vm_anon.c revision 870154656b6ec47dea8a31e79fa48256dc521bf4
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* VM - anonymous pages.
*
* This layer sits immediately above the vm_swap layer. It manages
* physical pages that have no permanent identity in the file system
* name space, using the services of the vm_swap layer to allocate
* backing storage for these pages. Since these pages have no external
* identity, they are discarded when the last reference is removed.
*
* An important function of this layer is to manage low-level sharing
* of pages that are logically distinct but that happen to be
* physically identical (e.g., the corresponding pages of the processes
* resulting from a fork before one process or the other changes their
* contents). This pseudo-sharing is present only as an optimization
* and is not to be confused with true sharing in which multiple
* address spaces deliberately contain references to the same object;
* such sharing is managed at a higher level.
*
* The key data structure here is the anon struct, which contains a
* reference count for its associated physical page and a hint about
* the identity of that page. Anon structs typically live in arrays,
* with an instance's position in its array determining where the
* corresponding backing storage is allocated; however, the swap_xlate()
* routine abstracts away this representation information so that the
* rest of the anon layer need not know it. (See the swap layer for
* more details on anon struct layout.)
*
* In the future versions of the system, the association between an
* anon struct and its position on backing store will change so that
* we don't require backing store all anonymous pages in the system.
* This is important for consideration for large memory systems.
* We can also use this technique to delay binding physical locations
* to anonymous pages until pageout/swapout time where we can make
* smarter allocation decisions to improve anonymous klustering.
*
* Many of the routines defined here take a (struct anon **) argument,
* which allows the code at this level to manage anon pages directly,
* so that callers can regard anon structs as opaque objects and not be
* concerned with assigning or inspecting their contents.
*
* Clients of this layer refer to anon pages indirectly. That is, they
* maintain arrays of pointers to anon structs rather than maintaining
* anon structs themselves. The (struct anon **) arguments mentioned
* above are pointers to entries in these arrays. It is these arrays
* that capture the mapping between offsets within a given segment and
* the corresponding anonymous backing storage address.
*/
#ifdef DEBUG
#define ANON_DEBUG
#endif
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/cred.h>
#include <sys/thread.h>
#include <sys/vnode.h>
#include <sys/cpuvar.h>
#include <sys/swap.h>
#include <sys/cmn_err.h>
#include <sys/vtrace.h>
#include <sys/kmem.h>
#include <sys/sysmacros.h>
#include <sys/bitmap.h>
#include <sys/vmsystm.h>
#include <sys/debug.h>
#include <sys/fs/swapnode.h>
#include <sys/tnf_probe.h>
#include <sys/lgrp.h>
#include <sys/policy.h>
#include <sys/condvar_impl.h>
#include <sys/mutex_impl.h>
#include <vm/as.h>
#include <vm/hat.h>
#include <vm/anon.h>
#include <vm/page.h>
#include <vm/vpage.h>
#include <vm/seg.h>
#include <vm/rm.h>
#include <fs/fs_subr.h>
struct vnode *anon_vp;
int anon_debug;
kmutex_t anoninfo_lock;
struct k_anoninfo k_anoninfo;
ani_free_t ani_free_pool[ANI_MAX_POOL];
pad_mutex_t anon_array_lock[ANON_LOCKSIZE];
kcondvar_t anon_array_cv[ANON_LOCKSIZE];
/*
* Global hash table for (vp, off) -> anon slot
*/
extern int swap_maxcontig;
size_t anon_hash_size;
struct anon **anon_hash;
static struct kmem_cache *anon_cache;
static struct kmem_cache *anonmap_cache;
#ifdef VM_STATS
static struct anonvmstats_str {
ulong_t getpages[30];
ulong_t privatepages[10];
ulong_t demotepages[9];
ulong_t decrefpages[9];
ulong_t dupfillholes[4];
ulong_t freepages[1];
} anonvmstats;
#endif /* VM_STATS */
/*ARGSUSED*/
static int
anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
struct anon_map *amp = buf;
rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
return (0);
}
/*ARGSUSED1*/
static void
anonmap_cache_destructor(void *buf, void *cdrarg)
{
struct anon_map *amp = buf;
rw_destroy(&amp->a_rwlock);
}
kmutex_t anonhash_lock[AH_LOCK_SIZE];
kmutex_t anonpages_hash_lock[AH_LOCK_SIZE];
void
anon_init(void)
{
int i;
anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
for (i = 0; i < AH_LOCK_SIZE; i++) {
mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
}
for (i = 0; i < ANON_LOCKSIZE; i++) {
mutex_init(&anon_array_lock[i].pad_mutex, NULL,
MUTEX_DEFAULT, NULL);
cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
}
anon_hash = (struct anon **)
kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
anonmap_cache = kmem_cache_create("anonmap_cache",
sizeof (struct anon_map), 0,
anonmap_cache_constructor, anonmap_cache_destructor, NULL,
NULL, NULL, 0);
swap_maxcontig = (1024 * 1024) >> PAGESHIFT; /* 1MB of pages */
anon_vp = vn_alloc(KM_SLEEP);
vn_setops(anon_vp, swap_vnodeops);
anon_vp->v_type = VREG;
anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
}
/*
* Global anon slot hash table manipulation.
*/
static void
anon_addhash(struct anon *ap)
{
int index;
ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
index = ANON_HASH(ap->an_vp, ap->an_off);
ap->an_hash = anon_hash[index];
anon_hash[index] = ap;
}
static void
anon_rmhash(struct anon *ap)
{
struct anon **app;
ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
*app; app = &((*app)->an_hash)) {
if (*app == ap) {
*app = ap->an_hash;
break;
}
}
}
/*
* The anon array interfaces. Functions allocating,
* freeing array of pointers, and returning/setting
* entries in the array of pointers for a given offset.
*
* Create the list of pointers
*/
struct anon_hdr *
anon_create(pgcnt_t npages, int flags)
{
struct anon_hdr *ahp;
ulong_t nchunks;
int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
return (NULL);
}
mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
/*
* Single level case.
*/
ahp->size = npages;
if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
if (flags & ANON_ALLOC_FORCE)
ahp->flags |= ANON_ALLOC_FORCE;
ahp->array_chunk = kmem_zalloc(
ahp->size * sizeof (struct anon *), kmemflags);
if (ahp->array_chunk == NULL) {
kmem_free(ahp, sizeof (struct anon_hdr));
return (NULL);
}
} else {
/*
* 2 Level case.
*/
nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
kmemflags);
if (ahp->array_chunk == NULL) {
kmem_free(ahp, sizeof (struct anon_hdr));
return (NULL);
}
}
return (ahp);
}
/*
* Free the array of pointers
*/
void
anon_release(struct anon_hdr *ahp, pgcnt_t npages)
{
ulong_t i;
void **ppp;
ulong_t nchunks;
ASSERT(npages == ahp->size);
/*
* Single level case.
*/
if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
} else {
/*
* 2 level case.
*/
nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
for (i = 0; i < nchunks; i++) {
ppp = &ahp->array_chunk[i];
if (*ppp != NULL)
kmem_free(*ppp, PAGESIZE);
}
kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
}
mutex_destroy(&ahp->serial_lock);
kmem_free(ahp, sizeof (struct anon_hdr));
}
/*
* Return the pointer from the list for a
* specified anon index.
*/
struct anon *
anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
{
struct anon **app;
ASSERT(an_idx < ahp->size);
/*
* Single level case.
*/
if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
return ((struct anon *)
((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
} else {
/*
* 2 level case.
*/
app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
if (app) {
return ((struct anon *)
((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
ANON_PTRMASK));
} else {
return (NULL);
}
}
}
/*
* Return the anon pointer for the first valid entry in the anon list,
* starting from the given index.
*/
struct anon *
anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
{
struct anon *ap;
struct anon **app;
ulong_t chunkoff;
ulong_t i;
ulong_t j;
pgcnt_t size;
i = *index;
size = ahp->size;
ASSERT(i < size);
if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
/*
* 1 level case
*/
while (i < size) {
ap = (struct anon *)
((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
if (ap) {
*index = i;
return (ap);
}
i++;
}
} else {
/*
* 2 level case
*/
chunkoff = i & ANON_CHUNK_OFF;
while (i < size) {
app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
if (app)
for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
ap = (struct anon *)
((uintptr_t)app[j] &
ANON_PTRMASK);
if (ap) {
*index = i + (j - chunkoff);
return (ap);
}
}
chunkoff = 0;
i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
}
}
*index = size;
return (NULL);
}
/*
* Set list entry with a given pointer for a specified offset
*/
int
anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
{
void **ppp;
struct anon **app;
int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
uintptr_t *ap_addr;
ASSERT(an_idx < ahp->size);
/*
* Single level case.
*/
if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
} else {
/*
* 2 level case.
*/
ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
ASSERT(ppp != NULL);
if (*ppp == NULL) {
mutex_enter(&ahp->serial_lock);
ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
if (*ppp == NULL) {
*ppp = kmem_zalloc(PAGESIZE, kmemflags);
if (*ppp == NULL) {
mutex_exit(&ahp->serial_lock);
return (ENOMEM);
}
}
mutex_exit(&ahp->serial_lock);
}
app = *ppp;
ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
}
*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
return (0);
}
/*
* Copy anon array into a given new anon array
*/
int
anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
struct anon_hdr *dahp, ulong_t d_idx,
pgcnt_t npages, int flags)
{
void **sapp, **dapp;
void *ap;
int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
ASSERT((npages <= sahp->size) && (npages <= dahp->size));
/*
* Both arrays are 1 level.
*/
if (((sahp->size <= ANON_CHUNK_SIZE) &&
(dahp->size <= ANON_CHUNK_SIZE)) ||
((sahp->flags & ANON_ALLOC_FORCE) &&
(dahp->flags & ANON_ALLOC_FORCE))) {
bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
npages * sizeof (struct anon *));
return (0);
}
/*
* Both arrays are 2 levels.
