vm_page.c revision af4c679f647cf088543c762e33d41a3ac52cfa14
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
/*
* VM - physical page management.
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <sys/vm.h>
#include <sys/vtrace.h>
#include <sys/swap.h>
#include <sys/cmn_err.h>
#include <sys/tuneable.h>
#include <sys/sysmacros.h>
#include <sys/cpuvar.h>
#include <sys/callb.h>
#include <sys/debug.h>
#include <sys/tnf_probe.h>
#include <sys/condvar_impl.h>
#include <sys/mem_config.h>
#include <sys/mem_cage.h>
#include <sys/kmem.h>
#include <sys/atomic.h>
#include <sys/strlog.h>
#include <sys/mman.h>
#include <sys/ontrap.h>
#include <sys/lgrp.h>
#include <sys/vfs.h>
#include <vm/hat.h>
#include <vm/anon.h>
#include <vm/page.h>
#include <vm/seg.h>
#include <vm/pvn.h>
#include <vm/seg_kmem.h>
#include <vm/vm_dep.h>
#include <sys/vm_usage.h>
#include <fs/fs_subr.h>
#include <sys/ddi.h>
#include <sys/modctl.h>
static int nopageage = 0;
static pgcnt_t max_page_get; /* max page_get request size in pages */
pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */
/*
* freemem_lock protects all freemem variables:
* availrmem. Also this lock protects the globals which track the
* availrmem changes for accurate kernel footprint calculation.
* See below for an explanation of these
* globals.
*/
kmutex_t freemem_lock;
pgcnt_t availrmem;
pgcnt_t availrmem_initial;
/*
* These globals track availrmem changes to get a more accurate
* estimate of tke kernel size. Historically pp_kernel is used for
* kernel size and is based on availrmem. But availrmem is adjusted for
* locked pages in the system not just for kernel locked pages.
* These new counters will track the pages locked through segvn and
* by explicit user locking.
*
* pages_locked : How many pages are locked because of user specified
* locking through mlock or plock.
*
* pages_useclaim,pages_claimed : These two variables track the
* claim adjustments because of the protection changes on a segvn segment.
*
* All these globals are protected by the same lock which protects availrmem.
*/
pgcnt_t pages_locked = 0;
pgcnt_t pages_useclaim = 0;
pgcnt_t pages_claimed = 0;
/*
* new_freemem_lock protects freemem, freemem_wait & freemem_cv.
*/
static kmutex_t new_freemem_lock;
static uint_t freemem_wait; /* someone waiting for freemem */
static kcondvar_t freemem_cv;
/*
* The logical page free list is maintained as two lists, the 'free'
* and the 'cache' lists.
* The free list contains those pages that should be reused first.
*
* The implementation of the lists is machine dependent.
* page_get_freelist(), page_get_cachelist(),
* page_list_sub(), and page_list_add()
* form the interface to the machine dependent implementation.
*
* Pages with p_free set are on the cache list.
* Pages with p_free and p_age set are on the free list,
*
* A page may be locked while on either list.
*/
/*
* free list accounting stuff.
*
*
* Spread out the value for the number of pages on the
* page free and page cache lists. If there is just one
* value, then it must be under just one lock.
* The lock contention and cache traffic are a real bother.
*
* When we acquire and then drop a single pcf lock
* we can start in the middle of the array of pcf structures.
* If we acquire more than one pcf lock at a time, we need to
* start at the front to avoid deadlocking.
*
* pcf_count holds the number of pages in each pool.
*
* pcf_block is set when page_create_get_something() has asked the
* PSM page freelist and page cachelist routines without specifying
* a color and nothing came back. This is used to block anything
* else from moving pages from one list to the other while the
* lists are searched again. If a page is freeed while pcf_block is
* set, then pcf_reserve is incremented. pcgs_unblock() takes care
* of clearning pcf_block, doing the wakeups, etc.
*/
#define MAX_PCF_FANOUT NCPU
static uint_t pcf_fanout = 1; /* Will get changed at boot time */
static uint_t pcf_fanout_mask = 0;
struct pcf {
kmutex_t pcf_lock; /* protects the structure */
uint_t pcf_count; /* page count */
uint_t pcf_wait; /* number of waiters */
uint_t pcf_block; /* pcgs flag to page_free() */
uint_t pcf_reserve; /* pages freed after pcf_block set */
uint_t pcf_fill[10]; /* to line up on the caches */
};
/*
* PCF_INDEX hash needs to be dynamic (every so often the hash changes where
* it will hash the cpu to). This is done to prevent a drain condition
* from happening. This drain condition will occur when pcf_count decrement
* occurs on cpu A and the increment of pcf_count always occurs on cpu B. An
* example of this shows up with device interrupts. The dma buffer is allocated
* by the cpu requesting the IO thus the pcf_count is decremented based on that.
* When the memory is returned by the interrupt thread, the pcf_count will be
* incremented based on the cpu servicing the interrupt.
*/
static struct pcf pcf[MAX_PCF_FANOUT];
#define PCF_INDEX() ((int)(((long)CPU->cpu_seqid) + \
(randtick() >> 24)) & (pcf_fanout_mask))
static int pcf_decrement_bucket(pgcnt_t);
static int pcf_decrement_multiple(pgcnt_t *, pgcnt_t, int);
kmutex_t pcgs_lock; /* serializes page_create_get_ */
kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */
kmutex_t pcgs_wait_lock; /* used for delay in pcgs */
static kcondvar_t pcgs_cv; /* cv for delay in pcgs */
#ifdef VM_STATS
/*
* No locks, but so what, they are only statistics.
*/
static struct page_tcnt {
int pc_free_cache; /* free's into cache list */
int pc_free_dontneed; /* free's with dontneed */
int pc_free_pageout; /* free's from pageout */
int pc_free_free; /* free's into free list */
int pc_free_pages; /* free's into large page free list */
int pc_destroy_pages; /* large page destroy's */
int pc_get_cache; /* get's from cache list */
int pc_get_free; /* get's from free list */
int pc_reclaim; /* reclaim's */
int pc_abortfree; /* abort's of free pages */
int pc_find_hit; /* find's that find page */
int pc_find_miss; /* find's that don't find page */
int pc_destroy_free; /* # of free pages destroyed */
#define PC_HASH_CNT (4*PAGE_HASHAVELEN)
int pc_find_hashlen[PC_HASH_CNT+1];
int pc_addclaim_pages;
int pc_subclaim_pages;
int pc_free_replacement_page[2];
int pc_try_demote_pages[6];
int pc_demote_pages[2];
} pagecnt;
uint_t hashin_count;
uint_t hashin_not_held;
uint_t hashin_already;
uint_t hashout_count;
uint_t hashout_not_held;
uint_t page_create_count;
uint_t page_create_not_enough;
uint_t page_create_not_enough_again;
uint_t page_create_zero;
uint_t page_create_hashout;
uint_t page_create_page_lock_failed;
uint_t page_create_trylock_failed;
uint_t page_create_found_one;
uint_t page_create_hashin_failed;
uint_t page_create_dropped_phm;
uint_t page_create_new;
uint_t page_create_exists;
uint_t page_create_putbacks;
uint_t page_create_overshoot;
uint_t page_reclaim_zero;
uint_t page_reclaim_zero_locked;
uint_t page_rename_exists;
uint_t page_rename_count;
uint_t page_lookup_cnt[20];
uint_t page_lookup_nowait_cnt[10];
uint_t page_find_cnt;
uint_t page_exists_cnt;
uint_t page_exists_forreal_cnt;
uint_t page_lookup_dev_cnt;
uint_t get_cachelist_cnt;
uint_t page_create_cnt[10];
uint_t alloc_pages[9];
uint_t page_exphcontg[19];
uint_t page_create_large_cnt[10];
/*
* Collects statistics.
*/
#define PAGE_HASH_SEARCH(index, pp, vp, off) { \
uint_t mylen = 0; \
\
for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
break; \
} \
if ((pp) != NULL) \
pagecnt.pc_find_hit++; \
else \
pagecnt.pc_find_miss++; \
if (mylen > PC_HASH_CNT) \
mylen = PC_HASH_CNT; \
pagecnt.pc_find_hashlen[mylen]++; \
}
#else /* VM_STATS */
/*
* Don't collect statistics
*/
#define PAGE_HASH_SEARCH(index, pp, vp, off) { \
for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
break; \
} \
}
#endif /* VM_STATS */
#ifdef DEBUG
#define MEMSEG_SEARCH_STATS
#endif
#ifdef MEMSEG_SEARCH_STATS
struct memseg_stats {
uint_t nsearch;
uint_t nlastwon;
uint_t nhashwon;
uint_t nnotfound;
} memseg_stats;
#define MEMSEG_STAT_INCR(v) \
atomic_add_32(&memseg_stats.v, 1)
#else
#define MEMSEG_STAT_INCR(x)
#endif
struct memseg *memsegs; /* list of memory segments */
/*
* /etc/system tunable to control large page allocation hueristic.
*
* Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
* for large page allocation requests. If a large page is not readily
* avaliable on the local freelists we will go through additional effort
* to create a large page, potentially moving smaller pages around to coalesce
* larger pages in the local lgroup.
* Default value of LPAP_DEFAULT will go to remote freelists if large pages
* are not readily available in the local lgroup.
*/
enum lpap {
LPAP_DEFAULT, /* default large page allocation policy */
LPAP_LOCAL /* local large page allocation policy */
};
enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
static void page_init_mem_config(void);
static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
static void page_do_hashout(page_t *);
static void page_capture_init();
int page_capture_take_action(page_t *, uint_t, void *);
static void page_demote_vp_pages(page_t *);
void
pcf_init(void)
{
if (boot_ncpus != -1) {
pcf_fanout = boot_ncpus;
} else {
pcf_fanout = max_ncpus;
}
#ifdef sun4v
/*
* Force at least 4 buckets if possible for sun4v.
*/
pcf_fanout = MAX(pcf_fanout, 4);
#endif /* sun4v */
/*
* Round up to the nearest power of 2.
*/
pcf_fanout = MIN(pcf_fanout, MAX_PCF_FANOUT);
if (!ISP2(pcf_fanout)) {
pcf_fanout = 1 << highbit(pcf_fanout);
if (pcf_fanout > MAX_PCF_FANOUT) {
pcf_fanout = 1 << (highbit(MAX_PCF_FANOUT) - 1);
}
}
pcf_fanout_mask = pcf_fanout - 1;
}
/*
* vm subsystem related initialization
*/
void
vm_init(void)
{
boolean_t callb_vm_cpr(void *, int);
(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
page_init_mem_config();
page_retire_init();
vm_usage_init();
page_capture_init();
}
/*
* This function is called at startup and when memory is added or deleted.
*/
void
init_pages_pp_maximum()
{
static pgcnt_t p_min;
static pgcnt_t pages_pp_maximum_startup;
static pgcnt_t avrmem_delta;
static int init_done;
static int user_set; /* true if set in /etc/system */
if (init_done == 0) {
/* If the user specified a value, save it */
if (pages_pp_maximum != 0) {
user_set = 1;
pages_pp_maximum_startup = pages_pp_maximum;
}
/*
* Setting of pages_pp_maximum is based first time
* on the value of availrmem just after the start-up
* allocations. To preserve this relationship at run
* time, use a delta from availrmem_initial.
*/
ASSERT(availrmem_initial >= availrmem);
avrmem_delta = availrmem_initial - availrmem;
/* The allowable floor of pages_pp_maximum */
p_min = tune.t_minarmem + 100;
/* Make sure we don't come through here again. */
init_done = 1;
}
/*
* Determine pages_pp_maximum, the number of currently available
* pages (availrmem) that can't be `locked'. If not set by
* the user, we set it to 4% of the currently available memory
* plus 4MB.
* But we also insist that it be greater than tune.t_minarmem;
* otherwise a process could lock down a lot of memory, get swapped
* out, and never have enough to get swapped back in.
*/
if (user_set)
pages_pp_maximum = pages_pp_maximum_startup;
else
pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
+ btop(4 * 1024 * 1024);
if (pages_pp_maximum <= p_min) {
pages_pp_maximum = p_min;
}
}
void
set_max_page_get(pgcnt_t target_total_pages)
{
max_page_get = target_total_pages / 2;
}
static pgcnt_t pending_delete;
/*ARGSUSED*/
static void
page_mem_config_post_add(
void *arg,
pgcnt_t delta_pages)
{
set_max_page_get(total_pages - pending_delete);
init_pages_pp_maximum();
}
/*ARGSUSED*/
static int
page_mem_config_pre_del(
void *arg,
pgcnt_t delta_pages)
{
pgcnt_t nv;
nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
set_max_page_get(total_pages - nv);
return (0);
}
/*ARGSUSED*/
static void
page_mem_config_post_del(
void *arg,
pgcnt_t delta_pages,
int cancelled)
{
pgcnt_t nv;
nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
set_max_page_get(total_pages - nv);
if (!cancelled)
init_pages_pp_maximum();
}
static kphysm_setup_vector_t page_mem_config_vec = {
KPHYSM_SETUP_VECTOR_VERSION,
page_mem_config_post_add,
page_mem_config_pre_del,
page_mem_config_post_del,
};
static void
page_init_mem_config(void)
{
int ret;
ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
ASSERT(ret == 0);
}
/*
* Evenly spread out the PCF counters for large free pages
*/
static void
page_free_large_ctr(pgcnt_t npages)
{
static struct pcf *p = pcf;
pgcnt_t lump;
freemem += npages;
lump = roundup(npages, pcf_fanout) / pcf_fanout;
while (npages > 0) {
ASSERT(!p->pcf_block);
if (lump < npages) {
p->pcf_count += (uint_t)lump;
npages -= lump;
} else {
p->pcf_count += (uint_t)npages;
npages = 0;
}
ASSERT(!p->pcf_wait);
if (++p > &pcf[pcf_fanout - 1])
p = pcf;
}
ASSERT(npages == 0);
}
/*
* Add a physical chunk of memory to the system free lists during startup.
* Platform specific startup() allocates the memory for the page structs.
*
* num - number of page structures
* base - page number (pfn) to be associated with the first page.
*
* Since we are doing this during startup (ie. single threaded), we will
* use shortcut routines to avoid any locking overhead while putting all
* these pages on the freelists.
*
* NOTE: Any changes performed to page_free(), must also be performed to
* add_physmem() since this is how we initialize all page_t's at
* boot time.
*/
void
add_physmem(
page_t *pp,
pgcnt_t num,
pfn_t pnum)
{
page_t *root = NULL;
uint_t szc = page_num_pagesizes() - 1;
pgcnt_t large = page_get_pagecnt(szc);
pgcnt_t cnt = 0;
TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
"add_physmem:pp %p num %lu", pp, num);
/*
* Arbitrarily limit the max page_get request
* to 1/2 of the page structs we have.
*/
total_pages += num;
set_max_page_get(total_pages);
PLCNT_MODIFY_MAX(pnum, (long)num);
/*
* The physical space for the pages array
* representing ram pages has already been
* allocated. Here we initialize each lock
* in the page structure, and put each on
* the free list
*/
for (; num; pp++, pnum++, num--) {
/*
* this needs to fill in the page number
* and do any other arch specific initialization
*/
add_physmem_cb(pp, pnum);
pp->p_lckcnt = 0;
pp->p_cowcnt = 0;
pp->p_slckcnt = 0;
/*
* Initialize the page lock as unlocked, since nobody
* can see or access this page yet.
*/
pp->p_selock = 0;
/*
* Initialize IO lock
*/
page_iolock_init(pp);
/*
* initialize other fields in the page_t
*/
PP_SETFREE(pp);
page_clr_all_props(pp);
PP_SETAGED(pp);
pp->p_offset = (u_offset_t)-1;
pp->p_next = pp;
pp->p_prev = pp;
/*
* Simple case: System doesn't support large pages.
*/
if (szc == 0) {
pp->p_szc = 0;
page_free_at_startup(pp);
continue;
}
/*
* Handle unaligned pages, we collect them up onto
* the root page until we have a full large page.
*/
if (!IS_P2ALIGNED(pnum, large)) {
/*
* If not in a large page,
* just free as small page.
*/
if (root == NULL) {
pp->p_szc = 0;
page_free_at_startup(pp);
continue;
}
/*
* Link a constituent page into the large page.
*/
pp->p_szc = szc;
page_list_concat(&root, &pp);
/*
* When large page is fully formed, free it.
*/
if (++cnt == large) {
page_free_large_ctr(cnt);
page_list_add_pages(root, PG_LIST_ISINIT);
root = NULL;
cnt = 0;
}
continue;
}
/*
* At this point we have a page number which
* is aligned. We assert that we aren't already
* in a different large page.
*/
ASSERT(IS_P2ALIGNED(pnum, large));
ASSERT(root == NULL && cnt == 0);
/*
* If insufficient number of pages left to form
* a large page, just free the small page.
*/
if (num < large) {
pp->p_szc = 0;
page_free_at_startup(pp);
continue;
}
/*
* Otherwise start a new large page.
*/
pp->p_szc = szc;
cnt++;
root = pp;
}
ASSERT(root == NULL && cnt == 0);
}
/*
* Find a page representing the specified [vp, offset].
* If we find the page but it is intransit coming in,
* it will have an "exclusive" lock and we wait for
* the i/o to complete. A page found on the free list
* is always reclaimed and then locked. On success, the page
* is locked, its data is valid and it isn't on the free
* list, while a NULL is returned if the page doesn't exist.
*/
page_t *
page_lookup(vnode_t *vp, u_offset_t off, se_t se)
{
return (page_lookup_create(vp, off, se, NULL, NULL, 0));
}
/*
* Find a page representing the specified [vp, offset].
* We either return the one we found or, if passed in,
* create one with identity of [vp, offset] of the
* pre-allocated page. If we find existing page but it is
* intransit coming in, it will have an "exclusive" lock
* and we wait for the i/o to complete. A page found on
* the free list is always reclaimed and then locked.
* On success, the page is locked, its data is valid and
* it isn't on the free list, while a NULL is returned
* if the page doesn't exist and newpp is NULL;
*/
page_t *
page_lookup_create(
vnode_t *vp,
u_offset_t off,
se_t se,
page_t *newpp,
spgcnt_t *nrelocp,
int flags)
{
page_t *pp;
kmutex_t *phm;
ulong_t index;
uint_t hash_locked;
uint_t es;
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
VM_STAT_ADD(page_lookup_cnt[0]);
ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
/*
* Acquire the appropriate page hash lock since
* we have to search the hash list. Pages that
* hash to this list can't change identity while
* this lock is held.
*/
hash_locked = 0;
index = PAGE_HASH_FUNC(vp, off);
phm = NULL;
top:
PAGE_HASH_SEARCH(index, pp, vp, off);
if (pp != NULL) {
VM_STAT_ADD(page_lookup_cnt[1]);
es = (newpp != NULL) ? 1 : 0;
es |= flags;
if (!hash_locked) {
VM_STAT_ADD(page_lookup_cnt[2]);
if (!page_try_reclaim_lock(pp, se, es)) {
/*
* On a miss, acquire the phm. Then
* next time, page_lock() will be called,
* causing a wait if the page is busy.
* just looping with page_trylock() would
* get pretty boring.
*/
VM_STAT_ADD(page_lookup_cnt[3]);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
hash_locked = 1;
goto top;
}
} else {
VM_STAT_ADD(page_lookup_cnt[4]);
if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
VM_STAT_ADD(page_lookup_cnt[5]);
goto top;
}
}
/*
* Since `pp' is locked it can not change identity now.
* Reconfirm we locked the correct page.
*
* Both the p_vnode and p_offset *must* be cast volatile
* to force a reload of their values: The PAGE_HASH_SEARCH
* macro will have stuffed p_vnode and p_offset into
* registers before calling page_trylock(); another thread,
* actually holding the hash lock, could have changed the
* page's identity in memory, but our registers would not
* be changed, fooling the reconfirmation. If the hash
* lock was held during the search, the casting would
* not be needed.
*/
VM_STAT_ADD(page_lookup_cnt[6]);
if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
((volatile u_offset_t)(pp->p_offset) != off)) {
VM_STAT_ADD(page_lookup_cnt[7]);
if (hash_locked) {
panic("page_lookup_create: lost page %p",
(void *)pp);
/*NOTREACHED*/
}
page_unlock(pp);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
hash_locked = 1;
goto top;
}
/*
* If page_trylock() was called, then pp may still be on
* the cachelist (can't be on the free list, it would not
* have been found in the search). If it is on the
* cachelist it must be pulled now. To pull the page from
* the cachelist, it must be exclusively locked.
*
* The other big difference between page_trylock() and
* page_lock(), is that page_lock() will pull the
* page from whatever free list (the cache list in this
* case) the page is on. If page_trylock() was used
* above, then we have to do the reclaim ourselves.
*/
if ((!hash_locked) && (PP_ISFREE(pp))) {
ASSERT(PP_ISAGED(pp) == 0);
VM_STAT_ADD(page_lookup_cnt[8]);
/*
* page_relcaim will insure that we
* have this page exclusively
*/
if (!page_reclaim(pp, NULL)) {
/*
* Page_reclaim dropped whatever lock
* we held.
*/
VM_STAT_ADD(page_lookup_cnt[9]);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
hash_locked = 1;
goto top;
} else if (se == SE_SHARED && newpp == NULL) {
VM_STAT_ADD(page_lookup_cnt[10]);
page_downgrade(pp);
}
}
if (hash_locked) {
mutex_exit(phm);
}
if (newpp != NULL && pp->p_szc < newpp->p_szc &&
PAGE_EXCL(pp) && nrelocp != NULL) {
ASSERT(nrelocp != NULL);
(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
NULL);
if (*nrelocp > 0) {
VM_STAT_COND_ADD(*nrelocp == 1,
page_lookup_cnt[11]);
VM_STAT_COND_ADD(*nrelocp > 1,
page_lookup_cnt[12]);
pp = newpp;
se = SE_EXCL;
} else {
if (se == SE_SHARED) {
page_downgrade(pp);
}
VM_STAT_ADD(page_lookup_cnt[13]);
}
} else if (newpp != NULL && nrelocp != NULL) {
if (PAGE_EXCL(pp) && se == SE_SHARED) {
page_downgrade(pp);
}
VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
page_lookup_cnt[14]);
VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
page_lookup_cnt[15]);
VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
page_lookup_cnt[16]);
} else if (newpp != NULL && PAGE_EXCL(pp)) {
se = SE_EXCL;
}
} else if (!hash_locked) {
VM_STAT_ADD(page_lookup_cnt[17]);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
hash_locked = 1;
goto top;
} else if (newpp != NULL) {
/*
* If we have a preallocated page then
* insert it now and basically behave like
* page_create.
*/
VM_STAT_ADD(page_lookup_cnt[18]);
/*
* Since we hold the page hash mutex and
* just searched for this page, page_hashin
* had better not fail. If it does, that
* means some thread did not follow the
* page hash mutex rules. Panic now and
* get it over with. As usual, go down
* holding all the locks.
*/
ASSERT(MUTEX_HELD(phm));
if (!page_hashin(newpp, vp, off, phm)) {
ASSERT(MUTEX_HELD(phm));
panic("page_lookup_create: hashin failed %p %p %llx %p",
(void *)newpp, (void *)vp, off, (void *)phm);
/*NOTREACHED*/
}
ASSERT(MUTEX_HELD(phm));
mutex_exit(phm);
phm = NULL;
page_set_props(newpp, P_REF);
page_io_lock(newpp);
pp = newpp;
se = SE_EXCL;
} else {
VM_STAT_ADD(page_lookup_cnt[19]);
mutex_exit(phm);
}
ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
return (pp);
}
/*
* Search the hash list for the page representing the
* specified [vp, offset] and return it locked. Skip
* free pages and pages that cannot be locked as requested.
