pci_reg;
pci_regspec_t *pci_rp;
int rnumber;
int length;
int rc;
pci_acc_cfblk_t *cfp;
int space;
mr = *mp; /* Get private copy of request */
mp = &mr;
/*
* check for register number
*/
switch (mp->map_type) {
case DDI_MT_REGSPEC:
pci_reg = *(pci_regspec_t *)(mp->map_obj.rp);
pci_rp = &pci_reg;
if (pci_get_reg_prop(rdip, pci_rp) != DDI_SUCCESS)
return (DDI_FAILURE);
break;
case DDI_MT_RNUMBER:
rnumber = mp->map_obj.rnumber;
/*
* get ALL "reg" properties for dip, select the one of
* of interest. In x86, "assigned-addresses" property
* is identical to the "reg" property, so there is no
* need to cross check the two to determine the physical
* address of the registers.
* This routine still performs some validity checks to
* make sure that everything is okay.
*/
rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, rdip,
DDI_PROP_DONTPASS, "reg", (int **)&pci_rp,
(uint_t *)&length);
if (rc != DDI_PROP_SUCCESS) {
return (DDI_FAILURE);
}
/*
* validate the register number.
*/
length /= (sizeof (pci_regspec_t) / sizeof (int));
if (rnumber >= length) {
ddi_prop_free(pci_rp);
return (DDI_FAILURE);
}
/*
* copy the required entry.
*/
pci_reg = pci_rp[rnumber];
/*
* free the memory allocated by ddi_prop_lookup_int_array
*/
ddi_prop_free(pci_rp);
pci_rp = &pci_reg;
if (pci_get_reg_prop(rdip, pci_rp) != DDI_SUCCESS)
return (DDI_FAILURE);
mp->map_type = DDI_MT_REGSPEC;
break;
default:
return (DDI_ME_INVAL);
}
space = pci_rp->pci_phys_hi & PCI_REG_ADDR_M;
/*
* check for unmap and unlock of address space
*/
if ((mp->map_op == DDI_MO_UNMAP) || (mp->map_op == DDI_MO_UNLOCK)) {
/*
* Adjust offset and length
* A non-zero length means override the one in the regspec.
*/
pci_rp->pci_phys_low += (uint_t)offset;
if (len != 0)
pci_rp->pci_size_low = len;
switch (space) {
case PCI_ADDR_CONFIG:
/* No work required on unmap of Config space */
return (DDI_SUCCESS);
case PCI_ADDR_IO:
reg.regspec_bustype = 1;
break;
case PCI_ADDR_MEM64:
/*
* MEM64 requires special treatment on map, to check
* that the device is below 4G. On unmap, however,
* we can assume that everything is OK... the map
* must have succeeded.
*/
/* FALLTHROUGH */
case PCI_ADDR_MEM32:
reg.regspec_bustype = 0;
break;
default:
return (DDI_FAILURE);
}
reg.regspec_addr = pci_rp->pci_phys_low;
reg.regspec_size = pci_rp->pci_size_low;
mp->map_obj.rp = &reg;
return (ddi_map(dip, mp, (off_t)0, (off_t)0, vaddrp));
}
/* check for user mapping request - not legal for Config */
if (mp->map_op == DDI_MO_MAP_HANDLE && space == PCI_ADDR_CONFIG) {
return (DDI_FAILURE);
}
/*
* check for config space
* On x86, CONFIG is not mapped via MMU and there is
* no endian-ness issues. Set the attr field in the handle to
* indicate that the common routines to call the nexus driver.
*/
if (space == PCI_ADDR_CONFIG) {
hp = (ddi_acc_hdl_t *)mp->map_handlep;
if (hp == NULL) {
/* Can't map config space without a handle */
return (DDI_FAILURE);
}
ap = (ddi_acc_impl_t *)hp->ah_platform_private;
/* endian-ness check */
if (hp->ah_acc.devacc_attr_endian_flags == DDI_STRUCTURE_BE_ACC)
return (DDI_FAILURE);
/*
* range check
*/
if ((offset >= 256) || (len > 256) || (offset + len > 256))
return (DDI_FAILURE);
*vaddrp = (caddr_t)offset;
ap->ahi_acc_attr |= DDI_ACCATTR_CONFIG_SPACE;
ap->ahi_put8 = pci_config_wr8;
ap->ahi_get8 = pci_config_rd8;
ap->ahi_put64 = pci_config_wr64;
ap->ahi_get64 = pci_config_rd64;
ap->ahi_rep_put8 = pci_config_rep_wr8;
ap->ahi_rep_get8 = pci_config_rep_rd8;
ap->ahi_rep_put64 = pci_config_rep_wr64;
ap->ahi_rep_get64 = pci_config_rep_rd64;
ap->ahi_get16 = pci_config_rd16;
ap->ahi_get32 = pci_config_rd32;
ap->ahi_put16 = pci_config_wr16;
ap->ahi_put32 = pci_config_wr32;
ap->ahi_rep_get16 = pci_config_rep_rd16;
ap->ahi_rep_get32 = pci_config_rep_rd32;
ap->ahi_rep_put16 = pci_config_rep_wr16;
ap->ahi_rep_put32 = pci_config_rep_wr32;
/* Initialize to default check/notify functions */
ap->ahi_fault_check = i_ddi_acc_fault_check;
ap->ahi_fault_notify = i_ddi_acc_fault_notify;
ap->ahi_fault = 0;
impl_acc_err_init(hp);
/* record the device address for future reference */
cfp = (pci_acc_cfblk_t *)&hp->ah_bus_private;
cfp->c_busnum = PCI_REG_BUS_G(pci_rp->pci_phys_hi);
cfp->c_devnum = PCI_REG_DEV_G(pci_rp->pci_phys_hi);
cfp->c_funcnum = PCI_REG_FUNC_G(pci_rp->pci_phys_hi);
return (DDI_SUCCESS);
}
/*
* range check
*/
if ((offset >= pci_rp->pci_size_low) ||
(len > pci_rp->pci_size_low) ||
(offset + len > pci_rp->pci_size_low)) {
return (DDI_FAILURE);
}
/*
* Adjust offset and length
* A non-zero length means override the one in the regspec.