*/
if (sahp->size > ANON_CHUNK_SIZE &&
dahp->size > ANON_CHUNK_SIZE &&
((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
ulong_t sapidx, dapidx;
ulong_t *sap, *dap;
ulong_t chknp;
while (npages != 0) {
sapidx = s_idx & ANON_CHUNK_OFF;
dapidx = d_idx & ANON_CHUNK_OFF;
chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
if (chknp > npages)
chknp = npages;
sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
if ((sap = *sapp) != NULL) {
dapp = &dahp->array_chunk[d_idx
>> ANON_CHUNK_SHIFT];
if ((dap = *dapp) == NULL) {
*dapp = kmem_zalloc(PAGESIZE,
kmemflags);
if ((dap = *dapp) == NULL)
return (ENOMEM);
}
bcopy((sap + sapidx), (dap + dapidx),
chknp << ANON_PTRSHIFT);
}
s_idx += chknp;
d_idx += chknp;
npages -= chknp;
}
return (0);
}
/*
* At least one of the arrays is 2 level.
*/
while (npages--) {
if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
return (ENOMEM);
}
s_idx++;
d_idx++;
}
return (0);
}
/*
* ANON_INITBUF is a convenience macro for anon_grow() below. It
* takes a buffer dst, which is at least as large as buffer src. It
* does a bcopy from src into dst, and then bzeros the extra bytes
* of dst. If tail is set, the data in src is tail aligned within
* dst instead of head aligned.
*/
#define ANON_INITBUF(src, srclen, dst, dstsize, tail) \
if (tail) { \
bzero((dst), (dstsize) - (srclen)); \
bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
} else { \
bcopy((src), (dst), (srclen)); \
bzero((char *)(dst) + (srclen), (dstsize) - (srclen)); \
}
#define ANON_1_LEVEL_INC (ANON_CHUNK_SIZE / 8)
#define ANON_2_LEVEL_INC (ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
/*
* anon_grow() is used to efficiently extend an existing anon array.
* startidx_p points to the index into the anon array of the first page
* that is in use. oldseg_pgs is the number of pages in use, starting at
* *startidx_p. newpages is the number of additional pages desired.
*
* If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
*
* The growth is done by creating a new top level of the anon array,
* and (if the array is 2-level) reusing the existing second level arrays.
*
* flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
*
* Returns the new number of pages in the anon array.
*/
pgcnt_t
anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
pgcnt_t newseg_pgs, int flags)
{
ulong_t startidx = startidx_p ? *startidx_p : 0;
pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
pgcnt_t oelems, nelems, totpages;
void **level1;
int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
int growdown = (flags & ANON_GROWDOWN);
size_t newarrsz, oldarrsz;
void *level2;
ASSERT(!(startidx_p == NULL && growdown));
ASSERT(startidx + oldseg_pgs <= ahp->size);
/*
* Determine the total number of pages needed in the new
* anon array. If growing down, totpages is all pages from
* startidx through the end of the array, plus <newseg_pgs>
* pages. If growing up, keep all pages from page 0 through
* the last page currently in use, plus <newseg_pgs> pages.
*/
if (growdown)
totpages = oldamp_pgs - startidx + newseg_pgs;
else
totpages = startidx + oldseg_pgs + newseg_pgs;
/* If the array is already large enough, just return. */
if (oldamp_pgs >= totpages) {
if (growdown)
*startidx_p = oldamp_pgs - totpages;
return (oldamp_pgs);
}
/*
* oldamp_pgs/newamp_pgs are the total numbers of pages represented
* by the corresponding arrays.
* oelems/nelems are the number of pointers in the top level arrays
* which may be either level 1 or level 2.
* Will the new anon array be one level or two levels?
*/
if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
oelems = oldamp_pgs;
nelems = newamp_pgs;
} else {
newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
}
newarrsz = nelems * sizeof (void *);
level1 = kmem_alloc(newarrsz, kmemflags);
if (level1 == NULL)
return (0);
/* Are we converting from a one level to a two level anon array? */
if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
!(ahp->flags & ANON_ALLOC_FORCE)) {
/*
* Yes, we're converting to a two level. Reuse old level 1
* as new level 2 if it is exactly PAGESIZE. Otherwise
* alloc a new level 2 and copy the old level 1 data into it.
*/
if (oldamp_pgs == ANON_CHUNK_SIZE) {
level2 = (void *)ahp->array_chunk;
} else {
level2 = kmem_alloc(PAGESIZE, kmemflags);
if (level2 == NULL) {
kmem_free(level1, newarrsz);
return (0);
}
oldarrsz = oldamp_pgs * sizeof (void *);
ANON_INITBUF(ahp->array_chunk, oldarrsz,
level2, PAGESIZE, growdown);
kmem_free(ahp->array_chunk, oldarrsz);
}
bzero(level1, newarrsz);
if (growdown)
level1[nelems - 1] = level2;
else
level1[0] = level2;
} else {
oldarrsz = oelems * sizeof (void *);
ANON_INITBUF(ahp->array_chunk, oldarrsz,
level1, newarrsz, growdown);
kmem_free(ahp->array_chunk, oldarrsz);
}
ahp->array_chunk = level1;
ahp->size = newamp_pgs;
if (growdown) {
*startidx_p = newamp_pgs - totpages;
if (oldamp_pgs > ANON_CHUNK_SIZE)
*startidx_p -= P2NPHASE(oldseg_pgs, ANON_CHUNK_SIZE);
}
return (newamp_pgs);
}
/*
* Called from clock handler to sync ani_free value.
*/
void
set_anoninfo(void)
{
int ix;
pgcnt_t total = 0;
for (ix = 0; ix < ANI_MAX_POOL; ix++) {
total += ani_free_pool[ix].ani_count;
}
k_anoninfo.ani_free = total;
}
/*
* Reserve anon space.
*
* It's no longer simply a matter of incrementing ani_resv to
* reserve swap space, we need to check memory-based as well
* as disk-backed (physical) swap. The following algorithm
* is used:
* Check the space on physical swap
* i.e. amount needed < ani_max - ani_phys_resv
* If we are swapping on swapfs check
* amount needed < (availrmem - swapfs_minfree)
* Since the algorithm to check for the quantity of swap space is
* almost the same as that for reserving it, we'll just use anon_resvmem
* with a flag to decrement availrmem.
*
* Return non-zero on success.
*/
int
anon_resvmem(size_t size, uint_t takemem)
{
pgcnt_t npages = btopr(size);
pgcnt_t mswap_pages = 0;
pgcnt_t pswap_pages = 0;
mutex_enter(&anoninfo_lock);
/*
* pswap_pages is the number of pages we can take from
* physical (i.e. disk-backed) swap.
*/
ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
ANON_PRINT(A_RESV,
("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
npages, takemem, pswap_pages, (void *)caller()));
if (npages <= pswap_pages) {
/*
* we have enough space on a physical swap
*/
if (takemem)
k_anoninfo.ani_phys_resv += npages;
mutex_exit(&anoninfo_lock);
return (1);
} else if (pswap_pages != 0) {
/*
* we have some space on a physical swap
*/
if (takemem) {
/*
* use up remainder of phys swap
*/
k_anoninfo.ani_phys_resv += pswap_pages;
ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
}
}
/*
* since (npages > pswap_pages) we need mem swap
* mswap_pages is the number of pages needed from availrmem
*/
ASSERT(npages > pswap_pages);
mswap_pages = npages - pswap_pages;
ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
mswap_pages));
/*
* priv processes can reserve memory as swap as long as availrmem
* remains greater than swapfs_minfree; in the case of non-priv
* processes, memory can be reserved as swap only if availrmem
* doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
* swapfs_reserve amount of memswap is not available to non-priv
* processes. This protects daemons such as automounter dying
* as a result of application processes eating away almost entire
* membased swap. This safeguard becomes useless if apps are run
* with root access.
*
* swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
*
*/
mutex_enter(&freemem_lock);
if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
(availrmem > (swapfs_minfree + mswap_pages) &&
secpolicy_resource(CRED()) == 0)) {
if (takemem) {
/*
* Take the memory from the rest of the system.
*/
availrmem -= mswap_pages;
mutex_exit(&freemem_lock);
k_anoninfo.ani_mem_resv += mswap_pages;
ANI_ADD(mswap_pages);
ANON_PRINT((A_RESV | A_MRESV),
("anon_resvmem: took %ld pages of availrmem\n",
mswap_pages));
} else {
mutex_exit(&freemem_lock);
}
ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
mutex_exit(&anoninfo_lock);
return (1);
} else {
/*
* Fail if not enough memory
*/
if (takemem) {
k_anoninfo.ani_phys_resv -= pswap_pages;
}
mutex_exit(&freemem_lock);
mutex_exit(&anoninfo_lock);
ANON_PRINT(A_RESV,
("anon_resvmem: not enough space from swapfs\n"));
return (0);
}
}
/*
* Give back an anon reservation.
*/
void
anon_unresv(size_t size)
{
pgcnt_t npages = btopr(size);
spgcnt_t mem_free_pages = 0;
pgcnt_t phys_free_slots;
#ifdef ANON_DEBUG
pgcnt_t mem_resv;
#endif
mutex_enter(&anoninfo_lock);
ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
/*
* If some of this reservation belonged to swapfs
* give it back to availrmem.
* ani_mem_resv is the amount of availrmem swapfs has reserved.