* Used while attempting to kluster pages.
*/
page_t *
page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
{
page_t *pp;
kmutex_t *phm;
ulong_t index;
uint_t locked;
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
VM_STAT_ADD(page_lookup_nowait_cnt[0]);
index = PAGE_HASH_FUNC(vp, off);
PAGE_HASH_SEARCH(index, pp, vp, off);
locked = 0;
if (pp == NULL) {
top:
VM_STAT_ADD(page_lookup_nowait_cnt[1]);
locked = 1;
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
PAGE_HASH_SEARCH(index, pp, vp, off);
}
if (pp == NULL || PP_ISFREE(pp)) {
VM_STAT_ADD(page_lookup_nowait_cnt[2]);
pp = NULL;
} else {
if (!page_trylock(pp, se)) {
VM_STAT_ADD(page_lookup_nowait_cnt[3]);
pp = NULL;
} else {
VM_STAT_ADD(page_lookup_nowait_cnt[4]);
/*
* See the comment in page_lookup()
*/
if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
((u_offset_t)(pp->p_offset) != off)) {
VM_STAT_ADD(page_lookup_nowait_cnt[5]);
if (locked) {
panic("page_lookup_nowait %p",
(void *)pp);
/*NOTREACHED*/
}
page_unlock(pp);
goto top;
}
if (PP_ISFREE(pp)) {
VM_STAT_ADD(page_lookup_nowait_cnt[6]);
page_unlock(pp);
pp = NULL;
}
}
}
if (locked) {
VM_STAT_ADD(page_lookup_nowait_cnt[7]);
mutex_exit(phm);
}
ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
return (pp);
}
/*
* Search the hash list for a page with the specified [vp, off]
* that is known to exist and is already locked. This routine
* is typically used by segment SOFTUNLOCK routines.
*/
page_t *
page_find(vnode_t *vp, u_offset_t off)
{
page_t *pp;
kmutex_t *phm;
ulong_t index;
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
VM_STAT_ADD(page_find_cnt);
index = PAGE_HASH_FUNC(vp, off);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
PAGE_HASH_SEARCH(index, pp, vp, off);
mutex_exit(phm);
ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
return (pp);
}
/*
* Determine whether a page with the specified [vp, off]
* currently exists in the system. Obviously this should
* only be considered as a hint since nothing prevents the
* page from disappearing or appearing immediately after
* the return from this routine. Subsequently, we don't
* even bother to lock the list.
*/
page_t *
page_exists(vnode_t *vp, u_offset_t off)
{
page_t *pp;
ulong_t index;
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
VM_STAT_ADD(page_exists_cnt);
index = PAGE_HASH_FUNC(vp, off);
PAGE_HASH_SEARCH(index, pp, vp, off);
return (pp);
}
/*
* Determine if physically contiguous pages exist for [vp, off] - [vp, off +
* page_size(szc)) range. if they exist and ppa is not NULL fill ppa array
* with these pages locked SHARED. If necessary reclaim pages from
* freelist. Return 1 if contiguous pages exist and 0 otherwise.
*
* If we fail to lock pages still return 1 if pages exist and contiguous.
* But in this case return value is just a hint. ppa array won't be filled.
* Caller should initialize ppa[0] as NULL to distinguish return value.
*
* Returns 0 if pages don't exist or not physically contiguous.
*
* This routine doesn't work for anonymous(swapfs) pages.
*/
int
page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
{
pgcnt_t pages;
pfn_t pfn;
page_t *rootpp;
pgcnt_t i;
pgcnt_t j;
u_offset_t save_off = off;
ulong_t index;
kmutex_t *phm;
page_t *pp;
uint_t pszc;
int loopcnt = 0;
ASSERT(szc != 0);
ASSERT(vp != NULL);
ASSERT(!IS_SWAPFSVP(vp));
ASSERT(!VN_ISKAS(vp));
again:
if (++loopcnt > 3) {
VM_STAT_ADD(page_exphcontg[0]);
return (0);
}
index = PAGE_HASH_FUNC(vp, off);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
PAGE_HASH_SEARCH(index, pp, vp, off);
mutex_exit(phm);
VM_STAT_ADD(page_exphcontg[1]);
if (pp == NULL) {
VM_STAT_ADD(page_exphcontg[2]);
return (0);
}
pages = page_get_pagecnt(szc);
rootpp = pp;
pfn = rootpp->p_pagenum;
if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
VM_STAT_ADD(page_exphcontg[3]);
if (!page_trylock(pp, SE_SHARED)) {
VM_STAT_ADD(page_exphcontg[4]);
return (1);
}
/*
* Also check whether p_pagenum was modified by DR.
*/
if (pp->p_szc != pszc || pp->p_vnode != vp ||
pp->p_offset != off || pp->p_pagenum != pfn) {
VM_STAT_ADD(page_exphcontg[5]);
page_unlock(pp);
off = save_off;
goto again;
}
/*
* szc was non zero and vnode and offset matched after we
* locked the page it means it can't become free on us.
*/
ASSERT(!PP_ISFREE(pp));
if (!IS_P2ALIGNED(pfn, pages)) {
page_unlock(pp);
return (0);
}
ppa[0] = pp;
pp++;
off += PAGESIZE;
pfn++;
for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
if (!page_trylock(pp, SE_SHARED)) {
VM_STAT_ADD(page_exphcontg[6]);
pp--;
while (i-- > 0) {
page_unlock(pp);
pp--;
}
ppa[0] = NULL;
return (1);
}
if (pp->p_szc != pszc) {
VM_STAT_ADD(page_exphcontg[7]);
page_unlock(pp);
pp--;
while (i-- > 0) {
page_unlock(pp);
pp--;
}
ppa[0] = NULL;
off = save_off;
goto again;
}
/*
* szc the same as for previous already locked pages
* with right identity. Since this page had correct
* szc after we locked it can't get freed or destroyed
* and therefore must have the expected identity.
*/
ASSERT(!PP_ISFREE(pp));
if (pp->p_vnode != vp ||
pp->p_offset != off) {
panic("page_exists_physcontig: "
"large page identity doesn't match");
}
ppa[i] = pp;
ASSERT(pp->p_pagenum == pfn);
}
VM_STAT_ADD(page_exphcontg[8]);
ppa[pages] = NULL;
return (1);
} else if (pszc >= szc) {
VM_STAT_ADD(page_exphcontg[9]);
if (!IS_P2ALIGNED(pfn, pages)) {
return (0);
}
return (1);
}
if (!IS_P2ALIGNED(pfn, pages)) {
VM_STAT_ADD(page_exphcontg[10]);
return (0);
}
if (page_numtomemseg_nolock(pfn) !=
page_numtomemseg_nolock(pfn + pages - 1)) {
VM_STAT_ADD(page_exphcontg[11]);
return (0);
}
/*
* We loop up 4 times across pages to promote page size.
* We're extra cautious to promote page size atomically with respect
* to everybody else. But we can probably optimize into 1 loop if
* this becomes an issue.
*/
for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
if (!page_trylock(pp, SE_EXCL)) {
VM_STAT_ADD(page_exphcontg[12]);
break;
}
/*
* Check whether p_pagenum was modified by DR.
*/
if (pp->p_pagenum != pfn) {
page_unlock(pp);
break;
}
if (pp->p_vnode != vp ||
pp->p_offset != off) {
VM_STAT_ADD(page_exphcontg[13]);
page_unlock(pp);
break;
}
if (pp->p_szc >= szc) {
ASSERT(i == 0);
page_unlock(pp);
off = save_off;
goto again;
}
}
if (i != pages) {
VM_STAT_ADD(page_exphcontg[14]);
--pp;
while (i-- > 0) {
page_unlock(pp);
--pp;
}
return (0);
}
pp = rootpp;
for (i = 0; i < pages; i++, pp++) {
if (PP_ISFREE(pp)) {
VM_STAT_ADD(page_exphcontg[15]);
ASSERT(!PP_ISAGED(pp));
ASSERT(pp->p_szc == 0);
if (!page_reclaim(pp, NULL)) {
break;
}
} else {
ASSERT(pp->p_szc < szc);
VM_STAT_ADD(page_exphcontg[16]);
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
}
}
if (i < pages) {
VM_STAT_ADD(page_exphcontg[17]);
/*
* page_reclaim failed because we were out of memory.
* drop the rest of the locks and return because this page
* must be already reallocated anyway.
*/
pp = rootpp;
for (j = 0; j < pages; j++, pp++) {
if (j != i) {
page_unlock(pp);
}
}
return (0);
}
off = save_off;
pp = rootpp;
for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
ASSERT(PAGE_EXCL(pp));
ASSERT(!PP_ISFREE(pp));
ASSERT(!hat_page_is_mapped(pp));
ASSERT(pp->p_vnode == vp);
ASSERT(pp->p_offset == off);
pp->p_szc = szc;
}
pp = rootpp;
for (i = 0; i < pages; i++, pp++) {
if (ppa == NULL) {
page_unlock(pp);
} else {
ppa[i] = pp;
page_downgrade(ppa[i]);
}
}
if (ppa != NULL) {
ppa[pages] = NULL;
}
VM_STAT_ADD(page_exphcontg[18]);
ASSERT(vp->v_pages != NULL);
return (1);
}
/*
* Determine whether a page with the specified [vp, off]
* currently exists in the system and if so return its
* size code. Obviously this should only be considered as
* a hint since nothing prevents the page from disappearing
* or appearing immediately after the return from this routine.
*/
int
page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
{
page_t *pp;
kmutex_t *phm;
ulong_t index;
int rc = 0;
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
ASSERT(szc != NULL);
VM_STAT_ADD(page_exists_forreal_cnt);
index = PAGE_HASH_FUNC(vp, off);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
PAGE_HASH_SEARCH(index, pp, vp, off);
if (pp != NULL) {
*szc = pp->p_szc;
rc = 1;
}
mutex_exit(phm);
return (rc);
}
/* wakeup threads waiting for pages in page_create_get_something() */
void
wakeup_pcgs(void)
{
if (!CV_HAS_WAITERS(&pcgs_cv))
return;
cv_broadcast(&pcgs_cv);
}
/*
* 'freemem' is used all over the kernel as an indication of how many
* pages are free (either on the cache list or on the free page list)
* in the system. In very few places is a really accurate 'freemem'
* needed. To avoid contention of the lock protecting a the
* single freemem, it was spread out into NCPU buckets. Set_freemem
* sets freemem to the total of all NCPU buckets. It is called from
* clock() on each TICK.
*/
void
set_freemem()
{
struct pcf *p;
ulong_t t;
uint_t i;
t = 0;
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
t += p->pcf_count;
p++;
}
freemem = t;
/*
* Don't worry about grabbing mutex. It's not that
* critical if we miss a tick or two. This is
* where we wakeup possible delayers in
* page_create_get_something().
*/
wakeup_pcgs();
}
ulong_t
get_freemem()
{
struct pcf *p;
ulong_t t;
uint_t i;
t = 0;
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
t += p->pcf_count;
p++;
}
/*
* We just calculated it, might as well set it.
*/
freemem = t;
return (t);
}
/*
* Acquire all of the page cache & free (pcf) locks.
*/
void
pcf_acquire_all()
{
struct pcf *p;
uint_t i;
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
mutex_enter(&p->pcf_lock);
p++;
}
}
/*
* Release all the pcf_locks.
*/
void
pcf_release_all()
{
struct pcf *p;
uint_t i;
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
mutex_exit(&p->pcf_lock);
p++;
}
}
/*
* Inform the VM system that we need some pages freed up.
* Calls must be symmetric, e.g.:
*
* page_needfree(100);
* wait a bit;
* page_needfree(-100);
*/
void
page_needfree(spgcnt_t npages)
{
mutex_enter(&new_freemem_lock);
needfree += npages;
mutex_exit(&new_freemem_lock);
}
/*
* Throttle for page_create(): try to prevent freemem from dropping
* below throttlefree. We can't provide a 100% guarantee because
* KM_NOSLEEP allocations, page_reclaim(), and various other things
* nibble away at the freelist. However, we can block all PG_WAIT
* allocations until memory becomes available. The motivation is
* that several things can fall apart when there's no free memory:
*
* (1) If pageout() needs memory to push a page, the system deadlocks.
*
* (2) By (broken) specification, timeout(9F) can neither fail nor
* block, so it has no choice but to panic the system if it
* cannot allocate a callout structure.
*
* (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
* it panics if it cannot allocate a callback structure.
*
* (4) Untold numbers of third-party drivers have not yet been hardened
* against KM_NOSLEEP and/or allocb() failures; they simply assume
* success and panic the system with a data fault on failure.
* (The long-term solution to this particular problem is to ship
* hostile fault-injecting DEBUG kernels with the DDK.)
*
* It is theoretically impossible to guarantee success of non-blocking
* allocations, but in practice, this throttle is very hard to break.
*/
static int
page_create_throttle(pgcnt_t npages, int flags)
{
ulong_t fm;
uint_t i;
pgcnt_t tf; /* effective value of throttlefree */
/*
* Never deny pages when:
* - it's a thread that cannot block [NOMEMWAIT()]
* - the allocation cannot block and must not fail
* - the allocation cannot block and is pageout dispensated
*/
if (NOMEMWAIT() ||
((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
return (1);
/*
* If the allocation can't block, we look favorably upon it
* unless we're below pageout_reserve. In that case we fail
* the allocation because we want to make sure there are a few
* pages available for pageout.
*/
if ((flags & PG_WAIT) == 0)
return (freemem >= npages + pageout_reserve);
/* Calculate the effective throttlefree value */
tf = throttlefree -
((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
cv_signal(&proc_pageout->p_cv);
for (;;) {
fm = 0;
pcf_acquire_all();
mutex_enter(&new_freemem_lock);
for (i = 0; i < pcf_fanout; i++) {
fm += pcf[i].pcf_count;
pcf[i].pcf_wait++;
mutex_exit(&pcf[i].pcf_lock);
}
freemem = fm;
if (freemem >= npages + tf) {
mutex_exit(&new_freemem_lock);
break;
}
needfree += npages;
freemem_wait++;
cv_wait(&freemem_cv, &new_freemem_lock);
freemem_wait--;
needfree -= npages;
mutex_exit(&new_freemem_lock);
}
return (1);
}
/*
* page_create_wait() is called to either coalesce pages from the
* different pcf buckets or to wait because there simply are not
* enough pages to satisfy the caller's request.
*
* Sadly, this is called from platform/vm/vm_machdep.c
*/
int
page_create_wait(pgcnt_t npages, uint_t flags)
{
pgcnt_t total;
uint_t i;
struct pcf *p;
/*
* Wait until there are enough free pages to satisfy our
* entire request.
* We set needfree += npages before prodding pageout, to make sure
* it does real work when npages > lotsfree > freemem.
*/
VM_STAT_ADD(page_create_not_enough);
ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
checkagain:
if ((flags & PG_NORELOC) &&
kcage_freemem < kcage_throttlefree + npages)
(void) kcage_create_throttle(npages, flags);
if (freemem < npages + throttlefree)
if (!page_create_throttle(npages, flags))
return (0);
if (pcf_decrement_bucket(npages) ||
pcf_decrement_multiple(&total, npages, 0))
return (1);
/*
* All of the pcf locks are held, there are not enough pages
* to satisfy the request (npages < total).
* Be sure to acquire the new_freemem_lock before dropping
* the pcf locks. This prevents dropping wakeups in page_free().
* The order is always pcf_lock then new_freemem_lock.
*
* Since we hold all the pcf locks, it is a good time to set freemem.
*
* If the caller does not want to wait, return now.
* Else turn the pageout daemon loose to find something
* and wait till it does.
*
*/
freemem = total;
if ((flags & PG_WAIT) == 0) {
pcf_release_all();
TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
"page_create_nomem:npages %ld freemem %ld", npages, freemem);
return (0);
}
ASSERT(proc_pageout != NULL);
cv_signal(&proc_pageout->p_cv);
TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
"page_create_sleep_start: freemem %ld needfree %ld",
freemem, needfree);
/*
* We are going to wait.
* We currently hold all of the pcf_locks,
* get the new_freemem_lock (it protects freemem_wait),
* before dropping the pcf_locks.
*/
mutex_enter(&new_freemem_lock);
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
p->pcf_wait++;
mutex_exit(&p->pcf_lock);
p++;
}
needfree += npages;
freemem_wait++;
cv_wait(&freemem_cv, &new_freemem_lock);
freemem_wait--;
needfree -= npages;
mutex_exit(&new_freemem_lock);
TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
"page_create_sleep_end: freemem %ld needfree %ld",
freemem, needfree);
VM_STAT_ADD(page_create_not_enough_again);
goto checkagain;
}
/*
* A routine to do the opposite of page_create_wait().
*/
void
page_create_putback(spgcnt_t npages)
{
struct pcf *p;
pgcnt_t lump;
uint_t *which;
/*
* When a contiguous lump is broken up, we have to
* deal with lots of pages (min 64) so lets spread
* the wealth around.
*/
lump = roundup(npages, pcf_fanout) / pcf_fanout;
freemem += npages;
for (p = pcf; (npages > 0) && (p < &pcf[pcf_fanout]); p++) {
which = &p->pcf_count;
mutex_enter(&p->pcf_lock);
if (p->pcf_block) {
which = &p->pcf_reserve;
}
if (lump < npages) {
*which += (uint_t)lump;
npages -= lump;
} else {
*which += (uint_t)npages;
npages = 0;
}
if (p->pcf_wait) {
mutex_enter(&new_freemem_lock);
/*
* Check to see if some other thread
* is actually waiting. Another bucket
* may have woken it up by now. If there
* are no waiters, then set our pcf_wait
* count to zero to avoid coming in here
* next time.
*/
if (freemem_wait) {
if (npages > 1) {
cv_broadcast(&freemem_cv);
} else {
cv_signal(&freemem_cv);
}
p->pcf_wait--;
} else {
p->pcf_wait = 0;
}
mutex_exit(&new_freemem_lock);
}
mutex_exit(&p->pcf_lock);
}
ASSERT(npages == 0);
}
/*
* A helper routine for page_create_get_something.
* The indenting got to deep down there.
* Unblock the pcf counters. Any pages freed after
* pcf_block got set are moved to pcf_count and
* wakeups (cv_broadcast() or cv_signal()) are done as needed.
*/
static void
pcgs_unblock(void)
{
int i;
struct pcf *p;
/* Update freemem while we're here. */
freemem = 0;
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
mutex_enter(&p->pcf_lock);
ASSERT(p->pcf_count == 0);
p->pcf_count = p->pcf_reserve;
p->pcf_block = 0;
freemem += p->pcf_count;
if (p->pcf_wait) {
mutex_enter(&new_freemem_lock);
if (freemem_wait) {
if (p->pcf_reserve > 1) {
cv_broadcast(&freemem_cv);
p->pcf_wait = 0;
} else {
cv_signal(&freemem_cv);
p->pcf_wait--;
}
} else {
p->pcf_wait = 0;
}
mutex_exit(&new_freemem_lock);
}
p->pcf_reserve = 0;
mutex_exit(&p->pcf_lock);
p++;
}
}
/*
* Called from page_create_va() when both the cache and free lists
* have been checked once.
*
* Either returns a page or panics since the accounting was done
* way before we got here.
*
* We don't come here often, so leave the accounting on permanently.
*/
#define MAX_PCGS 100
#ifdef DEBUG
#define PCGS_TRIES 100
#else /* DEBUG */
#define PCGS_TRIES 10
#endif /* DEBUG */
#ifdef VM_STATS
uint_t pcgs_counts[PCGS_TRIES];
uint_t pcgs_too_many;
uint_t pcgs_entered;
uint_t pcgs_entered_noreloc;
uint_t pcgs_locked;
uint_t pcgs_cagelocked;
#endif /* VM_STATS */
static page_t *
page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
caddr_t vaddr, uint_t flags)
{
uint_t count;
page_t *pp;
uint_t locked, i;
struct pcf *p;
lgrp_t *lgrp;
int cagelocked = 0;
VM_STAT_ADD(pcgs_entered);
/*
* Tap any reserve freelists: if we fail now, we'll die
* since the page(s) we're looking for have already been
* accounted for.
*/
flags |= PG_PANIC;
if ((flags & PG_NORELOC) != 0) {
VM_STAT_ADD(pcgs_entered_noreloc);
/*
* Requests for free pages from critical threads
* such as pageout still won't throttle here, but
* we must try again, to give the cageout thread
* another chance to catch up. Since we already
* accounted for the pages, we had better get them
* this time.
*
* N.B. All non-critical threads acquire the pcgs_cagelock
* to serialize access to the freelists. This implements a
* turnstile-type synchornization to avoid starvation of
* critical requests for PG_NORELOC memory by non-critical
* threads: all non-critical threads must acquire a 'ticket'
* before passing through, which entails making sure
* kcage_freemem won't fall below minfree prior to grabbing
* pages from the freelists.
*/
if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
mutex_enter(&pcgs_cagelock);
cagelocked = 1;
VM_STAT_ADD(pcgs_cagelocked);
}
}
/*
* Time to get serious.
* We failed to get a `correctly colored' page from both the
* free and cache lists.
* We escalate in stage.
*
* First try both lists without worring about color.
*
* Then, grab all page accounting locks (ie. pcf[]) and
* steal any pages that they have and set the pcf_block flag to
* stop deletions from the lists. This will help because
* a page can get added to the free list while we are looking
* at the cache list, then another page could be added to the cache
* list allowing the page on the free list to be removed as we
* move from looking at the cache list to the free list. This
* could happen over and over. We would never find the page
* we have accounted for.
*
* Noreloc pages are a subset of the global (relocatable) page pool.
* They are not tracked separately in the pcf bins, so it is
* impossible to know when doing pcf accounting if the available
* page(s) are noreloc pages or not. When looking for a noreloc page
* it is quite easy to end up here even if the global (relocatable)
* page pool has plenty of free pages but the noreloc pool is empty.
*
* When the noreloc pool is empty (or low), additional noreloc pages
* are created by converting pages from the global page pool. This
* process will stall during pcf accounting if the pcf bins are
* already locked. Such is the case when a noreloc allocation is
* looping here in page_create_get_something waiting for more noreloc
* pages to appear.
*
* Short of adding a new field to the pcf bins to accurately track
* the number of free noreloc pages, we instead do not grab the
* pcgs_lock, do not set the pcf blocks and do not timeout when
* allocating a noreloc page. This allows noreloc allocations to
* loop without blocking global page pool allocations.
*
* NOTE: the behaviour of page_create_get_something has not changed
* for the case of global page pool allocations.
*/
flags &= ~PG_MATCH_COLOR;
locked = 0;
#if defined(__i386) || defined(__amd64)
flags = page_create_update_flags_x86(flags);
#endif
lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
for (count = 0; kcage_on || count < MAX_PCGS; count++) {
pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
flags, lgrp);
if (pp == NULL) {
pp = page_get_cachelist(vp, off, seg, vaddr,
flags, lgrp);
}
if (pp == NULL) {
/*
* Serialize. Don't fight with other pcgs().