*/
pci_rp->pci_phys_low += (uint_t)offset;
if (len != 0)
pci_rp->pci_size_low = len;
/*
* convert the pci regsec into the generic regspec used by the
* parent root nexus driver.
*/
switch (space) {
case PCI_ADDR_IO:
reg.regspec_bustype = 1;
break;
case PCI_ADDR_MEM64:
/*
* We can't handle 64-bit devices that are mapped above
* 4G or that are larger than 4G.
*/
if (pci_rp->pci_phys_mid != 0 ||
pci_rp->pci_size_hi != 0)
return (DDI_FAILURE);
/*
* Other than that, we can treat them as 32-bit mappings
*/
/* FALLTHROUGH */
case PCI_ADDR_MEM32:
reg.regspec_bustype = 0;
break;
default:
return (DDI_FAILURE);
}
reg.regspec_addr = pci_rp->pci_phys_low;
reg.regspec_size = pci_rp->pci_size_low;
mp->map_obj.rp = &reg;
return (ddi_map(dip, mp, (off_t)0, (off_t)0, vaddrp));
}
/*
* pci_get_priority:
* Figure out the priority of the device
*/
static int
pci_get_priority(dev_info_t *dip, int inum, int *pri)
{
struct intrspec *ispec;
DDI_INTR_NEXDBG((CE_CONT, "pci_get_priority: dip = 0x%p\n",
(void *)dip));
if ((ispec = (struct intrspec *)pci_intx_get_ispec(dip, dip, inum)) ==
NULL)
return (DDI_FAILURE);
*pri = ispec->intrspec_pri;
return (DDI_SUCCESS);
}
/*
* pci_get_nintrs:
* Figure out how many interrupts the device supports
*/
static int
pci_get_nintrs(dev_info_t *dip, int type, int *nintrs)
{
int ret;
*nintrs = 0;
if (DDI_INTR_IS_MSI_OR_MSIX(type))
ret = pci_msi_get_nintrs(dip, type, nintrs);
else {
ret = DDI_FAILURE;
if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"interrupts", -1) != -1) {
*nintrs = 1;
ret = DDI_SUCCESS;
}
}
return (ret);
}
/*
* pci_intr_ops: bus_intr_op() function for interrupt support
*/
/* ARGSUSED */
static int
pci_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
ddi_intr_handle_impl_t *hdlp, void *result)
{
int priority = 0;
int psm_status = 0;
int pci_status = 0;
int pci_rval, psm_rval = PSM_FAILURE;
int types = 0;
int i, j;
int behavior;
ddi_intrspec_t isp;
struct intrspec *ispec;
ddi_intr_handle_impl_t tmp_hdl;
ddi_intr_msix_t *msix_p;
DDI_INTR_NEXDBG((CE_CONT,
"pci_intr_ops: pdip 0x%p, rdip 0x%p, op %x handle 0x%p\n",
(void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
/* Process the request */
switch (intr_op) {
case DDI_INTROP_SUPPORTED_TYPES:
/* Fixed supported by default */
*(int *)result = DDI_INTR_TYPE_FIXED;
/* Figure out if MSI or MSI-X is supported? */
if (pci_msi_get_supported_type(rdip, &types) != DDI_SUCCESS)
return (DDI_SUCCESS);
if (psm_intr_ops != NULL) {
/* MSI or MSI-X is supported, OR it in */
*(int *)result |= types;
tmp_hdl.ih_type = *(int *)result;
(void) (*psm_intr_ops)(rdip, &tmp_hdl,
PSM_INTR_OP_CHECK_MSI, result);
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: rdip: 0x%p "
"supported types: 0x%x\n", (void *)rdip,
*(int *)result));
}
break;
case DDI_INTROP_NINTRS:
if (pci_get_nintrs(rdip, hdlp->ih_type, result) != DDI_SUCCESS)
return (DDI_FAILURE);
break;
case DDI_INTROP_ALLOC:
/*
* MSI or MSIX (figure out number of vectors available)
* FIXED interrupts: just return available interrupts
*/
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type) &&
(psm_intr_ops != NULL) &&
(pci_get_priority(rdip, hdlp->ih_inum,
&priority) == DDI_SUCCESS)) {
hdlp->ih_pri = priority;
behavior = hdlp->ih_scratch2;
(void) (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_ALLOC_VECTORS, result);
/* verify behavior flag and take appropriate action */
if ((behavior == DDI_INTR_ALLOC_STRICT) &&
(*(int *)result < hdlp->ih_scratch1)) {
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: "
"behavior %x, couldn't get enough intrs\n",
behavior));
hdlp->ih_scratch1 = *(int *)result;
(void) (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_FREE_VECTORS, NULL);
return (DDI_EAGAIN);
}
if (hdlp->ih_type == DDI_INTR_TYPE_MSIX) {
