seg_vn.c revision c6939658adb0a356a77bc28f7df252ceb4a8f6cc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* VM - shared or copy-on-write from a vnode/anonymous memory.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/t_lock.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/debug.h>
#include <sys/cred.h>
#include <sys/vmsystm.h>
#include <sys/tuneable.h>
#include <sys/bitmap.h>
#include <sys/swap.h>
#include <sys/kmem.h>
#include <sys/sysmacros.h>
#include <sys/vtrace.h>
#include <sys/cmn_err.h>
#include <sys/vm.h>
#include <sys/dumphdr.h>
#include <sys/lgrp.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/seg_vn.h>
#include <vm/pvn.h>
#include <vm/anon.h>
#include <vm/page.h>
#include <vm/vpage.h>
#include <sys/proc.h>
#include <sys/task.h>
#include <sys/project.h>
#include <sys/zone.h>
#include <sys/shm_impl.h>
/*
* Private seg op routines.
*/
static int segvn_dup(struct seg *seg, struct seg *newseg);
static int segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
static void segvn_free(struct seg *seg);
static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
caddr_t addr, size_t len, enum fault_type type,
enum seg_rw rw);
static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
static int segvn_setprot(struct seg *seg, caddr_t addr,
size_t len, uint_t prot);
static int segvn_checkprot(struct seg *seg, caddr_t addr,
size_t len, uint_t prot);
static int segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
static size_t segvn_swapout(struct seg *seg);
static int segvn_sync(struct seg *seg, caddr_t addr, size_t len,
int attr, uint_t flags);
static size_t segvn_incore(struct seg *seg, caddr_t addr, size_t len,
char *vec);
static int segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
int attr, int op, ulong_t *lockmap, size_t pos);
static int segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
uint_t *protv);
static u_offset_t segvn_getoffset(struct seg *seg, caddr_t addr);
static int segvn_gettype(struct seg *seg, caddr_t addr);
static int segvn_getvp(struct seg *seg, caddr_t addr,
struct vnode **vpp);
static int segvn_advise(struct seg *seg, caddr_t addr, size_t len,
uint_t behav);
static void segvn_dump(struct seg *seg);
static int segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
struct page ***ppp, enum lock_type type, enum seg_rw rw);
static int segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
uint_t szc);
static int segvn_getmemid(struct seg *seg, caddr_t addr,
memid_t *memidp);
static lgrp_mem_policy_info_t *segvn_getpolicy(struct seg *, caddr_t);
static int segvn_capable(struct seg *seg, segcapability_t capable);
struct seg_ops segvn_ops = {
segvn_dup,
segvn_unmap,
segvn_free,
segvn_fault,
segvn_faulta,
segvn_setprot,
segvn_checkprot,
segvn_kluster,
segvn_swapout,
segvn_sync,
segvn_incore,
segvn_lockop,
segvn_getprot,
segvn_getoffset,
segvn_gettype,
segvn_getvp,
segvn_advise,
segvn_dump,
segvn_pagelock,
segvn_setpagesize,
segvn_getmemid,
segvn_getpolicy,
segvn_capable,
};
/*
* Common zfod structures, provided as a shorthand for others to use.
*/
static segvn_crargs_t zfod_segvn_crargs =
SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
static segvn_crargs_t kzfod_segvn_crargs =
SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
PROT_ALL & ~PROT_USER);
static segvn_crargs_t stack_noexec_crargs =
SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
caddr_t zfod_argsp = (caddr_t)&zfod_segvn_crargs; /* user zfod argsp */
caddr_t kzfod_argsp = (caddr_t)&kzfod_segvn_crargs; /* kernel zfod argsp */
caddr_t stack_exec_argsp = (caddr_t)&zfod_segvn_crargs; /* executable stack */
caddr_t stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
#define vpgtob(n) ((n) * sizeof (struct vpage)) /* For brevity */
size_t segvn_comb_thrshld = UINT_MAX; /* patchable -- see 1196681 */
static int segvn_concat(struct seg *, struct seg *, int);
static int segvn_extend_prev(struct seg *, struct seg *,
struct segvn_crargs *, size_t);
static int segvn_extend_next(struct seg *, struct seg *,
struct segvn_crargs *, size_t);
static void segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
static void segvn_pagelist_rele(page_t **);
static void segvn_setvnode_mpss(vnode_t *);
static void segvn_relocate_pages(page_t **, page_t *);
static int segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
static int segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
uint_t, page_t **, page_t **, uint_t *, int *);
static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
u_offset_t, struct vpage *, page_t **, uint_t,
enum fault_type, enum seg_rw, int, int);
static void segvn_vpage(struct seg *);
static void segvn_purge(struct seg *seg);
static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
enum seg_rw);
static int sameprot(struct seg *, caddr_t, size_t);
static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
static int segvn_clrszc(struct seg *);
static struct seg *segvn_split_seg(struct seg *, caddr_t);
static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
ulong_t, uint_t);
static int segvn_pp_lock_anonpages(page_t *, int);
static void segvn_pp_unlock_anonpages(page_t *, int);
static struct kmem_cache *segvn_cache;
#ifdef VM_STATS
static struct segvnvmstats_str {
ulong_t fill_vp_pages[31];
ulong_t fltvnpages[49];
ulong_t fullszcpages[10];
ulong_t relocatepages[3];
ulong_t fltanpages[17];
ulong_t pagelock[3];
ulong_t demoterange[3];
} segvnvmstats;
#endif /* VM_STATS */
#define SDR_RANGE 1 /* demote entire range */
#define SDR_END 2 /* demote non aligned ends only */
#define CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) { \
if ((len) != 0) { \
lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz); \
ASSERT(lpgaddr >= (seg)->s_base); \
lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) + \
(len)), pgsz); \
ASSERT(lpgeaddr > lpgaddr); \
ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size); \
} else { \
lpgeaddr = lpgaddr = (addr); \
} \
}
/*ARGSUSED*/
static int
segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
{
struct segvn_data *svd = buf;
rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
return (0);
}
/*ARGSUSED1*/
static void
segvn_cache_destructor(void *buf, void *cdrarg)
{
struct segvn_data *svd = buf;
rw_destroy(&svd->lock);
mutex_destroy(&svd->segp_slock);
}
/*
* Patching this variable to non-zero allows the system to run with
* stacks marked as "not executable". It's a bit of a kludge, but is
* provided as a tweakable for platforms that export those ABIs
* (e.g. sparc V8) that have executable stacks enabled by default.