*/
if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
mutex_enter(&pcgs_lock);
VM_STAT_ADD(pcgs_locked);
locked = 1;
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
mutex_enter(&p->pcf_lock);
ASSERT(p->pcf_block == 0);
p->pcf_block = 1;
p->pcf_reserve = p->pcf_count;
p->pcf_count = 0;
mutex_exit(&p->pcf_lock);
p++;
}
freemem = 0;
}
if (count) {
/*
* Since page_free() puts pages on
* a list then accounts for it, we
* just have to wait for page_free()
* to unlock any page it was working
* with. The page_lock()-page_reclaim()
* path falls in the same boat.
*
* We don't need to check on the
* PG_WAIT flag, we have already
* accounted for the page we are
* looking for in page_create_va().
*
* We just wait a moment to let any
* locked pages on the lists free up,
* then continue around and try again.
*
* Will be awakened by set_freemem().
*/
mutex_enter(&pcgs_wait_lock);
cv_wait(&pcgs_cv, &pcgs_wait_lock);
mutex_exit(&pcgs_wait_lock);
}
} else {
#ifdef VM_STATS
if (count >= PCGS_TRIES) {
VM_STAT_ADD(pcgs_too_many);
} else {
VM_STAT_ADD(pcgs_counts[count]);
}
#endif
if (locked) {
pcgs_unblock();
mutex_exit(&pcgs_lock);
}
if (cagelocked)
mutex_exit(&pcgs_cagelock);
return (pp);
}
}
/*
* we go down holding the pcf locks.
*/
panic("no %spage found %d",
((flags & PG_NORELOC) ? "non-reloc " : ""), count);
/*NOTREACHED*/
}
/*
* Create enough pages for "bytes" worth of data starting at
* "off" in "vp".
*
* Where flag must be one of:
*
* PG_EXCL: Exclusive create (fail if any page already
* exists in the page cache) which does not
* wait for memory to become available.
*
* PG_WAIT: Non-exclusive create which can wait for
* memory to become available.
*
* PG_PHYSCONTIG: Allocate physically contiguous pages.
* (Not Supported)
*
* A doubly linked list of pages is returned to the caller. Each page
* on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
* lock.
*
* Unable to change the parameters to page_create() in a minor release,
* we renamed page_create() to page_create_va(), changed all known calls
* from page_create() to page_create_va(), and created this wrapper.
*
* Upon a major release, we should break compatibility by deleting this
* wrapper, and replacing all the strings "page_create_va", with "page_create".
*
* NOTE: There is a copy of this interface as page_create_io() in
* i86/vm/vm_machdep.c. Any bugs fixed here should be applied
* there.
*/
page_t *
page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
{
caddr_t random_vaddr;
struct seg kseg;
#ifdef DEBUG
cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
(void *)caller());
#endif
random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
(uintptr_t)(off >> PAGESHIFT));
kseg.s_as = &kas;
return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
}
#ifdef DEBUG
uint32_t pg_alloc_pgs_mtbf = 0;
#endif
/*
* Used for large page support. It will attempt to allocate
* a large page(s) off the freelist.
*
* Returns non zero on failure.
*/
int
page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
{
pgcnt_t npgs, curnpgs, totpgs;
size_t pgsz;
page_t *pplist = NULL, *pp;
int err = 0;
lgrp_t *lgrp;
ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
/*
* Check if system heavily prefers local large pages over remote
* on systems with multiple lgroups.
*/
if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
pgflags = PG_LOCAL;
}
VM_STAT_ADD(alloc_pages[0]);
#ifdef DEBUG
if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
return (ENOMEM);
}
#endif
/*
* One must be NULL but not both.
* And one must be non NULL but not both.
*/
ASSERT(basepp != NULL || ppa != NULL);
ASSERT(basepp == NULL || ppa == NULL);
#if defined(__i386) || defined(__amd64)
while (page_chk_freelist(szc) == 0) {
VM_STAT_ADD(alloc_pages[8]);
if (anypgsz == 0 || --szc == 0)
return (ENOMEM);
}
#endif
pgsz = page_get_pagesize(szc);
totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
(void) page_create_wait(npgs, PG_WAIT);
while (npgs && szc) {
lgrp = lgrp_mem_choose(seg, addr, pgsz);
if (pgflags == PG_LOCAL) {
pp = page_get_freelist(vp, 0, seg, addr, pgsz,
pgflags, lgrp);
if (pp == NULL) {
pp = page_get_freelist(vp, 0, seg, addr, pgsz,
0, lgrp);
}
} else {
pp = page_get_freelist(vp, 0, seg, addr, pgsz,
0, lgrp);
}
if (pp != NULL) {
VM_STAT_ADD(alloc_pages[1]);
page_list_concat(&pplist, &pp);
ASSERT(npgs >= curnpgs);
npgs -= curnpgs;
} else if (anypgsz) {
VM_STAT_ADD(alloc_pages[2]);
szc--;
pgsz = page_get_pagesize(szc);
curnpgs = pgsz >> PAGESHIFT;
} else {
VM_STAT_ADD(alloc_pages[3]);
ASSERT(npgs == totpgs);
page_create_putback(npgs);
return (ENOMEM);
}
}
if (szc == 0) {
VM_STAT_ADD(alloc_pages[4]);
ASSERT(npgs != 0);
page_create_putback(npgs);
err = ENOMEM;
} else if (basepp != NULL) {
ASSERT(npgs == 0);
ASSERT(ppa == NULL);
*basepp = pplist;
}
npgs = totpgs - npgs;
pp = pplist;
/*
* Clear the free and age bits. Also if we were passed in a ppa then
* fill it in with all the constituent pages from the large page. But
* if we failed to allocate all the pages just free what we got.
*/
while (npgs != 0) {
ASSERT(PP_ISFREE(pp));
ASSERT(PP_ISAGED(pp));
if (ppa != NULL || err != 0) {
if (err == 0) {
VM_STAT_ADD(alloc_pages[5]);
PP_CLRFREE(pp);
PP_CLRAGED(pp);
page_sub(&pplist, pp);
*ppa++ = pp;
npgs--;
} else {
VM_STAT_ADD(alloc_pages[6]);
ASSERT(pp->p_szc != 0);
curnpgs = page_get_pagecnt(pp->p_szc);
page_list_break(&pp, &pplist, curnpgs);
page_list_add_pages(pp, 0);
page_create_putback(curnpgs);
ASSERT(npgs >= curnpgs);
npgs -= curnpgs;
}
pp = pplist;
} else {
VM_STAT_ADD(alloc_pages[7]);
PP_CLRFREE(pp);
PP_CLRAGED(pp);
pp = pp->p_next;
npgs--;
}
}
return (err);
}
/*
* Get a single large page off of the freelists, and set it up for use.
* Number of bytes requested must be a supported page size.
*
* Note that this call may fail even if there is sufficient
* memory available or PG_WAIT is set, so the caller must
* be willing to fallback on page_create_va(), block and retry,
* or fail the requester.
*/
page_t *
page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
struct seg *seg, caddr_t vaddr, void *arg)
{
pgcnt_t npages;
page_t *pp;
page_t *rootpp;
lgrp_t *lgrp;
lgrp_id_t *lgrpid = (lgrp_id_t *)arg;
ASSERT(vp != NULL);
ASSERT((flags & ~(PG_EXCL | PG_WAIT |
PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
/* but no others */
ASSERT((flags & PG_EXCL) == PG_EXCL);
npages = btop(bytes);
if (!kcage_on || panicstr) {
/*
* Cage is OFF, or we are single threaded in
* panic, so make everything a RELOC request.
*/
flags &= ~PG_NORELOC;
}
/*
* Make sure there's adequate physical memory available.
* Note: PG_WAIT is ignored here.
*/
if (freemem <= throttlefree + npages) {
VM_STAT_ADD(page_create_large_cnt[1]);
return (NULL);
}
/*
* If cage is on, dampen draw from cage when available
* cage space is low.
*/
if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) &&
kcage_freemem < kcage_throttlefree + npages) {
/*
* The cage is on, the caller wants PG_NORELOC
* pages and available cage memory is very low.
* Call kcage_create_throttle() to attempt to
* control demand on the cage.
*/
if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
VM_STAT_ADD(page_create_large_cnt[2]);
return (NULL);
}
}
if (!pcf_decrement_bucket(npages) &&
!pcf_decrement_multiple(NULL, npages, 1)) {
VM_STAT_ADD(page_create_large_cnt[4]);
return (NULL);
}
/*
* This is where this function behaves fundamentally differently
* than page_create_va(); since we're intending to map the page
* with a single TTE, we have to get it as a physically contiguous
* hardware pagesize chunk. If we can't, we fail.
*/
if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
LGRP_EXISTS(lgrp_table[*lgrpid]))
lgrp = lgrp_table[*lgrpid];
else
lgrp = lgrp_mem_choose(seg, vaddr, bytes);
if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
page_create_putback(npages);
VM_STAT_ADD(page_create_large_cnt[5]);
return (NULL);
}
/*
* if we got the page with the wrong mtype give it back this is a
* workaround for CR 6249718. When CR 6249718 is fixed we never get
* inside "if" and the workaround becomes just a nop
*/
if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
page_list_add_pages(rootpp, 0);
page_create_putback(npages);
VM_STAT_ADD(page_create_large_cnt[6]);
return (NULL);
}
/*
* If satisfying this request has left us with too little
* memory, start the wheels turning to get some back. The
* first clause of the test prevents waking up the pageout
* daemon in situations where it would decide that there's
* nothing to do.
*/
if (nscan < desscan && freemem < minfree) {
TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
"pageout_cv_signal:freemem %ld", freemem);
cv_signal(&proc_pageout->p_cv);
}
pp = rootpp;
while (npages--) {
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_vnode == NULL);
ASSERT(!hat_page_is_mapped(pp));
PP_CLRFREE(pp);
PP_CLRAGED(pp);
if (!page_hashin(pp, vp, off, NULL))
panic("page_create_large: hashin failed: page %p",
(void *)pp);
page_io_lock(pp);
off += PAGESIZE;
pp = pp->p_next;
}
VM_STAT_ADD(page_create_large_cnt[0]);
return (rootpp);
}
page_t *
page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
struct seg *seg, caddr_t vaddr)
{
page_t *plist = NULL;
pgcnt_t npages;
pgcnt_t found_on_free = 0;
pgcnt_t pages_req;
page_t *npp = NULL;
struct pcf *p;
lgrp_t *lgrp;
TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
"page_create_start:vp %p off %llx bytes %lu flags %x",
vp, off, bytes, flags);
ASSERT(bytes != 0 && vp != NULL);
if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
panic("page_create: invalid flags");
/*NOTREACHED*/
}
ASSERT((flags & ~(PG_EXCL | PG_WAIT |
PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
/* but no others */
pages_req = npages = btopr(bytes);
/*
* Try to see whether request is too large to *ever* be
* satisfied, in order to prevent deadlock. We arbitrarily
* decide to limit maximum size requests to max_page_get.
*/
if (npages >= max_page_get) {
if ((flags & PG_WAIT) == 0) {
TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
"page_create_toobig:vp %p off %llx npages "
"%lu max_page_get %lu",
vp, off, npages, max_page_get);
return (NULL);
} else {
cmn_err(CE_WARN,
"Request for too much kernel memory "
"(%lu bytes), will hang forever", bytes);
for (;;)
delay(1000000000);
}
}
if (!kcage_on || panicstr) {
/*
* Cage is OFF, or we are single threaded in
* panic, so make everything a RELOC request.
*/
flags &= ~PG_NORELOC;
}
if (freemem <= throttlefree + npages)
if (!page_create_throttle(npages, flags))
return (NULL);
/*
* If cage is on, dampen draw from cage when available
* cage space is low.
*/
if ((flags & PG_NORELOC) &&
kcage_freemem < kcage_throttlefree + npages) {
/*
* The cage is on, the caller wants PG_NORELOC
* pages and available cage memory is very low.
* Call kcage_create_throttle() to attempt to
* control demand on the cage.
*/
if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
return (NULL);
}
VM_STAT_ADD(page_create_cnt[0]);
if (!pcf_decrement_bucket(npages)) {
/*
* Have to look harder. If npages is greater than
* one, then we might have to coalesce the counters.
*
* Go wait. We come back having accounted
* for the memory.
*/
VM_STAT_ADD(page_create_cnt[1]);
if (!page_create_wait(npages, flags)) {
VM_STAT_ADD(page_create_cnt[2]);
return (NULL);
}
}
TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
"page_create_success:vp %p off %llx", vp, off);
/*
* If satisfying this request has left us with too little
* memory, start the wheels turning to get some back. The
* first clause of the test prevents waking up the pageout
* daemon in situations where it would decide that there's
* nothing to do.
*/
if (nscan < desscan && freemem < minfree) {
TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
"pageout_cv_signal:freemem %ld", freemem);
cv_signal(&proc_pageout->p_cv);
}
/*
* Loop around collecting the requested number of pages.
* Most of the time, we have to `create' a new page. With
* this in mind, pull the page off the free list before
* getting the hash lock. This will minimize the hash
* lock hold time, nesting, and the like. If it turns
* out we don't need the page, we put it back at the end.
*/
while (npages--) {
page_t *pp;
kmutex_t *phm = NULL;
ulong_t index;
index = PAGE_HASH_FUNC(vp, off);
top:
ASSERT(phm == NULL);
ASSERT(index == PAGE_HASH_FUNC(vp, off));
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
if (npp == NULL) {
/*
* Try to get a page from the freelist (ie,
* a page with no [vp, off] tag). If that
* fails, use the cachelist.
*
* During the first attempt at both the free
* and cache lists we try for the correct color.
*/
/*
* XXXX-how do we deal with virtual indexed
* caches and and colors?
*/
VM_STAT_ADD(page_create_cnt[4]);
/*
* Get lgroup to allocate next page of shared memory
* from and use it to specify where to allocate
* the physical memory
*/
lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
flags | PG_MATCH_COLOR, lgrp);
if (npp == NULL) {
npp = page_get_cachelist(vp, off, seg,
vaddr, flags | PG_MATCH_COLOR, lgrp);
if (npp == NULL) {
npp = page_create_get_something(vp,
off, seg, vaddr,
flags & ~PG_MATCH_COLOR);
}
if (PP_ISAGED(npp) == 0) {
/*
* Since this page came from the
* cachelist, we must destroy the
* old vnode association.
*/
page_hashout(npp, NULL);
}
}
}
/*
* We own this page!
*/
ASSERT(PAGE_EXCL(npp));
ASSERT(npp->p_vnode == NULL);
ASSERT(!hat_page_is_mapped(npp));
PP_CLRFREE(npp);
PP_CLRAGED(npp);
/*
* Here we have a page in our hot little mits and are
* just waiting to stuff it on the appropriate lists.
* Get the mutex and check to see if it really does
* not exist.
*/
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
PAGE_HASH_SEARCH(index, pp, vp, off);
if (pp == NULL) {
VM_STAT_ADD(page_create_new);
pp = npp;
npp = NULL;
if (!page_hashin(pp, vp, off, phm)) {
/*
* Since we hold the page hash mutex and
* just searched for this page, page_hashin
* had better not fail. If it does, that
* means somethread did not follow the
* page hash mutex rules. Panic now and
* get it over with. As usual, go down
* holding all the locks.
*/
ASSERT(MUTEX_HELD(phm));
panic("page_create: "
"hashin failed %p %p %llx %p",
(void *)pp, (void *)vp, off, (void *)phm);
/*NOTREACHED*/
}
ASSERT(MUTEX_HELD(phm));
mutex_exit(phm);
phm = NULL;
/*
* Hat layer locking need not be done to set
* the following bits since the page is not hashed
* and was on the free list (i.e., had no mappings).
*
* Set the reference bit to protect
* against immediate pageout
*
* XXXmh modify freelist code to set reference
* bit so we don't have to do it here.
*/
page_set_props(pp, P_REF);
found_on_free++;
} else {
VM_STAT_ADD(page_create_exists);
if (flags & PG_EXCL) {
/*
* Found an existing page, and the caller
* wanted all new pages. Undo all of the work
* we have done.
*/
mutex_exit(phm);
phm = NULL;
while (plist != NULL) {
pp = plist;
page_sub(&plist, pp);
page_io_unlock(pp);
/* large pages should not end up here */
ASSERT(pp->p_szc == 0);
/*LINTED: constant in conditional ctx*/
VN_DISPOSE(pp, B_INVAL, 0, kcred);
}
VM_STAT_ADD(page_create_found_one);
goto fail;
}
ASSERT(flags & PG_WAIT);
if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
/*
* Start all over again if we blocked trying
* to lock the page.
*/
mutex_exit(phm);
VM_STAT_ADD(page_create_page_lock_failed);
phm = NULL;
goto top;
}
mutex_exit(phm);
phm = NULL;
if (PP_ISFREE(pp)) {
ASSERT(PP_ISAGED(pp) == 0);
VM_STAT_ADD(pagecnt.pc_get_cache);
page_list_sub(pp, PG_CACHE_LIST);
PP_CLRFREE(pp);
found_on_free++;
}
}
/*
* Got a page! It is locked. Acquire the i/o
* lock since we are going to use the p_next and
* p_prev fields to link the requested pages together.
*/
page_io_lock(pp);
page_add(&plist, pp);
plist = plist->p_next;
off += PAGESIZE;
vaddr += PAGESIZE;
}
ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
fail:
if (npp != NULL) {
/*
* Did not need this page after all.
* Put it back on the free list.
*/
VM_STAT_ADD(page_create_putbacks);
PP_SETFREE(npp);
PP_SETAGED(npp);
npp->p_offset = (u_offset_t)-1;
page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
page_unlock(npp);
}
ASSERT(pages_req >= found_on_free);
{
uint_t overshoot = (uint_t)(pages_req - found_on_free);
if (overshoot) {
VM_STAT_ADD(page_create_overshoot);
p = &pcf[PCF_INDEX()];
mutex_enter(&p->pcf_lock);
if (p->pcf_block) {
p->pcf_reserve += overshoot;
} else {
p->pcf_count += overshoot;
if (p->pcf_wait) {
mutex_enter(&new_freemem_lock);
if (freemem_wait) {
cv_signal(&freemem_cv);
p->pcf_wait--;
} else {
p->pcf_wait = 0;
}
mutex_exit(&new_freemem_lock);
}
}
mutex_exit(&p->pcf_lock);
/* freemem is approximate, so this test OK */
if (!p->pcf_block)
freemem += overshoot;
}
}
return (plist);
}
/*
* One or more constituent pages of this large page has been marked
* toxic. Simply demote the large page to PAGESIZE pages and let
* page_free() handle it. This routine should only be called by
* large page free routines (page_free_pages() and page_destroy_pages().
* All pages are locked SE_EXCL and have already been marked free.
*/
static void
page_free_toxic_pages(page_t *rootpp)
{
page_t *tpp;
pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc);
uint_t szc = rootpp->p_szc;
for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
ASSERT(tpp->p_szc == szc);
ASSERT((PAGE_EXCL(tpp) &&
!page_iolock_assert(tpp)) || panicstr);
tpp->p_szc = 0;
}
while (rootpp != NULL) {
tpp = rootpp;
page_sub(&rootpp, tpp);
ASSERT(PP_ISFREE(tpp));
PP_CLRFREE(tpp);
page_free(tpp, 1);
}
}
/*
* Put page on the "free" list.
* The free list is really two lists maintained by
* the PSM of whatever machine we happen to be on.
*/
void
page_free(page_t *pp, int dontneed)
{
struct pcf *p;
uint_t pcf_index;
ASSERT((PAGE_EXCL(pp) &&
!page_iolock_assert(pp)) || panicstr);
if (PP_ISFREE(pp)) {
panic("page_free: page %p is free", (void *)pp);
}
if (pp->p_szc != 0) {
if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
PP_ISKAS(pp)) {
panic("page_free: anon or kernel "
"or no vnode large page %p", (void *)pp);
}
page_demote_vp_pages(pp);
ASSERT(pp->p_szc == 0);
}
/*
* The page_struct_lock need not be acquired to examine these
* fields since the page has an "exclusive" lock.
*/
if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
pp->p_slckcnt != 0) {
panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
"slckcnt = %d", (void *)pp, page_pptonum(pp), pp->p_lckcnt,
pp->p_cowcnt, pp->p_slckcnt);
/*NOTREACHED*/
}
ASSERT(!hat_page_getshare(pp));
PP_SETFREE(pp);
ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
!hat_ismod(pp));
page_clr_all_props(pp);
ASSERT(!hat_page_getshare(pp));
/*
* Now we add the page to the head of the free list.
* But if this page is associated with a paged vnode
* then we adjust the head forward so that the page is
* effectively at the end of the list.
*/
if (pp->p_vnode == NULL) {
/*
* Page has no identity, put it on the free list.
*/
PP_SETAGED(pp);
pp->p_offset = (u_offset_t)-1;
page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
VM_STAT_ADD(pagecnt.pc_free_free);
TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
"page_free_free:pp %p", pp);
} else {
PP_CLRAGED(pp);
if (!dontneed || nopageage) {
/* move it to the tail of the list */
page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
VM_STAT_ADD(pagecnt.pc_free_cache);
TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
"page_free_cache_tail:pp %p", pp);
} else {
page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
VM_STAT_ADD(pagecnt.pc_free_dontneed);
TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
"page_free_cache_head:pp %p", pp);
}
}
page_unlock(pp);
/*
* Now do the `freemem' accounting.
*/
pcf_index = PCF_INDEX();
p = &pcf[pcf_index];
mutex_enter(&p->pcf_lock);
if (p->pcf_block) {
p->pcf_reserve += 1;
} else {
p->pcf_count += 1;
if (p->pcf_wait) {
mutex_enter(&new_freemem_lock);
/*
* Check to see if some other thread
* is actually waiting. Another bucket
* may have woken it up by now. If there
* are no waiters, then set our pcf_wait
* count to zero to avoid coming in here
* next time. Also, since only one page
* was put on the free list, just wake
* up one waiter.
*/
if (freemem_wait) {
cv_signal(&freemem_cv);
p->pcf_wait--;
} else {
p->pcf_wait = 0;
}
mutex_exit(&new_freemem_lock);
}
}
mutex_exit(&p->pcf_lock);
/* freemem is approximate, so this test OK */
if (!p->pcf_block)
freemem += 1;
}
/*
* Put page on the "free" list during intial startup.
* This happens during initial single threaded execution.
*/
void
page_free_at_startup(page_t *pp)
{
struct pcf *p;
uint_t pcf_index;
page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
VM_STAT_ADD(pagecnt.pc_free_free);
/*
* Now do the `freemem' accounting.
*/
pcf_index = PCF_INDEX();
p = &pcf[pcf_index];
ASSERT(p->pcf_block == 0);
ASSERT(p->pcf_wait == 0);
p->pcf_count += 1;
/* freemem is approximate, so this is OK */
freemem += 1;
}
void
page_free_pages(page_t *pp)
{
page_t *tpp, *rootpp = NULL;
pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
pgcnt_t i;
uint_t szc = pp->p_szc;
VM_STAT_ADD(pagecnt.pc_free_pages);
TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
"page_free_free:pp %p", pp);
ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
panic("page_free_pages: not root page %p", (void *)pp);
/*NOTREACHED*/
}
for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
ASSERT((PAGE_EXCL(tpp) &&
!page_iolock_assert(tpp)) || panicstr);
if (PP_ISFREE(tpp)) {
panic("page_free_pages: page %p is free", (void *)tpp);
/*NOTREACHED*/
}
if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
panic("page_free_pages %p", (void *)tpp);
/*NOTREACHED*/
}
ASSERT(!hat_page_getshare(tpp));
ASSERT(tpp->p_vnode == NULL);
ASSERT(tpp->p_szc == szc);
PP_SETFREE(tpp);
page_clr_all_props(tpp);
PP_SETAGED(tpp);
tpp->p_offset = (u_offset_t)-1;
ASSERT(tpp->p_next == tpp);
ASSERT(tpp->p_prev == tpp);
page_list_concat(&rootpp, &tpp);
}
ASSERT(rootpp == pp);
page_list_add_pages(rootpp, 0);
page_create_putback(pgcnt);
}
int free_pages = 1;
/*
* This routine attempts to return pages to the cachelist via page_release().