* but some of that memory could be locked by segspt so we can only
* return non locked ani_mem_resv back to availrmem
*/
if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
ANON_PRINT((A_RESV | A_MRESV),
("anon_unresv: growing availrmem by %ld pages\n",
MIN(k_anoninfo.ani_mem_resv, npages)));
mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
k_anoninfo.ani_locked_swap), npages);
mutex_enter(&freemem_lock);
availrmem += mem_free_pages;
mutex_exit(&freemem_lock);
k_anoninfo.ani_mem_resv -= mem_free_pages;
ANI_ADD(-mem_free_pages);
}
/*
* The remainder of the pages is returned to phys swap
*/
ASSERT(npages >= mem_free_pages);
phys_free_slots = npages - mem_free_pages;
if (phys_free_slots) {
k_anoninfo.ani_phys_resv -= phys_free_slots;
}
#ifdef ANON_DEBUG
mem_resv = k_anoninfo.ani_mem_resv;
#endif
ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
mutex_exit(&anoninfo_lock);
ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
npages, mem_resv, (void *)caller()));
}
/*
* Allocate an anon slot and return it with the lock held.
*/
struct anon *
anon_alloc(struct vnode *vp, anoff_t off)
{
struct anon *ap;
kmutex_t *ahm;
ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
if (vp == NULL) {
swap_alloc(ap);
} else {
ap->an_vp = vp;
ap->an_off = off;
}
ap->an_refcnt = 1;
ap->an_pvp = NULL;
ap->an_poff = 0;
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
anon_addhash(ap);
mutex_exit(ahm);
ANI_ADD(-1);
ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
(void *)ap, (ap ? (void *)ap->an_vp : NULL)));
return (ap);
}
/*
* Decrement the reference count of an anon page.
* If reference count goes to zero, free it and
* its associated page (if any).
*/
void
anon_decref(struct anon *ap)
{
page_t *pp;
struct vnode *vp;
anoff_t off;
kmutex_t *ahm;
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
ASSERT(ap->an_refcnt != 0);
if (ap->an_refcnt == 0)
panic("anon_decref: slot count 0");
if (--ap->an_refcnt == 0) {
swap_xlate(ap, &vp, &off);
mutex_exit(ahm);
/*
* If there is a page for this anon slot we will need to
* call VN_DISPOSE to get rid of the vp association and
* put the page back on the free list as really free.
* Acquire the "exclusive" lock to ensure that any
* pending i/o always completes before the swap slot
* is freed.
*/
pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
/*
* If there was a page, we've synchronized on it (getting
* the exclusive lock is as good as gettting the iolock)
* so now we can free the physical backing store. Also, this
* is where we would free the name of the anonymous page
* (swap_free(ap)), a no-op in the current implementation.
*/
mutex_enter(ahm);
ASSERT(ap->an_refcnt == 0);
anon_rmhash(ap);
if (ap->an_pvp)
swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
mutex_exit(ahm);
if (pp != NULL) {
/*LINTED: constant in conditional context */
VN_DISPOSE(pp, B_INVAL, 0, kcred);
}
ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
(void *)ap, (void *)ap->an_vp));
kmem_cache_free(anon_cache, ap);
ANI_ADD(1);
} else {
mutex_exit(ahm);
}
}
static int
anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
{
struct anon *ap;
while (nslots-- > 0) {
if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
ap->an_refcnt > 1)
return (1);
anon_index++;
}
return (0);
}
static void
anon_decref_pages(
struct anon_hdr *ahp,
ulong_t an_idx,
uint_t szc)
{
struct anon *ap = anon_get_ptr(ahp, an_idx);
kmutex_t *ahmpages = NULL;
page_t *pp;
pgcnt_t pgcnt = page_get_pagecnt(szc);
pgcnt_t i;
struct vnode *vp;
anoff_t off;
kmutex_t *ahm;
#ifdef DEBUG
int refcnt = 1;
#endif
ASSERT(szc != 0);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
VM_STAT_ADD(anonvmstats.decrefpages[0]);
if (ap != NULL) {
ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahmpages);
ASSERT((refcnt = ap->an_refcnt) != 0);
VM_STAT_ADD(anonvmstats.decrefpages[1]);
if (ap->an_refcnt == 1) {
VM_STAT_ADD(anonvmstats.decrefpages[2]);
ASSERT(!anon_share(ahp, an_idx, pgcnt));
mutex_exit(ahmpages);
ahmpages = NULL;
}
}
i = 0;
while (i < pgcnt) {
if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
ASSERT(refcnt == 1 && ahmpages == NULL);
i++;
continue;
}
ASSERT(ap->an_refcnt == refcnt);
ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
if (ahmpages == NULL) {
swap_xlate(ap, &vp, &off);
pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
if (pp == NULL || pp->p_szc == 0) {
VM_STAT_ADD(anonvmstats.decrefpages[3]);
ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
ap->an_off)];
(void) anon_set_ptr(ahp, an_idx + i, NULL,
ANON_SLEEP);
mutex_enter(ahm);
ap->an_refcnt--;
ASSERT(ap->an_refcnt == 0);
anon_rmhash(ap);
if (ap->an_pvp)
swap_phys_free(ap->an_pvp, ap->an_poff,
PAGESIZE);
mutex_exit(ahm);
if (pp != NULL) {
VM_STAT_ADD(anonvmstats.decrefpages[4]);
/*LINTED*/
VN_DISPOSE(pp, B_INVAL, 0, kcred);
}
kmem_cache_free(anon_cache, ap);
ANI_ADD(1);
i++;
} else {
pgcnt_t j;
pgcnt_t curpgcnt =
page_get_pagecnt(pp->p_szc);
size_t ppasize = curpgcnt * sizeof (page_t *);
page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
int dispose = 0;
VM_STAT_ADD(anonvmstats.decrefpages[5]);
ASSERT(pp->p_szc <= szc);
ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
ASSERT(IS_P2ALIGNED(i, curpgcnt));
ASSERT(i + curpgcnt <= pgcnt);
ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
ppa[0] = pp;
for (j = i + 1; j < i + curpgcnt; j++) {
ap = anon_get_ptr(ahp, an_idx + j);
ASSERT(ap != NULL &&
ap->an_refcnt == 1);
swap_xlate(ap, &vp, &off);
pp = page_lookup(vp, (u_offset_t)off,
SE_EXCL);
if (pp == NULL)
panic("anon_decref_pages: "
"no page");
(void) hat_pageunload(pp,
HAT_FORCE_PGUNLOAD);
ASSERT(pp->p_szc == ppa[0]->p_szc);
ASSERT(page_pptonum(pp) - 1 ==
page_pptonum(ppa[j - i - 1]));
ppa[j - i] = pp;
if (ap->an_pvp != NULL &&
!vn_matchopval(ap->an_pvp,
VOPNAME_DISPOSE,
(fs_generic_func_p)fs_dispose))
dispose = 1;
}
if (!dispose) {
VM_STAT_ADD(anonvmstats.decrefpages[6]);
page_destroy_pages(ppa[0]);
} else {
VM_STAT_ADD(anonvmstats.decrefpages[7]);
for (j = 0; j < curpgcnt; j++) {
ASSERT(PAGE_EXCL(ppa[j]));
ppa[j]->p_szc = 0;
}
for (j = 0; j < curpgcnt; j++) {
ASSERT(!hat_page_is_mapped(
ppa[j]));
/*LINTED*/
VN_DISPOSE(ppa[j], B_INVAL, 0,
kcred);
}
}
kmem_free(ppa, ppasize);
for (j = i; j < i + curpgcnt; j++) {
ap = anon_get_ptr(ahp, an_idx + j);
ASSERT(ap != NULL &&
ap->an_refcnt == 1);
ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
ap->an_off)];
(void) anon_set_ptr(ahp, an_idx + j,
NULL, ANON_SLEEP);
mutex_enter(ahm);
ap->an_refcnt--;
ASSERT(ap->an_refcnt == 0);
anon_rmhash(ap);
if (ap->an_pvp)
swap_phys_free(ap->an_pvp,
ap->an_poff, PAGESIZE);
mutex_exit(ahm);
kmem_cache_free(anon_cache, ap);
ANI_ADD(1);
}
i += curpgcnt;
}
} else {
VM_STAT_ADD(anonvmstats.decrefpages[8]);
(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
ap->an_refcnt--;
mutex_exit(ahm);
i++;
}
}
if (ahmpages != NULL) {
mutex_exit(ahmpages);
}
}
/*
* Duplicate references to size bytes worth of anon pages.
* Used when duplicating a segment that contains private anon pages.
* This code assumes that procedure calling this one has already used
* hat_chgprot() to disable write access to the range of addresses that
* that *old actually refers to.
*/
void
anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
ulong_t new_idx, size_t size)
{
spgcnt_t npages;
kmutex_t *ahm;
struct anon *ap;
ulong_t off;
ulong_t index;
npages = btopr(size);
while (npages > 0) {
index = old_idx;
if ((ap = anon_get_next_ptr(old, &index)) == NULL)
break;
ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
off = index - old_idx;
npages -= off;
if (npages <= 0)
break;
(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
ap->an_refcnt++;
mutex_exit(ahm);
off++;
new_idx += off;
old_idx += off;
npages--;
}
}
/*
* Just like anon_dup but also guarantees there are no holes (unallocated anon
* slots) within any large page region. That means if a large page region is
* empty in the old array it will skip it. If there are 1 or more valid slots
* in the large page region of the old array it will make sure to fill in any
* unallocated ones and also copy them to the new array. If noalloc is 1 large
* page region should either have no valid anon slots or all slots should be
* valid.
*/
void
anon_dup_fill_holes(
struct anon_hdr *old,
ulong_t old_idx,
struct anon_hdr *new,
ulong_t new_idx,
size_t size,
uint_t szc,
int noalloc)
{
struct anon *ap;
spgcnt_t npages;
kmutex_t *ahm, *ahmpages = NULL;
pgcnt_t pgcnt, i;
ulong_t index, off;
#ifdef DEBUG
int refcnt;
#endif
ASSERT(szc != 0);
pgcnt = page_get_pagecnt(szc);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
npages = btopr(size);
ASSERT(IS_P2ALIGNED(npages, pgcnt));
ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
VM_STAT_ADD(anonvmstats.dupfillholes[0]);
while (npages > 0) {
index = old_idx;
/*
* Find the next valid slot.