if (!(msix_p = i_ddi_get_msix(hdlp->ih_dip))) {
msix_p = pci_msix_init(hdlp->ih_dip);
if (msix_p)
i_ddi_set_msix(hdlp->ih_dip,
msix_p);
}
msix_p->msix_intrs_in_use += *(int *)result;
}
} else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
/* Figure out if this device supports MASKING */
pci_rval = pci_intx_get_cap(rdip, &pci_status);
if (pci_rval == DDI_SUCCESS && pci_status)
hdlp->ih_cap |= pci_status;
*(int *)result = 1; /* DDI_INTR_TYPE_FIXED */
} else
return (DDI_FAILURE);
break;
case DDI_INTROP_FREE:
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type) &&
(psm_intr_ops != NULL)) {
(void) (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_FREE_VECTORS, NULL);
if (hdlp->ih_type == DDI_INTR_TYPE_MSIX) {
msix_p = i_ddi_get_msix(hdlp->ih_dip);
if (msix_p &&
--msix_p->msix_intrs_in_use == 0) {
pci_msix_fini(msix_p);
i_ddi_set_msix(hdlp->ih_dip, NULL);
}
}
}
break;
case DDI_INTROP_GETPRI:
if (pci_get_priority(rdip, hdlp->ih_inum, &priority) !=
DDI_SUCCESS) /* Get the priority */
return (DDI_FAILURE);
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: priority = 0x%x\n",
priority));
*(int *)result = priority;
break;
case DDI_INTROP_SETPRI:
/* Validate the interrupt priority passed */
if (*(int *)result > LOCK_LEVEL)
return (DDI_FAILURE);
/* Ensure that PSM is all initialized */
if (psm_intr_ops == NULL)
return (DDI_FAILURE);
/* Change the priority */
if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
PSM_FAILURE)
return (DDI_FAILURE);
/* update ispec */
isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum);
ispec = (struct intrspec *)isp;
ispec->intrspec_pri = *(int *)result;
break;
case DDI_INTROP_ADDISR:
/* update ispec */
isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum);
ispec = (struct intrspec *)isp;
ispec->intrspec_func = hdlp->ih_cb_func;
break;
case DDI_INTROP_REMISR:
/* Get the interrupt structure pointer */
isp = pci_intx_get_ispec(pdip, rdip, (int)hdlp->ih_inum);
ispec = (struct intrspec *)isp;
ispec->intrspec_func = (uint_t (*)()) 0;
break;
case DDI_INTROP_GETCAP:
/*
* First check the config space and/or
* MSI capability register(s)
*/
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
pci_rval = pci_msi_get_cap(rdip, hdlp->ih_type,
&pci_status);
else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
pci_rval = pci_intx_get_cap(rdip, &pci_status);
/* next check with pcplusmp */
if (psm_intr_ops != NULL)
psm_rval = (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_GET_CAP, &psm_status);
DDI_INTR_NEXDBG((CE_CONT, "pci: GETCAP returned psm_rval = %x, "
"psm_status = %x, pci_rval = %x, pci_status = %x\n",
psm_rval, psm_status, pci_rval, pci_status));
if (psm_rval == PSM_FAILURE && pci_rval == DDI_FAILURE) {
*(int *)result = 0;
return (DDI_FAILURE);
}
if (psm_rval == PSM_SUCCESS)
*(int *)result = psm_status;
if (pci_rval == DDI_SUCCESS)
*(int *)result |= pci_status;
DDI_INTR_NEXDBG((CE_CONT, "pci: GETCAP returned = %x\n",
*(int *)result));
break;
case DDI_INTROP_SETCAP:
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: SETCAP cap=0x%x\n",
*(int *)result));
if (psm_intr_ops == NULL)
return (DDI_FAILURE);
if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result)) {
DDI_INTR_NEXDBG((CE_CONT, "GETCAP: psm_intr_ops"
" returned failure\n"));
return (DDI_FAILURE);
}
break;
case DDI_INTROP_ENABLE:
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: ENABLE\n"));
if (psm_intr_ops == NULL)
return (DDI_FAILURE);
if (pci_enable_intr(pdip, rdip, hdlp, hdlp->ih_inum) !=
DDI_SUCCESS)
return (DDI_FAILURE);
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: ENABLE vector=0x%x\n",
hdlp->ih_vector));
break;
case DDI_INTROP_DISABLE:
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: DISABLE\n"));