* It does not *have* to be successful in all cases, since the pageout scanner
* will catch any pages it misses. It does need to be fast and not introduce
* too much overhead.
*
* If a page isn't found on the unlocked sweep of the page_hash bucket, we
* don't lock and retry. This is ok, since the page scanner will eventually
* find any page we miss in free_vp_pages().
*/
void
free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
{
page_t *pp;
u_offset_t eoff;
extern int swap_in_range(vnode_t *, u_offset_t, size_t);
eoff = off + len;
if (free_pages == 0)
return;
if (swap_in_range(vp, off, len))
return;
for (; off < eoff; off += PAGESIZE) {
/*
* find the page using a fast, but inexact search. It'll be OK
* if a few pages slip through the cracks here.
*/
pp = page_exists(vp, off);
/*
* If we didn't find the page (it may not exist), the page
* is free, looks still in use (shared), or we can't lock it,
* just give up.
*/
if (pp == NULL ||
PP_ISFREE(pp) ||
page_share_cnt(pp) > 0 ||
!page_trylock(pp, SE_EXCL))
continue;
/*
* Once we have locked pp, verify that it's still the
* correct page and not already free
*/
ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
page_unlock(pp);
continue;
}
/*
* try to release the page...
*/
(void) page_release(pp, 1);
}
}
/*
* Reclaim the given page from the free list.
* If pp is part of a large pages, only the given constituent page is reclaimed
* and the large page it belonged to will be demoted. This can only happen
* if the page is not on the cachelist.
*
* Returns 1 on success or 0 on failure.
*
* The page is unlocked if it can't be reclaimed (when freemem == 0).
* If `lock' is non-null, it will be dropped and re-acquired if
* the routine must wait while freemem is 0.
*
* As it turns out, boot_getpages() does this. It picks a page,
* based on where OBP mapped in some address, gets its pfn, searches
* the memsegs, locks the page, then pulls it off the free list!
*/
int
page_reclaim(page_t *pp, kmutex_t *lock)
{
struct pcf *p;
struct cpu *cpup;
int enough;
uint_t i;
ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
/*
* If `freemem' is 0, we cannot reclaim this page from the
* freelist, so release every lock we might hold: the page,
* and the `lock' before blocking.
*
* The only way `freemem' can become 0 while there are pages
* marked free (have their p->p_free bit set) is when the
* system is low on memory and doing a page_create(). In
* order to guarantee that once page_create() starts acquiring
* pages it will be able to get all that it needs since `freemem'
* was decreased by the requested amount. So, we need to release
* this page, and let page_create() have it.
*
* Since `freemem' being zero is not supposed to happen, just
* use the usual hash stuff as a starting point. If that bucket
* is empty, then assume the worst, and start at the beginning
* of the pcf array. If we always start at the beginning
* when acquiring more than one pcf lock, there won't be any
* deadlock problems.
*/
/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
pcf_acquire_all();
goto page_reclaim_nomem;
}
enough = pcf_decrement_bucket(1);
if (!enough) {
VM_STAT_ADD(page_reclaim_zero);
/*
* Check again. Its possible that some other thread
* could have been right behind us, and added one
* to a list somewhere. Acquire each of the pcf locks
* until we find a page.
*/
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
mutex_enter(&p->pcf_lock);
if (p->pcf_count >= 1) {
p->pcf_count -= 1;
/*
* freemem is not protected by any lock. Thus,
* we cannot have any assertion containing
* freemem here.
*/
freemem -= 1;
enough = 1;
break;
}
p++;
}
if (!enough) {
page_reclaim_nomem:
/*
* We really can't have page `pp'.
* Time for the no-memory dance with
* page_free(). This is just like
* page_create_wait(). Plus the added
* attraction of releasing whatever mutex
* we held when we were called with in `lock'.
* Page_unlock() will wakeup any thread
* waiting around for this page.
*/
if (lock) {
VM_STAT_ADD(page_reclaim_zero_locked);
mutex_exit(lock);
}
page_unlock(pp);
/*
* get this before we drop all the pcf locks.
*/
mutex_enter(&new_freemem_lock);
p = pcf;
for (i = 0; i < pcf_fanout; i++) {
p->pcf_wait++;
mutex_exit(&p->pcf_lock);
p++;
}
freemem_wait++;
cv_wait(&freemem_cv, &new_freemem_lock);
freemem_wait--;
mutex_exit(&new_freemem_lock);
if (lock) {
mutex_enter(lock);
}
return (0);
}
/*
* The pcf accounting has been done,
* though none of the pcf_wait flags have been set,
* drop the locks and continue on.
*/
while (p >= pcf) {
mutex_exit(&p->pcf_lock);
p--;
}
}
VM_STAT_ADD(pagecnt.pc_reclaim);
/*
* page_list_sub will handle the case where pp is a large page.
* It's possible that the page was promoted while on the freelist
*/
if (PP_ISAGED(pp)) {
page_list_sub(pp, PG_FREE_LIST);
TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
"page_reclaim_free:pp %p", pp);
} else {
page_list_sub(pp, PG_CACHE_LIST);
TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
"page_reclaim_cache:pp %p", pp);
}
/*
* clear the p_free & p_age bits since this page is no longer
* on the free list. Notice that there was a brief time where
* a page is marked as free, but is not on the list.
*
* Set the reference bit to protect against immediate pageout.
*/
PP_CLRFREE(pp);
PP_CLRAGED(pp);
page_set_props(pp, P_REF);
CPU_STATS_ENTER_K();
cpup = CPU; /* get cpup now that CPU cannot change */
CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
CPU_STATS_EXIT_K();
ASSERT(pp->p_szc == 0);
return (1);
}
/*
* Destroy identity of the page and put it back on
* the page free list. Assumes that the caller has
* acquired the "exclusive" lock on the page.
*/
void
page_destroy(page_t *pp, int dontfree)
{
ASSERT((PAGE_EXCL(pp) &&
!page_iolock_assert(pp)) || panicstr);
ASSERT(pp->p_slckcnt == 0 || panicstr);
if (pp->p_szc != 0) {
if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
PP_ISKAS(pp)) {
panic("page_destroy: anon or kernel or no vnode "
"large page %p", (void *)pp);
}
page_demote_vp_pages(pp);
ASSERT(pp->p_szc == 0);
}
TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
/*
* Unload translations, if any, then hash out the
* page to erase its identity.
*/
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
page_hashout(pp, NULL);
if (!dontfree) {
/*
* Acquire the "freemem_lock" for availrmem.
* The page_struct_lock need not be acquired for lckcnt
* and cowcnt since the page has an "exclusive" lock.
* We are doing a modified version of page_pp_unlock here.
*/
if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
mutex_enter(&freemem_lock);
if (pp->p_lckcnt != 0) {
availrmem++;
pages_locked--;
pp->p_lckcnt = 0;
}
if (pp->p_cowcnt != 0) {
availrmem += pp->p_cowcnt;
pages_locked -= pp->p_cowcnt;
pp->p_cowcnt = 0;
}
mutex_exit(&freemem_lock);
}
/*
* Put the page on the "free" list.
*/
page_free(pp, 0);
}
}
void
page_destroy_pages(page_t *pp)
{
page_t *tpp, *rootpp = NULL;
pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc);
pgcnt_t i, pglcks = 0;
uint_t szc = pp->p_szc;
ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
VM_STAT_ADD(pagecnt.pc_destroy_pages);
TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
panic("page_destroy_pages: not root page %p", (void *)pp);
/*NOTREACHED*/
}
for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
ASSERT((PAGE_EXCL(tpp) &&
!page_iolock_assert(tpp)) || panicstr);
ASSERT(tpp->p_slckcnt == 0 || panicstr);
(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
page_hashout(tpp, NULL);
ASSERT(tpp->p_offset == (u_offset_t)-1);
if (tpp->p_lckcnt != 0) {
pglcks++;
tpp->p_lckcnt = 0;
} else if (tpp->p_cowcnt != 0) {
pglcks += tpp->p_cowcnt;
tpp->p_cowcnt = 0;
}
ASSERT(!hat_page_getshare(tpp));
ASSERT(tpp->p_vnode == NULL);
ASSERT(tpp->p_szc == szc);
PP_SETFREE(tpp);
page_clr_all_props(tpp);
PP_SETAGED(tpp);
ASSERT(tpp->p_next == tpp);
ASSERT(tpp->p_prev == tpp);
page_list_concat(&rootpp, &tpp);
}
ASSERT(rootpp == pp);
if (pglcks != 0) {
mutex_enter(&freemem_lock);
availrmem += pglcks;
mutex_exit(&freemem_lock);
}
page_list_add_pages(rootpp, 0);
page_create_putback(pgcnt);
}
/*
* Similar to page_destroy(), but destroys pages which are
* locked and known to be on the page free list. Since
* the page is known to be free and locked, no one can access
* it.
*
* Also, the number of free pages does not change.
*/
void
page_destroy_free(page_t *pp)
{
ASSERT(PAGE_EXCL(pp));
ASSERT(PP_ISFREE(pp));
ASSERT(pp->p_vnode);
ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
ASSERT(!hat_page_is_mapped(pp));
ASSERT(PP_ISAGED(pp) == 0);
ASSERT(pp->p_szc == 0);
VM_STAT_ADD(pagecnt.pc_destroy_free);
page_list_sub(pp, PG_CACHE_LIST);
page_hashout(pp, NULL);
ASSERT(pp->p_vnode == NULL);
ASSERT(pp->p_offset == (u_offset_t)-1);
ASSERT(pp->p_hash == NULL);
PP_SETAGED(pp);
page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
page_unlock(pp);
mutex_enter(&new_freemem_lock);
if (freemem_wait) {
cv_signal(&freemem_cv);
}
mutex_exit(&new_freemem_lock);
}
/*
* Rename the page "opp" to have an identity specified
* by [vp, off]. If a page already exists with this name
* it is locked and destroyed. Note that the page's
* translations are not unloaded during the rename.
*
* This routine is used by the anon layer to "steal" the
* original page and is not unlike destroying a page and
* creating a new page using the same page frame.
*
* XXX -- Could deadlock if caller 1 tries to rename A to B while
* caller 2 tries to rename B to A.
*/
void
page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
{
page_t *pp;
int olckcnt = 0;
int ocowcnt = 0;
kmutex_t *phm;
ulong_t index;
ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
ASSERT(PP_ISFREE(opp) == 0);
VM_STAT_ADD(page_rename_count);
TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
"page rename:pp %p vp %p off %llx", opp, vp, off);
/*
* CacheFS may call page_rename for a large NFS page
* when both CacheFS and NFS mount points are used
* by applications. Demote this large page before
* renaming it, to ensure that there are no "partial"
* large pages left lying around.
*/
if (opp->p_szc != 0) {
vnode_t *ovp = opp->p_vnode;
ASSERT(ovp != NULL);
ASSERT(!IS_SWAPFSVP(ovp));
ASSERT(!VN_ISKAS(ovp));
page_demote_vp_pages(opp);
ASSERT(opp->p_szc == 0);
}
page_hashout(opp, NULL);
PP_CLRAGED(opp);
/*
* Acquire the appropriate page hash lock, since
* we're going to rename the page.
*/
index = PAGE_HASH_FUNC(vp, off);
phm = PAGE_HASH_MUTEX(index);
mutex_enter(phm);
top:
/*
* Look for an existing page with this name and destroy it if found.
* By holding the page hash lock all the way to the page_hashin()
* call, we are assured that no page can be created with this
* identity. In the case when the phm lock is dropped to undo any
* hat layer mappings, the existing page is held with an "exclusive"
* lock, again preventing another page from being created with
* this identity.
*/
PAGE_HASH_SEARCH(index, pp, vp, off);
if (pp != NULL) {
VM_STAT_ADD(page_rename_exists);
/*
* As it turns out, this is one of only two places where
* page_lock() needs to hold the passed in lock in the
* successful case. In all of the others, the lock could
* be dropped as soon as the attempt is made to lock
* the page. It is tempting to add yet another arguement,
* PL_KEEP or PL_DROP, to let page_lock know what to do.
*/
if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
/*
* Went to sleep because the page could not
* be locked. We were woken up when the page
* was unlocked, or when the page was destroyed.
* In either case, `phm' was dropped while we
* slept. Hence we should not just roar through
* this loop.
*/
goto top;
}
/*
* If an existing page is a large page, then demote
* it to ensure that no "partial" large pages are
* "created" after page_rename. An existing page
* can be a CacheFS page, and can't belong to swapfs.
*/
if (hat_page_is_mapped(pp)) {
/*
* Unload translations. Since we hold the
* exclusive lock on this page, the page
* can not be changed while we drop phm.
* This is also not a lock protocol violation,
* but rather the proper way to do things.
*/
mutex_exit(phm);
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
if (pp->p_szc != 0) {
ASSERT(!IS_SWAPFSVP(vp));
ASSERT(!VN_ISKAS(vp));
page_demote_vp_pages(pp);
ASSERT(pp->p_szc == 0);
}
mutex_enter(phm);
} else if (pp->p_szc != 0) {
ASSERT(!IS_SWAPFSVP(vp));
ASSERT(!VN_ISKAS(vp));
mutex_exit(phm);
page_demote_vp_pages(pp);
ASSERT(pp->p_szc == 0);
mutex_enter(phm);
}
page_hashout(pp, phm);
}
/*
* Hash in the page with the new identity.
*/
if (!page_hashin(opp, vp, off, phm)) {
/*
* We were holding phm while we searched for [vp, off]
* and only dropped phm if we found and locked a page.
* If we can't create this page now, then some thing
* is really broken.
*/
panic("page_rename: Can't hash in page: %p", (void *)pp);
/*NOTREACHED*/
}
ASSERT(MUTEX_HELD(phm));
mutex_exit(phm);
/*
* Now that we have dropped phm, lets get around to finishing up
* with pp.
*/
if (pp != NULL) {
ASSERT(!hat_page_is_mapped(pp));
/* for now large pages should not end up here */
ASSERT(pp->p_szc == 0);
/*
* Save the locks for transfer to the new page and then
* clear them so page_free doesn't think they're important.
* The page_struct_lock need not be acquired for lckcnt and
* cowcnt since the page has an "exclusive" lock.
*/
olckcnt = pp->p_lckcnt;
ocowcnt = pp->p_cowcnt;
pp->p_lckcnt = pp->p_cowcnt = 0;
/*
* Put the page on the "free" list after we drop
* the lock. The less work under the lock the better.
*/
/*LINTED: constant in conditional context*/
VN_DISPOSE(pp, B_FREE, 0, kcred);
}
/*
* Transfer the lock count from the old page (if any).
* The page_struct_lock need not be acquired for lckcnt and
* cowcnt since the page has an "exclusive" lock.
*/
opp->p_lckcnt += olckcnt;
opp->p_cowcnt += ocowcnt;
}
/*
* low level routine to add page `pp' to the hash and vp chains for [vp, offset]
*
* Pages are normally inserted at the start of a vnode's v_pages list.
* If the vnode is VMODSORT and the page is modified, it goes at the end.
* This can happen when a modified page is relocated for DR.
*
* Returns 1 on success and 0 on failure.
*/
static int
page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
{
page_t **listp;
page_t *tp;
ulong_t index;
ASSERT(PAGE_EXCL(pp));
ASSERT(vp != NULL);
ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
/*
* Be sure to set these up before the page is inserted on the hash
* list. As soon as the page is placed on the list some other
* thread might get confused and wonder how this page could
* possibly hash to this list.
*/
pp->p_vnode = vp;
pp->p_offset = offset;
/*
* record if this page is on a swap vnode
*/
if ((vp->v_flag & VISSWAP) != 0)
PP_SETSWAP(pp);
index = PAGE_HASH_FUNC(vp, offset);
ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
listp = &page_hash[index];
/*
* If this page is already hashed in, fail this attempt to add it.
*/
for (tp = *listp; tp != NULL; tp = tp->p_hash) {
if (tp->p_vnode == vp && tp->p_offset == offset) {
pp->p_vnode = NULL;
pp->p_offset = (u_offset_t)(-1);
return (0);
}
}
pp->p_hash = *listp;
*listp = pp;
/*
* Add the page to the vnode's list of pages
*/
if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
listp = &vp->v_pages->p_vpprev->p_vpnext;
else
listp = &vp->v_pages;
page_vpadd(listp, pp);
return (1);
}
/*
* Add page `pp' to both the hash and vp chains for [vp, offset].
*
* Returns 1 on success and 0 on failure.
* If hold is passed in, it is not dropped.
*/
int
page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
{
kmutex_t *phm = NULL;
kmutex_t *vphm;
int rc;
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
ASSERT(pp->p_fsdata == 0 || panicstr);
TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
"page_hashin:pp %p vp %p offset %llx",
pp, vp, offset);
VM_STAT_ADD(hashin_count);
if (hold != NULL)
phm = hold;
else {
VM_STAT_ADD(hashin_not_held);
phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
mutex_enter(phm);
}
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
rc = page_do_hashin(pp, vp, offset);
mutex_exit(vphm);
if (hold == NULL)
mutex_exit(phm);
if (rc == 0)
VM_STAT_ADD(hashin_already);
return (rc);
}
/*
* Remove page ``pp'' from the hash and vp chains and remove vp association.
* All mutexes must be held
*/
static void
page_do_hashout(page_t *pp)
{
page_t **hpp;
page_t *hp;
vnode_t *vp = pp->p_vnode;
ASSERT(vp != NULL);
ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
/*
* First, take pp off of its hash chain.
*/
hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
for (;;) {
hp = *hpp;
if (hp == pp)
break;
if (hp == NULL) {
panic("page_do_hashout");
/*NOTREACHED*/
}
hpp = &hp->p_hash;
}
*hpp = pp->p_hash;
/*
* Now remove it from its associated vnode.
*/
if (vp->v_pages)
page_vpsub(&vp->v_pages, pp);
pp->p_hash = NULL;
page_clr_all_props(pp);
PP_CLRSWAP(pp);
pp->p_vnode = NULL;
pp->p_offset = (u_offset_t)-1;
pp->p_fsdata = 0;
}
/*
* Remove page ``pp'' from the hash and vp chains and remove vp association.
*
* When `phm' is non-NULL it contains the address of the mutex protecting the
* hash list pp is on. It is not dropped.
*/
void
page_hashout(page_t *pp, kmutex_t *phm)
{
vnode_t *vp;
ulong_t index;
kmutex_t *nphm;
kmutex_t *vphm;
kmutex_t *sep;
ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
ASSERT(pp->p_vnode != NULL);
ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
vp = pp->p_vnode;
TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
"page_hashout:pp %p vp %p", pp, vp);
/* Kernel probe */
TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
tnf_opaque, vnode, vp,
tnf_offset, offset, pp->p_offset);
/*
*
*/
VM_STAT_ADD(hashout_count);
index = PAGE_HASH_FUNC(vp, pp->p_offset);
if (phm == NULL) {
VM_STAT_ADD(hashout_not_held);
nphm = PAGE_HASH_MUTEX(index);
mutex_enter(nphm);
}
ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
/*
* grab page vnode mutex and remove it...
*/
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
page_do_hashout(pp);
mutex_exit(vphm);
if (phm == NULL)
mutex_exit(nphm);
/*
* Wake up processes waiting for this page. The page's
* identity has been changed, and is probably not the
* desired page any longer.
*/
sep = page_se_mutex(pp);
mutex_enter(sep);
pp->p_selock &= ~SE_EWANTED;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
mutex_exit(sep);
}
/*
* Add the page to the front of a linked list of pages
* using the p_next & p_prev pointers for the list.
* The caller is responsible for protecting the list pointers.
*/
void
page_add(page_t **ppp, page_t *pp)
{
ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
page_add_common(ppp, pp);
}
/*
* Common code for page_add() and mach_page_add()
*/
void
page_add_common(page_t **ppp, page_t *pp)
{
if (*ppp == NULL) {
pp->p_next = pp->p_prev = pp;
} else {
pp->p_next = *ppp;
pp->p_prev = (*ppp)->p_prev;
(*ppp)->p_prev = pp;
pp->p_prev->p_next = pp;
}
*ppp = pp;
}
/*
* Remove this page from a linked list of pages
* using the p_next & p_prev pointers for the list.
*
* The caller is responsible for protecting the list pointers.
*/
void
page_sub(page_t **ppp, page_t *pp)
{
ASSERT((PP_ISFREE(pp)) ? 1 :
(PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
if (*ppp == NULL || pp == NULL) {
panic("page_sub: bad arg(s): pp %p, *ppp %p",
(void *)pp, (void *)(*ppp));
/*NOTREACHED*/
}
page_sub_common(ppp, pp);
}
/*
* Common code for page_sub() and mach_page_sub()
*/
void
page_sub_common(page_t **ppp, page_t *pp)
{
if (*ppp == pp)
*ppp = pp->p_next; /* go to next page */
if (*ppp == pp)
*ppp = NULL; /* page list is gone */
else {
pp->p_prev->p_next = pp->p_next;
pp->p_next->p_prev = pp->p_prev;
}
pp->p_prev = pp->p_next = pp; /* make pp a list of one */
}
/*
* Break page list cppp into two lists with npages in the first list.
* The tail is returned in nppp.
*/
void
page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
{
page_t *s1pp = *oppp;
page_t *s2pp;
page_t *e1pp, *e2pp;
long n = 0;
if (s1pp == NULL) {
*nppp = NULL;
return;
}
if (npages == 0) {
*nppp = s1pp;
*oppp = NULL;
return;
}
for (n = 0, s2pp = *oppp; n < npages; n++) {
s2pp = s2pp->p_next;
}
/* Fix head and tail of new lists */
e1pp = s2pp->p_prev;
e2pp = s1pp->p_prev;
s1pp->p_prev = e1pp;
e1pp->p_next = s1pp;
s2pp->p_prev = e2pp;
e2pp->p_next = s2pp;
/* second list empty */
if (s2pp == s1pp) {
*oppp = s1pp;
*nppp = NULL;
} else {
*oppp = s1pp;
*nppp = s2pp;
}
}
/*
* Concatenate page list nppp onto the end of list ppp.
*/
void
page_list_concat(page_t **ppp, page_t **nppp)
{
page_t *s1pp, *s2pp, *e1pp, *e2pp;
if (*nppp == NULL) {
return;
}
if (*ppp == NULL) {
*ppp = *nppp;
return;
}
s1pp = *ppp;
e1pp = s1pp->p_prev;
s2pp = *nppp;
e2pp = s2pp->p_prev;
s1pp->p_prev = e2pp;
e2pp->p_next = s1pp;
e1pp->p_next = s2pp;
s2pp->p_prev = e1pp;
}
/*
* return the next page in the page list
*/
page_t *
page_list_next(page_t *pp)
{
return (pp->p_next);
}
/*
* Add the page to the front of the linked list of pages
* using p_vpnext/p_vpprev pointers for the list.