* There are also some restrictions for platforms that don't actually
* implement 'noexec' protections.
*
* Once enabled, the system is (therefore) unable to provide a fully
* ABI-compliant execution environment, though practically speaking,
* most everything works. The exceptions are generally some interpreters
* and debuggers that create executable code on the stack and jump
* into it (without explicitly mprotecting the address range to include
* PROT_EXEC).
*
* One important class of applications that are disabled are those
* that have been transformed into malicious agents using one of the
* numerous "buffer overflow" attacks. See 4007890.
*/
int noexec_user_stack = 0;
int noexec_user_stack_log = 1;
int segvn_lpg_disable = 0;
uint_t segvn_maxpgszc = 0;
ulong_t segvn_vmpss_clrszc_cnt;
ulong_t segvn_vmpss_clrszc_err;
ulong_t segvn_fltvnpages_clrszc_cnt;
ulong_t segvn_fltvnpages_clrszc_err;
ulong_t segvn_setpgsz_align_err;
ulong_t segvn_setpgsz_anon_align_err;
ulong_t segvn_setpgsz_getattr_err;
ulong_t segvn_setpgsz_eof_err;
ulong_t segvn_faultvnmpss_align_err1;
ulong_t segvn_faultvnmpss_align_err2;
ulong_t segvn_faultvnmpss_align_err3;
ulong_t segvn_faultvnmpss_align_err4;
ulong_t segvn_faultvnmpss_align_err5;
ulong_t segvn_vmpss_pageio_deadlk_err;
/*
* Initialize segvn data structures
*/
void
segvn_init(void)
{
uint_t maxszc;
uint_t szc;
size_t pgsz;
segvn_cache = kmem_cache_create("segvn_cache",
sizeof (struct segvn_data), 0,
segvn_cache_constructor, segvn_cache_destructor, NULL,
NULL, NULL, 0);
if (segvn_lpg_disable != 0)
return;
szc = maxszc = page_num_pagesizes() - 1;
if (szc == 0) {
segvn_lpg_disable = 1;
return;
}
if (page_get_pagesize(0) != PAGESIZE) {
panic("segvn_init: bad szc 0");
/*NOTREACHED*/
}
while (szc != 0) {
pgsz = page_get_pagesize(szc);
if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
panic("segvn_init: bad szc %d", szc);
/*NOTREACHED*/
}
szc--;
}
if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
segvn_maxpgszc = maxszc;
}
#define SEGVN_PAGEIO ((void *)0x1)
#define SEGVN_NOPAGEIO ((void *)0x2)
static void
segvn_setvnode_mpss(vnode_t *vp)
{
int err;
ASSERT(vp->v_mpssdata == NULL ||
vp->v_mpssdata == SEGVN_PAGEIO ||
vp->v_mpssdata == SEGVN_NOPAGEIO);
if (vp->v_mpssdata == NULL) {
if (vn_vmpss_usepageio(vp)) {
err = VOP_PAGEIO(vp, (page_t *)NULL,
(u_offset_t)0, 0, 0, CRED());
} else {
err = ENOSYS;
}
/*
* set v_mpssdata just once per vnode life
* so that it never changes.
*/
mutex_enter(&vp->v_lock);
if (vp->v_mpssdata == NULL) {
if (err == EINVAL) {
vp->v_mpssdata = SEGVN_PAGEIO;
} else {
vp->v_mpssdata = SEGVN_NOPAGEIO;
}
}
mutex_exit(&vp->v_lock);
}
}
int
segvn_create(struct seg *seg, void *argsp)
{
struct segvn_crargs *a = (struct segvn_crargs *)argsp;
struct segvn_data *svd;
size_t swresv = 0;
struct cred *cred;
struct anon_map *amp;
int error = 0;
size_t pgsz;
lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
panic("segvn_create type");
/*NOTREACHED*/
}
/*
* Check arguments. If a shared anon structure is given then
* it is illegal to also specify a vp.
*/
if (a->amp != NULL && a->vp != NULL) {
panic("segvn_create anon_map");
/*NOTREACHED*/
}
/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
if (a->type == MAP_SHARED)
a->flags &= ~MAP_NORESERVE;
if (a->szc != 0) {
if (segvn_lpg_disable != 0 ||
(a->amp != NULL && a->type == MAP_PRIVATE) ||
(a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
a->szc = 0;
} else {
if (a->szc > segvn_maxpgszc)
a->szc = segvn_maxpgszc;
pgsz = page_get_pagesize(a->szc);
if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
!IS_P2ALIGNED(seg->s_size, pgsz)) {
a->szc = 0;
} else if (a->vp != NULL) {
extern struct vnode kvp;
if (IS_SWAPFSVP(a->vp) || a->vp == &kvp) {
/*
* paranoid check.
