acpidev_dr.c revision a31148363f598def767ac48c5d82e1572e44b935
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2010, Intel Corporation.
* All rights reserved.
*/
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/cmn_err.h>
#include <sys/cpuvar.h>
#include <sys/memlist.h>
#include <sys/memlist_impl.h>
#include <sys/note.h>
#include <sys/obpdefs.h>
#include <sys/synch.h>
#include <sys/sysmacros.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/x86_archext.h>
#include <sys/machsystm.h>
#include <sys/memnode.h> /* for lgrp_plat_node_cnt */
#include <sys/psm_types.h>
#include <sys/acpi/acpi.h>
#include <sys/acpica.h>
#include <sys/acpidev.h>
#include <sys/acpidev_rsc.h>
#include <sys/acpidev_dr.h>
#include <sys/acpidev_impl.h>
struct acpidev_dr_set_prop_arg {
uint32_t level;
uint32_t bdnum;
uint32_t cpu_id;
uint32_t mem_id;
uint32_t io_id;
uint32_t mod_id;
};
struct acpidev_dr_device_remove_arg {
uint32_t level;
};
extern int acpidev_options;
/* User configurable option to enable/disable ACPI based DR operations. */
int acpidev_dr_enable = 1;
int acpidev_dr_hierarchy_name = 1;
uint32_t acpidev_dr_max_segs_per_mem_device = ACPIDEV_DR_SEGS_PER_MEM_DEV;
uint32_t acpidev_dr_max_memlists_per_seg = ACPIDEV_DR_MEMLISTS_PER_SEG;
ACPI_TABLE_SRAT *acpidev_srat_tbl_ptr;
ACPI_TABLE_SLIT *acpidev_slit_tbl_ptr;
/* ACPI based DR operations are unsupported if zero. */
static int acpidev_dr_supported = -1;
/* Failed to initialize support of DR operations if non-zero. */
static int acpidev_dr_failed;
static volatile uint32_t acpidev_dr_boards;
static volatile uint32_t acpidev_dr_board_index;
static uint32_t acpidev_dr_max_cmp_per_board;
static uint32_t acpidev_dr_max_memory_per_board;
static uint32_t acpidev_dr_max_io_per_board;
static uint32_t acpidev_dr_memory_device_cnt;
static ACPI_HANDLE *acpidev_dr_board_handles[ACPIDEV_DR_MAX_BOARDS];
/* Lock to protect/block DR operations at runtime. */
static kmutex_t acpidev_dr_lock;
static acpidev_dr_capacity_t acpidev_dr_capacities[] = {
{ /* Nehalem-EX */
X86_VENDOR_Intel, 0x6, 0x2e, 0x2e, 0, UINT_MAX,
B_TRUE, /* Hotplug capable */
1ULL << 30, /* Align on 1GB boundary */
},
{ /* the last item is used to mark end of the table */
UINT_MAX, UINT_MAX, UINT_MAX, 0, UINT_MAX, 0,
B_FALSE,
0,
},
};
static ACPI_STATUS acpidev_dr_scan_topo(ACPI_HANDLE hdl, UINT32 lvl, void *arg,
void **retval);
static acpidev_dr_capacity_t *
acpidev_dr_get_capacity(void)
{
acpidev_dr_capacity_t *cp, *cp1;
uint_t vendor, family, model, step;
static acpidev_dr_capacity_t *acpidev_dr_capacity_curr = NULL;
if (acpidev_dr_capacity_curr != NULL) {
return (acpidev_dr_capacity_curr);
}
kpreempt_disable();
vendor = cpuid_getvendor(CPU);
family = cpuid_getfamily(CPU);
model = cpuid_getmodel(CPU);
step = cpuid_getstep(CPU);
kpreempt_enable();
for (cp = acpidev_dr_capacities; ; cp++) {
ASSERT(cp < acpidev_dr_capacities +
sizeof (acpidev_dr_capacities) / sizeof (*cp));
/* Check whether it reaches the last item of the table. */
if (cp->cpu_vendor == UINT_MAX && cp->cpu_family == UINT_MAX &&
cp->cpu_model_min == UINT_MAX && cp->cpu_model_max == 0 &&
cp->cpu_step_min == UINT_MAX && cp->cpu_step_max == 0) {
break;
}
if (cp->cpu_vendor == vendor && cp->cpu_family == family &&
model >= cp->cpu_model_min && model <= cp->cpu_model_max &&
step >= cp->cpu_step_min && step <= cp->cpu_step_max) {
break;
}
}
/* Assume all CPUs in system are homogeneous. */
cp1 = atomic_cas_ptr(&acpidev_dr_capacity_curr, NULL, cp);
ASSERT(cp1 == NULL || cp1 == cp);
if (cp1 != NULL && cp1 != cp) {
return (NULL);
}
return (cp);
}
int
acpidev_dr_capable(void)
{
uint64_t flags1, flags2;
acpidev_dr_capacity_t *cp;
/*
* Disable support of DR operations if:
* 1) acpidev fails to initialize DR interfaces.
* 2) ACPI based DR has been disabled by user.
* 3) No DR capable devices have been detected.
* 4) The system doesn't support DR operations.
* 5) Some acpidev features have been disabled by user.
*/
if (acpidev_dr_failed != 0 || acpidev_dr_enable == 0 ||
acpidev_dr_supported == 0) {
return (0);
}
flags1 = ACPI_FEATURE_DEVCFG | ACPI_FEATURE_OSI_MODULE;
flags2 = ACPI_DEVCFG_CPU | ACPI_DEVCFG_MEMORY |
ACPI_DEVCFG_CONTAINER | ACPI_DEVCFG_PCI;
if (acpica_get_core_feature(flags1) != flags1 ||
acpica_get_devcfg_feature(flags2) != flags2) {
cmn_err(CE_CONT,
"?acpidev: disable support of ACPI based DR because "
"some acpidev features have been disabled by user.\n");
acpidev_dr_supported = 0;
return (0);
}
cp = acpidev_dr_get_capacity();
if (cp == NULL || cp->hotplug_supported == B_FALSE) {
return (0);
}
return (1);
}
uint32_t
acpidev_dr_max_boards(void)
{
return (acpidev_dr_boards);
}
uint32_t
acpidev_dr_max_io_units_per_board(void)
{
return (acpidev_dr_max_io_per_board);
}
uint32_t
acpidev_dr_max_mem_units_per_board(void)
{
return (acpidev_dr_max_memory_per_board);
}
uint32_t
acpidev_dr_max_cmp_units_per_board(void)
{
return (acpidev_dr_max_cmp_per_board);
}
uint32_t
acpidev_dr_max_cpu_units_per_cmp(void)
{
static int max_cnt;
if (max_cnt == 0) {
kpreempt_disable();
max_cnt = cpuid_get_ncpu_per_chip(CPU);
kpreempt_enable();
}
return (max_cnt);
}
uint32_t
acpidev_dr_max_segments_per_mem_device(void)
{
if (acpidev_dr_max_segs_per_mem_device < 1) {
return (ACPIDEV_DR_SEGS_PER_MEM_DEV);
} else {
return (acpidev_dr_max_segs_per_mem_device);
}
}
uint32_t
acpidev_dr_max_memlists_per_segment(void)
{
if (acpidev_dr_max_memlists_per_seg < ACPIDEV_DR_MEMLISTS_PER_SEG) {
return (ACPIDEV_DR_MEMLISTS_PER_SEG);
} else {
return (acpidev_dr_max_memlists_per_seg);
}
}
void
acpidev_dr_init(void)
{
mutex_init(&acpidev_dr_lock, NULL, MUTEX_DRIVER, NULL);
}
static void
acpidev_dr_check_board_type(acpidev_data_handle_t dhdl,
struct acpidev_dr_set_prop_arg *ap, char *objname)
{
if (dhdl->aod_class_id == ACPIDEV_CLASS_ID_MEMORY) {
/* Memory board should have only one memory device. */
ASSERT(ap->cpu_id == 0);
ASSERT(ap->mem_id == 1);
ASSERT(ap->io_id == 0);
ASSERT(ap->mod_id == 0);
dhdl->aod_bdtype = ACPIDEV_MEMORY_BOARD;
} else if (dhdl->aod_class_id == ACPIDEV_CLASS_ID_PCI ||
dhdl->aod_class_id == ACPIDEV_CLASS_ID_PCIEX) {
/* IO board should have only one IO device. */
ASSERT(ap->cpu_id == 0);
ASSERT(ap->mem_id == 0);
ASSERT(ap->io_id == 1);
ASSERT(ap->mod_id == 0);
dhdl->aod_bdtype = ACPIDEV_IO_BOARD;
} else if (dhdl->aod_class_id == ACPIDEV_CLASS_ID_CONTAINER) {
if (ap->mod_id == 1 && ap->mem_id == 0) {
dhdl->aod_bdtype = ACPIDEV_CPU_BOARD;
} else {
dhdl->aod_bdtype = ACPIDEV_SYSTEM_BOARD;
}
} else {
cmn_err(CE_WARN,
"!acpidev: unknown type of hotplug capable board %s.",
objname);
ASSERT(0);
}
}
/*
* Check for hotplug capable boards and create environment to support
* ACPI based DR operations. No need to acquire lock here, it's called
* from single-threaded context during boot.
*/
void
acpidev_dr_check(acpidev_walk_info_t *infop)
{
uint_t cmp;
boolean_t found = B_FALSE;
ACPI_HANDLE phdl;
acpidev_data_handle_t dhdl, pdhdl;
struct acpidev_dr_set_prop_arg arg;
if (infop == NULL ||
infop->awi_op_type != ACPIDEV_OP_BOOT_PROBE) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: invalid parameter to acpidev_dr_check().");
return;
}
if (acpidev_dr_capable() == 0) {
return;
}
dhdl = infop->awi_data;
ASSERT(dhdl != NULL);
/* This device has already been handled before. */
if (ACPIDEV_DR_IS_PROCESSED(dhdl)) {
return;
}
/*
* It implies that the device is hotplug capable if ACPI _EJ0 method
* is available.