if (psm_intr_ops == NULL)
return (DDI_FAILURE);
pci_disable_intr(pdip, rdip, hdlp, hdlp->ih_inum);
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: DISABLE vector = %x\n",
hdlp->ih_vector));
break;
case DDI_INTROP_BLOCKENABLE:
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: BLOCKENABLE\n"));
if (hdlp->ih_type != DDI_INTR_TYPE_MSI) {
DDI_INTR_NEXDBG((CE_CONT, "BLOCKENABLE: not MSI\n"));
return (DDI_FAILURE);
}
/* Check if psm_intr_ops is NULL? */
if (psm_intr_ops == NULL)
return (DDI_FAILURE);
for (i = 0; i < hdlp->ih_scratch1; i++) {
if (pci_enable_intr(pdip, rdip, hdlp,
hdlp->ih_inum + i) != DDI_SUCCESS) {
DDI_INTR_NEXDBG((CE_CONT, "BLOCKENABLE: "
"pci_enable_intr failed for %d\n", i));
for (j = 0; j < i; j++)
pci_disable_intr(pdip, rdip, hdlp,
hdlp->ih_inum + j);
return (DDI_FAILURE);
}
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: BLOCKENABLE "
"inum %x done\n", hdlp->ih_inum + i));
}
break;
case DDI_INTROP_BLOCKDISABLE:
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: BLOCKDISABLE\n"));
if (hdlp->ih_type != DDI_INTR_TYPE_MSI) {
DDI_INTR_NEXDBG((CE_CONT, "BLOCKDISABLE: not MSI\n"));
return (DDI_FAILURE);
}
/* Check if psm_intr_ops is present */
if (psm_intr_ops == NULL)
return (DDI_FAILURE);
for (i = 0; i < hdlp->ih_scratch1; i++) {
pci_disable_intr(pdip, rdip, hdlp, hdlp->ih_inum + i);
DDI_INTR_NEXDBG((CE_CONT, "pci_intr_ops: BLOCKDISABLE "
"inum %x done\n", hdlp->ih_inum + i));
}
break;
case DDI_INTROP_SETMASK:
case DDI_INTROP_CLRMASK:
/*
* First handle in the config space
*/
if (intr_op == DDI_INTROP_SETMASK) {
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
pci_status = pci_msi_set_mask(rdip,
hdlp->ih_type, hdlp->ih_inum);
else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
pci_status = pci_intx_set_mask(rdip);
} else {
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
pci_status = pci_msi_clr_mask(rdip,
hdlp->ih_type, hdlp->ih_inum);
else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
pci_status = pci_intx_clr_mask(rdip);
}
/* For MSI/X; no need to check with pcplusmp */
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (pci_status);
/* For fixed interrupts only: handle config space first */
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED &&
pci_status == DDI_SUCCESS)
break;
/* For fixed interrupts only: confer with pcplusmp next */
if (psm_intr_ops != NULL) {
/* If interrupt is shared; do nothing */
psm_rval = (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_GET_SHARED, &psm_status);
if (psm_rval == PSM_FAILURE || psm_status == 1)
return (pci_status);
/* Now, pcplusmp should try to set/clear the mask */
if (intr_op == DDI_INTROP_SETMASK)
psm_rval = (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_SET_MASK, NULL);
else
psm_rval = (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_CLEAR_MASK, NULL);
}
return ((psm_rval == PSM_FAILURE) ? DDI_FAILURE : DDI_SUCCESS);
case DDI_INTROP_GETPENDING:
/*
* First check the config space and/or
* MSI capability register(s)
*/
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
pci_rval = pci_msi_get_pending(rdip, hdlp->ih_type,
hdlp->ih_inum, &pci_status);
else if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
pci_rval = pci_intx_get_pending(rdip, &pci_status);
/* On failure; next try with pcplusmp */
if (pci_rval != DDI_SUCCESS && psm_intr_ops != NULL)
psm_rval = (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_GET_PENDING, &psm_status);
DDI_INTR_NEXDBG((CE_CONT, "pci: GETPENDING returned "
"psm_rval = %x, psm_status = %x, pci_rval = %x, "
"pci_status = %x\n", psm_rval, psm_status, pci_rval,
pci_status));
if (psm_rval == PSM_FAILURE && pci_rval == DDI_FAILURE) {
*(int *)result = 0;
return (DDI_FAILURE);
}
if (psm_rval != PSM_FAILURE)