* hat_page_demote() is not supported
* on swapfs pages.
*/
a->szc = 0;
} else if (map_addr_vacalign_check(seg->s_base,
a->offset & PAGEMASK)) {
a->szc = 0;
}
} else if (a->amp != NULL) {
pgcnt_t anum = btopr(a->offset);
pgcnt_t pgcnt = page_get_pagecnt(a->szc);
if (!IS_P2ALIGNED(anum, pgcnt)) {
a->szc = 0;
}
}
}
}
/*
* If segment may need private pages, reserve them now.
*/
if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
(a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
if (anon_resv(seg->s_size) == 0)
return (EAGAIN);
swresv = seg->s_size;
TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
seg, swresv, 1);
}
/*
* Reserve any mapping structures that may be required.
*/
hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
if (a->cred) {
cred = a->cred;
crhold(cred);
} else {
crhold(cred = CRED());
}
/* Inform the vnode of the new mapping */
if (a->vp) {
error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
seg->s_as, seg->s_base, seg->s_size, a->prot,
a->maxprot, a->type, cred);
if (error) {
if (swresv != 0) {
anon_unresv(swresv);
TRACE_3(TR_FAC_VM, TR_ANON_PROC,
"anon proc:%p %lu %u",
seg, swresv, 0);
}
crfree(cred);
hat_unload(seg->s_as->a_hat, seg->s_base,
seg->s_size, HAT_UNLOAD_UNMAP);
return (error);
}
}
/*
* If more than one segment in the address space, and
* they're adjacent virtually, try to concatenate them.
* Don't concatenate if an explicit anon_map structure
* was supplied (e.g., SystemV shared memory).
*/
if (a->amp == NULL) {
struct seg *pseg, *nseg;
struct segvn_data *psvd, *nsvd;
lgrp_mem_policy_t ppolicy, npolicy;
uint_t lgrp_mem_policy_flags = 0;
extern lgrp_mem_policy_t lgrp_mem_default_policy;
/*
* Memory policy flags (lgrp_mem_policy_flags) is valid when
* extending stack/heap segments.
*/
if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
!(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
} else {
/*
* Get policy when not extending it from another segment
*/
mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
}
/*
* First, try to concatenate the previous and new segments
*/
pseg = AS_SEGPREV(seg->s_as, seg);
if (pseg != NULL &&
pseg->s_base + pseg->s_size == seg->s_base &&
pseg->s_ops == &segvn_ops) {
/*
* Get memory allocation policy from previous segment.
* When extension is specified (e.g. for heap) apply
* this policy to the new segment regardless of the
* outcome of segment concatenation. Extension occurs
* for non-default policy otherwise default policy is
* used and is based on extended segment size.
*/
psvd = (struct segvn_data *)pseg->s_data;
ppolicy = psvd->policy_info.mem_policy;
if (lgrp_mem_policy_flags ==
LGRP_MP_FLAG_EXTEND_UP) {
if (ppolicy != lgrp_mem_default_policy) {
mpolicy = ppolicy;
} else {
mpolicy = lgrp_mem_policy_default(
pseg->s_size + seg->s_size,
a->type);
}
}
if (mpolicy == ppolicy &&
(pseg->s_size + seg->s_size <=
segvn_comb_thrshld || psvd->amp == NULL) &&
segvn_extend_prev(pseg, seg, a, swresv) == 0) {
/*
* success! now try to concatenate
* with following seg
*/
crfree(cred);
nseg = AS_SEGNEXT(pseg->s_as, pseg);
if (nseg != NULL &&
nseg != pseg &&
nseg->s_ops == &segvn_ops &&
pseg->s_base + pseg->s_size ==
nseg->s_base)
(void) segvn_concat(pseg, nseg, 0);
ASSERT(pseg->s_szc == 0 ||
(a->szc == pseg->s_szc &&
IS_P2ALIGNED(pseg->s_base, pgsz) &&
IS_P2ALIGNED(pseg->s_size, pgsz)));
return (0);
}
}
/*
* Failed, so try to concatenate with following seg
*/
nseg = AS_SEGNEXT(seg->s_as, seg);
if (nseg != NULL &&
seg->s_base + seg->s_size == nseg->s_base &&
nseg->s_ops == &segvn_ops) {
/*
* Get memory allocation policy from next segment.
* When extension is specified (e.g. for stack) apply
* this policy to the new segment regardless of the
* outcome of segment concatenation. Extension occurs
* for non-default policy otherwise default policy is
* used and is based on extended segment size.
*/
nsvd = (struct segvn_data *)nseg->s_data;
npolicy = nsvd->policy_info.mem_policy;
if (lgrp_mem_policy_flags ==
LGRP_MP_FLAG_EXTEND_DOWN) {
if (npolicy != lgrp_mem_default_policy) {
mpolicy = npolicy;
} else {
mpolicy = lgrp_mem_policy_default(
nseg->s_size + seg->s_size,
a->type);
}
}
if (mpolicy == npolicy &&
segvn_extend_next(seg, nseg, a, swresv) == 0) {
crfree(cred);
ASSERT(nseg->s_szc == 0 ||
(a->szc == nseg->s_szc &&
IS_P2ALIGNED(nseg->s_base, pgsz) &&
IS_P2ALIGNED(nseg->s_size, pgsz)));
return (0);
}
}
}
if (a->vp != NULL) {
VN_HOLD(a->vp);
if (a->type == MAP_SHARED)
lgrp_shm_policy_init(NULL, a->vp);
}
svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
seg->s_ops = &segvn_ops;
seg->s_data = (void *)svd;
seg->s_szc = a->szc;
svd->vp = a->vp;
/*
* Anonymous mappings have no backing file so the offset is meaningless.
