apix.c revision 7417cfdecea1902cef03c0d61a72df97d945925d
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* Copyright (c) 2010, Intel Corporation.
* All rights reserved.
*/
/*
* PSMI 1.1 extensions are supported only in 2.6 and later versions.
* PSMI 1.2 extensions are supported only in 2.7 and later versions.
* PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
* PSMI 1.5 extensions are supported in Solaris Nevada.
* PSMI 1.6 extensions are supported in Solaris Nevada.
* PSMI 1.7 extensions are supported in Solaris Nevada.
*/
#define PSMI_1_7
#include <sys/processor.h>
#include <sys/time.h>
#include <sys/psm.h>
#include <sys/smp_impldefs.h>
#include <sys/cram.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/psm_common.h>
#include <sys/pit.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/pci.h>
#include <sys/promif.h>
#include <sys/x86_archext.h>
#include <sys/cpc_impl.h>
#include <sys/uadmin.h>
#include <sys/panic.h>
#include <sys/debug.h>
#include <sys/archsystm.h>
#include <sys/trap.h>
#include <sys/machsystm.h>
#include <sys/sysmacros.h>
#include <sys/cpuvar.h>
#include <sys/rm_platter.h>
#include <sys/privregs.h>
#include <sys/note.h>
#include <sys/pci_intr_lib.h>
#include <sys/spl.h>
#include <sys/clock.h>
#include <sys/dditypes.h>
#include <sys/sunddi.h>
#include <sys/x_call.h>
#include <sys/reboot.h>
#include <sys/mach_intr.h>
#include <sys/apix.h>
#include <sys/apix_irm_impl.h>
static int apix_probe();
static void apix_init();
static void apix_picinit(void);
static int apix_intr_enter(int, int *);
static void apix_intr_exit(int, int);
static void apix_setspl(int);
static int apix_disable_intr(processorid_t);
static void apix_enable_intr(processorid_t);
static int apix_get_clkvect(int);
static int apix_get_ipivect(int, int);
static void apix_post_cyclic_setup(void *);
static int apix_post_cpu_start();
static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
psm_intr_op_t, int *);
/*
* Helper functions for apix_intr_ops()
*/
static void apix_redistribute_compute(void);
static int apix_get_pending(apix_vector_t *);
static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
static char *apix_get_apic_type(void);
static int apix_intx_get_pending(int);
static void apix_intx_set_mask(int irqno);
static void apix_intx_clear_mask(int irqno);
static int apix_intx_get_shared(int irqno);
static void apix_intx_set_shared(int irqno, int delta);
static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
struct intrspec *);
static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
extern int apic_clkinit(int);
/* IRM initialization for APIX PSM module */
extern void apix_irm_init(void);
extern int irm_enable;
/*
* Local static data
*/
static struct psm_ops apix_ops = {
apix_probe,
apix_init,
apix_picinit,
apix_intr_enter,
apix_intr_exit,
apix_setspl,
apix_addspl,
apix_delspl,
apix_disable_intr,
apix_enable_intr,
NULL, /* psm_softlvl_to_irq */
NULL, /* psm_set_softintr */
apic_set_idlecpu,
apic_unset_idlecpu,
apic_clkinit,
apix_get_clkvect,
NULL, /* psm_hrtimeinit */
apic_gethrtime,
apic_get_next_processorid,
apic_cpu_start,
apix_post_cpu_start,
apic_shutdown,
apix_get_ipivect,
apic_send_ipi,
NULL, /* psm_translate_irq */
NULL, /* psm_notify_error */
NULL, /* psm_notify_func */
apic_timer_reprogram,
apic_timer_enable,
apic_timer_disable,
apix_post_cyclic_setup,
apic_preshutdown,
apix_intr_ops, /* Advanced DDI Interrupt framework */
apic_state, /* save, restore apic state for S3 */
apic_cpu_ops, /* CPU control interface. */
};
struct psm_ops *psmops = &apix_ops;
static struct psm_info apix_psm_info = {
PSM_INFO_VER01_7, /* version */
PSM_OWN_EXCLUSIVE, /* ownership */
&apix_ops, /* operation */
APIX_NAME, /* machine name */
"apix MPv1.4 compatible",
};
static void *apix_hdlp;
static int apix_is_enabled = 0;
/*
* Flag to indicate if APIX is to be enabled only for platforms
* with specific hw feature(s).
*/
int apix_hw_chk_enable = 1;
/*
* Hw features that are checked for enabling APIX support.
*/
#define APIX_SUPPORT_X2APIC 0x00000001
uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
/*
* apix_lock is used for cpu selection and vector re-binding
*/
lock_t apix_lock;
apix_impl_t *apixs[NCPU];
/*
* Mapping between device interrupt and the allocated vector. Indexed
* by major number.
*/
apix_dev_vector_t **apix_dev_vector;
/*
* Mapping between device major number and cpu id. It gets used
* when interrupt binding policy round robin with affinity is
* applied. With that policy, devices with the same major number
* will be bound to the same CPU.
*/
processorid_t *apix_major_to_cpu; /* major to cpu mapping */
kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */
int apix_nipis = 16; /* Maximum number of IPIs */
/*
* Maximum number of vectors in a CPU that can be used for interrupt
* allocation (including IPIs and the reserved vectors).
*/
int apix_cpu_nvectors = APIX_NVECTOR;
/* gcpu.h */
extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
extern void apic_change_eoi();
/*
* This is the loadable module wrapper
*/
int
_init(void)
{
if (apic_coarse_hrtime)
apix_ops.psm_gethrtime = &apic_gettime;
return (psm_mod_init(&apix_hdlp, &apix_psm_info));
}
int
_fini(void)
{
return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
}
int
_info(struct modinfo *modinfop)
{
return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
}
static int
apix_probe()
{
int rval;
if (apix_enable == 0)
return (PSM_FAILURE);
/* check for hw features if specified */
if (apix_hw_chk_enable) {
/* check if x2APIC mode is supported */
if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
APIX_SUPPORT_X2APIC) {
if (!((apic_local_mode() == LOCAL_X2APIC) ||
apic_detect_x2apic())) {
/* x2APIC mode is not supported in the hw */
apix_enable = 0;
}
}
if (apix_enable == 0)
return (PSM_FAILURE);
}
rval = apic_probe_common(apix_psm_info.p_mach_idstring);
if (rval == PSM_SUCCESS)
apix_is_enabled = 1;
else
apix_is_enabled = 0;
return (rval);
}
/*
* Initialize the data structures needed by pcplusmpx module.
* Specifically, the data structures used by addspl() and delspl()
* routines.