*
* The caller is responsible for protecting the lists.
*/
void
page_vpadd(page_t **ppp, page_t *pp)
{
if (*ppp == NULL) {
pp->p_vpnext = pp->p_vpprev = pp;
} else {
pp->p_vpnext = *ppp;
pp->p_vpprev = (*ppp)->p_vpprev;
(*ppp)->p_vpprev = pp;
pp->p_vpprev->p_vpnext = pp;
}
*ppp = pp;
}
/*
* Remove this page from the linked list of pages
* using p_vpnext/p_vpprev pointers for the list.
*
* The caller is responsible for protecting the lists.
*/
void
page_vpsub(page_t **ppp, page_t *pp)
{
if (*ppp == NULL || pp == NULL) {
panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
(void *)pp, (void *)(*ppp));
/*NOTREACHED*/
}
if (*ppp == pp)
*ppp = pp->p_vpnext; /* go to next page */
if (*ppp == pp)
*ppp = NULL; /* page list is gone */
else {
pp->p_vpprev->p_vpnext = pp->p_vpnext;
pp->p_vpnext->p_vpprev = pp->p_vpprev;
}
pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */
}
/*
* Lock a physical page into memory "long term". Used to support "lock
* in memory" functions. Accepts the page to be locked, and a cow variable
* to indicate whether a the lock will travel to the new page during
* a potential copy-on-write.
*/
int
page_pp_lock(
page_t *pp, /* page to be locked */
int cow, /* cow lock */
int kernel) /* must succeed -- ignore checking */
{
int r = 0; /* result -- assume failure */
ASSERT(PAGE_LOCKED(pp));
page_struct_lock(pp);
/*
* Acquire the "freemem_lock" for availrmem.
*/
if (cow) {
mutex_enter(&freemem_lock);
if ((availrmem > pages_pp_maximum) &&
(pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
availrmem--;
pages_locked++;
mutex_exit(&freemem_lock);
r = 1;
if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
cmn_err(CE_WARN,
"COW lock limit reached on pfn 0x%lx",
page_pptonum(pp));
}
} else
mutex_exit(&freemem_lock);
} else {
if (pp->p_lckcnt) {
if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
r = 1;
if (++pp->p_lckcnt ==
(ushort_t)PAGE_LOCK_MAXIMUM) {
cmn_err(CE_WARN, "Page lock limit "
"reached on pfn 0x%lx",
page_pptonum(pp));
}
}
} else {
if (kernel) {
/* availrmem accounting done by caller */
++pp->p_lckcnt;
r = 1;
} else {
mutex_enter(&freemem_lock);
if (availrmem > pages_pp_maximum) {
availrmem--;
pages_locked++;
++pp->p_lckcnt;
r = 1;
}
mutex_exit(&freemem_lock);
}
}
}
page_struct_unlock(pp);
return (r);
}
/*
* Decommit a lock on a physical page frame. Account for cow locks if
* appropriate.
*/
void
page_pp_unlock(
page_t *pp, /* page to be unlocked */
int cow, /* expect cow lock */
int kernel) /* this was a kernel lock */
{
ASSERT(PAGE_LOCKED(pp));
page_struct_lock(pp);
/*
* Acquire the "freemem_lock" for availrmem.
* If cowcnt or lcknt is already 0 do nothing; i.e., we
* could be called to unlock even if nothing is locked. This could
* happen if locked file pages were truncated (removing the lock)
* and the file was grown again and new pages faulted in; the new
* pages are unlocked but the segment still thinks they're locked.
*/
if (cow) {
if (pp->p_cowcnt) {
mutex_enter(&freemem_lock);
pp->p_cowcnt--;
availrmem++;
pages_locked--;
mutex_exit(&freemem_lock);
}
} else {
if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
if (!kernel) {
mutex_enter(&freemem_lock);
availrmem++;
pages_locked--;
mutex_exit(&freemem_lock);
}
}
}
page_struct_unlock(pp);
}
/*
* This routine reserves availrmem for npages;
* flags: KM_NOSLEEP or KM_SLEEP
* returns 1 on success or 0 on failure
*/
int
page_resv(pgcnt_t npages, uint_t flags)
{
mutex_enter(&freemem_lock);
while (availrmem < tune.t_minarmem + npages) {
if (flags & KM_NOSLEEP) {
mutex_exit(&freemem_lock);
return (0);
}
mutex_exit(&freemem_lock);
page_needfree(npages);
kmem_reap();
delay(hz >> 2);
page_needfree(-(spgcnt_t)npages);
mutex_enter(&freemem_lock);
}
availrmem -= npages;
mutex_exit(&freemem_lock);
return (1);
}
/*
* This routine unreserves availrmem for npages;
*/
void
page_unresv(pgcnt_t npages)
{
mutex_enter(&freemem_lock);
availrmem += npages;
mutex_exit(&freemem_lock);
}
/*
* See Statement at the beginning of segvn_lockop() regarding
* the way we handle cowcnts and lckcnts.
*
* Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
* that breaks COW has PROT_WRITE.
*
* Note that, we may also break COW in case we are softlocking
* on read access during physio;
* in this softlock case, the vpage may not have PROT_WRITE.
* So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
* if the vpage doesn't have PROT_WRITE.
*
* This routine is never called if we are stealing a page
* in anon_private.
*
* The caller subtracted from availrmem for read only mapping.
* if lckcnt is 1 increment availrmem.
*/
void
page_pp_useclaim(
page_t *opp, /* original page frame losing lock */
page_t *npp, /* new page frame gaining lock */
uint_t write_perm) /* set if vpage has PROT_WRITE */
{
int payback = 0;
ASSERT(PAGE_LOCKED(opp));
ASSERT(PAGE_LOCKED(npp));
page_struct_lock(opp);
ASSERT(npp->p_cowcnt == 0);
ASSERT(npp->p_lckcnt == 0);
/* Don't use claim if nothing is locked (see page_pp_unlock above) */
if ((write_perm && opp->p_cowcnt != 0) ||
(!write_perm && opp->p_lckcnt != 0)) {
if (write_perm) {
npp->p_cowcnt++;
ASSERT(opp->p_cowcnt != 0);
opp->p_cowcnt--;
} else {
ASSERT(opp->p_lckcnt != 0);
/*
* We didn't need availrmem decremented if p_lckcnt on
* original page is 1. Here, we are unlocking
* read-only copy belonging to original page and
* are locking a copy belonging to new page.
*/
if (opp->p_lckcnt == 1)
payback = 1;
npp->p_lckcnt++;
opp->p_lckcnt--;
}
}
if (payback) {
mutex_enter(&freemem_lock);
availrmem++;
pages_useclaim--;
mutex_exit(&freemem_lock);
}
page_struct_unlock(opp);
}
/*
* Simple claim adjust functions -- used to support changes in
* claims due to changes in access permissions. Used by segvn_setprot().
*/
int
page_addclaim(page_t *pp)
{
int r = 0; /* result */
ASSERT(PAGE_LOCKED(pp));
page_struct_lock(pp);
ASSERT(pp->p_lckcnt != 0);
if (pp->p_lckcnt == 1) {
if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
--pp->p_lckcnt;
r = 1;
if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
cmn_err(CE_WARN,
"COW lock limit reached on pfn 0x%lx",
page_pptonum(pp));
}
}
} else {
mutex_enter(&freemem_lock);
if ((availrmem > pages_pp_maximum) &&
(pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
--availrmem;
++pages_claimed;
mutex_exit(&freemem_lock);
--pp->p_lckcnt;
r = 1;
if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
cmn_err(CE_WARN,
"COW lock limit reached on pfn 0x%lx",
page_pptonum(pp));
}
} else
mutex_exit(&freemem_lock);
}
page_struct_unlock(pp);
return (r);
}
int
page_subclaim(page_t *pp)
{
int r = 0;
ASSERT(PAGE_LOCKED(pp));
page_struct_lock(pp);
ASSERT(pp->p_cowcnt != 0);
if (pp->p_lckcnt) {
if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
r = 1;
/*
* for availrmem
*/
mutex_enter(&freemem_lock);
availrmem++;
pages_claimed--;
mutex_exit(&freemem_lock);
pp->p_cowcnt--;
if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
cmn_err(CE_WARN,
"Page lock limit reached on pfn 0x%lx",
page_pptonum(pp));
}
}
} else {
r = 1;
pp->p_cowcnt--;
pp->p_lckcnt++;
}
page_struct_unlock(pp);
return (r);
}
int
page_addclaim_pages(page_t **ppa)
{
pgcnt_t lckpgs = 0, pg_idx;
VM_STAT_ADD(pagecnt.pc_addclaim_pages);
mutex_enter(&page_llock);
for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
ASSERT(PAGE_LOCKED(ppa[pg_idx]));
ASSERT(ppa[pg_idx]->p_lckcnt != 0);
if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
mutex_exit(&page_llock);
return (0);
}
if (ppa[pg_idx]->p_lckcnt > 1)
lckpgs++;
}
if (lckpgs != 0) {
mutex_enter(&freemem_lock);
if (availrmem >= pages_pp_maximum + lckpgs) {
availrmem -= lckpgs;
pages_claimed += lckpgs;
} else {
mutex_exit(&freemem_lock);
mutex_exit(&page_llock);
return (0);
}
mutex_exit(&freemem_lock);
}
for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
ppa[pg_idx]->p_lckcnt--;
ppa[pg_idx]->p_cowcnt++;
}
mutex_exit(&page_llock);
return (1);
}
int
page_subclaim_pages(page_t **ppa)
{
pgcnt_t ulckpgs = 0, pg_idx;
VM_STAT_ADD(pagecnt.pc_subclaim_pages);
mutex_enter(&page_llock);
for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
ASSERT(PAGE_LOCKED(ppa[pg_idx]));
ASSERT(ppa[pg_idx]->p_cowcnt != 0);
if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
mutex_exit(&page_llock);
return (0);
}
if (ppa[pg_idx]->p_lckcnt != 0)
ulckpgs++;
}
if (ulckpgs != 0) {
mutex_enter(&freemem_lock);
availrmem += ulckpgs;
pages_claimed -= ulckpgs;
mutex_exit(&freemem_lock);
}
for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
ppa[pg_idx]->p_cowcnt--;
ppa[pg_idx]->p_lckcnt++;
}
mutex_exit(&page_llock);
return (1);
}
page_t *
page_numtopp(pfn_t pfnum, se_t se)
{
page_t *pp;
retry:
pp = page_numtopp_nolock(pfnum);
if (pp == NULL) {
return ((page_t *)NULL);
}
/*
* Acquire the appropriate lock on the page.
*/
while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
if (page_pptonum(pp) != pfnum)
goto retry;
continue;
}
if (page_pptonum(pp) != pfnum) {
page_unlock(pp);
goto retry;
}
return (pp);
}
page_t *
page_numtopp_noreclaim(pfn_t pfnum, se_t se)
{
page_t *pp;
retry:
pp = page_numtopp_nolock(pfnum);
if (pp == NULL) {
return ((page_t *)NULL);
}
/*
* Acquire the appropriate lock on the page.
*/
while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
if (page_pptonum(pp) != pfnum)
goto retry;
continue;
}
if (page_pptonum(pp) != pfnum) {
page_unlock(pp);
goto retry;
}
return (pp);
}
/*
* This routine is like page_numtopp, but will only return page structs
* for pages which are ok for loading into hardware using the page struct.
*/
page_t *
page_numtopp_nowait(pfn_t pfnum, se_t se)
{
page_t *pp;
retry:
pp = page_numtopp_nolock(pfnum);
if (pp == NULL) {
return ((page_t *)NULL);
}
/*
* Try to acquire the appropriate lock on the page.
*/
if (PP_ISFREE(pp))
pp = NULL;
else {
if (!page_trylock(pp, se))
pp = NULL;
else {
if (page_pptonum(pp) != pfnum) {
page_unlock(pp);
goto retry;
}
if (PP_ISFREE(pp)) {
page_unlock(pp);
pp = NULL;
}
}
}
return (pp);
}
#define SYNC_PROGRESS_NPAGES 1000
/*
* Returns a count of dirty pages that are in the process
* of being written out. If 'cleanit' is set, try to push the page.
*/
pgcnt_t
page_busy(int cleanit)
{
page_t *page0 = page_first();
page_t *pp = page0;
pgcnt_t nppbusy = 0;
int counter = 0;
u_offset_t off;
do {
vnode_t *vp = pp->p_vnode;
/*
* Reset the sync timeout. The page list is very long
* on large memory systems.
*/
if (++counter > SYNC_PROGRESS_NPAGES) {
counter = 0;
vfs_syncprogress();
}
/*
* A page is a candidate for syncing if it is:
*
* (a) On neither the freelist nor the cachelist
* (b) Hashed onto a vnode
* (c) Not a kernel page
* (d) Dirty
* (e) Not part of a swapfile
* (f) a page which belongs to a real vnode; eg has a non-null
* v_vfsp pointer.
* (g) Backed by a filesystem which doesn't have a
* stubbed-out sync operation
*/
if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
vfs_can_sync(vp->v_vfsp)) {
nppbusy++;
if (!cleanit)
continue;
if (!page_trylock(pp, SE_EXCL))
continue;
if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
!(hat_pagesync(pp,
HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
page_unlock(pp);
continue;
}
off = pp->p_offset;
VN_HOLD(vp);
page_unlock(pp);
(void) VOP_PUTPAGE(vp, off, PAGESIZE,
B_ASYNC | B_FREE, kcred, NULL);
VN_RELE(vp);
}
} while ((pp = page_next(pp)) != page0);
vfs_syncprogress();
return (nppbusy);
}
void page_invalidate_pages(void);
/*
* callback handler to vm sub-system
*
* callers make sure no recursive entries to this func.
*/
/*ARGSUSED*/
boolean_t
callb_vm_cpr(void *arg, int code)
{
if (code == CB_CODE_CPR_CHKPT)
page_invalidate_pages();
return (B_TRUE);
}
/*
* Invalidate all pages of the system.
* It shouldn't be called until all user page activities are all stopped.
*/
void
page_invalidate_pages()
{
page_t *pp;
page_t *page0;
pgcnt_t nbusypages;
int retry = 0;
const int MAXRETRIES = 4;
top:
/*
* Flush dirty pages and destroy the clean ones.
*/
nbusypages = 0;
pp = page0 = page_first();
do {
struct vnode *vp;
u_offset_t offset;
int mod;
/*
* skip the page if it has no vnode or the page associated
* with the kernel vnode or prom allocated kernel mem.
*/
if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
continue;
/*
* skip the page which is already free invalidated.
*/
if (PP_ISFREE(pp) && PP_ISAGED(pp))
continue;
/*
* skip pages that are already locked or can't be "exclusively"
* locked or are already free. After we lock the page, check
* the free and age bits again to be sure it's not destroyed
* yet.
* To achieve max. parallelization, we use page_trylock instead
* of page_lock so that we don't get block on individual pages
* while we have thousands of other pages to process.
*/
if (!page_trylock(pp, SE_EXCL)) {
nbusypages++;
continue;
} else if (PP_ISFREE(pp)) {
if (!PP_ISAGED(pp)) {
page_destroy_free(pp);
} else {
page_unlock(pp);
}
continue;
}
/*
* Is this page involved in some I/O? shared?
*
* The page_struct_lock need not be acquired to
* examine these fields since the page has an
* "exclusive" lock.
*/
if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
page_unlock(pp);
continue;
}
if (vp->v_type == VCHR) {
panic("vp->v_type == VCHR");
/*NOTREACHED*/
}
if (!page_try_demote_pages(pp)) {
page_unlock(pp);
continue;
}
/*
* Check the modified bit. Leave the bits alone in hardware
* (they will be modified if we do the putpage).
*/
mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
& P_MOD);
if (mod) {
offset = pp->p_offset;
/*
* Hold the vnode before releasing the page lock
* to prevent it from being freed and re-used by
* some other thread.
*/
VN_HOLD(vp);
page_unlock(pp);
/*
* No error return is checked here. Callers such as
* cpr deals with the dirty pages at the dump time
* if this putpage fails.
*/
(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
kcred, NULL);
VN_RELE(vp);
} else {
/*LINTED: constant in conditional context*/
VN_DISPOSE(pp, B_INVAL, 0, kcred);
}
} while ((pp = page_next(pp)) != page0);
if (nbusypages && retry++ < MAXRETRIES) {
delay(1);
goto top;
}
}
/*
* Replace the page "old" with the page "new" on the page hash and vnode lists
*
* the replacement must be done in place, ie the equivalent sequence:
*
* vp = old->p_vnode;
* off = old->p_offset;
* page_do_hashout(old)
* page_do_hashin(new, vp, off)
*
* doesn't work, since
* 1) if old is the only page on the vnode, the v_pages list has a window
* where it looks empty. This will break file system assumptions.
* and
* 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
*/
static void
page_do_relocate_hash(page_t *new, page_t *old)
{
page_t **hash_list;
vnode_t *vp = old->p_vnode;
kmutex_t *sep;
ASSERT(PAGE_EXCL(old));
ASSERT(PAGE_EXCL(new));
ASSERT(vp != NULL);
ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
/*
* First find old page on the page hash list
*/
hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
for (;;) {
if (*hash_list == old)
break;
if (*hash_list == NULL) {
panic("page_do_hashout");
/*NOTREACHED*/
}
hash_list = &(*hash_list)->p_hash;
}
/*
* update new and replace old with new on the page hash list
*/
new->p_vnode = old->p_vnode;
new->p_offset = old->p_offset;
new->p_hash = old->p_hash;
*hash_list = new;
if ((new->p_vnode->v_flag & VISSWAP) != 0)
PP_SETSWAP(new);
/*
* replace old with new on the vnode's page list
*/
if (old->p_vpnext == old) {
new->p_vpnext = new;
new->p_vpprev = new;
} else {
new->p_vpnext = old->p_vpnext;
new->p_vpprev = old->p_vpprev;
new->p_vpnext->p_vpprev = new;
new->p_vpprev->p_vpnext = new;
}
if (vp->v_pages == old)
vp->v_pages = new;
/*
* clear out the old page
*/
old->p_hash = NULL;
old->p_vpnext = NULL;
old->p_vpprev = NULL;
old->p_vnode = NULL;
PP_CLRSWAP(old);
old->p_offset = (u_offset_t)-1;
page_clr_all_props(old);
/*
* Wake up processes waiting for this page. The page's
* identity has been changed, and is probably not the
* desired page any longer.
*/
sep = page_se_mutex(old);
mutex_enter(sep);
old->p_selock &= ~SE_EWANTED;
if (CV_HAS_WAITERS(&old->p_cv))
cv_broadcast(&old->p_cv);
mutex_exit(sep);
}
/*
* This function moves the identity of page "pp_old" to page "pp_new".
* Both pages must be locked on entry. "pp_new" is free, has no identity,
* and need not be hashed out from anywhere.
*/
void
page_relocate_hash(page_t *pp_new, page_t *pp_old)
{
vnode_t *vp = pp_old->p_vnode;
u_offset_t off = pp_old->p_offset;
kmutex_t *phm, *vphm;
/*
* Rehash two pages
*/
ASSERT(PAGE_EXCL(pp_old));
ASSERT(PAGE_EXCL(pp_new));
ASSERT(vp != NULL);
ASSERT(pp_new->p_vnode == NULL);
/*
* hashout then hashin while holding the mutexes
*/
phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
mutex_enter(phm);
vphm = page_vnode_mutex(vp);
mutex_enter(vphm);
page_do_relocate_hash(pp_new, pp_old);
/* The following comment preserved from page_flip(). */
pp_new->p_fsdata = pp_old->p_fsdata;
pp_old->p_fsdata = 0;
mutex_exit(vphm);
mutex_exit(phm);
/*
* The page_struct_lock need not be acquired for lckcnt and
* cowcnt since the page has an "exclusive" lock.
*/
ASSERT(pp_new->p_lckcnt == 0);
ASSERT(pp_new->p_cowcnt == 0);
pp_new->p_lckcnt = pp_old->p_lckcnt;
pp_new->p_cowcnt = pp_old->p_cowcnt;
pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
}
/*
* Helper routine used to lock all remaining members of a
* large page. The caller is responsible for passing in a locked
* pp. If pp is a large page, then it succeeds in locking all the
* remaining constituent pages or it returns with only the
* original page locked.
*
* Returns 1 on success, 0 on failure.
*
* If success is returned this routine guarantees p_szc for all constituent
* pages of a large page pp belongs to can't change. To achieve this we
* recheck szc of pp after locking all constituent pages and retry if szc
* changed (it could only decrease). Since hat_page_demote() needs an EXCL
* lock on one of constituent pages it can't be running after all constituent
* pages are locked. hat_page_demote() with a lock on a constituent page
* outside of this large page (i.e. pp belonged to a larger large page) is
* already done with all constituent pages of pp since the root's p_szc is
* changed last. Therefore no need to synchronize with hat_page_demote() that
* locked a constituent page outside of pp's current large page.
*/
#ifdef DEBUG
uint32_t gpg_trylock_mtbf = 0;
#endif
int
group_page_trylock(page_t *pp, se_t se)
{
page_t *tpp;
pgcnt_t npgs, i, j;
uint_t pszc = pp->p_szc;
#ifdef DEBUG
if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
return (0);
}
#endif
if (pp != PP_GROUPLEADER(pp, pszc)) {
return (0);
}
retry:
ASSERT(PAGE_LOCKED_SE(pp, se));
ASSERT(!PP_ISFREE(pp));
if (pszc == 0) {
return (1);
}
npgs = page_get_pagecnt(pszc);
tpp = pp + 1;
for (i = 1; i < npgs; i++, tpp++) {
if (!page_trylock(tpp, se)) {
tpp = pp + 1;
for (j = 1; j < i; j++, tpp++) {
page_unlock(tpp);
}
return (0);
}
}
if (pp->p_szc != pszc) {
ASSERT(pp->p_szc < pszc);
ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
!IS_SWAPFSVP(pp->p_vnode));
tpp = pp + 1;
for (i = 1; i < npgs; i++, tpp++) {
page_unlock(tpp);
}
pszc = pp->p_szc;
goto retry;
}
return (1);
}
void
group_page_unlock(page_t *pp)
{
page_t *tpp;
pgcnt_t npgs, i;
ASSERT(PAGE_LOCKED(pp));
ASSERT(!PP_ISFREE(pp));
ASSERT(pp == PP_PAGEROOT(pp));
npgs = page_get_pagecnt(pp->p_szc);
for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
page_unlock(tpp);
}
}
/*
* returns
* 0 : on success and *nrelocp is number of relocated PAGESIZE pages
* ERANGE : this is not a base page
* EBUSY : failure to get locks on the page/pages
* ENOMEM : failure to obtain replacement pages
* EAGAIN : OBP has not yet completed its boot-time handoff to the kernel
* EIO : An error occurred while trying to copy the page data
*
* Return with all constituent members of target and replacement
* SE_EXCL locked. It is the callers responsibility to drop the
* locks.
*/
int
do_page_relocate(
page_t **target,
page_t **replacement,
int grouplock,
spgcnt_t *nrelocp,
lgrp_t *lgrp)
{
page_t *first_repl;
page_t *repl;
page_t *targ;
page_t *pl = NULL;
uint_t ppattr;
pfn_t pfn, repl_pfn;
uint_t szc;
spgcnt_t npgs, i;
int repl_contig = 0;
uint_t flags = 0;
spgcnt_t dofree = 0;
*nrelocp = 0;
#if defined(__sparc)
/*
* We need to wait till OBP has completed
* its boot-time handoff of its resources to the kernel
* before we allow page relocation
*/
if (page_relocate_ready == 0) {
return (EAGAIN);
}
#endif
/*
* If this is not a base page,
* just return with 0x0 pages relocated.