*/
svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
svd->prot = a->prot;
svd->maxprot = a->maxprot;
svd->pageprot = 0;
svd->type = a->type;
svd->vpage = NULL;
svd->cred = cred;
svd->advice = MADV_NORMAL;
svd->pageadvice = 0;
svd->flags = (ushort_t)a->flags;
svd->softlockcnt = 0;
if (a->szc != 0 && a->vp != NULL) {
segvn_setvnode_mpss(a->vp);
}
amp = a->amp;
if ((svd->amp = amp) == NULL) {
svd->anon_index = 0;
if (svd->type == MAP_SHARED) {
svd->swresv = 0;
/*
* Shared mappings to a vp need no other setup.
* If we have a shared mapping to an anon_map object
* which hasn't been allocated yet, allocate the
* struct now so that it will be properly shared
* by remembering the swap reservation there.
*/
if (a->vp == NULL) {
svd->amp = anonmap_alloc(seg->s_size, swresv);
svd->amp->a_szc = seg->s_szc;
}
} else {
/*
* Private mapping (with or without a vp).
* Allocate anon_map when needed.
*/
svd->swresv = swresv;
}
} else {
pgcnt_t anon_num;
/*
* Mapping to an existing anon_map structure without a vp.
* For now we will insure that the segment size isn't larger
* than the size - offset gives us. Later on we may wish to
* have the anon array dynamically allocated itself so that
* we don't always have to allocate all the anon pointer slots.
* This of course involves adding extra code to check that we
* aren't trying to use an anon pointer slot beyond the end
* of the currently allocated anon array.
*/
if ((amp->size - a->offset) < seg->s_size) {
panic("segvn_create anon_map size");
/*NOTREACHED*/
}
anon_num = btopr(a->offset);
if (a->type == MAP_SHARED) {
/*
* SHARED mapping to a given anon_map.
*/
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
amp->refcnt++;
if (a->szc > amp->a_szc) {
amp->a_szc = a->szc;
}
ANON_LOCK_EXIT(&amp->a_rwlock);
svd->anon_index = anon_num;
svd->swresv = 0;
} else {
/*
* PRIVATE mapping to a given anon_map.
* Make sure that all the needed anon
* structures are created (so that we will
* share the underlying pages if nothing
* is written by this mapping) and then
* duplicate the anon array as is done
* when a privately mapped segment is dup'ed.
*/
struct anon *ap;
caddr_t addr;
caddr_t eaddr;
ulong_t anon_idx;
int hat_flag = HAT_LOAD;
if (svd->flags & MAP_TEXT) {
hat_flag |= HAT_LOAD_TEXT;
}
svd->amp = anonmap_alloc(seg->s_size, 0);
svd->amp->a_szc = seg->s_szc;
svd->anon_index = 0;
svd->swresv = swresv;
/*
* Prevent 2 threads from allocating anon
* slots simultaneously.
*/
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
eaddr = seg->s_base + seg->s_size;
for (anon_idx = anon_num, addr = seg->s_base;
addr < eaddr; addr += PAGESIZE, anon_idx++) {
page_t *pp;
if ((ap = anon_get_ptr(amp->ahp,
anon_idx)) != NULL)
continue;
/*
* Allocate the anon struct now.
* Might as well load up translation
* to the page while we're at it...
*/
pp = anon_zero(seg, addr, &ap, cred);
if (ap == NULL || pp == NULL) {
panic("segvn_create anon_zero");
/*NOTREACHED*/
}
/*
* Re-acquire the anon_map lock and
* initialize the anon array entry.
*/
ASSERT(anon_get_ptr(amp->ahp,
anon_idx) == NULL);
(void) anon_set_ptr(amp->ahp, anon_idx, ap,
ANON_SLEEP);
ASSERT(seg->s_szc == 0);
ASSERT(!IS_VMODSORT(pp->p_vnode));
hat_memload(seg->s_as->a_hat, addr, pp,
svd->prot & ~PROT_WRITE, hat_flag);
page_unlock(pp);
}
ASSERT(seg->s_szc == 0);
anon_dup(amp->ahp, anon_num, svd->amp->ahp,
0, seg->s_size);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
}
/*
* Set default memory allocation policy for segment
*
* Always set policy for private memory at least for initialization
* even if this is a shared memory segment
*/
(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
if (svd->type == MAP_SHARED)
(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
svd->vp, svd->offset, seg->s_size);
return (0);
}
/*
* Concatenate two existing segments, if possible.
* Return 0 on success, -1 if two segments are not compatible
* or -2 on memory allocation failure.