*/
static void
apix_softinit()
{
int i, *iptr;
apix_impl_t *hdlp;
int nproc;
nproc = max(apic_nproc, apic_max_nproc);
hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
for (i = 0; i < nproc; i++) {
apixs[i] = &hdlp[i];
apixs[i]->x_cpuid = i;
LOCK_INIT_CLEAR(&apixs[i]->x_lock);
}
/* cpu 0 is always up (for now) */
apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
iptr = (int *)&apic_irq_table[0];
for (i = 0; i <= APIC_MAX_VECTOR; i++) {
apic_level_intr[i] = 0;
*iptr++ = NULL;
}
mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
KM_SLEEP);
if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
KM_SLEEP);
for (i = 0; i < devcnt; i++)
apix_major_to_cpu[i] = IRQ_UNINIT;
}
mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
}
static int
apix_get_pending_spl(void)
{
int cpuid = CPU->cpu_id;
return (bsrw_insn(apixs[cpuid]->x_intr_pending));
}
static uintptr_t
apix_get_intr_handler(int cpu, short vec)
{
apix_vector_t *apix_vector;
ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
if (cpu >= apic_nproc)
return (NULL);
apix_vector = apixs[cpu]->x_vectbl[vec];
return ((uintptr_t)(apix_vector->v_autovect));
}
#if defined(__amd64)
static unsigned char dummy_cpu_pri[MAXIPL + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
};
#endif
static void
apix_init()
{
extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
do_interrupt_common = apix_do_interrupt;
addintr = apix_add_avintr;
remintr = apix_rem_avintr;
get_pending_spl = apix_get_pending_spl;
get_intr_handler = apix_get_intr_handler;
psm_get_localapicid = apic_get_localapicid;
psm_get_ioapicid = apic_get_ioapicid;
apix_softinit();
#if defined(__amd64)
/*
* Make cpu-specific interrupt info point to cr8pri vector
*/
CPU->cpu_pri_data = dummy_cpu_pri;
#else
if (cpuid_have_cr8access(CPU))
apic_have_32bit_cr8 = 1;
#endif /* __amd64 */
/*
* Initialize IRM pool parameters
*/
if (irm_enable) {
int i;
int lowest_irq;
int highest_irq;
/* number of CPUs present */
apix_irminfo.apix_ncpus = apic_nproc;
/* total number of entries in all of the IOAPICs present */
lowest_irq = apic_io_vectbase[0];
highest_irq = apic_io_vectend[0];
for (i = 1; i < apic_io_max; i++) {
if (apic_io_vectbase[i] < lowest_irq)
lowest_irq = apic_io_vectbase[i];
if (apic_io_vectend[i] > highest_irq)
highest_irq = apic_io_vectend[i];
}
apix_irminfo.apix_ioapic_max_vectors =
highest_irq - lowest_irq + 1;
/*
* Number of available per-CPU vectors excluding
* reserved vectors for Dtrace, int80, system-call,
* fast-trap, etc.
*/
apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
APIX_SW_RESERVED_VECTORS;
/* Number of vectors (pre) allocated (SCI and HPET) */
apix_irminfo.apix_vectors_allocated = 0;
if (apic_hpet_vect != -1)
apix_irminfo.apix_vectors_allocated++;
if (apic_sci_vect != -1)
apix_irminfo.apix_vectors_allocated++;
}
}
static void
apix_init_intr()
{
processorid_t cpun = psm_get_cpu_id();
uint_t nlvt;
uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
extern void cmi_cmci_trap(void);
apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
if (apic_mode == LOCAL_APIC) {
/*
* We are running APIC in MMIO mode.
*/
if (apic_flat_model) {
apic_reg_ops->apic_write(APIC_FORMAT_REG,
APIC_FLAT_MODEL);
} else {
apic_reg_ops->apic_write(APIC_FORMAT_REG,
APIC_CLUSTER_MODEL);
}
apic_reg_ops->apic_write(APIC_DEST_REG,
AV_HIGH_ORDER >> cpun);
}
if (apic_directed_EOI_supported()) {
/*
* Setting the 12th bit in the Spurious Interrupt Vector
* Register suppresses broadcast EOIs generated by the local
* APIC. The suppression of broadcast EOIs happens only when
* interrupts are level-triggered.
*/
svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
}
/* need to enable APIC before unmasking NMI */
apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
/*
* Presence of an invalid vector with delivery mode AV_FIXED can
* cause an error interrupt, even if the entry is masked...so
* write a valid vector to LVT entries along with the mask bit
*/
/* All APICs have timer and LINT0/1 */
apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */
/*
* On integrated APICs, the number of LVT entries is
* 'Max LVT entry' + 1; on 82489DX's (non-integrated
* APICs), nlvt is "3" (LINT0, LINT1, and timer)
*/
if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
nlvt = 3;
} else {
nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
0xFF) + 1;
}
if (nlvt >= 5) {
/* Enable performance counter overflow interrupt */
if (!is_x86_feature(x86_featureset, X86FSET_MSR))
apic_enable_cpcovf_intr = 0;
if (apic_enable_cpcovf_intr) {
if (apic_cpcovf_vect == 0) {
int ipl = APIC_PCINT_IPL;
apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
ASSERT(apic_cpcovf_vect);
(void) add_avintr(NULL, ipl,
(avfunc)kcpc_hw_overflow_intr,
"apic pcint", apic_cpcovf_vect,
NULL, NULL, NULL, NULL);
kcpc_hw_overflow_intr_installed = 1;
kcpc_hw_enable_cpc_intr =
apic_cpcovf_mask_clear;
}
apic_reg_ops->apic_write(APIC_PCINT_VECT,
apic_cpcovf_vect);
}
}
if (nlvt >= 6) {
/* Only mask TM intr if the BIOS apparently doesn't use it */
uint32_t lvtval;
lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
if (((lvtval & AV_MASK) == AV_MASK) ||
((lvtval & AV_DELIV_MODE) != AV_SMI)) {
apic_reg_ops->apic_write(APIC_THERM_VECT,
AV_MASK|APIC_RESV_IRQ);
}
}
/* Enable error interrupt */
if (nlvt >= 4 && apic_enable_error_intr) {
if (apic_errvect == 0) {
int ipl = 0xf; /* get highest priority intr */
apic_errvect = apix_get_ipivect(ipl, -1);
ASSERT(apic_errvect);
/*
* Not PSMI compliant, but we are going to merge
* with ON anyway
*/
(void) add_avintr(NULL, ipl,
(avfunc)apic_error_intr, "apic error intr",
apic_errvect, NULL, NULL, NULL, NULL);
}
apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
}
/* Enable CMCI interrupt */
if (cmi_enable_cmci) {
mutex_enter(&cmci_cpu_setup_lock);
if (cmci_cpu_setup_registered == 0) {
mutex_enter(&cpu_lock);
register_cpu_setup_func(cmci_cpu_setup, NULL);
mutex_exit(&cpu_lock);
cmci_cpu_setup_registered = 1;
}
mutex_exit(&cmci_cpu_setup_lock);
if (apic_cmci_vect == 0) {
int ipl = 0x2;
apic_cmci_vect = apix_get_ipivect(ipl, -1);
ASSERT(apic_cmci_vect);
(void) add_avintr(NULL, ipl,
(avfunc)cmi_cmci_trap, "apic cmci intr",
apic_cmci_vect, NULL, NULL, NULL, NULL);
}
apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
}
apic_reg_ops->apic_write_task_reg(0);
}
static void
apix_picinit(void)
{
int i, j;
uint_t isr;
APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
/*
* initialize interrupt remapping before apic
* hardware initialization
*/
apic_intrmap_init(apic_mode);
if (apic_vt_ops == psm_vt_ops)
apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
/*
* On UniSys Model 6520, the BIOS leaves vector 0x20 isr
* bit on without clearing it with EOI. Since softint
* uses vector 0x20 to interrupt itself, so softint will
* not work on this machine. In order to fix this problem
* a check is made to verify all the isr bits are clear.
* If not, EOIs are issued to clear the bits.