*/
if (anon_get_next_ptr(old, &index) == NULL)
break;
ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
/*
* Now backup index to the beginning of the
* current large page region of the old array.
*/
index = P2ALIGN(index, pgcnt);
off = index - old_idx;
ASSERT(IS_P2ALIGNED(off, pgcnt));
npages -= off;
if (npages <= 0)
break;
/*
* Fill and copy a large page regions worth
* of anon slots.
*/
for (i = 0; i < pgcnt; i++) {
if ((ap = anon_get_ptr(old, index + i)) == NULL) {
if (noalloc) {
panic("anon_dup_fill_holes: "
"empty anon slot\n");
}
VM_STAT_ADD(anonvmstats.dupfillholes[1]);
ap = anon_alloc(NULL, 0);
(void) anon_set_ptr(old, index + i, ap,
ANON_SLEEP);
} else if (i == 0) {
/*
* make the increment of all refcnts of all
* anon slots of a large page appear atomic by
* getting an anonpages_hash_lock for the
* first anon slot of a large page.
*/
int hash = AH_LOCK(ap->an_vp, ap->an_off);
VM_STAT_ADD(anonvmstats.dupfillholes[2]);
ahmpages = &anonpages_hash_lock[hash];
mutex_enter(ahmpages);
/*LINTED*/
ASSERT(refcnt = ap->an_refcnt);
VM_STAT_COND_ADD(ap->an_refcnt > 1,
anonvmstats.dupfillholes[3]);
}
(void) anon_set_ptr(new, new_idx + off + i, ap,
ANON_SLEEP);
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
ASSERT(i == 0 || ahmpages == NULL ||
refcnt == ap->an_refcnt);
ap->an_refcnt++;
mutex_exit(ahm);
}
if (ahmpages != NULL) {
mutex_exit(ahmpages);
ahmpages = NULL;
}
off += pgcnt;
new_idx += off;
old_idx += off;
npages -= pgcnt;
}
}
/*
* Used when a segment with a vnode changes szc. similarly to
* anon_dup_fill_holes() makes sure each large page region either has no anon
* slots or all of them. but new slots are created by COWing the file
* pages. on entrance no anon slots should be shared.
*/
int
anon_fill_cow_holes(
struct seg *seg,
caddr_t addr,
struct anon_hdr *ahp,
ulong_t an_idx,
struct vnode *vp,
u_offset_t vp_off,
size_t size,
uint_t szc,
uint_t prot,
struct vpage vpage[],
struct cred *cred)
{
struct anon *ap;
spgcnt_t npages;
pgcnt_t pgcnt, i;
ulong_t index, off;
int err = 0;
int pageflags = 0;
ASSERT(szc != 0);
pgcnt = page_get_pagecnt(szc);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
npages = btopr(size);
ASSERT(IS_P2ALIGNED(npages, pgcnt));
ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
while (npages > 0) {
index = an_idx;
/*
* Find the next valid slot.
*/
if (anon_get_next_ptr(ahp, &index) == NULL) {
break;
}
ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
/*
* Now backup index to the beginning of the
* current large page region of the anon array.
*/
index = P2ALIGN(index, pgcnt);
off = index - an_idx;
ASSERT(IS_P2ALIGNED(off, pgcnt));
npages -= off;
if (npages <= 0)
break;
an_idx += off;
vp_off += ptob(off);
addr += ptob(off);
if (vpage != NULL) {
vpage += off;
}
for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
page_t *pl[1 + 1];
page_t *pp;
err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
pl, PAGESIZE, seg, addr, S_READ, cred);
if (err) {
break;
}
if (vpage != NULL) {
prot = VPP_PROT(vpage);
pageflags = VPP_ISPPLOCK(vpage) ?
LOCK_PAGE : 0;
}
pp = anon_private(&ap, seg, addr, prot, pl[0],
pageflags, cred);
if (pp == NULL) {
err = ENOMEM;
break;
}
(void) anon_set_ptr(ahp, an_idx, ap,
ANON_SLEEP);
page_unlock(pp);
}
ASSERT(ap->an_refcnt == 1);
addr += PAGESIZE;
if (vpage != NULL) {
vpage++;
}
}
npages -= pgcnt;
}
return (err);
}
/*
* Free a group of "size" anon pages, size in bytes,
* and clear out the pointers to the anon entries.
*/
void
anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
{
spgcnt_t npages;
struct anon *ap;
ulong_t old;
npages = btopr(size);
while (npages > 0) {
old = index;
if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
break;
ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
npages -= index - old;
if (npages <= 0)
break;
(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
anon_decref(ap);
/*
* Bump index and decrement page count
*/
index++;
npages--;
}
}
void
anon_free_pages(
struct anon_hdr *ahp,
ulong_t an_idx,
size_t size,
uint_t szc)
{
spgcnt_t npages;
pgcnt_t pgcnt;
ulong_t index, off;
ASSERT(szc != 0);
pgcnt = page_get_pagecnt(szc);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
npages = btopr(size);
ASSERT(IS_P2ALIGNED(npages, pgcnt));
ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
VM_STAT_ADD(anonvmstats.freepages[0]);
while (npages > 0) {
index = an_idx;
/*
* Find the next valid slot.
*/
if (anon_get_next_ptr(ahp, &index) == NULL)
break;
ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
/*
* Now backup index to the beginning of the
* current large page region of the old array.
*/
index = P2ALIGN(index, pgcnt);
off = index - an_idx;
ASSERT(IS_P2ALIGNED(off, pgcnt));
npages -= off;
if (npages <= 0)
break;
anon_decref_pages(ahp, index, szc);
off += pgcnt;
an_idx += off;
npages -= pgcnt;
}
}
/*
* Make anonymous pages discardable
*/
void
anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
{
spgcnt_t npages = btopr(size);
struct anon *ap;
struct vnode *vp;
anoff_t off;
page_t *pp, *root_pp;
kmutex_t *ahm;
pgcnt_t pgcnt;
ulong_t old_idx, idx, i;
struct anon_hdr *ahp = amp->ahp;
anon_sync_obj_t cookie;
ASSERT(RW_READ_HELD(&amp->a_rwlock));
pgcnt = 1;
for (; npages > 0; index = (pgcnt == 1) ? index + 1:
P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
/*
* get anon pointer and index for the first valid entry
* in the anon list, starting from "index"
*/
old_idx = index;
if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
break;
/*
* decrement npages by number of NULL anon slots we skipped
*/
npages -= index - old_idx;
if (npages <= 0)
break;
anon_array_enter(amp, index, &cookie);
ap = anon_get_ptr(ahp, index);
ASSERT(ap != NULL);
/*
* Get anonymous page and try to lock it SE_EXCL;
* For non blocking case if we couldn't grab the lock
* we skip to next page.
* For blocking case (ANON_PGLOOKUP_BLK) block
* until we grab SE_EXCL lock.
*/
swap_xlate(ap, &vp, &off);
if (flags & ANON_PGLOOKUP_BLK)
pp = page_lookup_create(vp, (u_offset_t)off,
SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
else
pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
if (pp == NULL) {
segadvstat.MADV_FREE_miss.value.ul++;
pgcnt = 1;
anon_array_exit(&cookie);
continue;
}
pgcnt = page_get_pagecnt(pp->p_szc);
/*
* we cannot free a page which is permanently locked.
* The page_struct_lock need not be acquired to examine
* these fields since the page has an "exclusive" lock.
*/
if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
page_unlock(pp);
segadvstat.MADV_FREE_miss.value.ul++;
anon_array_exit(&cookie);
continue;
}
ahm = &anonhash_lock[AH_LOCK(vp, off)];
mutex_enter(ahm);
ASSERT(ap->an_refcnt != 0);
/*
* skip this one if copy-on-write is not yet broken.
*/
if (ap->an_refcnt > 1) {
mutex_exit(ahm);
page_unlock(pp);
segadvstat.MADV_FREE_miss.value.ul++;
anon_array_exit(&cookie);
continue;
}
if (pp->p_szc == 0) {
pgcnt = 1;
/*
* free swap slot;
*/
if (ap->an_pvp) {
swap_phys_free(ap->an_pvp, ap->an_poff,
PAGESIZE);
ap->an_pvp = NULL;
ap->an_poff = 0;
}
mutex_exit(ahm);
segadvstat.MADV_FREE_hit.value.ul++;
/*
* while we are at it, unload all the translations
* and attempt to free the page.
*/
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
/*LINTED: constant in conditional context */
VN_DISPOSE(pp, B_FREE, 0, kcred);
anon_array_exit(&cookie);
continue;
}
pgcnt = page_get_pagecnt(pp->p_szc);
if (!IS_P2ALIGNED(index, pgcnt)) {
if (!page_try_demote_pages(pp)) {
mutex_exit(ahm);
page_unlock(pp);
segadvstat.MADV_FREE_miss.value.ul++;
anon_array_exit(&cookie);
continue;
} else {
pgcnt = 1;
if (ap->an_pvp) {
swap_phys_free(ap->an_pvp,
ap->an_poff, PAGESIZE);
ap->an_pvp = NULL;
ap->an_poff = 0;
}
mutex_exit(ahm);
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
/*LINTED*/
VN_DISPOSE(pp, B_FREE, 0, kcred);
segadvstat.MADV_FREE_hit.value.ul++;
anon_array_exit(&cookie);
continue;
}
}
mutex_exit(ahm);
root_pp = pp;
/*
* try to lock remaining pages
*/
for (idx = 1; idx < pgcnt; idx++) {
pp++;
if (!page_trylock(pp, SE_EXCL))
break;
if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
page_unlock(pp);
break;
}
}
if (idx == pgcnt) {
for (i = 0; i < pgcnt; i++) {
ap = anon_get_ptr(ahp, index + i);
if (ap == NULL)
break;
swap_xlate(ap, &vp, &off);
ahm = &anonhash_lock[AH_LOCK(vp, off)];
mutex_enter(ahm);
ASSERT(ap->an_refcnt != 0);
/*
* skip this one if copy-on-write
* is not yet broken.