* If amp_cat == 1 then try and concat segments with anon maps
*/
static int
segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
{
struct segvn_data *svd1 = seg1->s_data;
struct segvn_data *svd2 = seg2->s_data;
struct anon_map *amp1 = svd1->amp;
struct anon_map *amp2 = svd2->amp;
struct vpage *vpage1 = svd1->vpage;
struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
size_t size, nvpsize;
pgcnt_t npages1, npages2;
ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
ASSERT(seg1->s_ops == seg2->s_ops);
/* both segments exist, try to merge them */
#define incompat(x) (svd1->x != svd2->x)
if (incompat(vp) || incompat(maxprot) ||
(!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
(!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
incompat(type) || incompat(cred) || incompat(flags) ||
seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
(svd2->softlockcnt > 0))
return (-1);
#undef incompat
/*
* vp == NULL implies zfod, offset doesn't matter
*/
if (svd1->vp != NULL &&
svd1->offset + seg1->s_size != svd2->offset) {
return (-1);
}
/*
* Fail early if we're not supposed to concatenate
* segments with non NULL amp.
*/
if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
return (-1);
}
if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
if (amp1 != amp2) {
return (-1);
}
if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
svd2->anon_index) {
return (-1);
}
ASSERT(amp1 == NULL || amp1->refcnt >= 2);
}
/*
* If either seg has vpages, create a new merged vpage array.
*/
if (vpage1 != NULL || vpage2 != NULL) {
struct vpage *vp;
npages1 = seg_pages(seg1);
npages2 = seg_pages(seg2);
nvpsize = vpgtob(npages1 + npages2);
if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
return (-2);
}
if (vpage1 != NULL) {
bcopy(vpage1, nvpage, vpgtob(npages1));
}
if (vpage2 != NULL) {
bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
}
for (vp = nvpage; vp < nvpage + npages1; vp++) {
if (svd2->pageprot && !svd1->pageprot) {
VPP_SETPROT(vp, svd1->prot);
}
if (svd2->pageadvice && !svd1->pageadvice) {
VPP_SETADVICE(vp, svd1->advice);
}
}
for (vp = nvpage + npages1;
vp < nvpage + npages1 + npages2; vp++) {
if (svd1->pageprot && !svd2->pageprot) {
VPP_SETPROT(vp, svd2->prot);
}
if (svd1->pageadvice && !svd2->pageadvice) {
VPP_SETADVICE(vp, svd2->advice);
}
}
}
/*
* If either segment has private pages, create a new merged anon
* array. If mergeing shared anon segments just decrement anon map's
* refcnt.
*/
if (amp1 != NULL && svd1->type == MAP_SHARED) {
ASSERT(amp1 == amp2 && svd1->vp == NULL);
ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
ASSERT(amp1->refcnt >= 2);
amp1->refcnt--;
ANON_LOCK_EXIT(&amp1->a_rwlock);
svd2->amp = NULL;
} else if (amp1 != NULL || amp2 != NULL) {
struct anon_hdr *nahp;
struct anon_map *namp = NULL;
size_t asize;
ASSERT(svd1->type == MAP_PRIVATE);
asize = seg1->s_size + seg2->s_size;
if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
if (nvpage != NULL) {
kmem_free(nvpage, nvpsize);
}
return (-2);
}
if (amp1 != NULL) {
/*
* XXX anon rwlock is not really needed because
* this is a private segment and we are writers.
*/
ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
ASSERT(amp1->refcnt == 1);
if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
anon_release(nahp, btop(asize));
ANON_LOCK_EXIT(&amp1->a_rwlock);
if (nvpage != NULL) {
kmem_free(nvpage, nvpsize);
}
return (-2);
}
}
if (amp2 != NULL) {
ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
ASSERT(amp2->refcnt == 1);
if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
nahp, btop(seg1->s_size), btop(seg2->s_size),
ANON_NOSLEEP)) {
anon_release(nahp, btop(asize));
ANON_LOCK_EXIT(&amp2->a_rwlock);
if (amp1 != NULL) {
ANON_LOCK_EXIT(&amp1->a_rwlock);
}
if (nvpage != NULL) {
kmem_free(nvpage, nvpsize);
}
return (-2);
}
}
if (amp1 != NULL) {
namp = amp1;
anon_release(amp1->ahp, btop(amp1->size));
}
if (amp2 != NULL) {
if (namp == NULL) {
ASSERT(amp1 == NULL);
namp = amp2;
anon_release(amp2->ahp, btop(amp2->size));
} else {
amp2->refcnt--;
ANON_LOCK_EXIT(&amp2->a_rwlock);
anonmap_free(amp2);
}
svd2->amp = NULL; /* needed for seg_free */
}
namp->ahp = nahp;
namp->size = asize;
svd1->amp = namp;
svd1->anon_index = 0;
ANON_LOCK_EXIT(&namp->a_rwlock);
}
/*
* Now free the old vpage structures.
*/
if (nvpage != NULL) {
if (vpage1 != NULL) {
kmem_free(vpage1, vpgtob(npages1));
}
if (vpage2 != NULL) {
svd2->vpage = NULL;
kmem_free(vpage2, vpgtob(npages2));
}
if (svd2->pageprot) {
svd1->pageprot = 1;
}
if (svd2->pageadvice) {
svd1->pageadvice = 1;
}
svd1->vpage = nvpage;
}
/* all looks ok, merge segments */
svd1->swresv += svd2->swresv;
svd2->swresv = 0; /* so seg_free doesn't release swap space */
size = seg2->s_size;
seg_free(seg2);
seg1->s_size += size;
return (0);
}
/*
* Extend the previous segment (seg1) to include the
* new segment (seg2 + a), if possible.
* Return 0 on success.
*/
static int
segvn_extend_prev(seg1, seg2, a, swresv)
struct seg *seg1, *seg2;
struct segvn_crargs *a;
size_t swresv;
{
struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
size_t size;
struct anon_map *amp1;
struct vpage *new_vpage;
/*
* We don't need any segment level locks for "segvn" data
* since the address space is "write" locked.