*/
for (i = 7; i >= 1; i--) {
isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
if (isr != 0)
for (j = 0; ((j < 32) && (isr != 0)); j++)
if (isr & (1 << j)) {
apic_reg_ops->apic_write(
APIC_EOI_REG, 0);
isr &= ~(1 << j);
apic_error |= APIC_ERR_BOOT_EOI;
}
}
/* set a flag so we know we have run apic_picinit() */
apic_picinit_called = 1;
LOCK_INIT_CLEAR(&apic_gethrtime_lock);
LOCK_INIT_CLEAR(&apic_ioapic_lock);
LOCK_INIT_CLEAR(&apic_error_lock);
LOCK_INIT_CLEAR(&apic_mode_switch_lock);
picsetup(); /* initialise the 8259 */
/* add nmi handler - least priority nmi handler */
LOCK_INIT_CLEAR(&apic_nmi_lock);
if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
"apix NMI handler", (caddr_t)NULL))
cmn_err(CE_WARN, "apix: Unable to add nmi handler");
apix_init_intr();
/* enable apic mode if imcr present */
if (apic_imcrp) {
outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
}
ioapix_init_intr(IOAPIC_MASK);
/* setup global IRM pool if applicable */
if (irm_enable)
apix_irm_init();
}
static __inline__ void
apix_send_eoi(void)
{
if (apic_mode == LOCAL_APIC)
LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
else
X2APIC_WRITE(APIC_EOI_REG, 0);
}
/*
* platform_intr_enter
*
* Called at the beginning of the interrupt service routine to
* mask all level equal to and below the interrupt priority
* of the interrupting vector. An EOI should be given to
* the interrupt controller to enable other HW interrupts.
*
* Return -1 for spurious interrupts
*
*/
static int
apix_intr_enter(int ipl, int *vectorp)
{
struct cpu *cpu = CPU;
uint32_t cpuid = CPU->cpu_id;
apic_cpus_info_t *cpu_infop;
uchar_t vector;
apix_vector_t *vecp;
int nipl = -1;
/*
* The real vector delivered is (*vectorp + 0x20), but our caller
* subtracts 0x20 from the vector before passing it to us.
* (That's why APIC_BASE_VECT is 0x20.)
*/
vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
cpu_infop = &apic_cpus[cpuid];
if (vector == APIC_SPUR_INTR) {
cpu_infop->aci_spur_cnt++;
return (APIC_INT_SPURIOUS);
}
vecp = xv_vector(cpuid, vector);
if (vecp == NULL) {
if (APIX_IS_FAKE_INTR(vector))
nipl = apix_rebindinfo.i_pri;
apix_send_eoi();
return (nipl);
}
nipl = vecp->v_pri;
/* if interrupted by the clock, increment apic_nsec_since_boot */
if (vector == (apic_clkvect + APIC_BASE_VECT)) {
if (!apic_oneshot) {
/* NOTE: this is not MT aware */
apic_hrtime_stamp++;
apic_nsec_since_boot += apic_nsec_per_intr;
apic_hrtime_stamp++;
last_count_read = apic_hertz_count;
apix_redistribute_compute();
}
apix_send_eoi();
return (nipl);
}
ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
/* pre-EOI handling for level-triggered interrupts */
if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
(vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
apix_level_intr_pre_eoi(vecp->v_inum);
/* send back EOI */
apix_send_eoi();
cpu_infop->aci_current[nipl] = vector;
if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
cpu_infop->aci_curipl = (uchar_t)nipl;
cpu_infop->aci_ISR_in_progress |= 1 << nipl;
}
#ifdef DEBUG
if (vector >= APIX_IPI_MIN)
return (nipl); /* skip IPI */
APIC_DEBUG_BUF_PUT(vector);
APIC_DEBUG_BUF_PUT(vecp->v_inum);
APIC_DEBUG_BUF_PUT(nipl);
APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
drv_usecwait(apic_stretch_interrupts);
#endif /* DEBUG */
return (nipl);
}
/*
* Any changes made to this function must also change X2APIC
* version of intr_exit.
*/
static void
apix_intr_exit(int prev_ipl, int arg2)
{
int cpuid = psm_get_cpu_id();
apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
apix_impl_t *apixp = apixs[cpuid];
UNREFERENCED_1PARAMETER(arg2);
cpu_infop->aci_curipl = (uchar_t)prev_ipl;
/* ISR above current pri could not be in progress */
cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
if (apixp->x_obsoletes != NULL) {
if (APIX_CPU_LOCK_HELD(cpuid))
return;
APIX_ENTER_CPU_LOCK(cpuid);
(void) apix_obsolete_vector(apixp->x_obsoletes);
APIX_LEAVE_CPU_LOCK(cpuid);
}
}
/*
* Mask all interrupts below or equal to the given IPL.
* Any changes made to this function must also change X2APIC
* version of setspl.
*/
static void
apix_setspl(int ipl)
{
/* interrupts at ipl above this cannot be in progress */
apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
/*
* Mask all interrupts for XC_HI_PIL (i.e set TPR to 0xf).
* Otherwise, enable all interrupts (i.e. set TPR to 0).
*/
if (ipl != XC_HI_PIL)
ipl = 0;
#if defined(__amd64)
setcr8((ulong_t)ipl);
#else
if (apic_have_32bit_cr8)
setcr8((ulong_t)ipl);
else
apicadr[APIC_TASK_REG] = ipl << APIC_IPL_SHIFT;
#endif
/*
* this is a patch fix for the ALR QSMP P5 machine, so that interrupts
* have enough time to come in before the priority is raised again
* during the idle() loop.
*/
if (apic_setspl_delay)
(void) apic_reg_ops->apic_get_pri();
}
/*
* X2APIC version of setspl.
*/
static void
x2apix_setspl(int ipl)
{
/* interrupts at ipl above this cannot be in progress */
apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
/*
* Mask all interrupts for XC_HI_PIL (i.e set TPR to 0xf).
* Otherwise, enable all interrupts (i.e. set TPR to 0).
*/
if (ipl != XC_HI_PIL)
ipl = 0;
X2APIC_WRITE(APIC_TASK_REG, ipl << APIC_IPL_SHIFT);
}
int
apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
{
uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
apix_vector_t *vecp = xv_vector(cpuid, vector);
UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
if (vecp->v_type == APIX_TYPE_FIXED)
apix_intx_set_shared(vecp->v_inum, 1);
/* There are more interrupts, so it's already been enabled */
if (vecp->v_share > 1)
return (PSM_SUCCESS);
/* return if it is not hardware interrupt */
if (vecp->v_type == APIX_TYPE_IPI)
return (PSM_SUCCESS);
/*
* if apix_picinit() has not been called yet, just return.
* At the end of apic_picinit(), we will call setup_io_intr().
*/
if (!apic_picinit_called)
return (PSM_SUCCESS);
(void) apix_setup_io_intr(vecp);
return (PSM_SUCCESS);
}
int
apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
{
uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
apix_vector_t *vecp = xv_vector(cpuid, vector);
UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
if (vecp->v_type == APIX_TYPE_FIXED)
apix_intx_set_shared(vecp->v_inum, -1);
/* There are more interrupts */
if (vecp->v_share > 1)
return (PSM_SUCCESS);
/* return if it is not hardware interrupt */
if (vecp->v_type == APIX_TYPE_IPI)
return (PSM_SUCCESS);
if (!apic_picinit_called) {
cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
virtvec);
return (PSM_SUCCESS);
}
apix_disable_vector(vecp);
return (PSM_SUCCESS);
}
/*
* Try and disable all interrupts. We just assign interrupts to other
* processors based on policy. If any were bound by user request, we
* let them continue and return failure. We do not bother to check
* for cache affinity while rebinding.
*/
static int
apix_disable_intr(processorid_t cpun)
{
apix_impl_t *apixp = apixs[cpun];
apix_vector_t *vecp, *newp;
int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
lock_set(&apix_lock);
apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
apic_cpus[cpun].aci_curipl = 0;
/* if this is for SUSPEND operation, skip rebinding */
if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
vecp = apixp->x_vectbl[i];
if (!IS_VECT_ENABLED(vecp))
continue;
apix_disable_vector(vecp);
}
lock_clear(&apix_lock);
return (PSM_SUCCESS);
}
for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
vecp = apixp->x_vectbl[i];
if (!IS_VECT_ENABLED(vecp))
continue;
if (vecp->v_flags & APIX_VECT_USER_BOUND) {
hardbound++;
continue;
}
type = vecp->v_type;
/*
* If there are bound interrupts on this cpu, then
* rebind them to other processors.