*(int *)result = psm_status;
else if (pci_rval != DDI_FAILURE)
*(int *)result = pci_status;
DDI_INTR_NEXDBG((CE_CONT, "pci: GETPENDING returned = %x\n",
*(int *)result));
break;
case DDI_INTROP_NAVAIL:
if ((psm_intr_ops != NULL) && (pci_get_priority(rdip,
hdlp->ih_inum, &priority) == DDI_SUCCESS)) {
/* Priority in the handle not initialized yet */
hdlp->ih_pri = priority;
(void) (*psm_intr_ops)(rdip, hdlp,
PSM_INTR_OP_NAVAIL_VECTORS, result);
} else {
*(int *)result = 1;
}
DDI_INTR_NEXDBG((CE_CONT, "pci: NAVAIL returned = %x\n",
*(int *)result));
break;
default:
return (i_ddi_intr_ops(pdip, rdip, intr_op, hdlp, result));
}
return (DDI_SUCCESS);
}
static int
pci_enable_intr(dev_info_t *pdip, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp, uint32_t inum)
{
int vector;
struct intrspec *ispec;
DDI_INTR_NEXDBG((CE_CONT, "pci_enable_intr: hdlp %p inum %x\n",
(void *)hdlp, inum));
/* Translate the interrupt if needed */
ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip, (int)inum);
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
ispec->intrspec_vec = inum;
hdlp->ih_private = (void *)ispec;
/* translate the interrupt if needed */
(void) (*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, &vector);
DDI_INTR_NEXDBG((CE_CONT, "pci_enable_intr: priority=%x vector=%x\n",
hdlp->ih_pri, vector));
/* Add the interrupt handler */
if (!add_avintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
DEVI(rdip)->devi_name, vector, hdlp->ih_cb_arg1,
hdlp->ih_cb_arg2, rdip))
return (DDI_FAILURE);
return (DDI_SUCCESS);
}
static void
pci_disable_intr(dev_info_t *pdip, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp, uint32_t inum)
{
int vector;
struct intrspec *ispec;
DDI_INTR_NEXDBG((CE_CONT, "pci_disable_intr: \n"));
ispec = (struct intrspec *)pci_intx_get_ispec(pdip, rdip, (int)inum);
if (DDI_INTR_IS_MSI_OR_MSIX(hdlp->ih_type))
ispec->intrspec_vec = inum;
hdlp->ih_private = (void *)ispec;
/* translate the interrupt if needed */
(void) (*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, &vector);
/* Disable the interrupt handler */
rem_avintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, vector);
}
/*ARGSUSED*/
static int
pci_ctlops(dev_info_t *dip, dev_info_t *rdip,
ddi_ctl_enum_t ctlop, void *arg, void *result)
{
pci_regspec_t *drv_regp;
uint_t reglen;
int rn;
int totreg;
switch (ctlop) {
case DDI_CTLOPS_REPORTDEV:
if (rdip == (dev_info_t *)0)
return (DDI_FAILURE);
cmn_err(CE_CONT, "?PCI-device: %s@%s, %s%d\n",
ddi_node_name(rdip), ddi_get_name_addr(rdip),
ddi_driver_name(rdip),
ddi_get_instance(rdip));
return (DDI_SUCCESS);
case DDI_CTLOPS_INITCHILD:
return (pci_initchild((dev_info_t *)arg));
case DDI_CTLOPS_UNINITCHILD:
return (pci_removechild((dev_info_t *)arg));
case DDI_CTLOPS_NINTRS:
if (ddi_get_parent_data(rdip))
*(int *)result = 1;
else
*(int *)result = 0;
return (DDI_SUCCESS);
case DDI_CTLOPS_XLATE_INTRS:
return (DDI_SUCCESS);
case DDI_CTLOPS_SIDDEV:
return (DDI_SUCCESS);
case DDI_CTLOPS_REGSIZE:
case DDI_CTLOPS_NREGS:
if (rdip == (dev_info_t *)0)
return (DDI_FAILURE);
*(int *)result = 0;
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, rdip,
DDI_PROP_DONTPASS, "reg", (int **)&drv_regp,
&reglen) != DDI_PROP_SUCCESS) {
return (DDI_FAILURE);
}
totreg = (reglen * sizeof (int)) / sizeof (pci_regspec_t);
if (ctlop == DDI_CTLOPS_NREGS)
*(int *)result = totreg;
else if (ctlop == DDI_CTLOPS_REGSIZE) {
rn = *(int *)arg;
if (rn >= totreg) {
ddi_prop_free(drv_regp);
return (DDI_FAILURE);
}
*(off_t *)result = drv_regp[rn].pci_size_low;
}
ddi_prop_free(drv_regp);
return (DDI_SUCCESS);
case DDI_CTLOPS_POWER: {
power_req_t *reqp = (power_req_t *)arg;
/*
* We currently understand reporting of PCI_PM_IDLESPEED
* capability. Everything else is passed up.