*/
targ = *target;
ASSERT(PAGE_EXCL(targ));
ASSERT(!PP_ISFREE(targ));
szc = targ->p_szc;
ASSERT(szc < mmu_page_sizes);
VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
pfn = targ->p_pagenum;
if (pfn != PFN_BASE(pfn, szc)) {
VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
return (ERANGE);
}
if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
repl_pfn = repl->p_pagenum;
if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
return (ERANGE);
}
repl_contig = 1;
}
/*
* We must lock all members of this large page or we cannot
* relocate any part of it.
*/
if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
return (EBUSY);
}
/*
* reread szc it could have been decreased before
* group_page_trylock() was done.
*/
szc = targ->p_szc;
ASSERT(szc < mmu_page_sizes);
VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
ASSERT(pfn == PFN_BASE(pfn, szc));
npgs = page_get_pagecnt(targ->p_szc);
if (repl == NULL) {
dofree = npgs; /* Size of target page in MMU pages */
if (!page_create_wait(dofree, 0)) {
if (grouplock != 0) {
group_page_unlock(targ);
}
VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
return (ENOMEM);
}
/*
* seg kmem pages require that the target and replacement
* page be the same pagesize.
*/
flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
repl = page_get_replacement_page(targ, lgrp, flags);
if (repl == NULL) {
if (grouplock != 0) {
group_page_unlock(targ);
}
page_create_putback(dofree);
VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
return (ENOMEM);
}
}
#ifdef DEBUG
else {
ASSERT(PAGE_LOCKED(repl));
}
#endif /* DEBUG */
#if defined(__sparc)
/*
* Let hat_page_relocate() complete the relocation if it's kernel page
*/
if (VN_ISKAS(targ->p_vnode)) {
*replacement = repl;
if (hat_page_relocate(target, replacement, nrelocp) != 0) {
if (grouplock != 0) {
group_page_unlock(targ);
}
if (dofree) {
*replacement = NULL;
page_free_replacement_page(repl);
page_create_putback(dofree);
}
VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
return (EAGAIN);
}
VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
return (0);
}
#else
#if defined(lint)
dofree = dofree;
#endif
#endif
first_repl = repl;
for (i = 0; i < npgs; i++) {
ASSERT(PAGE_EXCL(targ));
ASSERT(targ->p_slckcnt == 0);
ASSERT(repl->p_slckcnt == 0);
(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
ASSERT(hat_page_getshare(targ) == 0);
ASSERT(!PP_ISFREE(targ));
ASSERT(targ->p_pagenum == (pfn + i));
ASSERT(repl_contig == 0 ||
repl->p_pagenum == (repl_pfn + i));
/*
* Copy the page contents and attributes then
* relocate the page in the page hash.
*/
if (ppcopy(targ, repl) == 0) {
targ = *target;
repl = first_repl;
VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
if (grouplock != 0) {
group_page_unlock(targ);
}
if (dofree) {
*replacement = NULL;
page_free_replacement_page(repl);
page_create_putback(dofree);
}
return (EIO);
}
targ++;
if (repl_contig != 0) {
repl++;
} else {
repl = repl->p_next;
}
}
repl = first_repl;
targ = *target;
for (i = 0; i < npgs; i++) {
ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
page_clr_all_props(repl);
page_set_props(repl, ppattr);
page_relocate_hash(repl, targ);
ASSERT(hat_page_getshare(targ) == 0);
ASSERT(hat_page_getshare(repl) == 0);
/*
* Now clear the props on targ, after the
* page_relocate_hash(), they no longer
* have any meaning.
*/
page_clr_all_props(targ);
ASSERT(targ->p_next == targ);
ASSERT(targ->p_prev == targ);
page_list_concat(&pl, &targ);
targ++;
if (repl_contig != 0) {
repl++;
} else {
repl = repl->p_next;
}
}
/* assert that we have come full circle with repl */
ASSERT(repl_contig == 1 || first_repl == repl);
*target = pl;
if (*replacement == NULL) {
ASSERT(first_repl == repl);
*replacement = repl;
}
VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
*nrelocp = npgs;
return (0);
}
/*
* On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
*/
int
page_relocate(
page_t **target,
page_t **replacement,
int grouplock,
int freetarget,
spgcnt_t *nrelocp,
lgrp_t *lgrp)
{
spgcnt_t ret;
/* do_page_relocate returns 0 on success or errno value */
ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
if (ret != 0 || freetarget == 0) {
return (ret);
}
if (*nrelocp == 1) {
ASSERT(*target != NULL);
page_free(*target, 1);
} else {
page_t *tpp = *target;
uint_t szc = tpp->p_szc;
pgcnt_t npgs = page_get_pagecnt(szc);
ASSERT(npgs > 1);
ASSERT(szc != 0);
do {
ASSERT(PAGE_EXCL(tpp));
ASSERT(!hat_page_is_mapped(tpp));
ASSERT(tpp->p_szc == szc);
PP_SETFREE(tpp);
PP_SETAGED(tpp);
npgs--;
} while ((tpp = tpp->p_next) != *target);
ASSERT(npgs == 0);
page_list_add_pages(*target, 0);
npgs = page_get_pagecnt(szc);
page_create_putback(npgs);
}
return (ret);
}
/*
* it is up to the caller to deal with pcf accounting.
*/
void
page_free_replacement_page(page_t *pplist)
{
page_t *pp;
while (pplist != NULL) {
/*
* pp_targ is a linked list.
*/
pp = pplist;
if (pp->p_szc == 0) {
page_sub(&pplist, pp);
page_clr_all_props(pp);
PP_SETFREE(pp);
PP_SETAGED(pp);
page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
page_unlock(pp);
VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
} else {
spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
page_t *tpp;
page_list_break(&pp, &pplist, curnpgs);
tpp = pp;
do {
ASSERT(PAGE_EXCL(tpp));
ASSERT(!hat_page_is_mapped(tpp));
page_clr_all_props(tpp);
PP_SETFREE(tpp);
PP_SETAGED(tpp);
} while ((tpp = tpp->p_next) != pp);
page_list_add_pages(pp, 0);
VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
}
}
}
/*
* Relocate target to non-relocatable replacement page.
*/
int
page_relocate_cage(page_t **target, page_t **replacement)
{
page_t *tpp, *rpp;
spgcnt_t pgcnt, npgs;
int result;
tpp = *target;
ASSERT(PAGE_EXCL(tpp));
ASSERT(tpp->p_szc == 0);
pgcnt = btop(page_get_pagesize(tpp->p_szc));
do {
(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
if (rpp == NULL) {
page_create_putback(pgcnt);
kcage_cageout_wakeup();
}
} while (rpp == NULL);
ASSERT(PP_ISNORELOC(rpp));
result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
if (result == 0) {
*replacement = rpp;
if (pgcnt != npgs)
panic("page_relocate_cage: partial relocation");
}
return (result);
}
/*
* Release the page lock on a page, place on cachelist
* tail if no longer mapped. Caller can let us know if
* the page is known to be clean.
*/
int
page_release(page_t *pp, int checkmod)
{
int status;
ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
(pp->p_vnode != NULL));
if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
!hat_page_is_mapped(pp)) {
/*
* If page is modified, unlock it
*
* (p_nrm & P_MOD) bit has the latest stuff because:
* (1) We found that this page doesn't have any mappings
* _after_ holding SE_EXCL and
* (2) We didn't drop SE_EXCL lock after the check in (1)
*/
if (checkmod && hat_ismod(pp)) {
page_unlock(pp);
status = PGREL_MOD;
} else {
/*LINTED: constant in conditional context*/
VN_DISPOSE(pp, B_FREE, 0, kcred);
status = PGREL_CLEAN;
}
} else {
page_unlock(pp);
status = PGREL_NOTREL;
}
return (status);
}
/*
* Given a constituent page, try to demote the large page on the freelist.
*
* Returns nonzero if the page could be demoted successfully. Returns with
* the constituent page still locked.
*/
int
page_try_demote_free_pages(page_t *pp)
{
page_t *rootpp = pp;
pfn_t pfn = page_pptonum(pp);
spgcnt_t npgs;
uint_t szc = pp->p_szc;
ASSERT(PP_ISFREE(pp));
ASSERT(PAGE_EXCL(pp));
/*
* Adjust rootpp and lock it, if `pp' is not the base
* constituent page.
*/
npgs = page_get_pagecnt(pp->p_szc);
if (npgs == 1) {
return (0);
}
if (!IS_P2ALIGNED(pfn, npgs)) {
pfn = P2ALIGN(pfn, npgs);
rootpp = page_numtopp_nolock(pfn);
}
if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
return (0);
}
if (rootpp->p_szc != szc) {
if (pp != rootpp)
page_unlock(rootpp);
return (0);
}
page_demote_free_pages(rootpp);
if (pp != rootpp)
page_unlock(rootpp);
ASSERT(PP_ISFREE(pp));
ASSERT(PAGE_EXCL(pp));
return (1);
}
/*
* Given a constituent page, try to demote the large page.
*
* Returns nonzero if the page could be demoted successfully. Returns with
* the constituent page still locked.
*/
int
page_try_demote_pages(page_t *pp)
{
page_t *tpp, *rootpp = pp;
pfn_t pfn = page_pptonum(pp);
spgcnt_t i, npgs;
uint_t szc = pp->p_szc;
vnode_t *vp = pp->p_vnode;
ASSERT(PAGE_EXCL(pp));
VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
if (pp->p_szc == 0) {
VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
return (1);
}
if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
page_demote_vp_pages(pp);
ASSERT(pp->p_szc == 0);
return (1);
}
/*
* Adjust rootpp if passed in is not the base
* constituent page.
*/
npgs = page_get_pagecnt(pp->p_szc);
ASSERT(npgs > 1);
if (!IS_P2ALIGNED(pfn, npgs)) {
pfn = P2ALIGN(pfn, npgs);
rootpp = page_numtopp_nolock(pfn);
VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
ASSERT(rootpp->p_vnode != NULL);
ASSERT(rootpp->p_szc == szc);
}
/*
* We can't demote kernel pages since we can't hat_unload()
* the mappings.
*/
if (VN_ISKAS(rootpp->p_vnode))
return (0);
/*
* Attempt to lock all constituent pages except the page passed
* in since it's already locked.
*/
for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
ASSERT(!PP_ISFREE(tpp));
ASSERT(tpp->p_vnode != NULL);
if (tpp != pp && !page_trylock(tpp, SE_EXCL))
break;
ASSERT(tpp->p_szc == rootpp->p_szc);
ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
}
/*
* If we failed to lock them all then unlock what we have
* locked so far and bail.
*/
if (i < npgs) {
tpp = rootpp;
while (i-- > 0) {
if (tpp != pp)
page_unlock(tpp);
tpp++;
}
VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
return (0);
}
for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
ASSERT(PAGE_EXCL(tpp));
ASSERT(tpp->p_slckcnt == 0);
(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
tpp->p_szc = 0;
}
/*
* Unlock all pages except the page passed in.
*/
for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
ASSERT(!hat_page_is_mapped(tpp));
if (tpp != pp)
page_unlock(tpp);
}
VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
return (1);
}
/*
* Called by page_free() and page_destroy() to demote the page size code
* (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
* p_szc on free list, neither can we just clear p_szc of a single page_t
* within a large page since it will break other code that relies on p_szc
* being the same for all page_t's of a large page). Anonymous pages should
* never end up here because anon_map_getpages() cannot deal with p_szc
* changes after a single constituent page is locked. While anonymous or
* kernel large pages are demoted or freed the entire large page at a time
* with all constituent pages locked EXCL for the file system pages we
* have to be able to demote a large page (i.e. decrease all constituent pages
* p_szc) with only just an EXCL lock on one of constituent pages. The reason
* we can easily deal with anonymous page demotion the entire large page at a
* time is that those operation originate at address space level and concern
* the entire large page region with actual demotion only done when pages are
* not shared with any other processes (therefore we can always get EXCL lock
* on all anonymous constituent pages after clearing segment page
* cache). However file system pages can be truncated or invalidated at a
* PAGESIZE level from the file system side and end up in page_free() or
* page_destroy() (we also allow only part of the large page to be SOFTLOCKed
* and therefore pageout should be able to demote a large page by EXCL locking
* any constituent page that is not under SOFTLOCK). In those cases we cannot
* rely on being able to lock EXCL all constituent pages.
*
* To prevent szc changes on file system pages one has to lock all constituent
* pages at least SHARED (or call page_szc_lock()). The only subsystem that
* doesn't rely on locking all constituent pages (or using page_szc_lock()) to
* prevent szc changes is hat layer that uses its own page level mlist
* locks. hat assumes that szc doesn't change after mlist lock for a page is
* taken. Therefore we need to change szc under hat level locks if we only
* have an EXCL lock on a single constituent page and hat still references any
* of constituent pages. (Note we can't "ignore" hat layer by simply
* hat_pageunload() all constituent pages without having EXCL locks on all of
* constituent pages). We use hat_page_demote() call to safely demote szc of
* all constituent pages under hat locks when we only have an EXCL lock on one
* of constituent pages.
*
* This routine calls page_szc_lock() before calling hat_page_demote() to
* allow segvn in one special case not to lock all constituent pages SHARED
* before calling hat_memload_array() that relies on p_szc not changing even
* before hat level mlist lock is taken. In that case segvn uses
* page_szc_lock() to prevent hat_page_demote() changing p_szc values.
*
* Anonymous or kernel page demotion still has to lock all pages exclusively
* and do hat_pageunload() on all constituent pages before demoting the page
* therefore there's no need for anonymous or kernel page demotion to use
* hat_page_demote() mechanism.
*
* hat_page_demote() removes all large mappings that map pp and then decreases
* p_szc starting from the last constituent page of the large page. By working
* from the tail of a large page in pfn decreasing order allows one looking at
* the root page to know that hat_page_demote() is done for root's szc area.
* e.g. if a root page has szc 1 one knows it only has to lock all constituent
* pages within szc 1 area to prevent szc changes because hat_page_demote()
* that started on this page when it had szc > 1 is done for this szc 1 area.
*
* We are guaranteed that all constituent pages of pp's large page belong to
* the same vnode with the consecutive offsets increasing in the direction of
* the pfn i.e. the identity of constituent pages can't change until their
* p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
* large mappings to pp even though we don't lock any constituent page except
* pp (i.e. we won't unload e.g. kernel locked page).
*/
static void
page_demote_vp_pages(page_t *pp)
{
kmutex_t *mtx;
ASSERT(PAGE_EXCL(pp));
ASSERT(!PP_ISFREE(pp));
ASSERT(pp->p_vnode != NULL);
ASSERT(!IS_SWAPFSVP(pp->p_vnode));
ASSERT(!PP_ISKAS(pp));
VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
mtx = page_szc_lock(pp);
if (mtx != NULL) {
hat_page_demote(pp);
mutex_exit(mtx);
}
ASSERT(pp->p_szc == 0);
}
/*
* Mark any existing pages for migration in the given range
*/
void
page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
u_offset_t vnoff, int rflag)
{
struct anon *ap;
vnode_t *curvp;
lgrp_t *from;
pgcnt_t i;
pgcnt_t nlocked;
u_offset_t off;
pfn_t pfn;
size_t pgsz;
size_t segpgsz;
pgcnt_t pages;
uint_t pszc;
page_t **ppa;
pgcnt_t ppa_nentries;
page_t *pp;
caddr_t va;
ulong_t an_idx;
anon_sync_obj_t cookie;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* Don't do anything if don't need to do lgroup optimizations
* on this system
*/
if (!lgrp_optimizations())
return;
/*
* Align address and length to (potentially large) page boundary
*/
segpgsz = page_get_pagesize(seg->s_szc);
addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
if (rflag)
len = P2ROUNDUP(len, segpgsz);
/*
* Allocate page array to accommodate largest page size
*/
pgsz = page_get_pagesize(page_num_pagesizes() - 1);
ppa_nentries = btop(pgsz);
ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
/*
* Do one (large) page at a time
*/
va = addr;
while (va < addr + len) {
/*
* Lookup (root) page for vnode and offset corresponding to
* this virtual address
* Try anonmap first since there may be copy-on-write
* pages, but initialize vnode pointer and offset using
* vnode arguments just in case there isn't an amp.
*/
curvp = vp;
off = vnoff + va - seg->s_base;
if (amp) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
an_idx = anon_index + seg_page(seg, va);
anon_array_enter(amp, an_idx, &cookie);
ap = anon_get_ptr(amp->ahp, an_idx);
if (ap)
swap_xlate(ap, &curvp, &off);
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
pp = NULL;
if (curvp)
pp = page_lookup(curvp, off, SE_SHARED);
/*
* If there isn't a page at this virtual address,
* skip to next page
*/
if (pp == NULL) {
va += PAGESIZE;
continue;
}
/*
* Figure out which lgroup this page is in for kstats
*/
pfn = page_pptonum(pp);
from = lgrp_pfn_to_lgrp(pfn);
/*
* Get page size, and round up and skip to next page boundary
* if unaligned address
*/
pszc = pp->p_szc;
pgsz = page_get_pagesize(pszc);
pages = btop(pgsz);
if (!IS_P2ALIGNED(va, pgsz) ||
!IS_P2ALIGNED(pfn, pages) ||
pgsz > segpgsz) {
pgsz = MIN(pgsz, segpgsz);
page_unlock(pp);
i = btop(P2END((uintptr_t)va, pgsz) -
(uintptr_t)va);
va = (caddr_t)P2END((uintptr_t)va, pgsz);
lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
continue;
}
/*
* Upgrade to exclusive lock on page
*/
if (!page_tryupgrade(pp)) {
page_unlock(pp);
va += pgsz;
lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
btop(pgsz));
continue;
}
/*
* Remember pages locked exclusively and how many
*/
ppa[0] = pp;
nlocked = 1;
/*
* Lock constituent pages if this is large page
*/
if (pages > 1) {
/*
* Lock all constituents except root page, since it
* should be locked already.
*/
for (i = 1; i < pages; i++) {
pp++;
if (!page_trylock(pp, SE_EXCL)) {
break;
}
if (PP_ISFREE(pp) ||
pp->p_szc != pszc) {
/*
* hat_page_demote() raced in with us.
*/
ASSERT(!IS_SWAPFSVP(curvp));
page_unlock(pp);
break;
}
ppa[nlocked] = pp;
nlocked++;
}
}
/*
* If all constituent pages couldn't be locked,
* unlock pages locked so far and skip to next page.
*/
if (nlocked != pages) {
for (i = 0; i < nlocked; i++)
page_unlock(ppa[i]);
va += pgsz;
lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
btop(pgsz));
continue;
}
/*
* hat_page_demote() can no longer happen
* since last cons page had the right p_szc after
* all cons pages were locked. all cons pages
* should now have the same p_szc.
*/
/*
* All constituent pages locked successfully, so mark
* large page for migration and unload the mappings of
* constituent pages, so a fault will occur on any part of the
* large page
*/
PP_SETMIGRATE(ppa[0]);
for (i = 0; i < nlocked; i++) {
pp = ppa[i];
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
ASSERT(hat_page_getshare(pp) == 0);
page_unlock(pp);
}
lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
va += pgsz;
}
kmem_free(ppa, ppa_nentries * sizeof (page_t *));
}
/*
* Migrate any pages that have been marked for migration in the given range
*/
void
page_migrate(
struct seg *seg,
caddr_t addr,
page_t **ppa,
pgcnt_t npages)
{
lgrp_t *from;
lgrp_t *to;
page_t *newpp;
page_t *pp;
pfn_t pfn;
size_t pgsz;
spgcnt_t page_cnt;
spgcnt_t i;
uint_t pszc;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
while (npages > 0) {
pp = *ppa;
pszc = pp->p_szc;
pgsz = page_get_pagesize(pszc);
page_cnt = btop(pgsz);
/*
* Check to see whether this page is marked for migration
*
* Assume that root page of large page is marked for
* migration and none of the other constituent pages
* are marked. This really simplifies clearing the
* migrate bit by not having to clear it from each
* constituent page.
*
* note we don't want to relocate an entire large page if
* someone is only using one subpage.
*/
if (npages < page_cnt)
break;
/*
* Is it marked for migration?
*/
if (!PP_ISMIGRATE(pp))
goto next;
/*
* Determine lgroups that page is being migrated between
*/
pfn = page_pptonum(pp);
if (!IS_P2ALIGNED(pfn, page_cnt)) {
break;
}
from = lgrp_pfn_to_lgrp(pfn);
to = lgrp_mem_choose(seg, addr, pgsz);
/*
* Need to get exclusive lock's to migrate
*/
for (i = 0; i < page_cnt; i++) {
ASSERT(PAGE_LOCKED(ppa[i]));
if (page_pptonum(ppa[i]) != pfn + i ||
ppa[i]->p_szc != pszc) {
break;
}
if (!page_tryupgrade(ppa[i])) {
lgrp_stat_add(from->lgrp_id,
LGRP_PM_FAIL_LOCK_PGS,
page_cnt);
break;
}
/*
* Check to see whether we are trying to migrate
* page to lgroup where it is allocated already.
* If so, clear the migrate bit and skip to next
* page.
*/
if (i == 0 && to == from) {
PP_CLRMIGRATE(ppa[0]);
page_downgrade(ppa[0]);
goto next;
}
}
/*
* If all constituent pages couldn't be locked,
* unlock pages locked so far and skip to next page.
*/
if (i != page_cnt) {
while (--i != -1) {
page_downgrade(ppa[i]);
}
goto next;
}
(void) page_create_wait(page_cnt, PG_WAIT);
newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
if (newpp == NULL) {
page_create_putback(page_cnt);
for (i = 0; i < page_cnt; i++) {
page_downgrade(ppa[i]);
}
lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
page_cnt);
goto next;
}
ASSERT(newpp->p_szc == pszc);
/*
* Clear migrate bit and relocate page
*/
PP_CLRMIGRATE(pp);
if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
panic("page_migrate: page_relocate failed");
}
ASSERT(page_cnt * PAGESIZE == pgsz);
/*
* Keep stats for number of pages migrated from and to
* each lgroup
*/
lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
/*
* update the page_t array we were passed in and
* unlink constituent pages of a large page.
*/
for (i = 0; i < page_cnt; ++i, ++pp) {
ASSERT(PAGE_EXCL(newpp));
ASSERT(newpp->p_szc == pszc);
ppa[i] = newpp;
pp = newpp;
page_sub(&newpp, pp);
page_downgrade(pp);
}
ASSERT(newpp == NULL);
next:
addr += pgsz;
ppa += page_cnt;
npages -= page_cnt;
}
}
ulong_t mem_waiters = 0;
ulong_t max_count = 20;
#define MAX_DELAY 0x1ff
/*
* Check if enough memory is available to proceed.
* Depending on system configuration and how much memory is
* reserved for swap we need to check against two variables.
* e.g. on systems with little physical swap availrmem can be
* more reliable indicator of how much memory is available.
* On systems with large phys swap freemem can be better indicator.
* If freemem drops below threshold level don't return an error
* immediately but wake up pageout to free memory and block.
* This is done number of times. If pageout is not able to free
* memory within certain time return an error.
* The same applies for availrmem but kmem_reap is used to
* free memory.