*/
if (ap->an_refcnt > 1) {
mutex_exit(ahm);
goto skiplp;
}
if (ap->an_pvp) {
swap_phys_free(ap->an_pvp,
ap->an_poff, PAGESIZE);
ap->an_pvp = NULL;
ap->an_poff = 0;
}
mutex_exit(ahm);
}
page_destroy_pages(root_pp);
segadvstat.MADV_FREE_hit.value.ul += pgcnt;
anon_array_exit(&cookie);
continue;
}
skiplp:
segadvstat.MADV_FREE_miss.value.ul += pgcnt;
for (i = 0, pp = root_pp; i < idx; pp++, i++)
page_unlock(pp);
anon_array_exit(&cookie);
}
}
/*
* Return the kept page(s) and protections back to the segment driver.
*/
int
anon_getpage(
struct anon **app,
uint_t *protp,
page_t *pl[],
size_t plsz,
struct seg *seg,
caddr_t addr,
enum seg_rw rw,
struct cred *cred)
{
page_t *pp;
struct anon *ap = *app;
struct vnode *vp;
anoff_t off;
int err;
kmutex_t *ahm;
swap_xlate(ap, &vp, &off);
/*
* Lookup the page. If page is being paged in,
* wait for it to finish as we must return a list of
* pages since this routine acts like the VOP_GETPAGE
* routine does.
*/
if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
if (ap->an_refcnt == 1)
*protp = PROT_ALL;
else
*protp = PROT_ALL & ~PROT_WRITE;
mutex_exit(ahm);
pl[0] = pp;
pl[1] = NULL;
return (0);
}
/*
* Simply treat it as a vnode fault on the anon vp.
*/
TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
"anon_getpage:seg %x addr %x vp %x",
seg, addr, vp);
err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
seg, addr, rw, cred);
if (err == 0 && pl != NULL) {
ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahm);
if (ap->an_refcnt != 1)
*protp &= ~PROT_WRITE; /* make read-only */
mutex_exit(ahm);
}
return (err);
}
/*
* Creates or returns kept pages to the segment driver. returns -1 if a large
* page cannot be allocated. returns -2 if some other process has allocated a
* larger page.
*
* For cowfault it will alocate any size pages to fill the requested area to
* avoid partially overwritting anon slots (i.e. sharing only some of the anon
* slots within a large page with other processes). This policy greatly
* simplifies large page freeing (which is only freed when all anon slot
* refcnts are 0).
*/
int
anon_map_getpages(
struct anon_map *amp,
ulong_t start_idx,
uint_t szc,
struct seg *seg,
caddr_t addr,
uint_t prot,
uint_t *protp,
page_t *ppa[],
uint_t *ppa_szc,
struct vpage vpage[],
enum seg_rw rw,
int brkcow,
int anypgsz,
struct cred *cred)
{
pgcnt_t pgcnt;
struct anon *ap;
struct vnode *vp;
anoff_t off;
page_t *pp, *pl[2], *conpp = NULL;
caddr_t vaddr;
ulong_t pg_idx, an_idx, i;
spgcnt_t nreloc = 0;
int prealloc = 1;
int err, slotcreate;
uint_t vpprot;
#if !defined(__i386) && !defined(__amd64)
ASSERT(seg->s_szc != 0);
#endif
ASSERT(szc <= seg->s_szc);
ASSERT(ppa_szc != NULL);
ASSERT(rw != S_CREATE);
*protp = PROT_ALL;
VM_STAT_ADD(anonvmstats.getpages[0]);
if (szc == 0) {
VM_STAT_ADD(anonvmstats.getpages[1]);
if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
addr, rw, cred);
if (err)
return (err);
ppa[0] = pl[0];
if (brkcow == 0 || (*protp & PROT_WRITE)) {
VM_STAT_ADD(anonvmstats.getpages[2]);
if (ppa[0]->p_szc != 0) {
VM_STAT_ADD(anonvmstats.getpages[3]);
*ppa_szc = ppa[0]->p_szc;
page_unlock(ppa[0]);
return (-2);
}
return (0);
}
panic("anon_map_getpages: cowfault for szc 0");
} else {
VM_STAT_ADD(anonvmstats.getpages[4]);
ppa[0] = anon_zero(seg, addr, &ap, cred);
if (ppa[0] == NULL)
return (ENOMEM);
(void) anon_set_ptr(amp->ahp, start_idx, ap,
ANON_SLEEP);
return (0);
}
}
pgcnt = page_get_pagecnt(szc);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
/*
* First we check for the case that the requtested large
* page or larger page already exists in the system.
* Actually we only check if the first constituent page
* exists and only preallocate if it's not found.
*/
ap = anon_get_ptr(amp->ahp, start_idx);
if (ap) {
uint_t pszc;
swap_xlate(ap, &vp, &off);
if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
if (pszc > szc) {
*ppa_szc = pszc;
return (-2);
}
if (pszc == szc) {
prealloc = 0;
}
}
}
VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
top:
/*
* If a smaller page or no page at all was found,
* grab a large page off the freelist.
*/
if (prealloc) {
ASSERT(conpp == NULL);
if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
szc, 0) != 0) {
VM_STAT_ADD(anonvmstats.getpages[7]);
if (brkcow == 0 ||
!anon_share(amp->ahp, start_idx, pgcnt)) {
/*
* If the refcnt's of all anon slots are <= 1
* they can't increase since we are holding
* the address space's lock. So segvn can
* safely decrease szc without risking to
* generate a cow fault for the region smaller
* than the segment's largest page size.
*/
VM_STAT_ADD(anonvmstats.getpages[8]);
return (-1);
}
docow:
/*
* This is a cow fault. Copy away the entire 1 large
* page region of this segment.
*/
if (szc != seg->s_szc)
panic("anon_map_getpages: cowfault for szc %d",
szc);
vaddr = addr;
for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
pg_idx++, an_idx++, vaddr += PAGESIZE) {
if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
NULL) {
err = anon_getpage(&ap, &vpprot, pl,
PAGESIZE, seg, vaddr, rw, cred);
if (err) {
for (i = 0; i < pg_idx; i++) {
if ((pp = ppa[i]) !=
NULL)
page_unlock(pp);
}
return (err);
}
ppa[pg_idx] = pl[0];
} else {
/*
* Since this is a cowfault we know
* that this address space has a
* parent or children which means
* anon_dup_fill_holes() has initialized
* all anon slots within a large page
* region that had at least one anon
* slot at the time of fork().
*/
panic("anon_map_getpages: "
"cowfault but anon slot is empty");
}
}
VM_STAT_ADD(anonvmstats.getpages[9]);
*protp = PROT_ALL;
return (anon_map_privatepages(amp, start_idx, szc, seg,
addr, prot, ppa, vpage, anypgsz, cred));
}
}
VM_STAT_ADD(anonvmstats.getpages[10]);
an_idx = start_idx;
pg_idx = 0;
vaddr = addr;
while (pg_idx < pgcnt) {
slotcreate = 0;
if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
VM_STAT_ADD(anonvmstats.getpages[11]);
/*
* For us to have decided not to preallocate
* would have meant that a large page
* was found. Which also means that all of the
* anon slots for that page would have been
* already created for us.
*/
if (prealloc == 0)
panic("anon_map_getpages: prealloc = 0");
slotcreate = 1;
ap = anon_alloc(NULL, 0);
}
swap_xlate(ap, &vp, &off);
/*
* Now setup our preallocated page to pass down
* to swap_getpage().
*/
if (prealloc) {
ASSERT(ppa[pg_idx]->p_szc == szc);
conpp = ppa[pg_idx];
}
ASSERT(prealloc || conpp == NULL);
/*
* If we just created this anon slot then call
* with S_CREATE to prevent doing IO on the page.
* Similar to the anon_zero case.
*/
err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr,
slotcreate == 1 ? S_CREATE : rw, cred);
if (err) {
VM_STAT_ADD(anonvmstats.getpages[12]);
ASSERT(slotcreate == 0);
goto io_err;
}
pp = pl[0];
if (pp->p_szc != szc) {
VM_STAT_ADD(anonvmstats.getpages[13]);
ASSERT(slotcreate == 0);
ASSERT(prealloc == 0);
ASSERT(pg_idx == 0);
if (pp->p_szc > szc) {
page_unlock(pp);
VM_STAT_ADD(anonvmstats.getpages[14]);
return (-2);
}
page_unlock(pp);
prealloc = 1;
goto top;
}
/*
* If we decided to preallocate but VOP_GETPAGE
* found a page in the system that satisfies our
* request then free up our preallocated large page
* and continue looping accross the existing large
* page via VOP_GETPAGE.
*/
if (prealloc && pp != ppa[pg_idx]) {
VM_STAT_ADD(anonvmstats.getpages[15]);
ASSERT(slotcreate == 0);
ASSERT(pg_idx == 0);
conpp = NULL;
prealloc = 0;
page_free_pages(ppa[0]);
}
if (prealloc && nreloc > 1) {
/*
* we have relocated out of a smaller large page.
* skip npgs - 1 iterations and continue which will
* increment by one the loop indices.
*/
spgcnt_t npgs = nreloc;
VM_STAT_ADD(anonvmstats.getpages[16]);
ASSERT(pp == ppa[pg_idx]);
ASSERT(slotcreate == 0);
ASSERT(pg_idx + npgs <= pgcnt);
if ((*protp & PROT_WRITE) &&
anon_share(amp->ahp, an_idx, npgs)) {
*protp &= ~PROT_WRITE;
}
pg_idx += npgs;
an_idx += npgs;
vaddr += PAGESIZE * npgs;
continue;
}
VM_STAT_ADD(anonvmstats.getpages[17]);
/*
* Anon_zero case.