*/
loop = 0;
do {
bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
if (type != APIX_TYPE_MSI)
newp = apix_set_cpu(vecp, bindcpu, &ret);
else
newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
} while ((newp == NULL) && (loop++ < apic_nproc));
if (loop >= apic_nproc) {
errbound++;
cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
vecp->v_cpuid, vecp->v_vector);
}
}
lock_clear(&apix_lock);
if (hardbound || errbound) {
cmn_err(CE_WARN, "Could not disable interrupts on %d"
"due to user bound interrupts or failed operation",
cpun);
return (PSM_FAILURE);
}
return (PSM_SUCCESS);
}
/*
* Bind interrupts to specified CPU
*/
static void
apix_enable_intr(processorid_t cpun)
{
apix_vector_t *vecp;
int i, ret;
processorid_t n;
lock_set(&apix_lock);
apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
/* interrupt enabling for system resume */
if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
vecp = xv_vector(cpun, i);
if (!IS_VECT_ENABLED(vecp))
continue;
apix_enable_vector(vecp);
}
apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
}
for (n = 0; n < apic_nproc; n++) {
if (!apic_cpu_in_range(n) || n == cpun ||
(apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
continue;
for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
vecp = xv_vector(n, i);
if (!IS_VECT_ENABLED(vecp) ||
vecp->v_bound_cpuid != cpun)
continue;
if (vecp->v_type != APIX_TYPE_MSI)
(void) apix_set_cpu(vecp, cpun, &ret);
else
(void) apix_grp_set_cpu(vecp, cpun, &ret);
}
}
lock_clear(&apix_lock);
}
/*
* Allocate vector for IPI
* type == -1 indicates it is an internal request. Do not change
* resv_vector for these requests.
*/
static int
apix_get_ipivect(int ipl, int type)
{
uchar_t vector;
if ((vector = apix_alloc_ipi(ipl)) > 0) {
if (type != -1)
apic_resv_vector[ipl] = vector;
return (vector);
}
apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
return (-1); /* shouldn't happen */
}
static int
apix_get_clkvect(int ipl)
{
int vector;
if ((vector = apix_get_ipivect(ipl, -1)) == -1)
return (-1);
apic_clkvect = vector - APIC_BASE_VECT;
APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
apic_clkvect));
return (vector);
}
static int
apix_post_cpu_start()
{
int cpun;
static int cpus_started = 1;
/* We know this CPU + BSP started successfully. */
cpus_started++;
/*
* On BSP we would have enabled X2APIC, if supported by processor,
* in acpi_probe(), but on AP we do it here.
*
* We enable X2APIC mode only if BSP is running in X2APIC & the
* local APIC mode of the current CPU is MMIO (xAPIC).
*/
if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
apic_local_mode() == LOCAL_APIC) {
apic_enable_x2apic();
}
/*
* Switch back to x2apic IPI sending method for performance when target
* CPU has entered x2apic mode.
*/
if (apic_mode == LOCAL_X2APIC) {
apic_switch_ipi_callback(B_FALSE);
}
splx(ipltospl(LOCK_LEVEL));
apix_init_intr();
/*
* since some systems don't enable the internal cache on the non-boot
* cpus, so we have to enable them here
*/
setcr0(getcr0() & ~(CR0_CD | CR0_NW));
#ifdef DEBUG
APIC_AV_PENDING_SET();
#else
if (apic_mode == LOCAL_APIC)
APIC_AV_PENDING_SET();
#endif /* DEBUG */
/*
* We may be booting, or resuming from suspend; aci_status will
* be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
* APIC_CPU_ONLINE flag here rather than setting aci_status completely.
*/
cpun = psm_get_cpu_id();
apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
return (PSM_SUCCESS);
}
/*
* If this module needs a periodic handler for the interrupt distribution, it
* can be added here. The argument to the periodic handler is not currently
* used, but is reserved for future.
*/
static void
apix_post_cyclic_setup(void *arg)
{
UNREFERENCED_1PARAMETER(arg);
/* cpu_lock is held */
/* set up a periodic handler for intr redistribution */
/*
* In peridoc mode intr redistribution processing is done in
* apic_intr_enter during clk intr processing
*/
if (!apic_oneshot)
return;
/*
* Register a periodical handler for the redistribution processing.
* On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so
* DDI_IPL_2 should be passed to ddi_periodic_add() here.
*/
apic_periodic_id = ddi_periodic_add(
(void (*)(void *))apix_redistribute_compute, NULL,
apic_redistribute_sample_interval, DDI_IPL_2);
}
void
x2apic_update_psm()
{
struct psm_ops *pops = &apix_ops;
ASSERT(pops != NULL);
/*
* The xxx_intr_exit() sets TPR and sends back EOI. The
* xxx_setspl() sets TPR. These two routines are not
* needed in new design.
*
* pops->psm_intr_exit = x2apic_intr_exit;
* pops->psm_setspl = x2apic_setspl;
*/
pops->psm_setspl = x2apix_setspl;
pops->psm_send_ipi = x2apic_send_ipi;
send_dirintf = pops->psm_send_ipi;
apic_mode = LOCAL_X2APIC;
apic_change_ops();
}
/*
* This function provides external interface to the nexus for all
* functionalities related to the new DDI interrupt framework.
*
* Input:
* dip - pointer to the dev_info structure of the requested device
* hdlp - pointer to the internal interrupt handle structure for the
* requested interrupt
* intr_op - opcode for this call
* result - pointer to the integer that will hold the result to be
* passed back if return value is PSM_SUCCESS
*
* Output:
* return value is either PSM_SUCCESS or PSM_FAILURE
*/
static int
apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
psm_intr_op_t intr_op, int *result)
{
int cap;
apix_vector_t *vecp, *newvecp;
struct intrspec *ispec, intr_spec;
processorid_t target;
ispec = &intr_spec;
ispec->intrspec_pri = hdlp->ih_pri;
ispec->intrspec_vec = hdlp->ih_inum;
ispec->intrspec_func = hdlp->ih_cb_func;
switch (intr_op) {
case PSM_INTR_OP_ALLOC_VECTORS:
switch (hdlp->ih_type) {
case DDI_INTR_TYPE_MSI:
/* allocate MSI vectors */
*result = apix_alloc_msi(dip, hdlp->ih_inum,
hdlp->ih_scratch1,
(int)(uintptr_t)hdlp->ih_scratch2);
break;
case DDI_INTR_TYPE_MSIX:
/* allocate MSI-X vectors */
*result = apix_alloc_msix(dip, hdlp->ih_inum,
hdlp->ih_scratch1,
(int)(uintptr_t)hdlp->ih_scratch2);
break;
case DDI_INTR_TYPE_FIXED:
/* allocate or share vector for fixed */
if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
return (PSM_FAILURE);
}
ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
*result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
ispec);
break;
default:
return (PSM_FAILURE);
}
break;
case PSM_INTR_OP_FREE_VECTORS:
apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
hdlp->ih_type);
break;
case PSM_INTR_OP_XLATE_VECTOR:
/*
* Vectors are allocated by ALLOC and freed by FREE.
* XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
*/
*result = APIX_INVALID_VECT;
vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
if (vecp != NULL) {
*result = APIX_VIRTVECTOR(vecp->v_cpuid,
vecp->v_vector);
break;
}
/*
* No vector to device mapping exists. If this is FIXED type
* then check if this IRQ is already mapped for another device
* then return the vector number for it (i.e. shared IRQ case).