*/
if (!ACPIDEV_DR_IS_BOARD(dhdl) &&
acpidev_dr_device_hotplug_capable(infop->awi_hdl)) {
ACPIDEV_DR_SET_BOARD(dhdl);
}
/* All things are done if the device isn't hotplug capable. */
if (!ACPIDEV_DR_IS_BOARD(dhdl)) {
return;
}
/* Check whether hardware topology is supported or not. */
if (ACPI_FAILURE(acpidev_dr_scan_topo(infop->awi_hdl, 0, NULL,
NULL))) {
ACPIDEV_DR_SET_FAILED(dhdl);
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: hardware topology under %s "
"is unsupported for DR operations.", infop->awi_name);
return;
}
/* Generate board/index/port number for the hotplug capable board. */
dhdl->aod_bdnum = atomic_inc_32_nv(&acpidev_dr_boards) - 1;
dhdl->aod_portid = 0;
phdl = infop->awi_hdl;
while (ACPI_SUCCESS(AcpiGetParent(phdl, &phdl)) &&
phdl != ACPI_ROOT_OBJECT) {
pdhdl = acpidev_data_get_handle(phdl);
if (pdhdl != NULL && ACPIDEV_DR_IS_BOARD(pdhdl)) {
dhdl->aod_bdidx = atomic_inc_32_nv(&pdhdl->aod_chidx);
found = B_TRUE;
break;
}
}
if (found == B_FALSE) {
dhdl->aod_bdidx = atomic_inc_32_nv(&acpidev_dr_board_index);
}
dhdl->aod_bdidx -= 1;
/* Found too many hotplug capable boards. */
if (dhdl->aod_bdnum >= ACPIDEV_DR_MAX_BOARDS) {
ACPIDEV_DR_SET_FAILED(dhdl);
cmn_err(CE_WARN, "!acpidev: too many hotplug capable boards, "
"max %d, found %d.",
ACPIDEV_DR_MAX_BOARDS, dhdl->aod_bdnum + 1);
return;
}
/* Scan all descendant devices to prepare info for DR operations. */
bzero(&arg, sizeof (arg));
arg.bdnum = dhdl->aod_bdnum;
arg.level = infop->awi_level;
if (ACPI_FAILURE(acpidev_dr_scan_topo(infop->awi_hdl, 0, &arg,
NULL))) {
ACPIDEV_DR_SET_FAILED(dhdl);
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: failed to set DR properties "
"for descendants of %s.", infop->awi_name);
return;
}
/* Get type of the hotplug capable board. */
acpidev_dr_check_board_type(dhdl, &arg, infop->awi_name);
/*
* Save ACPI handle of the hotplug capable board to speed up lookup
* board handle if caching is enabled.
*/
if ((acpidev_options & ACPIDEV_OUSER_NO_CACHE) == 0) {
acpidev_dr_board_handles[dhdl->aod_bdnum] = infop->awi_hdl;
}
/* Update system maximum DR capabilities. */
cmp = (arg.cpu_id + acpidev_dr_max_cpu_units_per_cmp() - 1);
cmp /= acpidev_dr_max_cpu_units_per_cmp();
if (cmp > acpidev_dr_max_cmp_per_board) {
acpidev_dr_max_cmp_per_board = cmp;
}
if (arg.mem_id > acpidev_dr_max_memory_per_board) {
acpidev_dr_max_memory_per_board = arg.mem_id;
}
if (arg.io_id > acpidev_dr_max_io_per_board) {
acpidev_dr_max_io_per_board = arg.io_id;
}
}
static void
acpidev_dr_initialize_memory_hotplug(void)
{
caddr_t buf;
uint32_t cnt;
acpidev_dr_capacity_t *cp;
/*
* We have already checked that the platform supports DR operations.
*/
cp = acpidev_dr_get_capacity();
ASSERT(cp != NULL && cp->hotplug_supported);
ASSERT(ISP2(cp->memory_alignment));
ASSERT(cp->memory_alignment > MMU_PAGESIZE);
mem_node_physalign = cp->memory_alignment;
/* Pre-populate memlist cache. */
cnt = acpidev_dr_memory_device_cnt;
cnt *= acpidev_dr_max_segments_per_mem_device();
cnt *= acpidev_dr_max_memlists_per_segment();
if (cnt > ACPIDEV_DR_MAX_MEMLIST_ENTRIES) {
cmn_err(CE_WARN, "!acpidev: attempted to reserve too many "
"memlist entries (%u), max %u. Falling back to %u and "
"some memory hot add operations may fail.",
cnt, ACPIDEV_DR_MAX_MEMLIST_ENTRIES,
ACPIDEV_DR_MAX_MEMLIST_ENTRIES);
cnt = ACPIDEV_DR_MAX_MEMLIST_ENTRIES;
}
cnt *= sizeof (struct memlist);
buf = kmem_zalloc(cnt, KM_SLEEP);
memlist_free_block(buf, cnt);
}
/*
* Create pseudo DR control device node if the system is hotplug capable.
* No need to acquire lock, it's called from single-threaded context
* during boot. pdip has been held by the caller.
*/
static ACPI_STATUS
acpidev_dr_create_node(dev_info_t *pdip)
{
dev_info_t *dip;
char unit[32];
char *path;
char *comps[] = {
"acpidr_sbd",
};
/*
* Disable support of DR operations if no hotplug capable board has
* been detected.
*/
if (acpidev_dr_boards == 0) {
acpidev_dr_supported = 0;
} else {
acpidev_dr_supported = 1;
}
/*
* Don't create control device node if the system isn't hotplug capable.
*/
if (acpidev_dr_capable() == 0) {
return (AE_SUPPORT);
}
/* Cache pointer to the ACPI SLIT table. */
if (ACPI_FAILURE(AcpiGetTable(ACPI_SIG_SLIT, 1,
(ACPI_TABLE_HEADER **)&acpidev_slit_tbl_ptr))) {
acpidev_slit_tbl_ptr = NULL;
}
if (acpidev_srat_tbl_ptr == NULL || acpidev_slit_tbl_ptr == NULL) {
if (lgrp_plat_node_cnt != 1) {
/*
* Disable support of CPU/memory DR operations if lgrp
* is enabled but failed to cache SRAT/SLIT table
* pointers.
*/
cmn_err(CE_WARN,
"!acpidev: failed to get ACPI SRAT/SLIT table.");
plat_dr_disable_cpu();
plat_dr_disable_memory();
}
}
ndi_devi_alloc_sleep(pdip, ACPIDEV_NODE_NAME_ACPIDR,
(pnode_t)DEVI_PSEUDO_NODEID, &dip);
/* Set "unit-address" device property. */
(void) snprintf(unit, sizeof (unit), "%u", 0);
if (ndi_prop_update_string(DDI_DEV_T_NONE, dip,
ACPIDEV_PROP_NAME_UNIT_ADDR, unit) != NDI_SUCCESS) {
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
cmn_err(CE_CONT,
"?acpidev: failed to set unit-address property for %s.\n",
ddi_pathname(dip, path));
kmem_free(path, MAXPATHLEN);
(void) ddi_remove_child(dip, 0);
acpidev_dr_failed = 1;
return (AE_ERROR);
}
/* Set "compatible" device property. */
if (ndi_prop_update_string_array(DDI_DEV_T_NONE, dip, OBP_COMPATIBLE,
comps, sizeof (comps) / sizeof (comps[0])) != NDI_SUCCESS) {
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
cmn_err(CE_CONT, "?acpidev: failed to set compatible "
"property for %s.\n", ddi_pathname(dip, path));
kmem_free(path, MAXPATHLEN);
(void) ddi_remove_child(dip, 0);
acpidev_dr_failed = 1;
return (AE_ERROR);
}
(void) ndi_devi_bind_driver(dip, 0);
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_initialize(dev_info_t *pdip)
{
ACPI_STATUS rc;
rc = acpidev_dr_create_node(pdip);
if (ACPI_FAILURE(rc)) {
return (rc);
}
/* Initialize support of memory DR operations. */
if (plat_dr_support_memory()) {
acpidev_dr_initialize_memory_hotplug();
}
/* Mark the DR subsystem is ready for use. */
plat_dr_enable();
return (AE_OK);
}
static ACPI_STATUS
acpidev_dr_find_board(ACPI_HANDLE hdl, uint_t lvl, void *ctx, void **retval)
{
_NOTE(ARGUNUSED(lvl));
acpidev_data_handle_t dhdl;
ASSERT(hdl != NULL);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
/* No data handle available, not ready for DR operations. */
return (AE_CTRL_DEPTH);
} else if (ACPIDEV_DR_IS_BOARD(dhdl) && ACPIDEV_DR_IS_WORKING(dhdl) &&
dhdl->aod_bdnum == (intptr_t)ctx) {
ASSERT(retval != NULL);
*(ACPI_HANDLE *)retval = hdl;
return (AE_CTRL_TERMINATE);
}
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_get_board_handle(uint_t board, ACPI_HANDLE *hdlp)
{
ACPI_STATUS rc = AE_OK;
ACPI_HANDLE hdl;
ASSERT(hdlp != NULL);
if (hdlp == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_get_board_handle().");
return (AE_BAD_PARAMETER);
}
if (board >= acpidev_dr_boards) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: board number %d is out of range, max %d.",
board, acpidev_dr_boards);
return (AE_NOT_FOUND);
}
/* Use cached handles if caching is enabled. */
if ((acpidev_options & ACPIDEV_OUSER_NO_CACHE) == 0) {
if (acpidev_dr_board_handles[board] != NULL) {
hdl = acpidev_dr_board_handles[board];
if (ACPI_FAILURE(acpidev_dr_find_board(hdl, 1,
(void *)(intptr_t)board, (void **)hdlp)) &&
*hdlp != NULL) {
return (AE_OK);
}
}
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: board %d doesn't exist.", board);
*hdlp = NULL;
return (AE_NOT_FOUND);
}
/* All hotplug capable boards should exist under \_SB_. */
if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT,
ACPIDEV_OBJECT_NAME_SB, &hdl))) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get handle of %s.",
ACPIDEV_OBJECT_NAME_SB);
return (AE_ERROR);
}
*hdlp = NULL;
if (ACPI_FAILURE(AcpiWalkNamespace(ACPI_TYPE_DEVICE, hdl,
ACPIDEV_MAX_ENUM_LEVELS - 1, acpidev_dr_find_board, NULL,
(void *)(intptr_t)board, (void **)hdlp))) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to find ACPI handle "
"for board %d.", board);
rc = AE_NOT_FOUND;
} else if (*hdlp == NULL) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: board %d doesn't exist.", board);
rc = AE_NOT_FOUND;
}
return (rc);
}
acpidev_board_type_t
acpidev_dr_get_board_type(ACPI_HANDLE hdl)
{
acpidev_data_handle_t dhdl;
acpidev_board_type_t type = ACPIDEV_INVALID_BOARD;
if (hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_get_board_type().");