*/
if (slotcreate) {
ASSERT(prealloc);
pagezero(pp, 0, PAGESIZE);
CPU_STATS_ADD_K(vm, zfod, 1);
hat_setrefmod(pp);
}
ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
ASSERT(prealloc != 0 || PAGE_SHARED(pp));
ASSERT(prealloc == 0 || PAGE_EXCL(pp));
if (pg_idx > 0 &&
((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
(pp->p_szc != ppa[pg_idx - 1]->p_szc)))
panic("anon_map_getpages: unexpected page");
if (prealloc == 0) {
ppa[pg_idx] = pp;
}
if (ap->an_refcnt > 1) {
VM_STAT_ADD(anonvmstats.getpages[18]);
*protp &= ~PROT_WRITE;
}
/*
* If this is a new anon slot then initialize
* the anon array entry.
*/
if (slotcreate) {
(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
}
pg_idx++;
an_idx++;
vaddr += PAGESIZE;
}
/*
* Since preallocated pages come off the freelist
* they are locked SE_EXCL. Simply downgrade and return.
*/
if (prealloc) {
VM_STAT_ADD(anonvmstats.getpages[19]);
conpp = NULL;
for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
page_downgrade(ppa[pg_idx]);
}
}
ASSERT(conpp == NULL);
if (brkcow == 0 || (*protp & PROT_WRITE)) {
VM_STAT_ADD(anonvmstats.getpages[20]);
return (0);
}
if (szc < seg->s_szc)
panic("anon_map_getpages: cowfault for szc %d", szc);
VM_STAT_ADD(anonvmstats.getpages[21]);
*protp = PROT_ALL;
return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
ppa, vpage, anypgsz, cred));
io_err:
/*
* We got an IO error somewhere in our large page.
* If we were using a preallocated page then just demote
* all the constituent pages that we've succeeded with sofar
* to PAGESIZE pages and leave them in the system
* unlocked.
*/
ASSERT(err != -2 || pg_idx == 0);
VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
if (prealloc) {
conpp = NULL;
if (pg_idx > 0) {
VM_STAT_ADD(anonvmstats.getpages[25]);
for (i = 0; i < pgcnt; i++) {
pp = ppa[i];
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_szc == szc);
pp->p_szc = 0;
}
for (i = 0; i < pg_idx; i++) {
ASSERT(!hat_page_is_mapped(ppa[i]));
page_unlock(ppa[i]);
}
/*
* Now free up the remaining unused constituent
* pages.
*/
while (pg_idx < pgcnt) {
ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
page_free(ppa[pg_idx], 0);
pg_idx++;
}
} else {
VM_STAT_ADD(anonvmstats.getpages[26]);
page_free_pages(ppa[0]);
}
} else {
VM_STAT_ADD(anonvmstats.getpages[27]);
ASSERT(err > 0);
for (i = 0; i < pg_idx; i++)
page_unlock(ppa[i]);
}
ASSERT(conpp == NULL);
if (err != -1)
return (err);
/*
* we are here because we failed to relocate.
*/
ASSERT(prealloc);
if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
VM_STAT_ADD(anonvmstats.getpages[28]);
return (-1);
}
VM_STAT_ADD(anonvmstats.getpages[29]);
goto docow;
}
/*
* Turn a reference to an object or shared anon page
* into a private page with a copy of the data from the
* original page which is always locked by the caller.
* This routine unloads the translation and unlocks the
* original page, if it isn't being stolen, before returning
* to the caller.
*
* NOTE: The original anon slot is not freed by this routine
* It must be freed by the caller while holding the
* "anon_map" lock to prevent races which can occur if
* a process has multiple lwps in its address space.
*/
page_t *
anon_private(
struct anon **app,
struct seg *seg,
caddr_t addr,
uint_t prot,
page_t *opp,
int oppflags,
struct cred *cred)
{
struct anon *old = *app;
struct anon *new;
page_t *pp = NULL;
struct vnode *vp;
anoff_t off;
page_t *anon_pl[1 + 1];
int err;
if (oppflags & STEAL_PAGE)
ASSERT(PAGE_EXCL(opp));
else
ASSERT(PAGE_LOCKED(opp));
CPU_STATS_ADD_K(vm, cow_fault, 1);
/* Kernel probe */
TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
tnf_opaque, address, addr);
*app = new = anon_alloc(NULL, 0);
swap_xlate(new, &vp, &off);
if (oppflags & STEAL_PAGE) {
page_rename(opp, vp, (u_offset_t)off);
pp = opp;
TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
"anon_private:seg %p addr %x pp %p vp %p off %lx",
seg, addr, pp, vp, off);
hat_setmod(pp);
/* bug 4026339 */
page_downgrade(pp);
return (pp);
}
/*
* Call the VOP_GETPAGE routine to create the page, thereby
* enabling the vnode driver to allocate any filesystem
* space (e.g., disk block allocation for UFS). This also
* prevents more than one page from being added to the
* vnode at the same time.
*/
err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
if (err)
goto out;
pp = anon_pl[0];
/*
* If the original page was locked, we need to move the lock
* to the new page by transfering 'cowcnt/lckcnt' of the original
* page to 'cowcnt/lckcnt' of the new page.
*
* See Statement at the beginning of segvn_lockop() and
* comments in page_pp_useclaim() regarding the way
* cowcnts/lckcnts are handled.
*
* Also availrmem must be decremented up front for read only mapping
* before calling page_pp_useclaim. page_pp_useclaim will bump it back
* if availrmem did not need to be decremented after all.
*/
if (oppflags & LOCK_PAGE) {
if ((prot & PROT_WRITE) == 0) {
mutex_enter(&freemem_lock);
if (availrmem > pages_pp_maximum) {
availrmem--;
pages_useclaim++;
} else {
mutex_exit(&freemem_lock);
goto out;
}
mutex_exit(&freemem_lock);
}
page_pp_useclaim(opp, pp, prot & PROT_WRITE);
}
/*
* Now copy the contents from the original page,
* which is locked and loaded in the MMU by
* the caller to prevent yet another page fault.
*/
ppcopy(opp, pp); /* XXX - should set mod bit in here */
hat_setrefmod(pp); /* mark as modified */
/*
* Unload the old translation.
*/
hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
/*
* Free unmapped, unmodified original page.
* or release the lock on the original page,
* otherwise the process will sleep forever in
* anon_decref() waiting for the "exclusive" lock
* on the page.
*/
(void) page_release(opp, 1);
/*
* we are done with page creation so downgrade the new
* page's selock to shared, this helps when multiple
* as_fault(...SOFTLOCK...) are done to the same
* page(aio)
*/
page_downgrade(pp);
/*
* NOTE: The original anon slot must be freed by the
* caller while holding the "anon_map" lock, if we
* copied away from an anonymous page.
*/
return (pp);
out:
*app = old;
if (pp)
page_unlock(pp);
anon_decref(new);
page_unlock(opp);
return ((page_t *)NULL);
}
int
anon_map_privatepages(
struct anon_map *amp,
ulong_t start_idx,
uint_t szc,
struct seg *seg,
caddr_t addr,
uint_t prot,
page_t *ppa[],
struct vpage vpage[],
int anypgsz,
struct cred *cred)
{
pgcnt_t pgcnt;
struct vnode *vp;
anoff_t off;
page_t *pl[2], *conpp = NULL;
int err;
int prealloc = 1;
struct anon *ap, *oldap;
caddr_t vaddr;
page_t *pplist, *pp;
ulong_t pg_idx, an_idx;
spgcnt_t nreloc = 0;
int pagelock = 0;
kmutex_t *ahmpages = NULL;
#ifdef DEBUG
int refcnt;
#endif
ASSERT(szc != 0);
ASSERT(szc == seg->s_szc);
VM_STAT_ADD(anonvmstats.privatepages[0]);
pgcnt = page_get_pagecnt(szc);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
ASSERT(amp != NULL);
ap = anon_get_ptr(amp->ahp, start_idx);
ASSERT(ap == NULL || ap->an_refcnt >= 1);
VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
/*
* Now try and allocate the large page. If we fail then just
* let VOP_GETPAGE give us PAGESIZE pages. Normally we let
* the caller make this decision but to avoid added complexity
* it's simplier to handle that case here.
*/
if (anypgsz == -1) {
VM_STAT_ADD(anonvmstats.privatepages[2]);
prealloc = 0;
} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
anypgsz) != 0) {
VM_STAT_ADD(anonvmstats.privatepages[3]);
prealloc = 0;
}
/*
* make the decrement of all refcnts of all
* anon slots of a large page appear atomic by
* getting an anonpages_hash_lock for the
* first anon slot of a large page.
*/
if (ap != NULL) {
ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
ap->an_off)];
mutex_enter(ahmpages);
if (ap->an_refcnt == 1) {
VM_STAT_ADD(anonvmstats.privatepages[4]);
ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
mutex_exit(ahmpages);
if (prealloc) {
page_free_replacement_page(pplist);
page_create_putback(pgcnt);
}
ASSERT(ppa[0]->p_szc <= szc);
if (ppa[0]->p_szc == szc) {
VM_STAT_ADD(anonvmstats.privatepages[5]);
return (0);
}
for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
ASSERT(ppa[pg_idx] != NULL);
page_unlock(ppa[pg_idx]);
}
return (-1);
}
}
/*
* If we are passed in the vpage array and this is
* not PROT_WRITE then we need to decrement availrmem
* up front before we try anything. If we need to and
* can't decrement availrmem then its better to fail now
* than in the middle of processing the new large page.
* page_pp_usclaim() on behalf of each constituent page
* below will adjust availrmem back for the cases not needed.