*/
ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
/* second segment is new, try to extend first */
/* XXX - should also check cred */
if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
(!svd1->pageprot && (svd1->prot != a->prot)) ||
svd1->type != a->type || svd1->flags != a->flags ||
seg1->s_szc != a->szc)
return (-1);
/* vp == NULL implies zfod, offset doesn't matter */
if (svd1->vp != NULL &&
svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
return (-1);
amp1 = svd1->amp;
if (amp1) {
pgcnt_t newpgs;
/*
* Segment has private pages, can data structures
* be expanded?
*
* Acquire the anon_map lock to prevent it from changing,
* if it is shared. This ensures that the anon_map
* will not change while a thread which has a read/write
* lock on an address space references it.
* XXX - Don't need the anon_map lock at all if "refcnt"
* is 1.
*
* Can't grow a MAP_SHARED segment with an anonmap because
* there may be existing anon slots where we want to extend
* the segment and we wouldn't know what to do with them
* (e.g., for tmpfs right thing is to just leave them there,
* for /dev/zero they should be cleared out).
*/
if (svd1->type == MAP_SHARED)
return (-1);
ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
if (amp1->refcnt > 1) {
ANON_LOCK_EXIT(&amp1->a_rwlock);
return (-1);
}
newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
if (newpgs == 0) {
ANON_LOCK_EXIT(&amp1->a_rwlock);
return (-1);
}
amp1->size = ptob(newpgs);
ANON_LOCK_EXIT(&amp1->a_rwlock);
}
if (svd1->vpage != NULL) {
new_vpage =
kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
KM_NOSLEEP);
if (new_vpage == NULL)
return (-1);
bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
svd1->vpage = new_vpage;
if (svd1->pageprot) {
struct vpage *vp, *evp;
vp = new_vpage + seg_pages(seg1);
evp = vp + seg_pages(seg2);
for (; vp < evp; vp++)
VPP_SETPROT(vp, a->prot);
}
}
size = seg2->s_size;
seg_free(seg2);
seg1->s_size += size;
svd1->swresv += swresv;
return (0);
}
/*
* Extend the next segment (seg2) to include the
* new segment (seg1 + a), if possible.
* Return 0 on success.
*/
static int
segvn_extend_next(
struct seg *seg1,
struct seg *seg2,
struct segvn_crargs *a,
size_t swresv)
{
struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
size_t size;
struct anon_map *amp2;
struct vpage *new_vpage;
/*
* We don't need any segment level locks for "segvn" data
* since the address space is "write" locked.
*/
ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
/* first segment is new, try to extend second */
/* XXX - should also check cred */
if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
(!svd2->pageprot && (svd2->prot != a->prot)) ||
svd2->type != a->type || svd2->flags != a->flags ||
seg2->s_szc != a->szc)
return (-1);
/* vp == NULL implies zfod, offset doesn't matter */
if (svd2->vp != NULL &&
(a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
return (-1);
amp2 = svd2->amp;
if (amp2) {
pgcnt_t newpgs;
/*
* Segment has private pages, can data structures
* be expanded?
*
* Acquire the anon_map lock to prevent it from changing,
* if it is shared. This ensures that the anon_map
* will not change while a thread which has a read/write
* lock on an address space references it.
*
* XXX - Don't need the anon_map lock at all if "refcnt"
* is 1.
*/
if (svd2->type == MAP_SHARED)
return (-1);
ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
if (amp2->refcnt > 1) {
ANON_LOCK_EXIT(&amp2->a_rwlock);
return (-1);
}
newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
btop(seg2->s_size), btop(seg1->s_size),
ANON_NOSLEEP | ANON_GROWDOWN);
if (newpgs == 0) {
ANON_LOCK_EXIT(&amp2->a_rwlock);
return (-1);
}
amp2->size = ptob(newpgs);
ANON_LOCK_EXIT(&amp2->a_rwlock);
}
if (svd2->vpage != NULL) {
new_vpage =
kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
KM_NOSLEEP);
if (new_vpage == NULL) {
/* Not merging segments so adjust anon_index back */
if (amp2)
svd2->anon_index += seg_pages(seg1);
return (-1);
}
bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
vpgtob(seg_pages(seg2)));
kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
svd2->vpage = new_vpage;
if (svd2->pageprot) {
struct vpage *vp, *evp;
vp = new_vpage;
evp = vp + seg_pages(seg1);
for (; vp < evp; vp++)
VPP_SETPROT(vp, a->prot);
}
}
size = seg1->s_size;
seg_free(seg1);
seg2->s_size += size;
seg2->s_base -= size;
svd2->offset -= size;
svd2->swresv += swresv;
return (0);
}
static int
segvn_dup(struct seg *seg, struct seg *newseg)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct segvn_data *newsvd;
pgcnt_t npages = seg_pages(seg);
int error = 0;
uint_t prot;
size_t len;
ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* If segment has anon reserved, reserve more for the new seg.
* For a MAP_NORESERVE segment swresv will be a count of all the
* allocated anon slots; thus we reserve for the child as many slots
* as the parent has allocated. This semantic prevents the child or
* parent from dieing during a copy-on-write fault caused by trying
* to write a shared pre-existing anon page.