* Otherwise, return PSM_FAILURE.
*/
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
ispec);
*result = (vecp == NULL) ? APIX_INVALID_VECT :
APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
}
if (*result == APIX_INVALID_VECT)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_GET_PENDING:
vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
if (vecp == NULL)
return (PSM_FAILURE);
*result = apix_get_pending(vecp);
break;
case PSM_INTR_OP_CLEAR_MASK:
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
if (vecp == NULL)
return (PSM_FAILURE);
apix_intx_clear_mask(vecp->v_inum);
break;
case PSM_INTR_OP_SET_MASK:
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
if (vecp == NULL)
return (PSM_FAILURE);
apix_intx_set_mask(vecp->v_inum);
break;
case PSM_INTR_OP_GET_SHARED:
if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
return (PSM_FAILURE);
vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
if (vecp == NULL)
return (PSM_FAILURE);
*result = apix_intx_get_shared(vecp->v_inum);
break;
case PSM_INTR_OP_SET_PRI:
/*
* Called prior to adding the interrupt handler or when
* an interrupt handler is unassigned.
*/
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
return (PSM_SUCCESS);
if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_SET_CPU:
case PSM_INTR_OP_GRP_SET_CPU:
/*
* The interrupt handle given here has been allocated
* specifically for this command, and ih_private carries
* a CPU value.
*/
*result = EINVAL;
target = (int)(intptr_t)hdlp->ih_private;
if (!apic_cpu_in_range(target)) {
DDI_INTR_IMPLDBG((CE_WARN,
"[grp_]set_cpu: cpu out of range: %d\n", target));
return (PSM_FAILURE);
}
lock_set(&apix_lock);
vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
if (!IS_VECT_ENABLED(vecp)) {
DDI_INTR_IMPLDBG((CE_WARN,
"[grp]_set_cpu: invalid vector 0x%x\n",
hdlp->ih_vector));
lock_clear(&apix_lock);
return (PSM_FAILURE);
}
*result = 0;
if (intr_op == PSM_INTR_OP_SET_CPU)
newvecp = apix_set_cpu(vecp, target, result);
else
newvecp = apix_grp_set_cpu(vecp, target, result);
lock_clear(&apix_lock);
if (newvecp == NULL) {
*result = EIO;
return (PSM_FAILURE);
}
newvecp->v_bound_cpuid = target;
hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
newvecp->v_vector);
break;
case PSM_INTR_OP_GET_INTR:
/*
* The interrupt handle given here has been allocated
* specifically for this command, and ih_private carries
* a pointer to a apic_get_intr_t.
*/
if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
return (PSM_FAILURE);
break;
case PSM_INTR_OP_CHECK_MSI:
/*
* Check MSI/X is supported or not at APIC level and
* masked off the MSI/X bits in hdlp->ih_type if not
* supported before return. If MSI/X is supported,
* leave the ih_type unchanged and return.
*
* hdlp->ih_type passed in from the nexus has all the
* interrupt types supported by the device.
*/
if (apic_support_msi == 0) { /* uninitialized */
/*
* if apic_support_msi is not set, call
* apic_check_msi_support() to check whether msi
* is supported first
*/
if (apic_check_msi_support() == PSM_SUCCESS)
apic_support_msi = 1; /* supported */
else
apic_support_msi = -1; /* not-supported */
}
if (apic_support_msi == 1) {
if (apic_msix_enable)
*result = hdlp->ih_type;
else
*result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
} else
*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
DDI_INTR_TYPE_MSIX);
break;
case PSM_INTR_OP_GET_CAP:
cap = DDI_INTR_FLAG_PENDING;
if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
cap |= DDI_INTR_FLAG_MASKABLE;
*result = cap;
break;
case PSM_INTR_OP_APIC_TYPE:
((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
apix_get_apic_type();
((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
APIX_IPI_MIN;
((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
apic_nproc;
hdlp->ih_ver = apic_get_apic_version();
break;
case PSM_INTR_OP_SET_CAP:
default:
return (PSM_FAILURE);
}
return (PSM_SUCCESS);
}
static void
apix_cleanup_busy(void)
{
int i, j;
apix_vector_t *vecp;
for (i = 0; i < apic_nproc; i++) {
if (!apic_cpu_in_range(i))
continue;
apic_cpus[i].aci_busy = 0;
for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
if ((vecp = xv_vector(i, j)) != NULL)
vecp->v_busy = 0;
}
}
}
static void
apix_redistribute_compute(void)
{
int i, j, max_busy;
if (!apic_enable_dynamic_migration)
return;
if (++apic_nticks == apic_sample_factor_redistribution) {
/*
* Time to call apic_intr_redistribute().
* reset apic_nticks. This will cause max_busy
* to be calculated below and if it is more than
* apic_int_busy, we will do the whole thing
*/
apic_nticks = 0;
}
max_busy = 0;
for (i = 0; i < apic_nproc; i++) {
if (!apic_cpu_in_range(i))
continue;
/*
* Check if curipl is non zero & if ISR is in
* progress
*/
if (((j = apic_cpus[i].aci_curipl) != 0) &&
(apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
int vect;
apic_cpus[i].aci_busy++;
vect = apic_cpus[i].aci_current[j];
apixs[i]->x_vectbl[vect]->v_busy++;
}
if (!apic_nticks &&
(apic_cpus[i].aci_busy > max_busy))
max_busy = apic_cpus[i].aci_busy;
}
if (!apic_nticks) {
if (max_busy > apic_int_busy_mark) {
/*
* We could make the following check be
* skipped > 1 in which case, we get a
* redistribution at half the busy mark (due to
* double interval). Need to be able to collect
* more empirical data to decide if that is a
* good strategy. Punt for now.
*/
apix_cleanup_busy();
apic_skipped_redistribute = 0;
} else
apic_skipped_redistribute++;
}
}
/*
* intr_ops() service routines
*/
static int
apix_get_pending(apix_vector_t *vecp)
{
int bit, index, irr, pending;
/* need to get on the bound cpu */
mutex_enter(&cpu_lock);
affinity_set(vecp->v_cpuid);
index = vecp->v_vector / 32;
bit = vecp->v_vector % 32;
irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
affinity_clear();
mutex_exit(&cpu_lock);
pending = (irr & (1 << bit)) ? 1 : 0;
if (!pending && vecp->v_type == APIX_TYPE_FIXED)
pending = apix_intx_get_pending(vecp->v_inum);
return (pending);
}
static apix_vector_t *
apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
{
apix_vector_t *vecp;
processorid_t cpuid;
int32_t virt_vec = 0;
switch (flags & PSMGI_INTRBY_FLAGS) {
case PSMGI_INTRBY_IRQ:
return (apix_intx_get_vector(hdlp->ih_vector));
case PSMGI_INTRBY_VEC:
virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
cpuid = APIX_VIRTVEC_CPU(virt_vec);
if (!apic_cpu_in_range(cpuid))
return (NULL);
vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
break;
case PSMGI_INTRBY_DEFAULT:
vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
hdlp->ih_type);
break;
default:
return (NULL);
}
return (vecp);
}
static int
apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
apic_get_intr_t *intr_params_p)
{
apix_vector_t *vecp;
struct autovec *av_dev;
int i;
vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
if (IS_VECT_FREE(vecp)) {
intr_params_p->avgi_num_devs = 0;
intr_params_p->avgi_cpu_id = 0;
intr_params_p->avgi_req_flags = 0;
return (PSM_SUCCESS);
}
if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
intr_params_p->avgi_cpu_id = vecp->v_cpuid;
/* Return user bound info for intrd. */
if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
}
}
if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
intr_params_p->avgi_vector = vecp->v_vector;
if (intr_params_p->avgi_req_flags &
(PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
/* Get number of devices from apic_irq table shared field. */
intr_params_p->avgi_num_devs = vecp->v_share;
if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) {
intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS;
/* Some devices have NULL dip. Don't count these. */
if (intr_params_p->avgi_num_devs > 0) {
for (i = 0, av_dev = vecp->v_autovect; av_dev;
av_dev = av_dev->av_link) {
if (av_dev->av_vector && av_dev->av_dip)
i++;
}
intr_params_p->avgi_num_devs =
(uint8_t)MIN(intr_params_p->avgi_num_devs, i);
}
/* There are no viable dips to return. */
if (intr_params_p->avgi_num_devs == 0) {
intr_params_p->avgi_dip_list = NULL;
} else { /* Return list of dips */
/* Allocate space in array for that number of devs. */
intr_params_p->avgi_dip_list = kmem_zalloc(
intr_params_p->avgi_num_devs *
sizeof (dev_info_t *),
KM_NOSLEEP);
if (intr_params_p->avgi_dip_list == NULL) {
DDI_INTR_IMPLDBG((CE_WARN,
"apix_get_vector_intr_info: no memory"));
return (PSM_FAILURE);
}
/*
* Loop through the device list of the autovec table
* filling in the dip array.