*/
if ((reqp->request_type == PMR_REPORT_PMCAP) &&
(reqp->req.report_pmcap_req.cap == PCI_PM_IDLESPEED)) {
return (DDI_SUCCESS);
}
return (ddi_ctlops(dip, rdip, ctlop, arg, result));
}
default:
return (ddi_ctlops(dip, rdip, ctlop, arg, result));
}
/* NOTREACHED */
}
/*
* Assign the address portion of the node name
*/
static int
pci_name_child(dev_info_t *child, char *name, int namelen)
{
pci_regspec_t *pci_rp;
char **unit_addr;
int dev, func, length;
uint_t n;
if (ndi_dev_is_persistent_node(child) == 0) {
/*
* For .conf node, use "unit-address" property
*/
if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS, "unit-address", &unit_addr, &n) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN,
"cannot find unit-address in %s.conf",
ddi_get_name(child));
return (DDI_FAILURE);
}
if (n != 1 || *unit_addr == NULL || **unit_addr == 0) {
cmn_err(CE_WARN, "unit-address property in %s.conf"
" not well-formed", ddi_get_name(child));
ddi_prop_free(unit_addr);
return (DDI_FAILURE);
}
(void) snprintf(name, namelen, "%s", *unit_addr);
ddi_prop_free(unit_addr);
return (DDI_SUCCESS);
}
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS, "reg", (int **)&pci_rp,
(uint_t *)&length) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "cannot find reg property in %s",
ddi_get_name(child));
return (DDI_FAILURE);
}
/* copy the device identifications */
dev = PCI_REG_DEV_G(pci_rp->pci_phys_hi);
func = PCI_REG_FUNC_G(pci_rp->pci_phys_hi);
/*
* free the memory allocated by ddi_prop_lookup_int_array
*/
ddi_prop_free(pci_rp);
if (func != 0) {
(void) snprintf(name, namelen, "%x,%x", dev, func);
} else {
(void) snprintf(name, namelen, "%x", dev);
}
return (DDI_SUCCESS);
}
static int
pci_initchild(dev_info_t *child)
{
struct ddi_parent_private_data *pdptr;
char name[80];
if (pci_name_child(child, name, 80) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
ddi_set_name_addr(child, name);
/*
* Pseudo nodes indicate a prototype node with per-instance
* properties to be merged into the real h/w device node.
* The interpretation of the unit-address is DD[,F]
* where DD is the device id and F is the function.
*/
if (ndi_dev_is_persistent_node(child) == 0) {
extern int pci_allow_pseudo_children;
ddi_set_parent_data(child, NULL);
/*
* Try to merge the properties from this prototype
* node into real h/w nodes.
*/
if (ndi_merge_node(child, pci_name_child) == DDI_SUCCESS) {
/*
* Merged ok - return failure to remove the node.
*/
ddi_set_name_addr(child, NULL);
return (DDI_FAILURE);
}
/* workaround for ddivs to run under PCI */
if (pci_allow_pseudo_children) {
/*
* If the "interrupts" property doesn't exist,
* this must be the ddivs no-intr case, and it returns
* DDI_SUCCESS instead of DDI_FAILURE.
*/
if (ddi_prop_get_int(DDI_DEV_T_ANY, child,
DDI_PROP_DONTPASS, "interrupts", -1) == -1)
return (DDI_SUCCESS);
/*
* Create the ddi_parent_private_data for a pseudo
* child.
*/
pdptr = (struct ddi_parent_private_data *)kmem_zalloc(
(sizeof (struct ddi_parent_private_data) +
sizeof (struct intrspec)), KM_SLEEP);
pdptr->par_intr = (struct intrspec *)(pdptr + 1);
pdptr->par_nintr = 1;
ddi_set_parent_data(child, pdptr);
return (DDI_SUCCESS);
}
/*
* The child was not merged into a h/w node,
* but there's not much we can do with it other
* than return failure to cause the node to be removed.