return (type);
}
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data associated with %p.", hdl);
} else {
type = dhdl->aod_bdtype;
}
return (type);
}
ACPI_STATUS
acpidev_dr_get_board_number(ACPI_HANDLE hdl, uint32_t *bnump)
{
acpidev_data_handle_t dhdl;
if (hdl == NULL || bnump == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_get_board_number().");
return (AE_BAD_PARAMETER);
}
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data associated with %p.", hdl);
return (AE_ERROR);
}
*bnump = dhdl->aod_bdnum;
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_get_board_name(ACPI_HANDLE hdl, char *buf, size_t len)
{
char *fmt;
int count = 0;
size_t rlen = 0;
ACPI_HANDLE thdl;
acpidev_data_handle_t dhdl;
acpidev_data_handle_t dhdls[ACPIDEV_MAX_ENUM_LEVELS];
if (hdl == NULL || buf == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_get_board_name().");
return (AE_BAD_PARAMETER);
}
/* Find ancestors of the device which are hotplug capable. */
for (thdl = hdl; thdl != NULL; ) {
dhdl = acpidev_data_get_handle(thdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get data "
"associated with %p.", thdl);
return (AE_ERROR);
}
if (!ACPIDEV_DR_IS_BOARD(dhdl)) {
/* The board itself should be hotplug capable. */
if (count == 0) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %p is "
"not hotplug capable.", thdl);
return (AE_ERROR);
}
} else {
if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %p is "
"in the FAILED state.", thdl);
}
if (count >= ACPIDEV_MAX_ENUM_LEVELS) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: recursive level for hotplug "
"capable board is too deep.");
return (AE_ERROR);
}
dhdls[count] = dhdl;
count++;
}
if (acpidev_dr_hierarchy_name == 0) {
thdl = NULL;
} else if (ACPI_FAILURE(AcpiGetParent(thdl, &thdl))) {
thdl = NULL;
}
}
/* Generate hierarchy board name for the board. */
ASSERT(count > 0);
for (count--; count >= 0 && rlen < len; count--) {
dhdl = dhdls[count];
switch (dhdl->aod_bdtype) {
case ACPIDEV_CPU_BOARD:
fmt = ACPIDEV_DR_CPU_BD_FMT;
break;
case ACPIDEV_MEMORY_BOARD:
fmt = ACPIDEV_DR_MEMORY_BD_FMT;
break;
case ACPIDEV_IO_BOARD:
fmt = ACPIDEV_DR_IO_BD_FMT;
break;
case ACPIDEV_SYSTEM_BOARD:
fmt = ACPIDEV_DR_SYSTEM_BD_FMT;
break;
case ACPIDEV_INVALID_BOARD:
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid board type.");
return (AE_ERROR);
default:
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: unknown board type %u.",
dhdl->aod_bdtype);
return (AE_ERROR);
}
/* Add "." before component name except first item. */
if (rlen != 0) {
rlen += snprintf(buf + rlen, len - rlen, ".");
}
if (rlen < len) {
rlen += snprintf(buf + rlen, len - rlen, fmt,
dhdl->aod_bdidx);
}
}
/* Check whether the buffer is sufficient. */
if (rlen >= len) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: buffer length to "
"acpidev_dr_get_board_name() is too small.");
return (AE_NO_MEMORY);
}
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_get_attachment_point(ACPI_HANDLE hdl, char *buf, size_t len)
{
size_t rlen;
if (hdl == NULL || buf == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_get_attachment_point().");
return (AE_BAD_PARAMETER);
}
rlen = snprintf(buf, len, "/devices/%s/%s@%u:",
ACPIDEV_NODE_NAME_ROOT, ACPIDEV_NODE_NAME_ACPIDR, 0);
if (rlen >= len) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: buffer to "
"acpidev_dr_get_attachment_point() is too small.");
return (AE_NO_MEMORY);
}
return (acpidev_dr_get_board_name(hdl, buf + rlen, len - rlen));
}
/*
* Existence of ACPI _EJ0 method implies that the device is hotplug capable.
*/
int
acpidev_dr_device_hotplug_capable(ACPI_HANDLE hdl)
{
ACPI_HANDLE ej0;
ASSERT(hdl != NULL);
if (ACPI_FAILURE(AcpiGetHandle(hdl, ACPIDEV_METHOD_NAME_EJ0, &ej0))) {
return (0);
}
return (1);
}
int
acpidev_dr_device_has_edl(ACPI_HANDLE hdl)
{
ACPI_HANDLE edl;
ASSERT(hdl != NULL);
if (ACPI_FAILURE(AcpiGetHandle(hdl, ACPIDEV_METHOD_NAME_EDL, &edl))) {
return (0);
}
return (1);
}
int
acpidev_dr_device_is_present(ACPI_HANDLE hdl)
{
int status;
ASSERT(hdl != NULL);
status = acpidev_query_device_status(hdl);
if (acpidev_check_device_present(status)) {
return (1);
}
return (0);
}
int
acpidev_dr_device_is_powered(ACPI_HANDLE hdl)
{
int status;
ASSERT(hdl != NULL);
/*
* Check device status returned by ACPI _STA method.
* It implies that the device is powered if status is both PRESENT
* and ENABLED.
*/
status = acpidev_query_device_status(hdl);
if (acpidev_check_device_enabled(status)) {
return (1);
}
return (0);
}
ACPI_STATUS
acpidev_dr_get_mem_alignment(ACPI_HANDLE hdl, uint64_t *ap)
{
acpidev_dr_capacity_t *cp;
ASSERT(hdl != NULL);
ASSERT(ap != NULL);
if (ap == NULL || hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_get_mem_alignment().");
return (AE_BAD_PARAMETER);
}
cp = acpidev_dr_get_capacity();
if (cp == NULL || cp->hotplug_supported == B_FALSE) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get memory alignment.");
return (AE_SUPPORT);
}
*ap = cp->memory_alignment;
return (AE_OK);
}
/*
* Get the device property for the given name and store it into buf.
* Returns the amount of data copied to buf if len is large enough to
* hold all of the data. If len is not large enough, then the required
* len would be returned and buf would not be modified. On any errors,
* -1 is returned and buf is not modified.
*/
ACPI_STATUS
acpidev_dr_device_get_regspec(ACPI_HANDLE hdl, boolean_t assigned,
acpidev_regspec_t **regpp, uint_t *cntp)
{
int *valp;
uint_t count;
char *propname;
dev_info_t *dip;
acpidev_data_handle_t dhdl;
ASSERT(hdl != NULL);
ASSERT(regpp != NULL && cntp != NULL);
if (hdl == NULL || regpp == NULL || cntp == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameters to "
"acpidev_dr_device_get_regspec().");
return (AE_BAD_PARAMETER);
}
/* Set default return value. */
*regpp = NULL;
*cntp = 0;
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data associated with %p.", hdl);
return (AE_ERROR);
} else if ((dip = acpidev_data_get_devinfo(dhdl)) == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get dip associated with %p.", hdl);
return (AE_NOT_FOUND);
}
propname = assigned ? "assigned-addresses" : "reg";
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
propname, &valp, &count) != DDI_PROP_SUCCESS) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to lookup device property %s.", propname);
return (AE_NOT_FOUND);
}
if (count % (sizeof (**regpp) / sizeof (int)) != 0) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: device property %s is invalid.", propname);
ddi_prop_free(valp);
return (AE_ERROR);
}
*regpp = (acpidev_regspec_t *)valp;
*cntp = count / (sizeof (**regpp) / sizeof (int));
return (AE_OK);
}
void
acpidev_dr_device_free_regspec(acpidev_regspec_t *regp, uint_t count)
{
_NOTE(ARGUNUSED(count));
if (regp != NULL) {
ddi_prop_free(regp);
}
}
/*
* Return values
* . negative values on error
* . size of data copied to buffer if it's bigger enough
* . size of buffer needed if buffer is too small
*/
int
acpidev_dr_device_getprop(ACPI_HANDLE hdl, char *name, caddr_t buf, size_t len)
{
int rlen = -1;
acpidev_data_handle_t dhdl;
if (hdl == NULL) {
return (-1);
}
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
return (-1);
} else if (!ACPIDEV_DR_IS_WORKING(dhdl)) {
return (-1);
}
if (strcmp(name, ACPIDEV_DR_PROP_PORTID) == 0) {
if (len >= sizeof (uint32_t)) {
*(uint32_t *)(void *)buf = dhdl->aod_portid;
}
rlen = sizeof (uint32_t);
} else if (strcmp(name, ACPIDEV_DR_PROP_BOARDNUM) == 0) {
if (len >= sizeof (uint32_t)) {
*(uint32_t *)(void *)buf = dhdl->aod_bdnum;
}
rlen = sizeof (uint32_t);
} else if (strcmp(name, ACPIDEV_DR_PROP_DEVNAME) == 0) {
switch (dhdl->aod_class_id) {
case ACPIDEV_CLASS_ID_CPU:
if (len >= sizeof (ACPIDEV_NODE_NAME_CPU)) {
(void) strlcpy((char *)buf,
ACPIDEV_NODE_NAME_CPU, len);
}
rlen = sizeof (ACPIDEV_NODE_NAME_CPU);
break;
case ACPIDEV_CLASS_ID_MEMORY:
if (len >= sizeof (ACPIDEV_NODE_NAME_MEMORY)) {
(void) strlcpy((char *)buf,
ACPIDEV_NODE_NAME_MEMORY, len);
}
rlen = sizeof (ACPIDEV_NODE_NAME_MEMORY);
break;
case ACPIDEV_CLASS_ID_PCI:
case ACPIDEV_CLASS_ID_PCIEX:
if (len >= sizeof (ACPIDEV_NODE_NAME_PCI)) {
(void) strlcpy((char *)buf,
ACPIDEV_NODE_NAME_PCI, len);
}
rlen = sizeof (ACPIDEV_NODE_NAME_PCI);
break;
default:
break;
}
}
return (rlen);
}
/*
* Figure out device class of the device.