*/
if ((len = svd->swresv) != 0) {
if (anon_resv(svd->swresv) == 0)
return (ENOMEM);
TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
seg, len, 0);
}
newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
newseg->s_ops = &segvn_ops;
newseg->s_data = (void *)newsvd;
newseg->s_szc = seg->s_szc;
if ((newsvd->vp = svd->vp) != NULL) {
VN_HOLD(svd->vp);
if (svd->type == MAP_SHARED)
lgrp_shm_policy_init(NULL, svd->vp);
}
newsvd->offset = svd->offset;
newsvd->prot = svd->prot;
newsvd->maxprot = svd->maxprot;
newsvd->pageprot = svd->pageprot;
newsvd->type = svd->type;
newsvd->cred = svd->cred;
crhold(newsvd->cred);
newsvd->advice = svd->advice;
newsvd->pageadvice = svd->pageadvice;
newsvd->swresv = svd->swresv;
newsvd->flags = svd->flags;
newsvd->softlockcnt = 0;
newsvd->policy_info = svd->policy_info;
if ((newsvd->amp = svd->amp) == NULL) {
/*
* Not attaching to a shared anon object.
*/
newsvd->anon_index = 0;
} else {
struct anon_map *amp;
amp = svd->amp;
if (svd->type == MAP_SHARED) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
amp->refcnt++;
ANON_LOCK_EXIT(&amp->a_rwlock);
newsvd->anon_index = svd->anon_index;
} else {
int reclaim = 1;
/*
* Allocate and initialize new anon_map structure.
*/
newsvd->amp = anonmap_alloc(newseg->s_size, 0);
newsvd->amp->a_szc = newseg->s_szc;
newsvd->anon_index = 0;
/*
* We don't have to acquire the anon_map lock
* for the new segment (since it belongs to an
* address space that is still not associated
* with any process), or the segment in the old
* address space (since all threads in it
* are stopped while duplicating the address space).
*/
/*
* The goal of the following code is to make sure that
* softlocked pages do not end up as copy on write
* pages. This would cause problems where one
* thread writes to a page that is COW and a different
* thread in the same process has softlocked it. The
* softlock lock would move away from this process
* because the write would cause this process to get
* a copy (without the softlock).
*
* The strategy here is to just break the
* sharing on pages that could possibly be
* softlocked.
*/
retry:
if (svd->softlockcnt) {
struct anon *ap, *newap;
size_t i;
uint_t vpprot;
page_t *anon_pl[1+1], *pp;
caddr_t addr;
ulong_t anon_idx = 0;
/*
* The softlock count might be non zero
* because some pages are still stuck in the
* cache for lazy reclaim. Flush the cache
* now. This should drop the count to zero.
* [or there is really I/O going on to these
* pages]. Note, we have the writers lock so
* nothing gets inserted during the flush.
*/
if (reclaim == 1) {
segvn_purge(seg);
reclaim = 0;
goto retry;
}
i = btopr(seg->s_size);
addr = seg->s_base;
/*
* XXX break cow sharing using PAGESIZE
* pages. They will be relocated into larger
* pages at fault time.
*/
while (i-- > 0) {
if (ap = anon_get_ptr(amp->ahp,
anon_idx)) {
error = anon_getpage(&ap,
&vpprot, anon_pl, PAGESIZE,
seg, addr, S_READ,
svd->cred);
if (error) {
newsvd->vpage = NULL;
goto out;
}
/*
* prot need not be computed
* below 'cause anon_private is
* going to ignore it anyway
* as child doesn't inherit
* pagelock from parent.
*/
prot = svd->pageprot ?
VPP_PROT(
&svd->vpage[
seg_page(seg, addr)])
: svd->prot;
pp = anon_private(&newap,
newseg, addr, prot,
anon_pl[0], 0,
newsvd->cred);
if (pp == NULL) {
/* no mem abort */
newsvd->vpage = NULL;
error = ENOMEM;
goto out;
}
(void) anon_set_ptr(
newsvd->amp->ahp, anon_idx,
newap, ANON_SLEEP);
page_unlock(pp);
}
addr += PAGESIZE;
anon_idx++;
}
} else { /* common case */
if (seg->s_szc != 0) {
/*
* If at least one of anon slots of a
* large page exists then make sure
* all anon slots of a large page
* exist to avoid partial cow sharing
* of a large page in the future.
*/
anon_dup_fill_holes(amp->ahp,
svd->anon_index, newsvd->amp->ahp,
0, seg->s_size, seg->s_szc,
svd->vp != NULL);
} else {
anon_dup(amp->ahp, svd->anon_index,
newsvd->amp->ahp, 0, seg->s_size);
}
hat_clrattr(seg->s_as->a_hat, seg->s_base,
seg->s_size, PROT_WRITE);
}
}
}
/*
* If necessary, create a vpage structure for the new segment.
* Do not copy any page lock indications.