*/
if (vpage != NULL && (prot & PROT_WRITE) == 0) {
for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
if (VPP_ISPPLOCK(&vpage[pg_idx])) {
pagelock = 1;
break;
}
}
if (pagelock) {
VM_STAT_ADD(anonvmstats.privatepages[6]);
mutex_enter(&freemem_lock);
if (availrmem >= pages_pp_maximum + pgcnt) {
availrmem -= pgcnt;
pages_useclaim += pgcnt;
} else {
VM_STAT_ADD(anonvmstats.privatepages[7]);
mutex_exit(&freemem_lock);
if (ahmpages != NULL) {
mutex_exit(ahmpages);
}
if (prealloc) {
page_free_replacement_page(pplist);
page_create_putback(pgcnt);
}
for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
if (ppa[pg_idx] != NULL)
page_unlock(ppa[pg_idx]);
return (ENOMEM);
}
mutex_exit(&freemem_lock);
}
}
CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
VM_STAT_ADD(anonvmstats.privatepages[8]);
an_idx = start_idx;
pg_idx = 0;
vaddr = addr;
for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
ASSERT(ppa[pg_idx] != NULL);
oldap = anon_get_ptr(amp->ahp, an_idx);
ASSERT(ahmpages != NULL || oldap == NULL);
ASSERT(ahmpages == NULL || oldap != NULL);
ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
ASSERT(ahmpages == NULL || pg_idx != 0 ||
(refcnt = oldap->an_refcnt));
ASSERT(ahmpages == NULL || pg_idx == 0 ||
refcnt == oldap->an_refcnt);
ap = anon_alloc(NULL, 0);
swap_xlate(ap, &vp, &off);
/*
* Now setup our preallocated page to pass down to
* swap_getpage().
*/
if (prealloc) {
pp = pplist;
page_sub(&pplist, pp);
conpp = pp;
}
err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred);
/*
* Impossible to fail this is S_CREATE.
*/
if (err)
panic("anon_map_privatepages: VOP_GETPAGE failed");
ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
ASSERT(prealloc == 0 || nreloc == 1);
pp = pl[0];
/*
* If the original page was locked, we need to move
* the lock to the new page by transfering
* 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
* of the new page. pg_idx can be used to index
* into the vpage array since the caller will guarentee
* that vpage struct passed in corresponds to addr
* and forward.
*/
if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
} else if (pagelock) {
mutex_enter(&freemem_lock);
availrmem++;
pages_useclaim--;
mutex_exit(&freemem_lock);
}
/*
* Now copy the contents from the original page.
*/
ppcopy(ppa[pg_idx], pp);
hat_setrefmod(pp); /* mark as modified */
/*
* Release the lock on the original page,
* derement the old slot, and down grade the lock
* on the new copy.
*/
page_unlock(ppa[pg_idx]);
if (!prealloc)
page_downgrade(pp);
ppa[pg_idx] = pp;
/*
* Now reflect the copy in the new anon array.
*/
ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
if (oldap != NULL)
anon_decref(oldap);
(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
}
if (ahmpages != NULL) {
mutex_exit(ahmpages);
}
ASSERT(prealloc == 0 || pplist == NULL);
if (prealloc) {
VM_STAT_ADD(anonvmstats.privatepages[9]);
for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
page_downgrade(ppa[pg_idx]);
}
}
/*
* Unload the old large page translation.
*/
hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
return (0);
}
/*
* Allocate a private zero-filled anon page.
*/
page_t *
anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
{
struct anon *ap;
page_t *pp;
struct vnode *vp;
anoff_t off;
page_t *anon_pl[1 + 1];
int err;
/* Kernel probe */
TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
tnf_opaque, address, addr);
*app = ap = anon_alloc(NULL, 0);
swap_xlate(ap, &vp, &off);
/*
* Call the VOP_GETPAGE routine to create the page, thereby
* enabling the vnode driver to allocate any filesystem
* dependent structures (e.g., disk block allocation for UFS).
* This also prevents more than on page from being added to
* the vnode at the same time since it is locked.
*/
err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
if (err) {
*app = NULL;
anon_decref(ap);
return (NULL);
}
pp = anon_pl[0];
pagezero(pp, 0, PAGESIZE); /* XXX - should set mod bit */
page_downgrade(pp);
CPU_STATS_ADD_K(vm, zfod, 1);
hat_setrefmod(pp); /* mark as modified so pageout writes back */
return (pp);
}
/*
* Allocate array of private zero-filled anon pages for empty slots
* and kept pages for non empty slots within given range.
*
* NOTE: This rontine will try and use large pages
* if available and supported by underlying platform.
*/
int
anon_map_createpages(
struct anon_map *amp,
ulong_t start_index,
size_t len,
page_t *ppa[],
struct seg *seg,
caddr_t addr,
enum seg_rw rw,
struct cred *cred)
{
struct anon *ap;
struct vnode *ap_vp;
page_t *pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
int err = 0;
ulong_t p_index, index;
pgcnt_t npgs, pg_cnt;
spgcnt_t nreloc = 0;
uint_t l_szc, szc, prot;
anoff_t ap_off;
size_t pgsz;
lgrp_t *lgrp;
/*
* XXX For now only handle S_CREATE.
*/
ASSERT(rw == S_CREATE);
index = start_index;
p_index = 0;
npgs = btopr(len);
/*
* If this platform supports multiple page sizes
* then try and allocate directly from the free
* list for pages larger than PAGESIZE.
*
* NOTE:When we have page_create_ru we can stop
* directly allocating from the freelist.
*/
l_szc = seg->s_szc;
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
while (npgs) {
/*
* if anon slot already exists
* (means page has been created)
* so 1) look up the page
* 2) if the page is still in memory, get it.
* 3) if not, create a page and
* page in from physical swap device.
* These are done in anon_getpage().
*/
ap = anon_get_ptr(amp->ahp, index);
if (ap) {
err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
seg, addr, S_READ, cred);
if (err) {
ANON_LOCK_EXIT(&amp->a_rwlock);
panic("anon_map_createpages: anon_getpage");
}
pp = anon_pl[0];
ppa[p_index++] = pp;
addr += PAGESIZE;
index++;
npgs--;
continue;
}
/*
* Now try and allocate the largest page possible
* for the current address and range.
* Keep dropping down in page size until:
*
* 1) Properly aligned
* 2) Does not overlap existing anon pages
* 3) Fits in remaining range.
* 4) able to allocate one.
*
* NOTE: XXX When page_create_ru is completed this code
* will change.
*/
szc = l_szc;
pplist = NULL;
pg_cnt = 0;
while (szc) {
pgsz = page_get_pagesize(szc);
pg_cnt = pgsz >> PAGESHIFT;
if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
anon_pages(amp->ahp, index, pg_cnt) == 0) {
/*
* XXX
* Since we are faking page_create()
* we also need to do the freemem and
* pcf accounting.
*/
(void) page_create_wait(pg_cnt, PG_WAIT);
/*
* Get lgroup to allocate next page of shared
* memory from and use it to specify where to
* allocate the physical memory
*/
lgrp = lgrp_mem_choose(seg, addr, pgsz);
pplist = page_get_freelist(
anon_vp, (u_offset_t)0, seg,
addr, pgsz, 0, lgrp);
if (pplist == NULL) {
page_create_putback(pg_cnt);
}
/*
* If a request for a page of size
* larger than PAGESIZE failed
* then don't try that size anymore.
*/
if (pplist == NULL) {
l_szc = szc - 1;
} else {
break;
}
}
szc--;
}
/*
* If just using PAGESIZE pages then don't
* directly allocate from the free list.
*/
if (pplist == NULL) {
ASSERT(szc == 0);
pp = anon_zero(seg, addr, &ap, cred);
if (pp == NULL) {
ANON_LOCK_EXIT(&amp->a_rwlock);
panic("anon_map_createpages: anon_zero");
}
ppa[p_index++] = pp;
ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
addr += PAGESIZE;
index++;
npgs--;
continue;
}
/*
* pplist is a list of pg_cnt PAGESIZE pages.
* These pages are locked SE_EXCL since they
* came directly off the free list.