* It only supports device classes which may be involved in DR operations.
*/
acpidev_class_id_t
acpidev_dr_device_get_class(ACPI_HANDLE hdl)
{
ACPI_OBJECT_TYPE type;
ACPI_DEVICE_INFO *infop;
acpidev_class_id_t id = ACPIDEV_CLASS_ID_INVALID;
static char *acpidev_id_cpu[] = {
ACPIDEV_HID_CPU,
};
static char *acpidev_id_mem[] = {
ACPIDEV_HID_MEMORY,
};
static char *acpidev_id_mod[] = {
ACPIDEV_HID_MODULE,
};
static char *acpidev_id_pci[] = {
ACPIDEV_HID_PCI_HOSTBRIDGE,
};
static char *acpidev_id_pciex[] = {
ACPIDEV_HID_PCIEX_HOSTBRIDGE,
};
/* Figure out device type by checking ACPI object type. */
if (ACPI_FAILURE(AcpiGetType(hdl, &type))) {
return (ACPIDEV_CLASS_ID_INVALID);
} else if (type == ACPI_TYPE_PROCESSOR) {
return (ACPIDEV_CLASS_ID_CPU);
} else if (type != ACPI_TYPE_DEVICE) {
return (ACPIDEV_CLASS_ID_INVALID);
}
if (ACPI_FAILURE(AcpiGetObjectInfo(hdl, &infop))) {
return (ACPIDEV_CLASS_ID_INVALID);
}
/* Figure out device type by checking _HID and _CID. */
if (acpidev_match_device_id(infop,
ACPIDEV_ARRAY_PARAM(acpidev_id_cpu))) {
id = ACPIDEV_CLASS_ID_CPU;
} else if (acpidev_match_device_id(infop,
ACPIDEV_ARRAY_PARAM(acpidev_id_mem))) {
id = ACPIDEV_CLASS_ID_MEMORY;
} else if (acpidev_match_device_id(infop,
ACPIDEV_ARRAY_PARAM(acpidev_id_mod))) {
id = ACPIDEV_CLASS_ID_CONTAINER;
} else if (acpidev_match_device_id(infop,
ACPIDEV_ARRAY_PARAM(acpidev_id_pciex))) {
id = ACPIDEV_CLASS_ID_PCIEX;
} else if (acpidev_match_device_id(infop,
ACPIDEV_ARRAY_PARAM(acpidev_id_pci))) {
id = ACPIDEV_CLASS_ID_PCI;
}
AcpiOsFree(infop);
return (id);
}
ACPI_STATUS
acpidev_dr_device_get_memory_index(ACPI_HANDLE hdl, uint32_t *idxp)
{
acpidev_data_handle_t dhdl;
ASSERT(idxp != NULL);
ASSERT(hdl != NULL);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle for %p.", hdl);
return (AE_ERROR);
} else if (dhdl->aod_class_id != ACPIDEV_CLASS_ID_MEMORY) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %p is not a memory device.", hdl);
return (AE_ERROR);
} else {
*idxp = dhdl->aod_memidx;
}
return (AE_OK);
}
int
acpidev_dr_device_is_board(ACPI_HANDLE hdl)
{
acpidev_data_handle_t dhdl;
ASSERT(hdl != NULL);
if (hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_is_board().");
return (0);
}
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
return (0);
} else if (!ACPIDEV_DR_IS_BOARD(dhdl)) {
return (0);
}
return (1);
}
ACPI_STATUS
acpidev_dr_device_walk_edl(ACPI_HANDLE hdl,
ACPI_WALK_CALLBACK cb, void *arg, void **retval)
{
ACPI_STATUS rc = AE_OK;
int i;
char *objname;
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
char *method = ACPIDEV_METHOD_NAME_EDL;
ASSERT(hdl != NULL);
ASSERT(cb != NULL);
if (hdl == NULL || cb == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_device_walk_edl().");
return (AE_BAD_PARAMETER);
}
objname = acpidev_get_object_name(hdl);
buf.Length = ACPI_ALLOCATE_BUFFER;
rc = AcpiEvaluateObjectTyped(hdl, method, NULL, &buf,
ACPI_TYPE_PACKAGE);
if (rc == AE_NOT_FOUND) {
acpidev_free_object_name(objname);
return (AE_OK);
} else if (ACPI_FAILURE(rc)) {
cmn_err(CE_WARN,
"!acpidev: failed to evaluate method %s under %s.",
method, objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Validate the package structure. */
obj = buf.Pointer;
for (i = 0; i < obj->Package.Count; i++) {
if (obj->Package.Elements[i].Type !=
ACPI_TYPE_LOCAL_REFERENCE) {
cmn_err(CE_WARN, "!acpidev: element %d in package "
"returned by %s of %s is not local reference.",
i, method, objname);
AcpiOsFree(buf.Pointer);
acpidev_free_object_name(objname);
return (AE_ERROR);
} else if (obj->Package.Elements[i].Reference.ActualType !=
ACPI_TYPE_DEVICE) {
cmn_err(CE_WARN, "!acpidev: element %d in package "
"returned by %s of %s doesn't refer to device.",
i, method, objname);
AcpiOsFree(buf.Pointer);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
}
for (i = 0; i < obj->Package.Count; i++) {
if (obj->Package.Elements[i].Reference.Handle == NULL) {
cmn_err(CE_WARN, "!acpidev: handle of element %d in "
"package returned by %s of %s is NULL.",
i, method, objname);
continue;
}
rc = (*cb)(obj->Package.Elements[i].Reference.Handle,
UINT32_MAX, arg, retval);
if (rc == AE_CTRL_DEPTH || rc == AE_CTRL_TERMINATE) {
rc = AE_OK;
}
if (ACPI_FAILURE(rc)) {
break;
}
}
AcpiOsFree(buf.Pointer);
acpidev_free_object_name(objname);
return (rc);
}
ACPI_STATUS
acpidev_dr_device_walk_ejd(ACPI_HANDLE hdl,
ACPI_WALK_CALLBACK cb, void *arg, void **retval)
{
ACPI_STATUS rc = AE_OK;
char *objname;
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
ACPI_HANDLE chdl;
char *method = ACPIDEV_METHOD_NAME_EJD;
ASSERT(hdl != NULL);
ASSERT(cb != NULL);
if (hdl == NULL || cb == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_device_walk_ejd().");
return (AE_BAD_PARAMETER);
}
objname = acpidev_get_object_name(hdl);
buf.Length = ACPI_ALLOCATE_BUFFER;
rc = AcpiEvaluateObjectTyped(hdl, method, NULL, &buf,
ACPI_TYPE_STRING);
if (rc == AE_NOT_FOUND) {
acpidev_free_object_name(objname);
return (AE_OK);
} else if (ACPI_FAILURE(rc)) {
cmn_err(CE_WARN,
"!acpidev: failed to evaluate method %s under %s.",
method, objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
obj = buf.Pointer;
ASSERT(obj->String.Pointer);
if (ACPI_FAILURE(AcpiGetHandle(NULL, obj->String.Pointer, &chdl))) {
cmn_err(CE_WARN, "!acpidev: failed to get handle for %s.",
obj->String.Pointer);
rc = AE_ERROR;
} else {
rc = (*cb)(chdl, UINT32_MAX, arg, retval);
if (rc == AE_CTRL_DEPTH || rc == AE_CTRL_TERMINATE) {
rc = AE_OK;
}
}
AcpiOsFree(buf.Pointer);
acpidev_free_object_name(objname);
return (rc);
}
/*
* Walk all child devices and special devices in the eject device list.
*/
static ACPI_STATUS
acpidev_dr_device_walk_child(ACPI_HANDLE hdl, boolean_t init, uint_t max_lvl,
ACPI_WALK_CALLBACK cb, void *arg, void **retval)
{
ACPI_STATUS rc = AE_OK;
ASSERT(hdl != NULL);
ASSERT(cb != NULL);
if (hdl == NULL || cb == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_device_walk_child().");
return (AE_BAD_PARAMETER);
}
/*
* Walk the eject device list first when destroying.
* According to ACPI spec, devices in _EDL list must be handled first
* when the ejecting device.
*/
if (init == B_FALSE) {
rc = acpidev_dr_device_walk_edl(hdl, cb, arg, retval);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: failed to walk eject device list in "
"acpidev_dr_device_walk_child().");
}
}
/* Walk all child ACPI DEVICE objects. */
if (ACPI_SUCCESS(rc)) {
rc = AcpiWalkNamespace(ACPI_TYPE_DEVICE, hdl,
max_lvl, cb, NULL, arg, retval);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: failed to walk DEVICE objects in "
"acpidev_dr_device_walk_child().");
}
}
/* Walk all child ACPI PROCESSOR objects. */
if (ACPI_SUCCESS(rc)) {
rc = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR, hdl,
max_lvl, cb, NULL, arg, retval);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: failed to walk PROCESSOR objects in "
"acpidev_dr_device_walk_child().");
}
}
/*
* Walk the eject device list last when initializing.