*
* Note that the autovect table may have some special
* entries which contain NULL dips. These will be
* ignored.
*/
for (i = 0, av_dev = vecp->v_autovect; av_dev;
av_dev = av_dev->av_link) {
if (av_dev->av_vector && av_dev->av_dip)
intr_params_p->avgi_dip_list[i++] =
av_dev->av_dip;
}
}
}
return (PSM_SUCCESS);
}
static char *
apix_get_apic_type(void)
{
return (apix_psm_info.p_mach_idstring);
}
apix_vector_t *
apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
{
apix_vector_t *newp = NULL;
dev_info_t *dip;
int inum, cap_ptr;
ddi_acc_handle_t handle;
ddi_intr_msix_t *msix_p = NULL;
ushort_t msix_ctrl;
uintptr_t off;
uint32_t mask;
ASSERT(LOCK_HELD(&apix_lock));
*result = ENXIO;
/* Fail if this is an MSI intr and is part of a group. */
if (vecp->v_type == APIX_TYPE_MSI) {
if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
return (NULL);
else
return (apix_grp_set_cpu(vecp, new_cpu, result));
}
/*
* Mask MSI-X. It's unmasked when MSI-X gets enabled.
*/
if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
if ((dip = APIX_GET_DIP(vecp)) == NULL)
return (NULL);
inum = vecp->v_devp->dv_inum;
handle = i_ddi_get_pci_config_handle(dip);
cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
/*
* Function is not masked, then mask "inum"th
* entry in the MSI-X table
*/
msix_p = i_ddi_get_msix(dip);
off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
mask | 1);
}
}
*result = 0;
if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
*result = EIO;
/* Restore mask bit */
if (msix_p != NULL)
ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
return (newp);
}
/*
* Set cpu for MSIs
*/
apix_vector_t *
apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
{
apix_vector_t *newp, *vp;
uint32_t orig_cpu = vecp->v_cpuid;
int orig_vect = vecp->v_vector;
int i, num_vectors, cap_ptr, msi_mask_off;
uint32_t msi_pvm;
ushort_t msi_ctrl;
ddi_acc_handle_t handle;
dev_info_t *dip;
APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
" newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
ASSERT(LOCK_HELD(&apix_lock));
*result = ENXIO;
if (vecp->v_type != APIX_TYPE_MSI) {
DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
return (NULL);
}
if ((dip = APIX_GET_DIP(vecp)) == NULL)
return (NULL);
num_vectors = i_ddi_intr_get_current_nintrs(dip);
if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
APIC_VERBOSE(INTR, (CE_WARN,
"set_grp: base vec not part of a grp or not aligned: "
"vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
return (NULL);
}
if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
return (NULL);
*result = EIO;
for (i = 1; i < num_vectors; i++) {
if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
return (NULL);
#ifdef DEBUG
/*
* Sanity check: CPU and dip is the same for all entries.
* May be called when first msi to be enabled, at this time
* add_avintr() is not called for other msi
*/
if ((vp->v_share != 0) &&
((APIX_GET_DIP(vp) != dip) ||
(vp->v_cpuid != vecp->v_cpuid))) {
APIC_VERBOSE(INTR, (CE_WARN,
"set_grp: cpu or dip for vec 0x%x difft than for "
"vec 0x%x\n", orig_vect, orig_vect + i));
APIC_VERBOSE(INTR, (CE_WARN,
" cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
vp->v_cpuid, (void *)dip,
(void *)APIX_GET_DIP(vp)));
return (NULL);
}
#endif /* DEBUG */
}
cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
handle = i_ddi_get_pci_config_handle(dip);
msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
/* MSI Per vector masking is supported. */
if (msi_ctrl & PCI_MSI_PVM_MASK) {
if (msi_ctrl & PCI_MSI_64BIT_MASK)
msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
else
msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
msi_pvm = pci_config_get32(handle, msi_mask_off);
pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
APIC_VERBOSE(INTR, (CE_CONT,
"set_grp: pvm supported. Mask set to 0x%x\n",
pci_config_get32(handle, msi_mask_off)));
}
if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
*result = 0;
/* Reenable vectors if per vector masking is supported. */
if (msi_ctrl & PCI_MSI_PVM_MASK) {
pci_config_put32(handle, msi_mask_off, msi_pvm);
APIC_VERBOSE(INTR, (CE_CONT,
"set_grp: pvm supported. Mask restored to 0x%x\n",
pci_config_get32(handle, msi_mask_off)));
}
return (newp);
}
void
apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
{
apic_irq_t *irqp;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
irqp->airq_cpu = cpuid;
irqp->airq_vector = vector;
apic_record_rdt_entry(irqp, irqno);
mutex_exit(&airq_mutex);
}
apix_vector_t *
apix_intx_get_vector(int irqno)
{
apic_irq_t *irqp;
uint32_t cpuid;
uchar_t vector;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno & 0xff];
if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
mutex_exit(&airq_mutex);
return (NULL);
}
cpuid = irqp->airq_cpu;
vector = irqp->airq_vector;
mutex_exit(&airq_mutex);
return (xv_vector(cpuid, vector));
}
/*
* Must called with interrupts disabled and apic_ioapic_lock held
*/
void
apix_intx_enable(int irqno)
{
uchar_t ioapicindex, intin;
apic_irq_t *irqp = apic_irq_table[irqno];
ioapic_rdt_t irdt;
apic_cpus_info_t *cpu_infop;
apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
ioapicindex = irqp->airq_ioapicindex;
intin = irqp->airq_intin_no;
cpu_infop = &apic_cpus[irqp->airq_cpu];
irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
irdt.ir_hi = cpu_infop->aci_local_id;
apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
vecp->v_type, 1, ioapicindex);
apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
(void *)&irdt, vecp->v_type, 1);
apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
/* write RDT entry high dword - destination */
WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
irdt.ir_hi);
/* Write the vector, trigger, and polarity portion of the RDT */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
vecp->v_state = APIX_STATE_ENABLED;
APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
" intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
}
/*
* Must called with interrupts disabled and apic_ioapic_lock held
*/
void
apix_intx_disable(int irqno)
{
apic_irq_t *irqp = apic_irq_table[irqno];
int ioapicindex, intin;
ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
/*
* The assumption here is that this is safe, even for
* systems with IOAPICs that suffer from the hardware
* erratum because all devices have been quiesced before
* they unregister their interrupt handlers. If that
* assumption turns out to be false, this mask operation
* can induce the same erratum result we're trying to
* avoid.