*/
int
page_mem_avail(pgcnt_t npages)
{
ulong_t count;
#if defined(__i386)
if (freemem > desfree + npages &&
availrmem > swapfs_reserve + npages &&
btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
npages)
return (1);
#else
if (freemem > desfree + npages &&
availrmem > swapfs_reserve + npages)
return (1);
#endif
count = max_count;
atomic_add_long(&mem_waiters, 1);
while (freemem < desfree + npages && --count) {
cv_signal(&proc_pageout->p_cv);
if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
atomic_add_long(&mem_waiters, -1);
return (0);
}
}
if (count == 0) {
atomic_add_long(&mem_waiters, -1);
return (0);
}
count = max_count;
while (availrmem < swapfs_reserve + npages && --count) {
kmem_reap();
if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
atomic_add_long(&mem_waiters, -1);
return (0);
}
}
atomic_add_long(&mem_waiters, -1);
if (count == 0)
return (0);
#if defined(__i386)
if (btop(vmem_size(heap_arena, VMEM_FREE)) <
tune.t_minarmem + npages)
return (0);
#endif
return (1);
}
#define MAX_CNT 60 /* max num of iterations */
/*
* Reclaim/reserve availrmem for npages.
* If there is not enough memory start reaping seg, kmem caches.
* Start pageout scanner (via page_needfree()).
* Exit after ~ MAX_CNT s regardless of how much memory has been released.
* Note: There is no guarantee that any availrmem will be freed as
* this memory typically is locked (kernel heap) or reserved for swap.
* Also due to memory fragmentation kmem allocator may not be able
* to free any memory (single user allocated buffer will prevent
* freeing slab or a page).
*/
int
page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
{
int i = 0;
int ret = 0;
pgcnt_t deficit;
pgcnt_t old_availrmem;
mutex_enter(&freemem_lock);
old_availrmem = availrmem - 1;
while ((availrmem < tune.t_minarmem + npages + epages) &&
(old_availrmem < availrmem) && (i++ < MAX_CNT)) {
old_availrmem = availrmem;
deficit = tune.t_minarmem + npages + epages - availrmem;
mutex_exit(&freemem_lock);
page_needfree(deficit);
kmem_reap();
delay(hz);
page_needfree(-(spgcnt_t)deficit);
mutex_enter(&freemem_lock);
}
if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
availrmem -= npages;
ret = 1;
}
mutex_exit(&freemem_lock);
return (ret);
}
/*
* Search the memory segments to locate the desired page. Within a
* segment, pages increase linearly with one page structure per
* physical page frame (size PAGESIZE). The search begins
* with the segment that was accessed last, to take advantage of locality.
* If the hint misses, we start from the beginning of the sorted memseg list
*/
/*
* Some data structures for pfn to pp lookup.
*/
ulong_t mhash_per_slot;
struct memseg *memseg_hash[N_MEM_SLOTS];
page_t *
page_numtopp_nolock(pfn_t pfnum)
{
struct memseg *seg;
page_t *pp;
vm_cpu_data_t *vc;
/*
* We need to disable kernel preemption while referencing the
* cpu_vm_data field in order to prevent us from being switched to
* another cpu and trying to reference it after it has been freed.
* This will keep us on cpu and prevent it from being removed while
* we are still on it.
*
* We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
* which is being resued by DR who will flush those references
* before modifying the reused memseg. See memseg_cpu_vm_flush().
*/
kpreempt_disable();
vc = CPU->cpu_vm_data;
ASSERT(vc != NULL);
MEMSEG_STAT_INCR(nsearch);
/* Try last winner first */
if (((seg = vc->vc_pnum_memseg) != NULL) &&
(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
MEMSEG_STAT_INCR(nlastwon);
pp = seg->pages + (pfnum - seg->pages_base);
if (pp->p_pagenum == pfnum) {
kpreempt_enable();
return ((page_t *)pp);
}
}
/* Else Try hash */
if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
MEMSEG_STAT_INCR(nhashwon);
vc->vc_pnum_memseg = seg;
pp = seg->pages + (pfnum - seg->pages_base);
if (pp->p_pagenum == pfnum) {
kpreempt_enable();
return ((page_t *)pp);
}
}
/* Else Brute force */
for (seg = memsegs; seg != NULL; seg = seg->next) {
if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
vc->vc_pnum_memseg = seg;
pp = seg->pages + (pfnum - seg->pages_base);
if (pp->p_pagenum == pfnum) {
kpreempt_enable();
return ((page_t *)pp);
}
}
}
vc->vc_pnum_memseg = NULL;
kpreempt_enable();
MEMSEG_STAT_INCR(nnotfound);
return ((page_t *)NULL);
}
struct memseg *
page_numtomemseg_nolock(pfn_t pfnum)
{
struct memseg *seg;
page_t *pp;
/*
* We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
* which is being resued by DR who will flush those references
* before modifying the reused memseg. See memseg_cpu_vm_flush().
*/
kpreempt_disable();
/* Try hash */
if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
(pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
pp = seg->pages + (pfnum - seg->pages_base);
if (pp->p_pagenum == pfnum) {
kpreempt_enable();
return (seg);
}
}
/* Else Brute force */
for (seg = memsegs; seg != NULL; seg = seg->next) {
if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
pp = seg->pages + (pfnum - seg->pages_base);
if (pp->p_pagenum == pfnum) {
kpreempt_enable();
return (seg);
}
}
}
kpreempt_enable();
return ((struct memseg *)NULL);
}
/*
* Given a page and a count return the page struct that is
* n structs away from the current one in the global page
* list.
*
* This function wraps to the first page upon
* reaching the end of the memseg list.
*/
page_t *
page_nextn(page_t *pp, ulong_t n)
{
struct memseg *seg;
page_t *ppn;
vm_cpu_data_t *vc;
/*
* We need to disable kernel preemption while referencing the
* cpu_vm_data field in order to prevent us from being switched to
* another cpu and trying to reference it after it has been freed.
* This will keep us on cpu and prevent it from being removed while
* we are still on it.
*
* We may be caching a memseg in vc_pnum_memseg/vc_pnext_memseg
* which is being resued by DR who will flush those references
* before modifying the reused memseg. See memseg_cpu_vm_flush().
*/
kpreempt_disable();
vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
ASSERT(vc != NULL);
if (((seg = vc->vc_pnext_memseg) == NULL) ||
(seg->pages_base == seg->pages_end) ||
!(pp >= seg->pages && pp < seg->epages)) {
for (seg = memsegs; seg; seg = seg->next) {
if (pp >= seg->pages && pp < seg->epages)
break;
}
if (seg == NULL) {
/* Memory delete got in, return something valid. */
/* TODO: fix me. */
seg = memsegs;
pp = seg->pages;
}
}
/* check for wraparound - possible if n is large */
while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
n -= seg->epages - pp;
seg = seg->next;
if (seg == NULL)
seg = memsegs;
pp = seg->pages;
}
vc->vc_pnext_memseg = seg;
kpreempt_enable();
return (ppn);
}
/*
* Initialize for a loop using page_next_scan_large().
*/
page_t *
page_next_scan_init(void **cookie)
{
ASSERT(cookie != NULL);
*cookie = (void *)memsegs;
return ((page_t *)memsegs->pages);
}
/*
* Return the next page in a scan of page_t's, assuming we want
* to skip over sub-pages within larger page sizes.
*
* The cookie is used to keep track of the current memseg.
*/
page_t *
page_next_scan_large(
page_t *pp,
ulong_t *n,
void **cookie)
{
struct memseg *seg = (struct memseg *)*cookie;
page_t *new_pp;
ulong_t cnt;
pfn_t pfn;
/*
* get the count of page_t's to skip based on the page size
*/
ASSERT(pp != NULL);
if (pp->p_szc == 0) {
cnt = 1;
} else {
pfn = page_pptonum(pp);
cnt = page_get_pagecnt(pp->p_szc);
cnt -= pfn & (cnt - 1);
}
*n += cnt;
new_pp = pp + cnt;
/*
* Catch if we went past the end of the current memory segment. If so,
* just move to the next segment with pages.
*/
if (new_pp >= seg->epages || seg->pages_base == seg->pages_end) {
do {
seg = seg->next;
if (seg == NULL)
seg = memsegs;
} while (seg->pages_base == seg->pages_end);
new_pp = seg->pages;
*cookie = (void *)seg;
}
return (new_pp);
}
/*
* Returns next page in list. Note: this function wraps
* to the first page in the list upon reaching the end
* of the list. Callers should be aware of this fact.
*/
/* We should change this be a #define */
page_t *
page_next(page_t *pp)
{
return (page_nextn(pp, 1));
}
page_t *
page_first()
{
return ((page_t *)memsegs->pages);
}
/*
* This routine is called at boot with the initial memory configuration
* and when memory is added or removed.
*/
void
build_pfn_hash()
{
pfn_t cur;
pgcnt_t index;
struct memseg *pseg;
int i;
/*
* Clear memseg_hash array.
* Since memory add/delete is designed to operate concurrently
* with normal operation, the hash rebuild must be able to run
* concurrently with page_numtopp_nolock(). To support this
* functionality, assignments to memseg_hash array members must
* be done atomically.
*
* NOTE: bzero() does not currently guarantee this for kernel
* threads, and cannot be used here.
*/
for (i = 0; i < N_MEM_SLOTS; i++)
memseg_hash[i] = NULL;
hat_kpm_mseghash_clear(N_MEM_SLOTS);
/*
* Physmax is the last valid pfn.
*/
mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
index = MEMSEG_PFN_HASH(pseg->pages_base);
cur = pseg->pages_base;
do {
if (index >= N_MEM_SLOTS)
index = MEMSEG_PFN_HASH(cur);
if (memseg_hash[index] == NULL ||
memseg_hash[index]->pages_base > pseg->pages_base) {
memseg_hash[index] = pseg;
hat_kpm_mseghash_update(index, pseg);
}
cur += mhash_per_slot;
index++;
} while (cur < pseg->pages_end);
}
}
/*
* Return the pagenum for the pp
*/
pfn_t
page_pptonum(page_t *pp)
{
return (pp->p_pagenum);
}
/*
* interface to the referenced and modified etc bits
* in the PSM part of the page struct
* when no locking is desired.
*/
void
page_set_props(page_t *pp, uint_t flags)
{
ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
pp->p_nrm |= (uchar_t)flags;
}
void
page_clr_all_props(page_t *pp)
{
pp->p_nrm = 0;
}
/*
* Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
*/
int
page_clear_lck_cow(page_t *pp, int adjust)
{
int f_amount;
ASSERT(PAGE_EXCL(pp));
/*
* The page_struct_lock need not be acquired here since
* we require the caller hold the page exclusively locked.
*/
f_amount = 0;
if (pp->p_lckcnt) {
f_amount = 1;
pp->p_lckcnt = 0;
}
if (pp->p_cowcnt) {
f_amount += pp->p_cowcnt;
pp->p_cowcnt = 0;
}
if (adjust && f_amount) {
mutex_enter(&freemem_lock);
availrmem += f_amount;
mutex_exit(&freemem_lock);
}
return (f_amount);
}
/*
* The following functions is called from free_vp_pages()
* for an inexact estimate of a newly free'd page...
*/
ulong_t
page_share_cnt(page_t *pp)
{
return (hat_page_getshare(pp));
}
int
page_isshared(page_t *pp)
{
return (hat_page_checkshare(pp, 1));
}
int
page_isfree(page_t *pp)
{
return (PP_ISFREE(pp));
}
int
page_isref(page_t *pp)
{
return (hat_page_getattr(pp, P_REF));
}
int
page_ismod(page_t *pp)
{
return (hat_page_getattr(pp, P_MOD));
}
/*
* The following code all currently relates to the page capture logic:
*
* This logic is used for cases where there is a desire to claim a certain
* physical page in the system for the caller. As it may not be possible
* to capture the page immediately, the p_toxic bits are used in the page
* structure to indicate that someone wants to capture this page. When the
* page gets unlocked, the toxic flag will be noted and an attempt to capture
* the page will be made. If it is successful, the original callers callback
* will be called with the page to do with it what they please.
*
* There is also an async thread which wakes up to attempt to capture
* pages occasionally which have the capture bit set. All of the pages which
* need to be captured asynchronously have been inserted into the
* page_capture_hash and thus this thread walks that hash list. Items in the
* hash have an expiration time so this thread handles that as well by removing
* the item from the hash if it has expired.
*
* Some important things to note are:
* - if the PR_CAPTURE bit is set on a page, then the page is in the
* page_capture_hash. The page_capture_hash_head.pchh_mutex is needed
* to set and clear this bit, and while the lock is held is the only time
* you can add or remove an entry from the hash.
* - the PR_CAPTURE bit can only be set and cleared while holding the
* page_capture_hash_head.pchh_mutex
* - the t_flag field of the thread struct is used with the T_CAPTURING
* flag to prevent recursion while dealing with large pages.
* - pages which need to be retired never expire on the page_capture_hash.
*/
static void page_capture_thread(void);
static kthread_t *pc_thread_id;
kcondvar_t pc_cv;
static kmutex_t pc_thread_mutex;
static clock_t pc_thread_shortwait;
static clock_t pc_thread_longwait;
static int pc_thread_retry;
struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
/* Note that this is a circular linked list */
typedef struct page_capture_hash_bucket {
page_t *pp;
uint_t szc;
uint_t flags;
clock_t expires; /* lbolt at which this request expires. */
void *datap; /* Cached data passed in for callback */
struct page_capture_hash_bucket *next;
struct page_capture_hash_bucket *prev;
} page_capture_hash_bucket_t;
/*
* Each hash bucket will have it's own mutex and two lists which are:
* active (0): represents requests which have not been processed by
* the page_capture async thread yet.
* walked (1): represents requests which have been processed by the
* page_capture async thread within it's given walk of this bucket.
*
* These are all needed so that we can synchronize all async page_capture
* events. When the async thread moves to a new bucket, it will append the
* walked list to the active list and walk each item one at a time, moving it
* from the active list to the walked list. Thus if there is an async request
* outstanding for a given page, it will always be in one of the two lists.
* New requests will always be added to the active list.
* If we were not able to capture a page before the request expired, we'd free
* up the request structure which would indicate to page_capture that there is
* no longer a need for the given page, and clear the PR_CAPTURE flag if
* possible.
*/
typedef struct page_capture_hash_head {
kmutex_t pchh_mutex;
uint_t num_pages;
page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
} page_capture_hash_head_t;
#ifdef DEBUG
#define NUM_PAGE_CAPTURE_BUCKETS 4
#else
#define NUM_PAGE_CAPTURE_BUCKETS 64
#endif
page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
/* for now use a very simple hash based upon the size of a page struct */
#define PAGE_CAPTURE_HASH(pp) \
((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
extern pgcnt_t swapfs_minfree;
int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
/*
* a callback function is required for page capture requests.
*/
void
page_capture_register_callback(uint_t index, clock_t duration,
int (*cb_func)(page_t *, void *, uint_t))
{
ASSERT(pc_cb[index].cb_active == 0);
ASSERT(cb_func != NULL);
rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
pc_cb[index].duration = duration;
pc_cb[index].cb_func = cb_func;
pc_cb[index].cb_active = 1;
rw_exit(&pc_cb[index].cb_rwlock);
}
void
page_capture_unregister_callback(uint_t index)
{
int i, j;
struct page_capture_hash_bucket *bp1;
struct page_capture_hash_bucket *bp2;
struct page_capture_hash_bucket *head = NULL;
uint_t flags = (1 << index);
rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
ASSERT(pc_cb[index].cb_active == 1);
pc_cb[index].duration = 0; /* Paranoia */
pc_cb[index].cb_func = NULL; /* Paranoia */
pc_cb[index].cb_active = 0;
rw_exit(&pc_cb[index].cb_rwlock);
/*
* Just move all the entries to a private list which we can walk
* through without the need to hold any locks.
* No more requests can get added to the hash lists for this consumer
* as the cb_active field for the callback has been cleared.
*/
for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
mutex_enter(&page_capture_hash[i].pchh_mutex);
for (j = 0; j < 2; j++) {
bp1 = page_capture_hash[i].lists[j].next;
/* walk through all but first (sentinel) element */
while (bp1 != &page_capture_hash[i].lists[j]) {
bp2 = bp1;
if (bp2->flags & flags) {
bp1 = bp2->next;
bp1->prev = bp2->prev;
bp2->prev->next = bp1;
bp2->next = head;
head = bp2;
/*
* Clear the PR_CAPTURE bit as we
* hold appropriate locks here.
*/
page_clrtoxic(head->pp, PR_CAPTURE);
page_capture_hash[i].num_pages--;
continue;
}
bp1 = bp1->next;
}
}
mutex_exit(&page_capture_hash[i].pchh_mutex);
}
while (head != NULL) {
bp1 = head;
head = head->next;
kmem_free(bp1, sizeof (*bp1));
}
}
/*
* Find pp in the active list and move it to the walked list if it
* exists.
* Note that most often pp should be at the front of the active list
* as it is currently used and thus there is no other sort of optimization
* being done here as this is a linked list data structure.
* Returns 1 on successful move or 0 if page could not be found.
*/
static int
page_capture_move_to_walked(page_t *pp)
{
page_capture_hash_bucket_t *bp;
int index;
index = PAGE_CAPTURE_HASH(pp);
mutex_enter(&page_capture_hash[index].pchh_mutex);
bp = page_capture_hash[index].lists[0].next;
while (bp != &page_capture_hash[index].lists[0]) {
if (bp->pp == pp) {
/* Remove from old list */
bp->next->prev = bp->prev;
bp->prev->next = bp->next;
/* Add to new list */
bp->next = page_capture_hash[index].lists[1].next;
bp->prev = &page_capture_hash[index].lists[1];
page_capture_hash[index].lists[1].next = bp;
bp->next->prev = bp;
mutex_exit(&page_capture_hash[index].pchh_mutex);
return (1);
}
bp = bp->next;
}
mutex_exit(&page_capture_hash[index].pchh_mutex);
return (0);
}
/*
* Add a new entry to the page capture hash. The only case where a new
* entry is not added is when the page capture consumer is no longer registered.
* In this case, we'll silently not add the page to the hash. We know that
* page retire will always be registered for the case where we are currently
* unretiring a page and thus there are no conflicts.
*/
static void
page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
{
page_capture_hash_bucket_t *bp1;
page_capture_hash_bucket_t *bp2;
int index;
int cb_index;
int i;
#ifdef DEBUG
page_capture_hash_bucket_t *tp1;
int l;
#endif
ASSERT(!(flags & CAPTURE_ASYNC));
bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
bp1->pp = pp;
bp1->szc = szc;
bp1->flags = flags;
bp1->datap = datap;
for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
if ((flags >> cb_index) & 1) {
break;
}
}
ASSERT(cb_index != PC_NUM_CALLBACKS);
rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
if (pc_cb[cb_index].cb_active) {
if (pc_cb[cb_index].duration == -1) {
bp1->expires = (clock_t)-1;
} else {
bp1->expires = ddi_get_lbolt() +
pc_cb[cb_index].duration;
}
} else {
/* There's no callback registered so don't add to the hash */
rw_exit(&pc_cb[cb_index].cb_rwlock);
kmem_free(bp1, sizeof (*bp1));
return;
}
index = PAGE_CAPTURE_HASH(pp);
/*
* Only allow capture flag to be modified under this mutex.
* Prevents multiple entries for same page getting added.
*/
mutex_enter(&page_capture_hash[index].pchh_mutex);
/*
* if not already on the hash, set capture bit and add to the hash
*/
if (!(pp->p_toxic & PR_CAPTURE)) {
#ifdef DEBUG
/* Check for duplicate entries */
for (l = 0; l < 2; l++) {
tp1 = page_capture_hash[index].lists[l].next;
while (tp1 != &page_capture_hash[index].lists[l]) {
if (tp1->pp == pp) {
panic("page pp 0x%p already on hash "
"at 0x%p\n",
(void *)pp, (void *)tp1);
}
tp1 = tp1->next;
}
}
#endif
page_settoxic(pp, PR_CAPTURE);
bp1->next = page_capture_hash[index].lists[0].next;
bp1->prev = &page_capture_hash[index].lists[0];
bp1->next->prev = bp1;
page_capture_hash[index].lists[0].next = bp1;
page_capture_hash[index].num_pages++;
if (flags & CAPTURE_RETIRE) {
page_retire_incr_pend_count(datap);
}
mutex_exit(&page_capture_hash[index].pchh_mutex);
rw_exit(&pc_cb[cb_index].cb_rwlock);
cv_signal(&pc_cv);
return;
}
/*
* A page retire request will replace any other request.
* A second physmem request which is for a different process than
* the currently registered one will be dropped as there is
* no way to hold the private data for both calls.
* In the future, once there are more callers, this will have to
* be worked out better as there needs to be private storage for
* at least each type of caller (maybe have datap be an array of
* *void's so that we can index based upon callers index).
*/
/* walk hash list to update expire time */
for (i = 0; i < 2; i++) {
bp2 = page_capture_hash[index].lists[i].next;
while (bp2 != &page_capture_hash[index].lists[i]) {
if (bp2->pp == pp) {
if (flags & CAPTURE_RETIRE) {
if (!(bp2->flags & CAPTURE_RETIRE)) {
page_retire_incr_pend_count(
datap);
bp2->flags = flags;
bp2->expires = bp1->expires;
bp2->datap = datap;
}
} else {
ASSERT(flags & CAPTURE_PHYSMEM);
if (!(bp2->flags & CAPTURE_RETIRE) &&
(datap == bp2->datap)) {
bp2->expires = bp1->expires;
}
}
mutex_exit(&page_capture_hash[index].
pchh_mutex);
rw_exit(&pc_cb[cb_index].cb_rwlock);
kmem_free(bp1, sizeof (*bp1));
return;
}
bp2 = bp2->next;
}
}
/*
* the PR_CAPTURE flag is protected by the page_capture_hash mutexes
* and thus it either has to be set or not set and can't change
* while holding the mutex above.
*/
panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n",
(void *)pp);
}
/*
* We have a page in our hands, lets try and make it ours by turning
* it into a clean page like it had just come off the freelists.
*
* Returns 0 on success, with the page still EXCL locked.
* On failure, the page will be unlocked, and returns EAGAIN
*/
static int
page_capture_clean_page(page_t *pp)
{
page_t *newpp;
int skip_unlock = 0;
spgcnt_t count;
page_t *tpp;
int ret = 0;
int extra;
ASSERT(PAGE_EXCL(pp));
ASSERT(!PP_RETIRED(pp));
ASSERT(curthread->t_flag & T_CAPTURING);
if (PP_ISFREE(pp)) {
if (!page_reclaim(pp, NULL)) {
skip_unlock = 1;
ret = EAGAIN;
goto cleanup;
}
ASSERT(pp->p_szc == 0);
if (pp->p_vnode != NULL) {
/*
* Since this page came from the
* cachelist, we must destroy the
* old vnode association.
*/
page_hashout(pp, NULL);
}
goto cleanup;
}
/*
* If we know page_relocate will fail, skip it
* It could still fail due to a UE on another page but we
* can't do anything about that.
*/
if (pp->p_toxic & PR_UE) {
goto skip_relocate;
}
/*
* It's possible that pages can not have a vnode as fsflush comes
* through and cleans up these pages. It's ugly but that's how it is.
*/
if (pp->p_vnode == NULL) {
goto skip_relocate;
}
/*
* Page was not free, so lets try to relocate it.