*/
if (init == B_TRUE && ACPI_SUCCESS(rc)) {
rc = acpidev_dr_device_walk_edl(hdl, cb, arg, retval);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: failed to walk eject device list in "
"acpidev_dr_device_walk_child().");
}
}
return (rc);
}
ACPI_STATUS
acpidev_dr_device_walk_device(ACPI_HANDLE hdl, uint_t max_lvl,
ACPI_WALK_CALLBACK cb, void *arg, void **retval)
{
ACPI_STATUS rc = AE_OK;
char *objname;
ASSERT(hdl != NULL);
ASSERT(cb != NULL);
if (hdl == NULL || cb == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameter to "
"acpidev_dr_walk_device().");
return (AE_BAD_PARAMETER);
}
/* Walk the top object itself first. */
rc = (*cb)(hdl, 0, arg, retval);
if (rc == AE_CTRL_DEPTH || rc == AE_CTRL_TERMINATE) {
rc = AE_OK;
} else if (ACPI_FAILURE(rc)) {
objname = acpidev_get_object_name(hdl);
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to handle top node %s "
"in acpidev_dr_walk_device().", objname);
acpidev_free_object_name(objname);
} else {
rc = acpidev_dr_device_walk_child(hdl, B_TRUE, max_lvl,
cb, arg, retval);
if (ACPI_FAILURE(rc)) {
objname = acpidev_get_object_name(hdl);
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to handle descendant nodes of %s "
"in acpidev_dr_walk_device().", objname);
acpidev_free_object_name(objname);
}
}
return (rc);
}
static ACPI_STATUS
acpidev_dr_no_support(ACPI_HANDLE hdl, UINT32 lvl, void *arg, void **retval)
{
_NOTE(ARGUNUSED(arg, retval));
char *objname;
ASSERT(hdl != NULL);
objname = acpidev_get_object_name(hdl);
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: device %s at level 0x%x is unsupported.",
objname, lvl);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
static ACPI_STATUS
acpidev_dr_set_prop(ACPI_HANDLE hdl, char *objname,
struct acpidev_dr_set_prop_arg *ap, uint32_t lvl,
acpidev_class_id_t clsid, uint_t *devid)
{
acpidev_data_handle_t dhdl;
/* Create data handle first if it doesn't exist yet. */
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
uint32_t rlvl;
ACPI_HANDLE phdl;
/*
* Compute level by walking ACPI namespace if it's a device
* from the eject device list.
*/
if (lvl == UINT32_MAX) {
/*
* AcpiGetParent() fails when it tries to get
* the parent of the ACPI namespace root node.
*/
for (rlvl = 0, phdl = hdl;
ACPI_SUCCESS(AcpiGetParent(phdl, &phdl));
rlvl++) {
if (phdl == ACPI_ROOT_OBJECT) {
break;
}
}
if (rlvl == 0) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get level of %s.",
objname);
return (AE_BAD_PARAMETER);
}
} else {
rlvl = ap->level;
}
if (rlvl >= ACPIDEV_MAX_ENUM_LEVELS) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: recursive level of %s is too deep.",
objname);
return (AE_SUPPORT);
}
dhdl = acpidev_data_create_handle(hdl);
if (dhdl != NULL) {
dhdl->aod_hdl = hdl;
dhdl->aod_level = rlvl;
}
}
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to create data handle "
"for device %s.", objname);
return (AE_NO_MEMORY);
}
if (ACPIDEV_DR_IS_READY(dhdl)) {
/*
* The same device may be enumerated twice at most. Once as
* child devices, another time from the eject device list.
*/
if (dhdl->aod_bdnum == ap->bdnum) {
return (AE_OK);
} else {
/*
* A device has been enumerated more than once from
* different paths. It's dangerous to support such
* a topology. Disable support of DR operations.
*/
ACPIDEV_DEBUG(CE_WARN, "!acpidev: device %s has been "
"enumerated more than once for DR.", objname);
acpidev_dr_failed = 1;
return (AE_SUPPORT);
}
}
/* Set properties for DR operations. */
dhdl->aod_class_id = clsid;
dhdl->aod_bdnum = ap->bdnum;
dhdl->aod_portid = atomic_inc_32_nv(devid) - 1;
if (clsid == ACPIDEV_CLASS_ID_MEMORY) {
dhdl->aod_memidx = acpidev_dr_memory_device_cnt;
ASSERT(dhdl->aod_memidx < ACPI_MEMNODE_DEVID_BOOT);
}
ACPIDEV_DR_SET_READY(dhdl);
return (AE_OK);
}
/*
* Verify whether the hardware topology is supported by the DR driver.
* The ACPI specification is so flexible that for safety reasons, only
* a few well defined topologies are supported.
* Possible values of parameter lvl:
* 0: the device is the board itself.
* UINT32_MAX: the device is from the _EDL list of the board.
* other: the device is a descendant of the board.
* Return values:
* AE_OK: the topology is supported
* AE_SUPPORT: the topology is unsupported
* AE_ERROR: other errors
*/
static ACPI_STATUS
acpidev_dr_scan_topo(ACPI_HANDLE hdl, UINT32 lvl, void *arg, void **retval)
{
_NOTE(ARGUNUSED(retval));
ACPI_STATUS rc = AE_OK;
char *objname;
acpidev_class_id_t cid;
struct acpidev_dr_set_prop_arg *ap = arg;
ASSERT(hdl != NULL);
ASSERT(lvl == 0 || lvl == 1 || lvl == UINT32_MAX);
objname = acpidev_get_object_name(hdl);
/*
* Validate descendants of the hotplug capable board.
* lvl is zero if it's the hotplug capable board itself, otherwise
* non-zero for descendants.
*/
if (lvl != 0) {
/*
* Skip subtree if the device is hotplug capable.
* It will be treated as another hotplug capable board.
*/
if (acpidev_dr_device_hotplug_capable(hdl)) {
acpidev_free_object_name(objname);
return (AE_CTRL_DEPTH);
}
/*
* Don't support the _EDL list of a non-hotplug-capable device.
*/
if (acpidev_dr_device_has_edl(hdl)) {
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: non-hotplug-capable "
"object %s has _EDL method.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
}
cid = acpidev_dr_device_get_class(hdl);
switch (cid) {
case ACPIDEV_CLASS_ID_CPU:
/* Don't support logical CPUs in the _EDL list. */
if (lvl == UINT32_MAX) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: logical CPU %s in "
"_EDL is unsupported.", objname);
rc = AE_SUPPORT;
break;
}
/* Don't support logical CPUs with children. */
ap->level++;
rc = acpidev_dr_device_walk_child(hdl, B_TRUE, 1,
acpidev_dr_no_support, arg, NULL);
ap->level--;
if (rc == AE_SUPPORT) {
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: logical CPU %s has "
"child or dependent devices.", objname);
break;
} else if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to scan "
"children of logical CPU %s.", objname);
rc = AE_ERROR;
break;
} else if (ap != NULL) {
rc = acpidev_dr_set_prop(hdl, objname, ap, lvl,
ACPIDEV_CLASS_ID_CPU, &ap->cpu_id);
}
break;
case ACPIDEV_CLASS_ID_MEMORY:
/* Don't support memory devices with children. */
ap->level++;
rc = acpidev_dr_device_walk_child(hdl, B_TRUE, 1,
acpidev_dr_no_support, arg, NULL);
ap->level--;
if (rc == AE_SUPPORT) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: memory device %s has child or "
"dependent devices.", objname);
} else if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to scan children of "
"memory device %s.", objname);
rc = AE_ERROR;
} else if (ap != NULL) {
acpidev_dr_memory_device_cnt++;
rc = acpidev_dr_set_prop(hdl, objname, ap, lvl,
ACPIDEV_CLASS_ID_MEMORY, &ap->mem_id);
}
break;
case ACPIDEV_CLASS_ID_PCI:
case ACPIDEV_CLASS_ID_PCIEX:
/* Don't scan child/descendant devices of PCI/PCIex devices. */
if (ap != NULL) {
rc = acpidev_dr_set_prop(hdl, objname, ap, lvl,
cid, &ap->io_id);
}
break;
case ACPIDEV_CLASS_ID_CONTAINER:
/* Don't support module devices in the _EDL list. */
if (lvl == UINT32_MAX) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: module device %s in "
"_EDL is unsupported.", objname);
rc = AE_SUPPORT;
break;
}
/* Don't support recurrence of module devices. */
if (lvl > 0) {
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: recursion level of "
"module device %s is too deep.", objname);
rc = AE_SUPPORT;
break;
}
ap->level++;
rc = acpidev_dr_device_walk_child(hdl, B_TRUE, 1,
acpidev_dr_scan_topo, arg, NULL);
ap->level--;
if (ACPI_SUCCESS(rc) && ap != NULL) {
rc = acpidev_dr_set_prop(hdl, objname, ap, lvl,
ACPIDEV_CLASS_ID_CONTAINER, &ap->mod_id);
}
break;
case ACPIDEV_CLASS_ID_INVALID:
/*FALLTHROUGH*/
default:
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: device %s is unsupported.", objname);
rc = AE_SUPPORT;
break;
}
acpidev_free_object_name(objname);
return (rc);
}
/* Create walk information structures. */
static ACPI_STATUS
acpidev_dr_create_walk_info(ACPI_HANDLE hdl, acpidev_data_handle_t dhdl,
char *objname, acpidev_walk_info_t **infopp, acpidev_walk_info_t **cinfopp)
{
ACPI_HANDLE phdl = NULL;
dev_info_t *pdip = NULL;
acpidev_data_handle_t pdhdl, tdhdl;
acpidev_walk_info_t *infop = NULL, *cinfop = NULL;
ASSERT(hdl != NULL);
ASSERT(dhdl != NULL);
ASSERT(dhdl->aod_class_list != NULL);
ASSERT(objname != NULL);
ASSERT(infopp != NULL);
ASSERT(cinfopp != NULL);
if (ACPI_FAILURE(AcpiGetParent(hdl, &phdl))) {
cmn_err(CE_WARN,
"!acpidev: failed to get parent object of %s.", objname);
return (AE_ERROR);
}
pdhdl = acpidev_data_get_handle(phdl);
if (pdhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get data "
"associated with parent of %s.", objname);
return (AE_ERROR);
}
if (pdhdl->aod_level >= ACPIDEV_MAX_ENUM_LEVELS - 1) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: recursion level (%d) of %s is too deep.",
pdhdl->aod_level, objname);
return (AE_ERROR);
}
ASSERT(pdhdl->aod_class_list != NULL);
if (pdhdl->aod_class_list == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: class list for parent of %s is NULL.", objname);
return (AE_ERROR);
}
/* Allocate a walk info structure for its parent. */
infop = acpidev_alloc_walk_info(ACPIDEV_OP_HOTPLUG_PROBE,
pdhdl->aod_level, phdl, dhdl->aod_class_list, NULL);
if (infop == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to allocate walk info "
"structure for parent of %s.", objname);
return (AE_ERROR);
}
/* Get the parent dip if it's not ready yet. */
while (infop->awi_dip == NULL) {
if (ACPI_FAILURE(AcpiGetParent(phdl, &phdl))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get parent of object %p.",
phdl);
break;
}
tdhdl = acpidev_data_get_handle(phdl);
if (tdhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get data "