*/
ioapicindex = irqp->airq_ioapicindex;
intin = irqp->airq_intin_no;
ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
" intin 0x%x\n", ioapicindex, intin));
}
void
apix_intx_free(int irqno)
{
apic_irq_t *irqp;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
if (IS_IRQ_FREE(irqp)) {
mutex_exit(&airq_mutex);
return;
}
irqp->airq_mps_intr_index = FREE_INDEX;
irqp->airq_cpu = IRQ_UNINIT;
irqp->airq_vector = APIX_INVALID_VECT;
mutex_exit(&airq_mutex);
}
#ifdef DEBUG
int apix_intr_deliver_timeouts = 0;
int apix_intr_rirr_timeouts = 0;
int apix_intr_rirr_reset_failure = 0;
#endif
int apix_max_reps_irr_pending = 10;
#define GET_RDT_BITS(ioapic, intin, bits) \
(READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
#define APIX_CHECK_IRR_DELAY drv_usectohz(5000)
int
apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
{
apic_irq_t *irqp = apic_irq_table[irqno];
ulong_t iflag;
int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
ASSERT(irqp != NULL);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
ioapic_ix = irqp->airq_ioapicindex;
intin_no = irqp->airq_intin_no;
level = apic_level_intr[irqno];
/*
* Wait for the delivery status bit to be cleared. This should
* be a very small amount of time.
*/
repeats = 0;
do {
repeats++;
for (waited = 0; waited < apic_max_reps_clear_pending;
waited++) {
if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
break;
}
if (!level)
break;
/*
* Mask the RDT entry for level-triggered interrupts.
*/
irqp->airq_rdt_entry |= AV_MASK;
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no);
if ((masked = (rdt_entry & AV_MASK)) == 0) {
/* Mask it */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
AV_MASK | rdt_entry);
}
/*
* If there was a race and an interrupt was injected
* just before we masked, check for that case here.
* Then, unmask the RDT entry and try again. If we're
* on our last try, don't unmask (because we want the
* RDT entry to remain masked for the rest of the
* function).
*/
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no);
if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
(repeats < apic_max_reps_clear_pending)) {
/* Unmask it */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no, rdt_entry & ~AV_MASK);
irqp->airq_rdt_entry &= ~AV_MASK;
}
} while ((rdt_entry & AV_PENDING) &&
(repeats < apic_max_reps_clear_pending));
#ifdef DEBUG
if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
apix_intr_deliver_timeouts++;
#endif
if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
goto done;
/*
* wait for remote IRR to be cleared for level-triggered
* interrupts
*/
repeats = 0;
do {
repeats++;
for (waited = 0; waited < apic_max_reps_clear_pending;
waited++) {
if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
== 0)
break;
}
if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
delay(APIX_CHECK_IRR_DELAY);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
}
} while (repeats < apix_max_reps_irr_pending);
if (repeats >= apix_max_reps_irr_pending) {
#ifdef DEBUG
apix_intr_rirr_timeouts++;
#endif
/*
* If we waited and the Remote IRR bit is still not cleared,
* AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
* times for this interrupt, try the last-ditch workaround:
*/
if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
/*
* Trying to clear the bit through normal
* channels has failed. So as a last-ditch
* effort, try to set the trigger mode to
* edge, then to level. This has been
* observed to work on many systems.
*/
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no,
READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) & ~AV_LEVEL);
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no,
READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
intin_no) | AV_LEVEL);
}
if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
#ifdef DEBUG
apix_intr_rirr_reset_failure++;
#endif
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
prom_printf("apix: Remote IRR still "
"not clear for IOAPIC %d intin %d.\n"
"\tInterrupts to this pin may cease "
"functioning.\n", ioapic_ix, intin_no);
return (1); /* return failure */
}
}
done:
/* change apic_irq_table */
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
apix_intx_set_vector(irqno, cpuid, vector);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
/* reprogramme IO-APIC RDT entry */
apix_intx_enable(irqno);
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
return (0);
}
static int
apix_intx_get_pending(int irqno)
{
apic_irq_t *irqp;
int intin, ioapicindex, pending;
ulong_t iflag;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
if (IS_IRQ_FREE(irqp)) {
mutex_exit(&airq_mutex);
return (0);
}
/* check IO-APIC delivery status */
intin = irqp->airq_intin_no;
ioapicindex = irqp->airq_ioapicindex;
mutex_exit(&airq_mutex);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
AV_PENDING) ? 1 : 0;
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
return (pending);
}
static void
apix_intx_set_mask(int irqno)
{
int intin, ioapixindex, rdt_entry;
ulong_t iflag;
apic_irq_t *irqp;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
intin = irqp->airq_intin_no;
ioapixindex = irqp->airq_ioapicindex;
mutex_exit(&airq_mutex);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
/* clear mask */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
(AV_MASK | rdt_entry));
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
static void
apix_intx_clear_mask(int irqno)
{
int intin, ioapixindex, rdt_entry;
ulong_t iflag;
apic_irq_t *irqp;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
intin = irqp->airq_intin_no;
ioapixindex = irqp->airq_ioapicindex;
mutex_exit(&airq_mutex);
iflag = intr_clear();
lock_set(&apic_ioapic_lock);
rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
/* clear mask */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
((~AV_MASK) & rdt_entry));
lock_clear(&apic_ioapic_lock);
intr_restore(iflag);
}
/*
* For level-triggered interrupt, mask the IRQ line. Mask means
* new interrupts will not be delivered. The interrupt already
* accepted by a local APIC is not affected
*/
void
apix_level_intr_pre_eoi(int irq)
{
apic_irq_t *irqp = apic_irq_table[irq];
int apic_ix, intin_ix;
if (irqp == NULL)
return;
ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
lock_set(&apic_ioapic_lock);
intin_ix = irqp->airq_intin_no;
apic_ix = irqp->airq_ioapicindex;
if (irqp->airq_cpu != CPU->cpu_id) {
if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
ioapic_write_eoi(apic_ix, irqp->airq_vector);
lock_clear(&apic_ioapic_lock);
return;
}
if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
/*
* This is a IOxAPIC and there is EOI register:
* Change the vector to reserved unused vector, so that
* the EOI from Local APIC won't clear the Remote IRR for
* this level trigger interrupt. Instead, we'll manually
* clear it in apix_post_hardint() after ISR handling.
*/
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
(irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
} else {
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
AV_MASK | irqp->airq_rdt_entry);
}
lock_clear(&apic_ioapic_lock);
}
/*
* For level-triggered interrupt, unmask the IRQ line
* or restore the original vector number.
*/
void
apix_level_intr_post_dispatch(int irq)
{
apic_irq_t *irqp = apic_irq_table[irq];
int apic_ix, intin_ix;
if (irqp == NULL)
return;
lock_set(&apic_ioapic_lock);
intin_ix = irqp->airq_intin_no;
apic_ix = irqp->airq_ioapicindex;
if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
/*
* Already sent EOI back to Local APIC.