* page_relocate only works with root pages, so if this is not a root
* page, we need to demote it to try and relocate it.
* Unfortunately this is the best we can do right now.
*/
newpp = NULL;
if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
if (page_try_demote_pages(pp) == 0) {
ret = EAGAIN;
goto cleanup;
}
}
ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
if (ret == 0) {
page_t *npp;
/* unlock the new page(s) */
while (count-- > 0) {
ASSERT(newpp != NULL);
npp = newpp;
page_sub(&newpp, npp);
page_unlock(npp);
}
ASSERT(newpp == NULL);
/*
* Check to see if the page we have is too large.
* If so, demote it freeing up the extra pages.
*/
if (pp->p_szc > 0) {
/* For now demote extra pages to szc == 0 */
extra = page_get_pagecnt(pp->p_szc) - 1;
while (extra > 0) {
tpp = pp->p_next;
page_sub(&pp, tpp);
tpp->p_szc = 0;
page_free(tpp, 1);
extra--;
}
/* Make sure to set our page to szc 0 as well */
ASSERT(pp->p_next == pp && pp->p_prev == pp);
pp->p_szc = 0;
}
goto cleanup;
} else if (ret == EIO) {
ret = EAGAIN;
goto cleanup;
} else {
/*
* Need to reset return type as we failed to relocate the page
* but that does not mean that some of the next steps will not
* work.
*/
ret = 0;
}
skip_relocate:
if (pp->p_szc > 0) {
if (page_try_demote_pages(pp) == 0) {
ret = EAGAIN;
goto cleanup;
}
}
ASSERT(pp->p_szc == 0);
if (hat_ismod(pp)) {
ret = EAGAIN;
goto cleanup;
}
if (PP_ISKAS(pp)) {
ret = EAGAIN;
goto cleanup;
}
if (pp->p_lckcnt || pp->p_cowcnt) {
ret = EAGAIN;
goto cleanup;
}
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
ASSERT(!hat_page_is_mapped(pp));
if (hat_ismod(pp)) {
/*
* This is a semi-odd case as the page is now modified but not
* mapped as we just unloaded the mappings above.
*/
ret = EAGAIN;
goto cleanup;
}
if (pp->p_vnode != NULL) {
page_hashout(pp, NULL);
}
/*
* At this point, the page should be in a clean state and
* we can do whatever we want with it.
*/
cleanup:
if (ret != 0) {
if (!skip_unlock) {
page_unlock(pp);
}
} else {
ASSERT(pp->p_szc == 0);
ASSERT(PAGE_EXCL(pp));
pp->p_next = pp;
pp->p_prev = pp;
}
return (ret);
}
/*
* Various callers of page_trycapture() can have different restrictions upon
* what memory they have access to.
* Returns 0 on success, with the following error codes on failure:
* EPERM - The requested page is long term locked, and thus repeated
* requests to capture this page will likely fail.
* ENOMEM - There was not enough free memory in the system to safely
* map the requested page.
* ENOENT - The requested page was inside the kernel cage, and the
* PHYSMEM_CAGE flag was not set.
*/
int
page_capture_pre_checks(page_t *pp, uint_t flags)
{
ASSERT(pp != NULL);
#if defined(__sparc)
if (pp->p_vnode == &promvp) {
return (EPERM);
}
if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
(flags & CAPTURE_PHYSMEM)) {
return (ENOENT);
}
if (PP_ISNORELOCKERNEL(pp)) {
return (EPERM);
}
#else
if (PP_ISKAS(pp)) {
return (EPERM);
}
#endif /* __sparc */
/* only physmem currently has the restrictions checked below */
if (!(flags & CAPTURE_PHYSMEM)) {
return (0);
}
if (availrmem < swapfs_minfree) {
/*
* We won't try to capture this page as we are
* running low on memory.
*/
return (ENOMEM);
}
return (0);
}
/*
* Once we have a page in our mits, go ahead and complete the capture
* operation.
* Returns 1 on failure where page is no longer needed
* Returns 0 on success
* Returns -1 if there was a transient failure.
* Failure cases must release the SE_EXCL lock on pp (usually via page_free).
*/
int
page_capture_take_action(page_t *pp, uint_t flags, void *datap)
{
int cb_index;
int ret = 0;
page_capture_hash_bucket_t *bp1;
page_capture_hash_bucket_t *bp2;
int index;
int found = 0;
int i;
ASSERT(PAGE_EXCL(pp));
ASSERT(curthread->t_flag & T_CAPTURING);
for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
if ((flags >> cb_index) & 1) {
break;
}
}
ASSERT(cb_index < PC_NUM_CALLBACKS);
/*
* Remove the entry from the page_capture hash, but don't free it yet
* as we may need to put it back.
* Since we own the page at this point in time, we should find it
* in the hash if this is an ASYNC call. If we don't it's likely
* that the page_capture_async() thread decided that this request
* had expired, in which case we just continue on.
*/
if (flags & CAPTURE_ASYNC) {
index = PAGE_CAPTURE_HASH(pp);
mutex_enter(&page_capture_hash[index].pchh_mutex);
for (i = 0; i < 2 && !found; i++) {
bp1 = page_capture_hash[index].lists[i].next;
while (bp1 != &page_capture_hash[index].lists[i]) {
if (bp1->pp == pp) {
bp1->next->prev = bp1->prev;
bp1->prev->next = bp1->next;
page_capture_hash[index].num_pages--;
page_clrtoxic(pp, PR_CAPTURE);
found = 1;
break;
}
bp1 = bp1->next;
}
}
mutex_exit(&page_capture_hash[index].pchh_mutex);
}
/* Synchronize with the unregister func. */
rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
if (!pc_cb[cb_index].cb_active) {
page_free(pp, 1);
rw_exit(&pc_cb[cb_index].cb_rwlock);
if (found) {
kmem_free(bp1, sizeof (*bp1));
}
return (1);
}
/*
* We need to remove the entry from the page capture hash and turn off
* the PR_CAPTURE bit before calling the callback. We'll need to cache
* the entry here, and then based upon the return value, cleanup
* appropriately or re-add it to the hash, making sure that someone else
* hasn't already done so.
* It should be rare for the callback to fail and thus it's ok for
* the failure path to be a bit complicated as the success path is
* cleaner and the locking rules are easier to follow.
*/
ret = pc_cb[cb_index].cb_func(pp, datap, flags);
rw_exit(&pc_cb[cb_index].cb_rwlock);
/*
* If this was an ASYNC request, we need to cleanup the hash if the
* callback was successful or if the request was no longer valid.
* For non-ASYNC requests, we return failure to map and the caller
* will take care of adding the request to the hash.
* Note also that the callback itself is responsible for the page
* at this point in time in terms of locking ... The most common
* case for the failure path should just be a page_free.
*/
if (ret >= 0) {
if (found) {
if (bp1->flags & CAPTURE_RETIRE) {
page_retire_decr_pend_count(datap);
}
kmem_free(bp1, sizeof (*bp1));
}
return (ret);
}
if (!found) {
return (ret);
}
ASSERT(flags & CAPTURE_ASYNC);
/*
* Check for expiration time first as we can just free it up if it's
* expired.
*/
if (ddi_get_lbolt() > bp1->expires && bp1->expires != -1) {
kmem_free(bp1, sizeof (*bp1));
return (ret);
}
/*
* The callback failed and there used to be an entry in the hash for
* this page, so we need to add it back to the hash.
*/
mutex_enter(&page_capture_hash[index].pchh_mutex);
if (!(pp->p_toxic & PR_CAPTURE)) {
/* just add bp1 back to head of walked list */
page_settoxic(pp, PR_CAPTURE);
bp1->next = page_capture_hash[index].lists[1].next;
bp1->prev = &page_capture_hash[index].lists[1];
bp1->next->prev = bp1;
page_capture_hash[index].lists[1].next = bp1;
page_capture_hash[index].num_pages++;
mutex_exit(&page_capture_hash[index].pchh_mutex);
return (ret);
}
/*
* Otherwise there was a new capture request added to list
* Need to make sure that our original data is represented if
* appropriate.
*/
for (i = 0; i < 2; i++) {
bp2 = page_capture_hash[index].lists[i].next;
while (bp2 != &page_capture_hash[index].lists[i]) {
if (bp2->pp == pp) {
if (bp1->flags & CAPTURE_RETIRE) {
if (!(bp2->flags & CAPTURE_RETIRE)) {
bp2->szc = bp1->szc;
bp2->flags = bp1->flags;
bp2->expires = bp1->expires;
bp2->datap = bp1->datap;
}
} else {
ASSERT(bp1->flags & CAPTURE_PHYSMEM);
if (!(bp2->flags & CAPTURE_RETIRE)) {
bp2->szc = bp1->szc;
bp2->flags = bp1->flags;
bp2->expires = bp1->expires;
bp2->datap = bp1->datap;
}
}
mutex_exit(&page_capture_hash[index].
pchh_mutex);
kmem_free(bp1, sizeof (*bp1));
return (ret);
}
bp2 = bp2->next;
}
}
panic("PR_CAPTURE set but not on hash for pp 0x%p\n", (void *)pp);
/*NOTREACHED*/
}
/*
* Try to capture the given page for the caller specified in the flags
* parameter. The page will either be captured and handed over to the
* appropriate callback, or will be queued up in the page capture hash
* to be captured asynchronously.
* If the current request is due to an async capture, the page must be
* exclusively locked before calling this function.
* Currently szc must be 0 but in the future this should be expandable to
* other page sizes.
* Returns 0 on success, with the following error codes on failure:
* EPERM - The requested page is long term locked, and thus repeated
* requests to capture this page will likely fail.
* ENOMEM - There was not enough free memory in the system to safely
* map the requested page.
* ENOENT - The requested page was inside the kernel cage, and the
* CAPTURE_GET_CAGE flag was not set.
* EAGAIN - The requested page could not be capturead at this point in
* time but future requests will likely work.
* EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
* was not set.
*/
int
page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
{
int ret;
int cb_index;
if (flags & CAPTURE_ASYNC) {
ASSERT(PAGE_EXCL(pp));
goto async;
}
/* Make sure there's enough availrmem ... */
ret = page_capture_pre_checks(pp, flags);
if (ret != 0) {
return (ret);
}
if (!page_trylock(pp, SE_EXCL)) {
for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
if ((flags >> cb_index) & 1) {
break;
}
}
ASSERT(cb_index < PC_NUM_CALLBACKS);
ret = EAGAIN;
/* Special case for retired pages */
if (PP_RETIRED(pp)) {
if (flags & CAPTURE_GET_RETIRED) {
if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
/*
* Need to set capture bit and add to
* hash so that the page will be
* retired when freed.
*/
page_capture_add_hash(pp, szc,
CAPTURE_RETIRE, NULL);
ret = 0;
goto own_page;
}
} else {
return (EBUSY);
}
}
page_capture_add_hash(pp, szc, flags, datap);
return (ret);
}
async:
ASSERT(PAGE_EXCL(pp));
/* Need to check for physmem async requests that availrmem is sane */
if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
(CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
(availrmem < swapfs_minfree)) {
page_unlock(pp);
return (ENOMEM);
}
ret = page_capture_clean_page(pp);
if (ret != 0) {
/* We failed to get the page, so lets add it to the hash */
if (!(flags & CAPTURE_ASYNC)) {
page_capture_add_hash(pp, szc, flags, datap);
}
return (ret);
}
own_page:
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_szc == 0);
/* Call the callback */
ret = page_capture_take_action(pp, flags, datap);
if (ret == 0) {
return (0);
}
/*
* Note that in the failure cases from page_capture_take_action, the
* EXCL lock will have already been dropped.
*/
if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
page_capture_add_hash(pp, szc, flags, datap);
}
return (EAGAIN);
}
int
page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
{
int ret;
curthread->t_flag |= T_CAPTURING;
ret = page_itrycapture(pp, szc, flags, datap);
curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
return (ret);
}
/*
* When unlocking a page which has the PR_CAPTURE bit set, this routine
* gets called to try and capture the page.
*/
void
page_unlock_capture(page_t *pp)
{
page_capture_hash_bucket_t *bp;
int index;
int i;
uint_t szc;
uint_t flags = 0;
void *datap;
kmutex_t *mp;
extern vnode_t retired_pages;
/*
* We need to protect against a possible deadlock here where we own
* the vnode page hash mutex and want to acquire it again as there
* are locations in the code, where we unlock a page while holding
* the mutex which can lead to the page being captured and eventually
* end up here. As we may be hashing out the old page and hashing into
* the retire vnode, we need to make sure we don't own them.
* Other callbacks who do hash operations also need to make sure that
* before they hashin to a vnode that they do not currently own the
* vphm mutex otherwise there will be a panic.
*/
if (mutex_owned(page_vnode_mutex(&retired_pages))) {
page_unlock_nocapture(pp);
return;
}
if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
page_unlock_nocapture(pp);
return;
}
index = PAGE_CAPTURE_HASH(pp);
mp = &page_capture_hash[index].pchh_mutex;
mutex_enter(mp);
for (i = 0; i < 2; i++) {
bp = page_capture_hash[index].lists[i].next;
while (bp != &page_capture_hash[index].lists[i]) {
if (bp->pp == pp) {
szc = bp->szc;
flags = bp->flags | CAPTURE_ASYNC;
datap = bp->datap;
mutex_exit(mp);
(void) page_trycapture(pp, szc, flags, datap);
return;
}
bp = bp->next;
}
}
/* Failed to find page in hash so clear flags and unlock it. */
page_clrtoxic(pp, PR_CAPTURE);
page_unlock(pp);
mutex_exit(mp);
}
void
page_capture_init()
{
int i;
for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
page_capture_hash[i].lists[0].next =
&page_capture_hash[i].lists[0];
page_capture_hash[i].lists[0].prev =
&page_capture_hash[i].lists[0];
page_capture_hash[i].lists[1].next =
&page_capture_hash[i].lists[1];
page_capture_hash[i].lists[1].prev =
&page_capture_hash[i].lists[1];
}
pc_thread_shortwait = 23 * hz;
pc_thread_longwait = 1201 * hz;
pc_thread_retry = 3;
mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
TS_RUN, minclsyspri);
}
/*
* It is necessary to scrub any failing pages prior to reboot in order to
* prevent a latent error trap from occurring on the next boot.
*/
void
page_retire_mdboot()
{
page_t *pp;
int i, j;
page_capture_hash_bucket_t *bp;
/* walk lists looking for pages to scrub */
for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
if (page_capture_hash[i].num_pages == 0)
continue;
mutex_enter(&page_capture_hash[i].pchh_mutex);
for (j = 0; j < 2; j++) {
bp = page_capture_hash[i].lists[j].next;
while (bp != &page_capture_hash[i].lists[j]) {
pp = bp->pp;
if (PP_TOXIC(pp)) {
if (page_trylock(pp, SE_EXCL)) {
PP_CLRFREE(pp);
pagescrub(pp, 0, PAGESIZE);
page_unlock(pp);
}
}
bp = bp->next;
}
}
mutex_exit(&page_capture_hash[i].pchh_mutex);
}
}
/*
* Walk the page_capture_hash trying to capture pages and also cleanup old
* entries which have expired.
*/
void
page_capture_async()
{
page_t *pp;
int i;
int ret;
page_capture_hash_bucket_t *bp1, *bp2;
uint_t szc;
uint_t flags;
void *datap;
/* If there are outstanding pages to be captured, get to work */
for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
if (page_capture_hash[i].num_pages == 0)
continue;
/* Append list 1 to list 0 and then walk through list 0 */
mutex_enter(&page_capture_hash[i].pchh_mutex);
bp1 = &page_capture_hash[i].lists[1];
bp2 = bp1->next;
if (bp1 != bp2) {
bp1->prev->next = page_capture_hash[i].lists[0].next;
bp2->prev = &page_capture_hash[i].lists[0];
page_capture_hash[i].lists[0].next->prev = bp1->prev;
page_capture_hash[i].lists[0].next = bp2;
bp1->next = bp1;
bp1->prev = bp1;
}
/* list[1] will be empty now */
bp1 = page_capture_hash[i].lists[0].next;
while (bp1 != &page_capture_hash[i].lists[0]) {
/* Check expiration time */
if ((ddi_get_lbolt() > bp1->expires &&
bp1->expires != -1) ||
page_deleted(bp1->pp)) {
page_capture_hash[i].lists[0].next = bp1->next;
bp1->next->prev =
&page_capture_hash[i].lists[0];
page_capture_hash[i].num_pages--;
/*
* We can safely remove the PR_CAPTURE bit
* without holding the EXCL lock on the page
* as the PR_CAPTURE bit requres that the
* page_capture_hash[].pchh_mutex be held
* to modify it.
*/
page_clrtoxic(bp1->pp, PR_CAPTURE);
mutex_exit(&page_capture_hash[i].pchh_mutex);
kmem_free(bp1, sizeof (*bp1));
mutex_enter(&page_capture_hash[i].pchh_mutex);
bp1 = page_capture_hash[i].lists[0].next;
continue;
}
pp = bp1->pp;
szc = bp1->szc;
flags = bp1->flags;
datap = bp1->datap;
mutex_exit(&page_capture_hash[i].pchh_mutex);
if (page_trylock(pp, SE_EXCL)) {
ret = page_trycapture(pp, szc,
flags | CAPTURE_ASYNC, datap);
} else {
ret = 1; /* move to walked hash */
}
if (ret != 0) {
/* Move to walked hash */
(void) page_capture_move_to_walked(pp);
}
mutex_enter(&page_capture_hash[i].pchh_mutex);
bp1 = page_capture_hash[i].lists[0].next;
}
mutex_exit(&page_capture_hash[i].pchh_mutex);
}
}
/*
* This function is called by the page_capture_thread, and is needed in
* in order to initiate aio cleanup, so that pages used in aio
* will be unlocked and subsequently retired by page_capture_thread.
*/
static int
do_aio_cleanup(void)
{
proc_t *procp;
int (*aio_cleanup_dr_delete_memory)(proc_t *);
int cleaned = 0;
if (modload("sys", "kaio") == -1) {
cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
return (0);
}
/*
* We use the aio_cleanup_dr_delete_memory function to
* initiate the actual clean up; this function will wake
* up the per-process aio_cleanup_thread.
*/
aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
if (aio_cleanup_dr_delete_memory == NULL) {
cmn_err(CE_WARN,
"aio_cleanup_dr_delete_memory not found in kaio");
return (0);
}
mutex_enter(&pidlock);
for (procp = practive; (procp != NULL); procp = procp->p_next) {
mutex_enter(&procp->p_lock);
if (procp->p_aio != NULL) {
/* cleanup proc's outstanding kaio */
cleaned += (*aio_cleanup_dr_delete_memory)(procp);
}
mutex_exit(&procp->p_lock);
}
mutex_exit(&pidlock);
return (cleaned);
}
/*
* helper function for page_capture_thread
*/
static void
page_capture_handle_outstanding(void)
{
int ntry;
/* Reap pages before attempting capture pages */
kmem_reap();
if ((page_retire_pend_count() > page_retire_pend_kas_count()) &&
hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
/*
* Note: Purging only for platforms that support
* ISM hat_pageunload() - mainly SPARC. On x86/x64
* platforms ISM pages SE_SHARED locked until destroyed.
*/
/* disable and purge seg_pcache */
(void) seg_p_disable();
for (ntry = 0; ntry < pc_thread_retry; ntry++) {
if (!page_retire_pend_count())
break;
if (do_aio_cleanup()) {
/*
* allow the apps cleanup threads
* to run
*/
delay(pc_thread_shortwait);
}
page_capture_async();
}
/* reenable seg_pcache */
seg_p_enable();
/* completed what can be done. break out */
return;
}
/*
* For kernel pages and/or unsupported HAT_DYNAMIC_ISM_UNMAP, reap
* and then attempt to capture.
*/
seg_preap();
page_capture_async();
}
/*
* The page_capture_thread loops forever, looking to see if there are
* pages still waiting to be captured.
*/
static void
page_capture_thread(void)
{
callb_cpr_t c;
int outstanding;
int i;
CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
mutex_enter(&pc_thread_mutex);
for (;;) {
outstanding = 0;
for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++)
outstanding += page_capture_hash[i].num_pages;
if (outstanding) {
page_capture_handle_outstanding();
CALLB_CPR_SAFE_BEGIN(&c);
(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
pc_thread_shortwait, TR_CLOCK_TICK);
CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
} else {
CALLB_CPR_SAFE_BEGIN(&c);
(void) cv_reltimedwait(&pc_cv, &pc_thread_mutex,
pc_thread_longwait, TR_CLOCK_TICK);
CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
}
}
/*NOTREACHED*/
}
/*
* Attempt to locate a bucket that has enough pages to satisfy the request.
* The initial check is done without the lock to avoid unneeded contention.
* The function returns 1 if enough pages were found, else 0 if it could not
* find enough pages in a bucket.
*/
static int
pcf_decrement_bucket(pgcnt_t npages)
{
struct pcf *p;
struct pcf *q;
int i;
p = &pcf[PCF_INDEX()];
q = &pcf[pcf_fanout];
for (i = 0; i < pcf_fanout; i++) {
if (p->pcf_count > npages) {
/*
* a good one to try.
*/
mutex_enter(&p->pcf_lock);
if (p->pcf_count > npages) {
p->pcf_count -= (uint_t)npages;
/*
* freemem is not protected by any lock.
* Thus, we cannot have any assertion
* containing freemem here.
*/
freemem -= npages;
mutex_exit(&p->pcf_lock);
return (1);
}
mutex_exit(&p->pcf_lock);
}
p++;
if (p >= q) {
p = pcf;
}
}
return (0);
}
/*
* Arguments:
* pcftotal_ret: If the value is not NULL and we have walked all the
* buckets but did not find enough pages then it will
* be set to the total number of pages in all the pcf
* buckets.
* npages: Is the number of pages we have been requested to
* find.
* unlock: If set to 0 we will leave the buckets locked if the
* requested number of pages are not found.
*
* Go and try to satisfy the page request from any number of buckets.
* This can be a very expensive operation as we have to lock the buckets
* we are checking (and keep them locked), starting at bucket 0.
*
* The function returns 1 if enough pages were found, else 0 if it could not
* find enough pages in the buckets.
*
*/
static int
pcf_decrement_multiple(pgcnt_t *pcftotal_ret, pgcnt_t npages, int unlock)
{
struct pcf *p;
pgcnt_t pcftotal;
int i;
p = pcf;
/* try to collect pages from several pcf bins */
for (pcftotal = 0, i = 0; i < pcf_fanout; i++) {
mutex_enter(&p->pcf_lock);
pcftotal += p->pcf_count;
if (pcftotal >= npages) {
/*
* Wow! There are enough pages laying around
* to satisfy the request. Do the accounting,
* drop the locks we acquired, and go back.
*
* freemem is not protected by any lock. So,
* we cannot have any assertion containing
* freemem.
*/
freemem -= npages;
while (p >= pcf) {
if (p->pcf_count <= npages) {
npages -= p->pcf_count;
p->pcf_count = 0;
} else {
p->pcf_count -= (uint_t)npages;
npages = 0;
}
mutex_exit(&p->pcf_lock);
p--;
}
ASSERT(npages == 0);
return (1);
}
p++;
}
if (unlock) {
/* failed to collect pages - release the locks */
while (--p >= pcf) {
mutex_exit(&p->pcf_lock);
}
}
if (pcftotal_ret != NULL)
*pcftotal_ret = pcftotal;
return (0);
}