"associated with object %p.", phdl);
break;
}
pdip = acpidev_data_get_devinfo(tdhdl);
if (pdip != NULL) {
infop->awi_dip = pdip;
break;
}
/* Give up if reaches the ACPI namespace root node. */
if (phdl == ACPI_ROOT_OBJECT) {
break;
}
}
if (infop->awi_dip == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get parent dip of %s.", objname);
acpidev_free_walk_info(infop);
return (AE_ERROR);
}
/* Allocate a walk info for the child. */
cinfop = acpidev_alloc_walk_info(ACPIDEV_OP_HOTPLUG_PROBE,
infop->awi_level + 1, hdl, NULL, infop);
if (cinfop == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to allocate walk info "
"structure for %s.", objname);
acpidev_free_walk_info(infop);
return (AE_ERROR);
}
*infopp = infop;
*cinfopp = cinfop;
return (AE_OK);
}
static ACPI_STATUS
acpidev_dr_probe_object(ACPI_HANDLE hdl, acpidev_data_handle_t dhdl)
{
ACPI_STATUS rc = AE_OK;
int circ;
char *objname;
dev_info_t *pdip;
ACPI_STATUS res;
ACPI_OBJECT_TYPE type;
acpidev_class_list_t *it;
acpidev_walk_info_t *infop, *cinfop;
ASSERT(hdl != NULL);
ASSERT(dhdl != NULL);
if (hdl == NULL || dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: hdl or dhdl is NULL in "
"acpidev_dr_probe_object().");
return (AE_BAD_PARAMETER);
}
objname = acpidev_get_object_name(hdl);
/* Check whether the device is of interest. */
if (ACPI_FAILURE(AcpiGetType(hdl, &type)) ||
type > ACPI_TYPE_NS_NODE_MAX ||
BT_TEST(acpidev_object_type_mask, type) == 0) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: ACPI object %s is unsupported.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
if (dhdl->aod_class_list == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: class list is NULL in data associated with %s.",
objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
pdip = NULL;
infop = NULL;
cinfop = NULL;
rc = acpidev_dr_create_walk_info(hdl, dhdl, objname, &infop, &cinfop);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to create walk info structures for %s.",
objname);
acpidev_free_object_name(objname);
return (rc);
}
ASSERT(infop != NULL);
ASSERT(infop->awi_dip != NULL);
ASSERT(infop->awi_class_list != NULL);
ASSERT(cinfop != NULL);
ASSERT(cinfop->awi_data == dhdl);
/* Lock the parent dip before touching children. */
pdip = infop->awi_dip;
ndi_devi_enter(pdip, &circ);
rw_enter(&acpidev_class_lock, RW_READER);
/* Call pre-probe callback functions to prepare for probing. */
for (it = *(infop->awi_class_list); it != NULL; it = it->acl_next) {
if (it->acl_class->adc_pre_probe == NULL) {
continue;
}
infop->awi_class_curr = it->acl_class;
if (ACPI_FAILURE(it->acl_class->adc_pre_probe(infop))) {
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: failed to pre-probe "
"device of type %s under %s.",
it->acl_class->adc_class_name, infop->awi_name);
}
}
/* Call registered probe callback functions to probe devices. */
for (it = *(infop->awi_class_list); it != NULL; it = it->acl_next) {
if (it->acl_class->adc_probe == NULL) {
continue;
}
cinfop->awi_class_curr = it->acl_class;
res = it->acl_class->adc_probe(cinfop);
if (ACPI_FAILURE(res)) {
rc = res;
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: failed to process object %s under %s.",
objname, infop->awi_name);
}
}
/* Call post-probe callback functions to clean up. */
for (it = *(infop->awi_class_list); it != NULL; it = it->acl_next) {
if (it->acl_class->adc_post_probe == NULL) {
continue;
}
infop->awi_class_curr = it->acl_class;
if (ACPI_FAILURE(it->acl_class->adc_post_probe(infop))) {
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: failed to post-probe "
"device of type %s under %s.",
it->acl_class->adc_class_name, infop->awi_name);
}
}
rw_exit(&acpidev_class_lock);
ndi_devi_exit(pdip, circ);
acpidev_free_walk_info(cinfop);
acpidev_free_walk_info(infop);
acpidev_free_object_name(objname);
return (rc);
}
/*
* Some PCI/PCIex buses embedded in physical processors may be presented in
* the eject device list instead of being presented as child devices.
* This function figures out such devices and create device nodes for them.
*/
static ACPI_STATUS
acpidev_dr_probe_dependent(ACPI_HANDLE hdl, UINT32 lvl, void *ctx,
void **retval)
{
_NOTE(ARGUNUSED(retval));
ACPI_STATUS rc = AE_OK;
int status;
char *objname;
ACPI_HANDLE phdl, thdl;
acpidev_data_handle_t dhdl;
ASSERT(lvl == UINT32_MAX);
ASSERT(hdl != NULL);
ASSERT(ctx != NULL);
phdl = ctx;
objname = acpidev_get_object_name(hdl);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data associated with %s.",
objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/*
* It should be treated as another board if device is hotplug capable.
*/
if (ACPIDEV_DR_IS_BOARD(dhdl)) {
acpidev_free_object_name(objname);
return (AE_OK);
} else if (!ACPIDEV_DR_IS_WORKING(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: %s is unusable for DR operations.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
/*
* Skip hdl if it's a descendant of phdl because it should have
* already been handled when handling phdl itself.
*/
for (thdl = hdl; ACPI_SUCCESS(AcpiGetParent(thdl, &thdl)); ) {
/* Return when reaches the phdl. */
if (thdl == phdl) {
acpidev_free_object_name(objname);
return (AE_OK);
}
/* Break out when reaches the ACPI namespace root node. */
if (thdl == ACPI_ROOT_OBJECT) {
break;
}
}
/*
* No support of enumerating PCI/PCIex Host Bridge devices yet.
* It will be enabled when PCI/PCIex Host Bridge hotplug is ready.
*/
if (dhdl->aod_class_id == ACPIDEV_CLASS_ID_PCI ||
dhdl->aod_class_id == ACPIDEV_CLASS_ID_PCIEX) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: PCI/PCIEX host bridge %s is "
"unsupported, skip it.", objname);
acpidev_free_object_name(objname);
return (AE_OK);
}
/* Check whether the device exists and has been enabled. */
status = acpidev_query_device_status(hdl);
if (!acpidev_check_device_enabled(status)) {
ACPIDEV_DEBUG(CE_NOTE, "!acpidev: object %s is disabled/absent "
"when trying to connect it.", objname);
acpidev_free_object_name(objname);
return (AE_OK);
}
/* Probe the device and its children. */
rc = acpidev_dr_probe_object(hdl, dhdl);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to probe object %s in eject device list.",
objname);
return (rc);
}
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_device_insert(ACPI_HANDLE hdl)
{
ACPI_STATUS rc = AE_OK;
int status, circ;
char *objname;
dev_info_t *dip;
acpidev_data_handle_t dhdl;
ASSERT(acpidev_root_node() != NULL);
ASSERT(hdl != NULL);
if (hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: parameter hdl to "
"acpidev_dr_insert_insert() is NULL.");
return (AE_BAD_PARAMETER);
}
objname = acpidev_get_object_name(hdl);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle associated with %s.",
objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Validate that the object is hotplug capable. */
if (!ACPIDEV_DR_BOARD_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %s is not hotplug capable.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %s is in the FAILED "
"state, unusable for DR.", objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Check whether the device exists and has been enabled. */
status = acpidev_query_device_status(hdl);
if (!acpidev_check_device_enabled(status)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %s is disabled/absent "
"when trying to connect it.", objname);
acpidev_free_object_name(objname);
return (AE_NOT_EXIST);
}
/* Check that there's no device node created for object yet. */
dip = acpidev_data_get_devinfo(dhdl);
if (dip != NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: device node for object %s "
"already exists when trying to connect it.", objname);
acpidev_free_object_name(objname);
return (AE_ALREADY_EXISTS);
}
/*
* Solaris has a limitation that all device nodes for PCI/PCIex host
* bridges must exist directly under /devices.
* Special care is needed here to deal with hot-adding PCI/PCIex host
* bridges to avoid dead lock caused by ndi_devi_enter().
* Here the lock on ddi_root_node() is held first, which will break
* the dead lock loop.
*/
ndi_devi_enter(ddi_root_node(), &circ);
rc = acpidev_dr_probe_object(hdl, dhdl);
if (ACPI_SUCCESS(rc)) {
rc = acpidev_dr_device_walk_edl(hdl,
&acpidev_dr_probe_dependent, hdl, NULL);
}
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to create device "
"nodes for children of %s.", objname);
cmn_err(CE_WARN, "!acpidev: disable DR support for object %s "
"due to failure when creating device nodes for it.",
objname);
ACPIDEV_DR_SET_FAILED(dhdl);
}
ndi_devi_exit(ddi_root_node(), circ);
acpidev_free_object_name(objname);
return (rc);
}
static ACPI_STATUS
acpidev_dr_device_remove_cb(ACPI_HANDLE hdl, UINT32 lvl, void *ctx,
void **retval)
{
_NOTE(ARGUNUSED(lvl));
ACPI_STATUS rc = AE_OK;
int status;
char *objname;
dev_info_t *dip;
acpidev_data_handle_t dhdl;
struct acpidev_dr_device_remove_arg *argp;
ASSERT(hdl != NULL && ctx != NULL);
if (hdl == NULL || ctx == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: parameter to "
"acpidev_dr_device_remove_cb() is NULL.");
return (AE_BAD_PARAMETER);
}
argp = (struct acpidev_dr_device_remove_arg *)ctx;
objname = acpidev_get_object_name(hdl);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle associated with %s.",
objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Validate that the object is hotplug capable. */
/* It's the hotplug capable board itself if level is zero. */
if (argp->level == 0) {
if (!ACPIDEV_DR_BOARD_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %s is not hotplug capable.",
objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %s is unusable for DR.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
} else {
/* It's a device under the hotplug capable board. */
/*
* Skip it if device itself is hotplug capable.