*/
ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
ASSERT(IS_P2ALIGNED(index, pg_cnt));
ASSERT(conpp == NULL);
while (pg_cnt--) {
ap = anon_alloc(NULL, 0);
swap_xlate(ap, &ap_vp, &ap_off);
ASSERT(pplist != NULL);
pp = pplist;
page_sub(&pplist, pp);
PP_CLRFREE(pp);
PP_CLRAGED(pp);
conpp = pp;
err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
(uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc,
seg, addr, S_CREATE, cred);
if (err) {
ANON_LOCK_EXIT(&amp->a_rwlock);
panic("anon_map_createpages: S_CREATE");
}
ASSERT(anon_pl[0] == pp);
ASSERT(nreloc == 1);
pagezero(pp, 0, PAGESIZE);
CPU_STATS_ADD_K(vm, zfod, 1);
hat_setrefmod(pp);
ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
ppa[p_index++] = pp;
addr += PAGESIZE;
index++;
npgs--;
}
conpp = NULL;
pg_cnt = pgsz >> PAGESHIFT;
p_index = p_index - pg_cnt;
while (pg_cnt--) {
page_downgrade(ppa[p_index++]);
}
}
ANON_LOCK_EXIT(&amp->a_rwlock);
return (0);
}
int
anon_map_demotepages(
struct anon_map *amp,
ulong_t start_idx,
struct seg *seg,
caddr_t addr,
uint_t prot,
struct vpage vpage[],
struct cred *cred)
{
struct anon *ap;
uint_t szc = seg->s_szc;
pgcnt_t pgcnt = page_get_pagecnt(szc);
size_t ppasize = pgcnt * sizeof (page_t *);
page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
page_t *pp;
page_t *pl[2];
pgcnt_t i, pg_idx;
ulong_t an_idx;
caddr_t vaddr;
kmutex_t *ahmpages = NULL;
int err;
int retry = 0;
uint_t vpprot;
ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
ASSERT(ppa != NULL);
VM_STAT_ADD(anonvmstats.demotepages[0]);
ap = anon_get_ptr(amp->ahp, start_idx);
if (ap != NULL) {
VM_STAT_ADD(anonvmstats.demotepages[1]);
ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
mutex_enter(ahmpages);
}
top:
if (ap == NULL || ap->an_refcnt <= 1) {
int root = 0;
pgcnt_t npgs, curnpgs = 0;
VM_STAT_ADD(anonvmstats.demotepages[2]);
ASSERT(retry == 0 || ap != NULL);
if (ahmpages != NULL)
mutex_exit(ahmpages);
an_idx = start_idx;
for (i = 0; i < pgcnt; i++, an_idx++) {
ap = anon_get_ptr(amp->ahp, an_idx);
if (ap != NULL) {
ASSERT(ap->an_refcnt == 1);
pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
SE_EXCL);
if (pp != NULL) {
(void) hat_pageunload(pp,
HAT_FORCE_PGUNLOAD);
}
} else {
ppa[i] = NULL;
}
}
for (i = 0; i < pgcnt; i++) {
if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
ASSERT(pp->p_szc <= szc);
if (!root) {
VM_STAT_ADD(anonvmstats.demotepages[3]);
if (curnpgs != 0)
panic("anon_map_demotepages: "
"bad large page");
root = 1;
curnpgs = npgs =
page_get_pagecnt(pp->p_szc);
ASSERT(npgs <= pgcnt);
ASSERT(IS_P2ALIGNED(npgs, npgs));
ASSERT(!(page_pptonum(pp) &
(npgs - 1)));
} else {
ASSERT(i > 0);
ASSERT(page_pptonum(pp) - 1 ==
page_pptonum(ppa[i - 1]));
if ((page_pptonum(pp) & (npgs - 1)) ==
npgs - 1)
root = 0;
}
ASSERT(PAGE_EXCL(pp));
pp->p_szc = 0;
curnpgs--;
}
}
if (root != 0 || curnpgs != 0)
panic("anon_map_demotepages: bad large page");
for (i = 0; i < pgcnt; i++) {
if ((pp = ppa[i]) != NULL) {
ASSERT(!hat_page_is_mapped(pp));
ASSERT(pp->p_szc == 0);
page_unlock(pp);
}
}
kmem_free(ppa, ppasize);
return (0);
}
ASSERT(ahmpages != NULL);
mutex_exit(ahmpages);
ahmpages = NULL;
VM_STAT_ADD(anonvmstats.demotepages[4]);
ASSERT(retry == 0); /* we can be here only once */
vaddr = addr;
for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
pg_idx++, an_idx++, vaddr += PAGESIZE) {
ap = anon_get_ptr(amp->ahp, an_idx);
if (ap == NULL)
panic("anon_map_demotepages: no anon slot");
err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
S_READ, cred);
if (err) {
for (i = 0; i < pg_idx; i++) {
if ((pp = ppa[i]) != NULL)
page_unlock(pp);
}
kmem_free(ppa, ppasize);
return (err);
}
ppa[pg_idx] = pl[0];
}
err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
vpage, -1, cred);
if (err > 0) {
VM_STAT_ADD(anonvmstats.demotepages[5]);
kmem_free(ppa, ppasize);
return (err);
}
ASSERT(err == 0 || err == -1);
if (err == -1) {
VM_STAT_ADD(anonvmstats.demotepages[6]);
retry = 1;
goto top;
}
for (i = 0; i < pgcnt; i++) {
ASSERT(ppa[i] != NULL);
if (ppa[i]->p_szc != 0)
retry = 1;
page_unlock(ppa[i]);
}
if (retry) {
VM_STAT_ADD(anonvmstats.demotepages[7]);
goto top;
}
VM_STAT_ADD(anonvmstats.demotepages[8]);
kmem_free(ppa, ppasize);
return (0);
}
/*
* Allocate and initialize an anon_map structure for seg
* associating the given swap reservation with the new anon_map.
*/
struct anon_map *
anonmap_alloc(size_t size, size_t swresv)
{
struct anon_map *amp;
amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
amp->refcnt = 1;
amp->size = size;
amp->ahp = anon_create(btopr(size), ANON_SLEEP);
amp->swresv = swresv;
amp->locality = 0;
amp->a_szc = 0;
return (amp);
}
void
anonmap_free(struct anon_map *amp)
{
ASSERT(amp->ahp);
ASSERT(amp->refcnt == 0);
lgrp_shm_policy_fini(amp, NULL);
anon_release(amp->ahp, btopr(amp->size));
kmem_cache_free(anonmap_cache, amp);
}
/*
* Returns true if the app array has some empty slots.
* The offp and lenp paramters are in/out paramters. On entry
* these values represent the starting offset and length of the
* mapping. When true is returned, these values may be modified
* to be the largest range which includes empty slots.
*/
int
non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
size_t *lenp)
{
ulong_t i, el;
ssize_t low, high;
struct anon *ap;
low = -1;
for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
ap = anon_get_ptr(ahp, anon_idx);
if (ap == NULL) {
if (low == -1)
low = i;
high = i;
}
}
if (low != -1) {
/*
* Found at least one non-anon page.
* Set up the off and len return values.
*/
if (low != 0)
*offp += low;
*lenp = high - low + PAGESIZE;
return (1);
}
return (0);
}
/*
* Return a count of the number of existing anon pages in the anon array
* app in the range (off, off+len). The array and slots must be guaranteed
* stable by the caller.
*/
pgcnt_t
anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
{
pgcnt_t cnt = 0;
while (nslots-- > 0) {
if ((anon_get_ptr(ahp, anon_index)) != NULL)
cnt++;
anon_index++;
}
return (cnt);
}
/*
* Move reserved phys swap into memory swap (unreserve phys swap
* and reserve mem swap by the same amount).
* Used by segspt when it needs to lock resrved swap npages in memory
*/
int
anon_swap_adjust(pgcnt_t npages)
{
pgcnt_t unlocked_mem_swap;
mutex_enter(&anoninfo_lock);
ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
unlocked_mem_swap = k_anoninfo.ani_mem_resv
- k_anoninfo.ani_locked_swap;
if (npages > unlocked_mem_swap) {
spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
/*
* if there is not enough unlocked mem swap we take missing
* amount from phys swap and give it to mem swap
*/
mutex_enter(&freemem_lock);
if (availrmem < adjusted_swap + segspt_minfree) {
mutex_exit(&freemem_lock);
mutex_exit(&anoninfo_lock);
return (ENOMEM);
}
availrmem -= adjusted_swap;
mutex_exit(&freemem_lock);
k_anoninfo.ani_mem_resv += adjusted_swap;
ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
k_anoninfo.ani_phys_resv -= adjusted_swap;
ANI_ADD(adjusted_swap);
}
k_anoninfo.ani_locked_swap += npages;
ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
mutex_exit(&anoninfo_lock);
return (0);
}
/*
* 'unlocked' reserved mem swap so when it is unreserved it
* can be moved back phys (disk) swap
*/
void
anon_swap_restore(pgcnt_t npages)
{
mutex_enter(&anoninfo_lock);
ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
ASSERT(k_anoninfo.ani_locked_swap >= npages);
k_anoninfo.ani_locked_swap -= npages;
ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
mutex_exit(&anoninfo_lock);
}
/*
* Return the pointer from the list for a
* specified anon index.
*/
ulong_t *
anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
{
struct anon **app;
void **ppp;
ASSERT(an_idx < ahp->size);
/*
* Single level case.
*/
if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
return ((ulong_t *)&ahp->array_chunk[an_idx]);
} else {
/*
* 2 level case.
*/
ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
if (*ppp == NULL) {
mutex_enter(&ahp->serial_lock);
ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
if (*ppp == NULL)
*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
mutex_exit(&ahp->serial_lock);
}
app = *ppp;
return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
}
}
void
anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
{
ulong_t *ap_slot;
kmutex_t *mtx;
kcondvar_t *cv;
int hash;
/*
* Use szc to determine anon slot(s) to appear atomic.
* If szc = 0, then lock the anon slot and mark it busy.
* If szc > 0, then lock the range of slots by getting the
* anon_array_lock for the first anon slot, and mark only the
* first anon slot busy to represent whole range being busy.
*/
ASSERT(RW_READ_HELD(&amp->a_rwlock));
an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
hash = ANON_ARRAY_HASH(amp, an_idx);
sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
sobj->sync_cv = cv = &anon_array_cv[hash];
mutex_enter(mtx);
ap_slot = anon_get_slot(amp->ahp, an_idx);
while (ANON_ISBUSY(ap_slot))
cv_wait(cv, mtx);
ANON_SETBUSY(ap_slot);
sobj->sync_data = ap_slot;
mutex_exit(mtx);
}
int
anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
anon_sync_obj_t *sobj)
{
ulong_t *ap_slot;
kmutex_t *mtx;
int hash;
/*
* Try to lock a range of anon slots.
* Use szc to determine anon slot(s) to appear atomic.
* If szc = 0, then lock the anon slot and mark it busy.
* If szc > 0, then lock the range of slots by getting the
* anon_array_lock for the first anon slot, and mark only the
* first anon slot busy to represent whole range being busy.
* Fail if the mutex or the anon_array are busy.
*/
ASSERT(RW_READ_HELD(&amp->a_rwlock));
an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
hash = ANON_ARRAY_HASH(amp, an_idx);
sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
if (!mutex_tryenter(mtx)) {
return (EWOULDBLOCK);
}
ap_slot = anon_get_slot(amp->ahp, an_idx);
if (ANON_ISBUSY(ap_slot)) {
mutex_exit(mtx);
return (EWOULDBLOCK);
}
ANON_SETBUSY(ap_slot);
sobj->sync_data = ap_slot;
mutex_exit(mtx);
return (0);
}
void
anon_array_exit(anon_sync_obj_t *sobj)
{
mutex_enter(sobj->sync_mutex);
ASSERT(ANON_ISBUSY(sobj->sync_data));
ANON_CLRBUSY(sobj->sync_data);
if (CV_HAS_WAITERS(sobj->sync_cv))
cv_broadcast(sobj->sync_cv);
mutex_exit(sobj->sync_mutex);
}