*/
cmn_err(CE_WARN, "!%s@%s: %s.conf properties not merged",
ddi_get_name(child), ddi_get_name_addr(child),
ddi_get_name(child));
ddi_set_name_addr(child, NULL);
return (DDI_NOT_WELL_FORMED);
}
if (ddi_prop_get_int(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
"interrupts", -1) != -1) {
pdptr = (struct ddi_parent_private_data *)
kmem_zalloc((sizeof (struct ddi_parent_private_data) +
sizeof (struct intrspec)), KM_SLEEP);
pdptr->par_intr = (struct intrspec *)(pdptr + 1);
pdptr->par_nintr = 1;
ddi_set_parent_data(child, pdptr);
} else
ddi_set_parent_data(child, NULL);
return (DDI_SUCCESS);
}
static int
pci_removechild(dev_info_t *dip)
{
struct ddi_parent_private_data *pdptr;
if ((pdptr = ddi_get_parent_data(dip)) != NULL) {
kmem_free(pdptr, (sizeof (*pdptr) + sizeof (struct intrspec)));
ddi_set_parent_data(dip, NULL);
}
ddi_set_name_addr(dip, NULL);
/*
* Strip the node to properly convert it back to prototype form
*/
ddi_remove_minor_node(dip, NULL);
impl_rem_dev_props(dip);
return (DDI_SUCCESS);
}
/*
* These are the get and put functions to be shared with drivers. The
* mutex locking is done inside the functions referenced, rather than
* here, and is thus shared across PCI child drivers and any other
* consumers of PCI config space (such as the ACPI subsystem).
*
* The configuration space addresses come in as pointers. This is fine on
* a 32-bit system, where the VM space and configuration space are the same
* size. It's not such a good idea on a 64-bit system, where memory
* addresses are twice as large as configuration space addresses. At some
* point in the call tree we need to take a stand and say "you are 32-bit
* from this time forth", and this seems like a nice self-contained place.
*/
static uint8_t
pci_config_rd8(ddi_acc_impl_t *hdlp, uint8_t *addr)
{
pci_acc_cfblk_t *cfp;
uint8_t rval;
int reg;
ASSERT64(((uintptr_t)addr >> 32) == 0);
reg = (int)(uintptr_t)addr;
cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;
rval = (*pci_getb_func)(cfp->c_busnum, cfp->c_devnum, cfp->c_funcnum,
reg);
return (rval);
}
static void
pci_config_rep_rd8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags)
{
uint8_t *h, *d;
h = host_addr;
d = dev_addr;
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*h++ = pci_config_rd8(hdlp, d++);
else
for (; repcount; repcount--)
*h++ = pci_config_rd8(hdlp, d);
}
static uint16_t
pci_config_rd16(ddi_acc_impl_t *hdlp, uint16_t *addr)
{
pci_acc_cfblk_t *cfp;
uint16_t rval;
int reg;
ASSERT64(((uintptr_t)addr >> 32) == 0);
reg = (int)(uintptr_t)addr;
cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;
rval = (*pci_getw_func)(cfp->c_busnum, cfp->c_devnum, cfp->c_funcnum,
reg);
return (rval);
}
static void
pci_config_rep_rd16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags)
{
uint16_t *h, *d;
h = host_addr;
d = dev_addr;
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*h++ = pci_config_rd16(hdlp, d++);
else
for (; repcount; repcount--)
*h++ = pci_config_rd16(hdlp, d);
}
static uint32_t
pci_config_rd32(ddi_acc_impl_t *hdlp, uint32_t *addr)
{
pci_acc_cfblk_t *cfp;
uint32_t rval;
int reg;
ASSERT64(((uintptr_t)addr >> 32) == 0);
reg = (int)(uintptr_t)addr;
cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;
rval = (*pci_getl_func)(cfp->c_busnum, cfp->c_devnum,
cfp->c_funcnum, reg);
return (rval);
}
static void
pci_config_rep_rd32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags)
{
uint32_t *h, *d;
h = host_addr;
d = dev_addr;
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
*h++ = pci_config_rd32(hdlp, d++);
else
for (; repcount; repcount--)
*h++ = pci_config_rd32(hdlp, d);
}
static void
pci_config_wr8(ddi_acc_impl_t *hdlp, uint8_t *addr, uint8_t value)
{
pci_acc_cfblk_t *cfp;
int reg;
ASSERT64(((uintptr_t)addr >> 32) == 0);
reg = (int)(uintptr_t)addr;
cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;
(*pci_putb_func)(cfp->c_busnum, cfp->c_devnum,
cfp->c_funcnum, reg, value);
}
static void
pci_config_rep_wr8(ddi_acc_impl_t *hdlp, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags)
{
uint8_t *h, *d;
h = host_addr;
d = dev_addr;
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
pci_config_wr8(hdlp, d++, *h++);
else
for (; repcount; repcount--)
pci_config_wr8(hdlp, d, *h++);
}
static void