* It will be treated as another hotplug capable board.
*/
if (ACPIDEV_DR_IS_BOARD(dhdl)) {
acpidev_free_object_name(objname);
return (AE_OK);
}
if (!ACPIDEV_DR_IS_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %s is not hotplug capable.",
objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %s is unusable for DR.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
}
/* Skip the device if it hasn't been enabled at all. */
status = acpidev_data_get_status(dhdl);
if (!acpidev_check_device_enabled(status)) {
acpidev_free_object_name(objname);
return (AE_OK);
}
dip = acpidev_data_get_devinfo(dhdl);
if (dip == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get dev_info associated with %s.",
objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
/* For safety, only handle supported device types when unconfiguring. */
switch (dhdl->aod_class_id) {
case ACPIDEV_CLASS_ID_CONTAINER:
/*FALLTHROUGH*/
case ACPIDEV_CLASS_ID_CPU:
/*FALLTHROUGH*/
case ACPIDEV_CLASS_ID_MEMORY:
break;
default:
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %s (type %d) doesn't "
"support unconfiguration.", objname, dhdl->aod_class_id);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
}
/* Destroy descendants first. */
argp->level++;
rc = acpidev_dr_device_walk_child(hdl, B_FALSE, 1,
acpidev_dr_device_remove_cb, ctx, retval);
argp->level--;
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to destroy descendants of %s.", objname);
acpidev_free_object_name(objname);
return (rc);
}
/* Untag dip and ACPI object before destroying the dip. */
if ((dhdl->aod_iflag & ACPIDEV_ODF_DEVINFO_TAGGED) &&
ACPI_FAILURE(acpica_untag_devinfo(dip, hdl))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to untag object %s.", objname);
/* Mark the node as unusable. */
ACPIDEV_DR_SET_FAILED(dhdl);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Destroy the node itself. */
if (e_ddi_branch_destroy(dip, NULL, 0) != 0) {
char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
if ((dhdl->aod_iflag & ACPIDEV_ODF_DEVINFO_TAGGED) &&
ACPI_FAILURE(acpica_tag_devinfo(dip, hdl))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to retag object %s.", objname);
}
/* Mark the node as unusable. */
ACPIDEV_DR_SET_FAILED(dhdl);
(void) ddi_pathname(dip, path);
cmn_err(CE_WARN,
"acpidev: failed to remove node %s (%s).", path, objname);
kmem_free(path, MAXPATHLEN);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Update status and information associated with the device. */
dhdl->aod_dip = NULL;
dhdl->aod_iflag &= ~ACPIDEV_ODF_DEVINFO_CREATED;
dhdl->aod_iflag &= ~ACPIDEV_ODF_DEVINFO_TAGGED;
if (dhdl->aod_class != NULL) {
if (dhdl->aod_class->adc_fini != NULL) {
(*(dhdl->aod_class->adc_fini))(hdl, dhdl,
dhdl->aod_class);
}
atomic_dec_32(&(dhdl->aod_class->adc_refcnt));
dhdl->aod_class = NULL;
}
dhdl->aod_iflag &= ~ACPIDEV_ODF_STATUS_VALID;
dhdl->aod_status = 0;
acpidev_free_object_name(objname);
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_device_remove(ACPI_HANDLE hdl)
{
ACPI_STATUS rc = AE_OK;
int circ;
char *objname;
acpidev_data_handle_t dhdl;
struct acpidev_dr_device_remove_arg arg;
ASSERT(acpidev_root_node() != NULL);
ASSERT(hdl != NULL);
if (hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: parameter hdl to "
"acpidev_dr_device_remove() is NULL.");
return (AE_BAD_PARAMETER);
}
objname = acpidev_get_object_name(hdl);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle associated with %s.",
objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/* Validate that the device is hotplug capable. */
if (!ACPIDEV_DR_BOARD_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %s is not hotplug capable.", objname);
acpidev_free_object_name(objname);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %s is in the FAILED "
"state, unusable for DR.", objname);
acpidev_free_object_name(objname);
return (AE_ERROR);
}
/*
* Recursively destroy descendants under the top node.
* No need to undo what has been done if error happens, it will be
* handled by DR driver.
*/
/*
* Lock ddi_root_node() to avoid deadlock.
*/
ndi_devi_enter(ddi_root_node(), &circ);
arg.level = 0;
rc = acpidev_dr_device_remove_cb(hdl, 0, &arg, NULL);
ASSERT(arg.level == 0);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to destroy device "
"nodes for children of %s.", objname);
cmn_err(CE_WARN, "!acpidev: disable DR support for object %s "
"due to failure when destroying device nodes for it.",
objname);
ACPIDEV_DR_SET_FAILED(dhdl);
}
ndi_devi_exit(ddi_root_node(), circ);
acpidev_free_object_name(objname);
return (rc);
}
ACPI_STATUS
acpidev_dr_device_poweron(ACPI_HANDLE hdl)
{
acpidev_data_handle_t dhdl;
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle associated with %p.",
hdl);
return (AE_ERROR);
}
/* Check whether the device is hotplug capable. */
if (!ACPIDEV_DR_BOARD_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %p is not hotplug capable.", hdl);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %p is in the FAILED "
"state, unusable for DR.", hdl);
return (AE_ERROR);
}
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_device_poweroff(ACPI_HANDLE hdl)
{
ACPI_STATUS rc;
acpidev_data_handle_t dhdl;
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle associated with %p.",
hdl);
return (AE_ERROR);
}
/* Check whether the device is hotplug capable. */
if (!ACPIDEV_DR_BOARD_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %p is not hotplug capable.", hdl);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %p is in the FAILED "
"state, unusable for DR.", hdl);
return (AE_ERROR);
}
rc = acpidev_eval_ej0(hdl);
if (ACPI_FAILURE(rc)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to evaluate _EJ0 for object %p.", hdl);
}
return (rc);
}
ACPI_STATUS
acpidev_dr_device_check_status(ACPI_HANDLE hdl)
{
acpidev_data_handle_t dhdl;
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data handle associated with %p.",
hdl);
return (AE_ERROR);
}
/* Check whether the device is hotplug capable. */
if (!ACPIDEV_DR_BOARD_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: object %p is not hotplug capable.", hdl);
return (AE_SUPPORT);
} else if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: object %p is in the FAILED "
"state, unusable for DR.", hdl);
return (AE_ERROR);
}
return (AE_OK);
}
void
acpidev_dr_lock_all(void)
{
mutex_enter(&acpidev_dr_lock);
}
void
acpidev_dr_unlock_all(void)
{
mutex_exit(&acpidev_dr_lock);
}
ACPI_STATUS
acpidev_dr_allocate_cpuid(ACPI_HANDLE hdl, processorid_t *idp)
{
int rv;
processorid_t cpuid;
uint32_t procid, apicid;
mach_cpu_add_arg_t arg;
acpidev_data_handle_t dhdl;
dev_info_t *dip = NULL;
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(hdl != NULL);
if (hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: parameter hdl to "
"acpidev_dr_allocate_cpuid() is NULL.");
return (AE_BAD_PARAMETER);
}
/* Validate that the device is ready for hotplug. */
if (ACPI_FAILURE(acpica_get_devinfo(hdl, &dip))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get devinfo for object %p.", hdl);
return (AE_ERROR);
}
ASSERT(dip != NULL);
dhdl = acpidev_data_get_handle(hdl);
if (dhdl == NULL) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get data associated with object %p",
hdl);
return (AE_SUPPORT);
}
if (!ACPIDEV_DR_IS_READY(dhdl)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: dip %p is not hotplug ready.", (void *)dip);
return (AE_SUPPORT);
}
if (ACPIDEV_DR_IS_FAILED(dhdl)) {
ACPIDEV_DEBUG(CE_NOTE,
"!acpidev: dip %p is in the FAILED state.", (void *)dip);
return (AE_SUPPORT);
}
/* Query CPU relative information */
apicid = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, ACPIDEV_PROP_NAME_LOCALAPIC_ID, UINT32_MAX);
procid = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, ACPIDEV_PROP_NAME_PROCESSOR_ID, UINT32_MAX);
if (procid == UINT32_MAX || apicid == UINT32_MAX || apicid == 255) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: dip %p is malformed, "
"procid(0x%x) or apicid(0x%x) is invalid.",
(void *)dip, procid, apicid);
return (AE_ERROR);
}
/* Check whether the CPU device is in offline state. */
mutex_enter(&(DEVI(dip)->devi_lock));
if (!DEVI_IS_DEVICE_OFFLINE(dip)) {
mutex_exit(&DEVI(dip)->devi_lock);
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: dip %p isn't in offline state.", (void *)dip);
return (AE_ERROR);
}
mutex_exit(&DEVI(dip)->devi_lock);
/* Check whether the CPU already exists. */
if (ACPI_SUCCESS(acpica_get_cpu_id_by_object(hdl, &cpuid))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: dip %p already has CPU id(%d) assigned.",
(void *)dip, cpuid);
return (AE_ALREADY_EXISTS);
}
/* Allocate cpuid for the CPU */
arg.arg.apic.apic_id = apicid;
arg.arg.apic.proc_id = procid;
if (apicid >= 255) {
arg.type = MACH_CPU_ARG_LOCAL_X2APIC;
} else {
arg.type = MACH_CPU_ARG_LOCAL_APIC;
}
rv = mach_cpu_add(&arg, &cpuid);
if (rv != PSM_SUCCESS) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to allocate cpu id for dip %p.",
(void *)dip);
return (AE_NOT_EXIST);
}
ASSERT(cpuid >= 0 && cpuid < NCPU && cpuid < max_ncpus);
if (idp != NULL) {
*idp = cpuid;
}
return (AE_OK);
}
ACPI_STATUS
acpidev_dr_free_cpuid(ACPI_HANDLE hdl)
{
ACPI_STATUS rv = AE_OK;
processorid_t cpuid;
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(hdl != NULL);
if (hdl == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: parameter hdl to "
"acpidev_dr_free_cpuid() is NULL.");
return (AE_BAD_PARAMETER);
}
if (ACPI_FAILURE(acpica_get_cpu_id_by_object(hdl, &cpuid))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get cpuid for object %p.", hdl);
rv = AE_NOT_EXIST;
} else if (cpuid < 0 || cpuid > max_ncpus) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: cpuid(%d) of object %p is invalid.",
cpuid, hdl);
rv = AE_ERROR;
} else if (mach_cpu_remove(cpuid) != PSM_SUCCESS) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to free cpuid(%d) for object %p.",
cpuid, hdl);
rv = AE_ERROR;
}
return (rv);
}
static ACPI_STATUS
acpidev_dr_get_latency(ACPI_HANDLE hdl, void **hdlpp,
uint32_t pxmid, uint32_t *slicntp, uchar_t **slipp)
{
ACPI_STATUS rc;
ACPI_BUFFER buf;
uint32_t i, pxmcnt;
uchar_t *valp, *sp, *ep;
/* Evaluate the ACPI _SLI method under the object. */
buf.Length = ACPI_ALLOCATE_BUFFER;
rc = AcpiEvaluateObjectTyped(hdl, ACPIDEV_METHOD_NAME_SLI, NULL, &buf,
ACPI_TYPE_BUFFER);
if (ACPI_SUCCESS(rc)) {
valp = (uchar_t *)buf.Pointer;
if (acpidev_slit_tbl_ptr->LocalityCount > pxmid) {
pxmcnt = acpidev_slit_tbl_ptr->LocalityCount;
} else {
pxmcnt = pxmid + 1;
}
/*
* Validate data returned by the ACPI _SLI method.