* Send EOI to IO-APIC
*/
ioapic_write_eoi(apic_ix, irqp->airq_vector);
} else {
/* clear the mask or restore the vector */
WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
irqp->airq_rdt_entry);
/* send EOI to IOxAPIC */
if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
ioapic_write_eoi(apic_ix, irqp->airq_vector);
}
lock_clear(&apic_ioapic_lock);
}
static int
apix_intx_get_shared(int irqno)
{
apic_irq_t *irqp;
int share;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
mutex_exit(&airq_mutex);
return (0);
}
share = irqp->airq_share;
mutex_exit(&airq_mutex);
return (share);
}
static void
apix_intx_set_shared(int irqno, int delta)
{
apic_irq_t *irqp;
mutex_enter(&airq_mutex);
irqp = apic_irq_table[irqno];
if (IS_IRQ_FREE(irqp)) {
mutex_exit(&airq_mutex);
return;
}
irqp->airq_share += delta;
mutex_exit(&airq_mutex);
}
/*
* Setup IRQ table. Return IRQ no or -1 on failure
*/
static int
apix_intx_setup(dev_info_t *dip, int inum, int irqno,
struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
{
int origirq = ispec->intrspec_vec;
int newirq;
short intr_index;
uchar_t ipin, ioapic, ioapicindex;
apic_irq_t *irqp;
UNREFERENCED_1PARAMETER(inum);
if (intrp != NULL) {
intr_index = (short)(intrp - apic_io_intrp);
ioapic = intrp->intr_destid;
ipin = intrp->intr_destintin;
/* Find ioapicindex. If destid was ALL, we will exit with 0. */
for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
if (apic_io_id[ioapicindex] == ioapic)
break;
ASSERT((ioapic == apic_io_id[ioapicindex]) ||
(ioapic == INTR_ALL_APIC));
/* check whether this intin# has been used by another irqno */
if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
return (newirq);
} else if (iflagp != NULL) { /* ACPI */
intr_index = ACPI_INDEX;
ioapicindex = acpi_find_ioapic(irqno);
ASSERT(ioapicindex != 0xFF);
ioapic = apic_io_id[ioapicindex];
ipin = irqno - apic_io_vectbase[ioapicindex];
if (apic_irq_table[irqno] &&
apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
apic_irq_table[irqno]->airq_ioapicindex ==
ioapicindex);
return (irqno);
}
} else { /* default configuration */
intr_index = DEFAULT_INDEX;
ioapicindex = 0;
ioapic = apic_io_id[ioapicindex];
ipin = (uchar_t)irqno;
}
/* allocate a new IRQ no */
if ((irqp = apic_irq_table[irqno]) == NULL) {
irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
apic_irq_table[irqno] = irqp;
} else {
if (irqp->airq_mps_intr_index != FREE_INDEX) {
newirq = apic_allocate_irq(apic_first_avail_irq);
if (newirq == -1) {
return (-1);
}
irqno = newirq;
irqp = apic_irq_table[irqno];
ASSERT(irqp != NULL);
}
}
apic_max_device_irq = max(irqno, apic_max_device_irq);
apic_min_device_irq = min(irqno, apic_min_device_irq);
irqp->airq_mps_intr_index = intr_index;
irqp->airq_ioapicindex = ioapicindex;
irqp->airq_intin_no = ipin;
irqp->airq_dip = dip;
irqp->airq_origirq = (uchar_t)origirq;
if (iflagp != NULL)
irqp->airq_iflag = *iflagp;
irqp->airq_cpu = IRQ_UNINIT;
irqp->airq_vector = 0;
return (irqno);
}
/*
* Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
*/
static int
apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
struct intrspec *ispec)
{
int irqno = ispec->intrspec_vec;
int newirq, i;
iflag_t intr_flag;
ACPI_SUBTABLE_HEADER *hp;
ACPI_MADT_INTERRUPT_OVERRIDE *isop;
struct apic_io_intr *intrp;
if (!apic_enable_acpi || apic_use_acpi_madt_only) {
int busid;
if (bustype == 0)
bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
/* loop checking BUS_ISA/BUS_EISA */
for (i = 0; i < 2; i++) {
if (((busid = apic_find_bus_id(bustype)) != -1) &&
((intrp = apic_find_io_intr_w_busid(irqno, busid))
!= NULL)) {
return (apix_intx_setup(dip, inum, irqno,
intrp, ispec, NULL));
}
bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
}
/* fall back to default configuration */
return (-1);
}
/* search iso entries first */
if (acpi_iso_cnt != 0) {
hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
i = 0;
while (i < acpi_iso_cnt) {
if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
if (isop->Bus == 0 &&
isop->SourceIrq == irqno) {
newirq = isop->GlobalIrq;
intr_flag.intr_po = isop->IntiFlags &
ACPI_MADT_POLARITY_MASK;
intr_flag.intr_el = (isop->IntiFlags &
ACPI_MADT_TRIGGER_MASK) >> 2;
intr_flag.bustype = BUS_ISA;
return (apix_intx_setup(dip, inum,
newirq, NULL, ispec, &intr_flag));
}
i++;
}
hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
hp->Length);
}
}
intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
intr_flag.intr_el = INTR_EL_EDGE;
intr_flag.bustype = BUS_ISA;
return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
}
/*
* Setup IRQ table for pci devices. Return IRQ no or -1 on error
*/
static int
apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
struct intrspec *ispec)
{
int busid, devid, pci_irq;
ddi_acc_handle_t cfg_handle;
uchar_t ipin;
iflag_t intr_flag;
struct apic_io_intr *intrp;
if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
return (-1);
if (busid == 0 && apic_pci_bus_total == 1)
busid = (int)apic_single_pci_busid;
if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
return (-1);
ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
pci_config_teardown(&cfg_handle);
if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */
if (apic_acpi_translate_pci_irq(dip, busid, devid,
ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
return (-1);
intr_flag.bustype = (uchar_t)bustype;
return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
&intr_flag));
}
/* MP configuration table */
pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
if (pci_irq == -1)
return (-1);
}
return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
}
/*
* Translate and return IRQ no
*/
static int
apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
{
int newirq, irqno = ispec->intrspec_vec;
int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
int bustype = 0, dev_len;
char dev_type[16];
if (apic_defconf) {
mutex_enter(&airq_mutex);
goto defconf;
}
if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
mutex_enter(&airq_mutex);
goto nonpci;
}
/*
* use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
* to avoid extra buffer allocation.
*/
dev_len = sizeof (dev_type);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
&dev_len) == DDI_PROP_SUCCESS) {
if ((strcmp(dev_type, "pci") == 0) ||
(strcmp(dev_type, "pciex") == 0))
parent_is_pci_or_pciex = 1;
}
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
&dev_len) == DDI_PROP_SUCCESS) {
if (strstr(dev_type, "pciex"))
child_is_pciex = 1;
}
mutex_enter(&airq_mutex);
if (parent_is_pci_or_pciex) {
bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
if (newirq != -1)
goto done;
bustype = 0;
} else if (strcmp(dev_type, "isa") == 0)
bustype = BUS_ISA;
else if (strcmp(dev_type, "eisa") == 0)
bustype = BUS_EISA;
nonpci:
newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
if (newirq != -1)
goto done;
defconf:
newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
if (newirq == -1) {
mutex_exit(&airq_mutex);
return (-1);
}
done:
ASSERT(apic_irq_table[newirq]);
mutex_exit(&airq_mutex);
return (newirq);
}
static int
apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
{
int irqno;
apix_vector_t *vecp;
if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
return (0);
if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
return (0);
DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
"irqno=0x%x cpuid=%d vector=0x%x\n",
(void *)dip, ddi_driver_name(dip), irqno,
vecp->v_cpuid, vecp->v_vector));
return (1);
}
/*
* Return the vector number if the translated IRQ for this device
* has a vector mapping setup. If no IRQ setup exists or no vector is
* allocated to it then return 0.
*/
static apix_vector_t *
apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
{
int irqno;
apix_vector_t *vecp;
/* get the IRQ number */
if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
return (NULL);
/* get the vector number if a vector is allocated to this irqno */
vecp = apix_intx_get_vector(irqno);
return (vecp);
}
/* stub function */
int
apix_loaded(void)
{
return (apix_is_enabled);
}