pci_config_wr16(ddi_acc_impl_t *hdlp, uint16_t *addr, uint16_t value)
{
pci_acc_cfblk_t *cfp;
int reg;
ASSERT64(((uintptr_t)addr >> 32) == 0);
reg = (int)(uintptr_t)addr;
cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;
(*pci_putw_func)(cfp->c_busnum, cfp->c_devnum,
cfp->c_funcnum, reg, value);
}
static void
pci_config_rep_wr16(ddi_acc_impl_t *hdlp, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags)
{
uint16_t *h, *d;
h = host_addr;
d = dev_addr;
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
pci_config_wr16(hdlp, d++, *h++);
else
for (; repcount; repcount--)
pci_config_wr16(hdlp, d, *h++);
}
static void
pci_config_wr32(ddi_acc_impl_t *hdlp, uint32_t *addr, uint32_t value)
{
pci_acc_cfblk_t *cfp;
int reg;
ASSERT64(((uintptr_t)addr >> 32) == 0);
reg = (int)(uintptr_t)addr;
cfp = (pci_acc_cfblk_t *)&hdlp->ahi_common.ah_bus_private;
(*pci_putl_func)(cfp->c_busnum, cfp->c_devnum,
cfp->c_funcnum, reg, value);
}
static void
pci_config_rep_wr32(ddi_acc_impl_t *hdlp, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags)
{
uint32_t *h, *d;
h = host_addr;
d = dev_addr;
if (flags == DDI_DEV_AUTOINCR)
for (; repcount; repcount--)
pci_config_wr32(hdlp, d++, *h++);
else
for (; repcount; repcount--)
pci_config_wr32(hdlp, d, *h++);
}
static uint64_t
pci_config_rd64(ddi_acc_impl_t *hdlp, uint64_t *addr)
{
uint32_t lw_val;
uint32_t hi_val;
uint32_t *dp;
uint64_t val;
dp = (uint32_t *)addr;
lw_val = pci_config_rd32(hdlp, dp);
dp++;
hi_val = pci_config_rd32(hdlp, dp);
val = ((uint64_t)hi_val << 32) | lw_val;
return (val);
}
static void
pci_config_wr64(ddi_acc_impl_t *hdlp, uint64_t *addr, uint64_t value)
{
uint32_t lw_val;
uint32_t hi_val;
uint32_t *dp;
dp = (uint32_t *)addr;
lw_val = (uint32_t)(value & 0xffffffff);
hi_val = (uint32_t)(value >> 32);
pci_config_wr32(hdlp, dp, lw_val);
dp++;
pci_config_wr32(hdlp, dp, hi_val);
}
static void
pci_config_rep_rd64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR) {
for (; repcount; repcount--)
*host_addr++ = pci_config_rd64(hdlp, dev_addr++);
} else {
for (; repcount; repcount--)
*host_addr++ = pci_config_rd64(hdlp, dev_addr);
}
}
static void
pci_config_rep_wr64(ddi_acc_impl_t *hdlp, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags)
{
if (flags == DDI_DEV_AUTOINCR) {
for (; repcount; repcount--)
pci_config_wr64(hdlp, host_addr++, *dev_addr++);
} else {
for (; repcount; repcount--)
pci_config_wr64(hdlp, host_addr++, *dev_addr);
}
}
/*
* When retrofitting this module for pci_tools, functions such as open, close,
* and ioctl are now pulled into this module. Before this, the functions in
* the pcihp module were referenced directly. Now they are called or
* referenced through the pcihp cb_ops structure from functions in this module.
*/
static int
pci_open(dev_t *devp, int flags, int otyp, cred_t *credp)
{
return ((pcihp_cb_ops.cb_open)(devp, flags, otyp, credp));
}
static int
pci_close(dev_t dev, int flags, int otyp, cred_t *credp)
{
return ((pcihp_cb_ops.cb_close)(dev, flags, otyp, credp));
}
static int
pci_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
int rv = ENOTTY;
if (IS_DEVCTL(cmd)) {
return ((pcihp_cb_ops.cb_ioctl)(dev, cmd, arg, mode,
credp, rvalp));
}
/*
* PCI tools.
*/
if ((cmd & ~IOCPARM_MASK) == PCITOOL_IOC) {
switch (cmd) {
case PCITOOL_DEVICE_SET_REG:
case PCITOOL_DEVICE_GET_REG:
/* Require full privileges. */
if (secpolicy_kmdb(credp))
rv = EPERM;
else
rv = pcitool_dev_reg_ops(
dev, (void *)arg, cmd, mode);
break;
case PCITOOL_NEXUS_SET_REG:
case PCITOOL_NEXUS_GET_REG:
/* Require full privileges. */
if (secpolicy_kmdb(credp))
rv = EPERM;
else
rv = pcitool_bus_reg_ops(
dev, (void *)arg, cmd, mode);
break;
case PCITOOL_DEVICE_SET_INTR:
/* Require PRIV_SYS_RES_CONFIG */
if (secpolicy_ponline(credp)) {
rv = EPERM;
break;
}
/*FALLTHRU*/
/* These require no special privileges. */
case PCITOOL_DEVICE_GET_INTR:
case PCITOOL_DEVICE_NUM_INTR:
rv = pcitool_intr_admn(dev, (void *)arg, cmd, mode);
break;
default:
rv = ENOTTY;
break;
}
}
return (rv);
}
static int
pci_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp)
{
return ((pcihp_cb_ops.cb_prop_op)(dev, dip, prop_op, flags,
name, valuep, lengthp));
}
static int
pci_info(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
return (pcihp_info(dip, cmd, arg, result));
}