* Please refer to 6.2.14 "_SLI (System Locality Information)"
* in ACPI4.0 for data format returned by _SLI method.
*/
if (buf.Length != pxmcnt * 2 * sizeof (uchar_t)) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: buffer length returned by _SLI method "
"under %p is invalid.", hdl);
AcpiOsFree(buf.Pointer);
} else if (valp[pxmid] != ACPI_SLIT_SELF_LATENCY ||
valp[pxmid + pxmcnt] != ACPI_SLIT_SELF_LATENCY) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: local latency returned by _SLI method "
"under %p is not %u.", hdl, ACPI_SLIT_SELF_LATENCY);
AcpiOsFree(buf.Pointer);
} else {
*slicntp = pxmcnt;
*slipp = (uchar_t *)buf.Pointer;
*hdlpp = buf.Pointer;
return (AE_OK);
}
} else if (rc != AE_NOT_FOUND) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to evaluate "
"_SLI method under object %p.", hdl);
}
/* Return data from the ACPI SLIT table. */
ASSERT(acpidev_slit_tbl_ptr != NULL);
pxmcnt = acpidev_slit_tbl_ptr->LocalityCount;
if (pxmid >= pxmcnt) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: proximity domain id "
"(%u) is too big, max %u.", pxmid, pxmcnt - 1);
*slicntp = 0;
*slipp = NULL;
return (AE_ERROR);
} else {
sp = AcpiOsAllocate(pxmcnt * 2 * sizeof (uchar_t));
ep = acpidev_slit_tbl_ptr->Entry;
for (i = 0; i < pxmcnt; i++) {
sp[i] = ep[pxmcnt * pxmid + i];
sp[i + pxmcnt] = ep[pxmcnt * i + pxmid];
}
*slicntp = pxmcnt;
*slipp = sp;
*hdlpp = sp;
return (AE_OK);
}
}
/*
* Query NUMA information for the CPU device.
* It returns APIC id, Proximity id and latency information of the CPU device.
*/
int
acpidev_dr_get_cpu_numa_info(cpu_t *cp, void **hdlpp, uint32_t *apicidp,
uint32_t *pxmidp, uint32_t *slicntp, uchar_t **slipp)
{
dev_info_t *dip = NULL;
ACPI_HANDLE hdl = NULL;
ASSERT(cp != NULL);
ASSERT(hdlpp != NULL);
ASSERT(apicidp != NULL);
ASSERT(pxmidp != NULL);
if (cp == NULL || hdlpp == NULL || apicidp == NULL || pxmidp == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameters to "
"acpidev_dr_get_cpu_numa_info().");
return (-1);
}
*hdlpp = NULL;
*apicidp = UINT32_MAX;
*pxmidp = UINT32_MAX;
if (lgrp_plat_node_cnt == 1) {
return (-1);
}
ASSERT(acpidev_slit_tbl_ptr != NULL);
/* Query APIC id and Proximity id from device properties. */
if (ACPI_FAILURE(acpica_get_cpu_object_by_cpuid(cp->cpu_id, &hdl))) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get ACPI object "
"for CPU(%d).", cp->cpu_id);
return (-1);
}
if (ACPI_FAILURE(acpica_get_devinfo(hdl, &dip))) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get device node "
"for CPU(%d).", cp->cpu_id);
return (-1);
}
*apicidp = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
ACPIDEV_PROP_NAME_LOCALAPIC_ID, UINT32_MAX);
*pxmidp = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
ACPIDEV_PROP_NAME_PROXIMITY_ID, UINT32_MAX);
if (*apicidp == UINT32_MAX || *pxmidp == UINT32_MAX) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: failed to get local APIC id "
"or proximity id for CPU(%d).", cp->cpu_id);
return (-1);
}
ASSERT((slicntp && slipp) || (!slicntp && !slipp));
if (slicntp != NULL && slipp != NULL) {
if (ACPI_FAILURE(acpidev_dr_get_latency(hdl, hdlpp, *pxmidp,
slicntp, slipp))) {
return (-1);
}
}
return (0);
}
void
acpidev_dr_free_cpu_numa_info(void *hdlp)
{
if (hdlp != NULL) {
AcpiOsFree(hdlp);
}
}
static ACPI_STATUS
acpidev_dr_mem_search_srat(struct memlist *ml, uint32_t *pxmidp)
{
int len, off;
uint64_t start, end;
boolean_t found = B_FALSE;
ACPI_SUBTABLE_HEADER *sp;
ACPI_SRAT_MEM_AFFINITY *mp;
ASSERT(ml != NULL);
ASSERT(pxmidp != NULL);
ASSERT(acpidev_srat_tbl_ptr != NULL);
/* Search the static ACPI SRAT table for proximity domain. */
sp = (ACPI_SUBTABLE_HEADER *)(acpidev_srat_tbl_ptr + 1);
len = acpidev_srat_tbl_ptr->Header.Length;
off = sizeof (*acpidev_srat_tbl_ptr);
while (off < len) {
if (sp->Type == ACPI_SRAT_TYPE_MEMORY_AFFINITY) {
mp = (ACPI_SRAT_MEM_AFFINITY *)sp;
if ((mp->Flags & ACPI_SRAT_MEM_ENABLED) &&
(mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
ml->ml_address >= mp->BaseAddress &&
ml->ml_address <= mp->BaseAddress + mp->Length) {
found = B_TRUE;
break;
}
}
off += sp->Length;
sp = (ACPI_SUBTABLE_HEADER *)(((char *)sp) + sp->Length);
}
if (!found)
return (AE_NOT_FOUND);
/*
* Verify that all memory regions in the list belong to the same domain.
*/
start = mp->BaseAddress;
end = mp->BaseAddress + mp->Length;
while (ml) {
if (ml->ml_address < start ||
ml->ml_address + ml->ml_size > end) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: memory for hot-adding doesn't belong "
"to the same proximity domain.");
return (AE_ERROR);
}
ml = ml->ml_next;
}
return (AE_OK);
}
/*
* Query lgrp information for a memory device.
* It returns proximity domain id and latency information of the memory device.
*/
ACPI_STATUS
acpidev_dr_get_mem_numa_info(ACPI_HANDLE hdl, struct memlist *ml,
void **hdlpp, uint32_t *pxmidp, uint32_t *slicntp, uchar_t **slipp)
{
ASSERT(ml != NULL);
ASSERT(hdlpp != NULL);
ASSERT(pxmidp != NULL);
if (ml == NULL || hdlpp == NULL || pxmidp == NULL) {
ACPIDEV_DEBUG(CE_WARN, "!acpidev: invalid parameters to "
"acpidev_dr_get_mem_numa_info().");
return (AE_BAD_PARAMETER);
}
*pxmidp = UINT32_MAX;
if (lgrp_plat_node_cnt == 1) {
return (AE_SUPPORT);
}
if (ACPI_FAILURE(acpidev_eval_pxm(hdl, pxmidp))) {
/*
* Try to get proximity domain id from SRAT table if failed to
* evaluate ACPI _PXM method for memory device.
*/
if (ACPI_FAILURE(acpidev_dr_mem_search_srat(ml, pxmidp))) {
ACPIDEV_DEBUG(CE_WARN,
"!acpidev: failed to get proximity domain id for "
"memory device %p.", hdl);
return (AE_ERROR);
}
}
ASSERT((slicntp && slipp) || (!slicntp && !slipp));
if (slicntp != NULL && slipp != NULL) {
if (ACPI_FAILURE(acpidev_dr_get_latency(hdl, hdlpp, *pxmidp,
slicntp, slipp))) {
return (AE_ERROR);
}
}
return (AE_OK);
}
void
acpidev_dr_free_mem_numa_info(void *hdlp)
{
if (hdlp != NULL) {
AcpiOsFree(hdlp);
}
}