*/
if (svd->vpage != NULL) {
uint_t i;
struct vpage *ovp = svd->vpage;
struct vpage *nvp;
nvp = newsvd->vpage =
kmem_alloc(vpgtob(npages), KM_SLEEP);
for (i = 0; i < npages; i++) {
*nvp = *ovp++;
VPP_CLRPPLOCK(nvp++);
}
} else
newsvd->vpage = NULL;
/* Inform the vnode of the new mapping */
if (newsvd->vp != NULL) {
error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
newsvd->maxprot, newsvd->type, newsvd->cred);
}
out:
return (error);
}
/*
* callback function used by segvn_unmap to invoke free_vp_pages() for only
* those pages actually processed by the HAT
*/
extern int free_pages;
static void
segvn_hat_unload_callback(hat_callback_t *cb)
{
struct seg *seg = cb->hcb_data;
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
size_t len;
u_offset_t off;
ASSERT(svd->vp != NULL);
ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
ASSERT(cb->hcb_start_addr >= seg->s_base);
len = cb->hcb_end_addr - cb->hcb_start_addr;
off = cb->hcb_start_addr - seg->s_base;
free_vp_pages(svd->vp, svd->offset + off, len);
}
static int
segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct segvn_data *nsvd;
struct seg *nseg;
struct anon_map *amp;
pgcnt_t opages; /* old segment size in pages */
pgcnt_t npages; /* new segment size in pages */
pgcnt_t dpages; /* pages being deleted (unmapped) */
hat_callback_t callback; /* used for free_vp_pages() */
hat_callback_t *cbp = NULL;
caddr_t nbase;
size_t nsize;
size_t oswresv;
int reclaim = 1;
/*
* We don't need any segment level locks for "segvn" data
* since the address space is "write" locked.
*/
ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* Fail the unmap if pages are SOFTLOCKed through this mapping.
* softlockcnt is protected from change by the as write lock.
*/
retry:
if (svd->softlockcnt > 0) {
/*
* since we do have the writers lock nobody can fill
* the cache during the purge. The flush either succeeds
* or we still have pending I/Os.
*/
if (reclaim == 1) {
segvn_purge(seg);
reclaim = 0;
goto retry;
}
return (EAGAIN);
}
/*
* Check for bad sizes
*/
if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
(len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
panic("segvn_unmap");
/*NOTREACHED*/
}
if (seg->s_szc != 0) {
size_t pgsz = page_get_pagesize(seg->s_szc);
int err;
if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
ASSERT(seg->s_base != addr || seg->s_size != len);
VM_STAT_ADD(segvnvmstats.demoterange[0]);
err = segvn_demote_range(seg, addr, len, SDR_END, 0);
if (err == 0) {
return (IE_RETRY);
}
return (err);
}
}
/* Inform the vnode of the unmapping. */
if (svd->vp) {
int error;
error = VOP_DELMAP(svd->vp,
(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
seg->s_as, addr, len, svd->prot, svd->maxprot,
svd->type, svd->cred);
if (error == EAGAIN)
return (error);
}
/*
* Remove any page locks set through this mapping.
*/
(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
/*
* Unload any hardware translations in the range to be taken out.
* Use a callback to invoke free_vp_pages() effectively.
*/
if (svd->vp != NULL && free_pages != 0) {
callback.hcb_data = seg;
callback.hcb_function = segvn_hat_unload_callback;
cbp = &callback;
}
hat_unload_callback(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP, cbp);
/*
* Check for entire segment
*/
if (addr == seg->s_base && len == seg->s_size) {
seg_free(seg);
return (0);
}
opages = seg_pages(seg);
dpages = btop(len);
npages = opages - dpages;
amp = svd->amp;
ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
/*
* Check for beginning of segment
*/
if (addr == seg->s_base) {
if (svd->vpage != NULL) {
size_t nbytes;
struct vpage *ovpage;
ovpage = svd->vpage; /* keep pointer to vpage */
nbytes = vpgtob(npages);
svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
bcopy(&ovpage[dpages], svd->vpage, nbytes);
/* free up old vpage */
kmem_free(ovpage, vpgtob(opages));
}
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
/*
* Free up now unused parts of anon_map array.
*/
if (amp->a_szc == seg->s_szc) {
if (seg->s_szc != 0) {
anon_free_pages(amp->ahp,
svd->anon_index, len,
seg->s_szc);
} else {
anon_free(amp->ahp,
svd->anon_index,
len);
}
} else {
ASSERT(svd->type == MAP_SHARED);
ASSERT(amp->a_szc > seg->s_szc);
anon_shmap_free_pages(amp,
svd->anon_index, len);
}
/*
* Unreserve swap space for the
* unmapped chunk of this segment in
* case it's MAP_SHARED
*/
if (svd->type == MAP_SHARED) {
anon_unresv(len);
amp->swresv -= len;
}
}
ANON_LOCK_EXIT(&amp->a_rwlock);
svd->anon_index += dpages;
}
if (svd->vp != NULL)
svd->offset += len;
if (svd->swresv) {
if (svd->flags & MAP_NORESERVE) {
ASSERT(amp);
oswresv = svd->swresv;
svd->swresv = ptob(anon_pages(amp->ahp,
svd->anon_index, npages));
anon_unresv(oswresv - svd->swresv);
} else {
anon_unresv(len);
svd->swresv -= len;
}
TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
seg, len, 0);
}
seg->s_base += len;
seg->s_size -= len;
return (0);
}
/*
* Check for end of segment
*/
if (addr + len == seg->s_base + seg->s_size) {
if (svd->vpage != NULL) {
size_t nbytes;
struct vpage *ovpage;
ovpage = svd->vpage; /* keep pointer to vpage */
nbytes = vpgtob(npages);
svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
bcopy(ovpage, svd->vpage, nbytes);
/* free up old vpage */
kmem_free(ovpage, vpgtob(opages));
}
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
/*
* Free up now unused parts of anon_map array.
*/
ulong_t an_idx = svd->anon_index + npages;
if (amp->a_szc == seg->s_szc) {
if (seg->s_szc != 0) {
anon_free_pages(amp->ahp,
an_idx, len,
seg->s_szc);
} else {
anon_free(amp->ahp, an_idx,
len);
}
} else {
ASSERT(svd->type == MAP_SHARED);
ASSERT(amp->a_szc > seg->s_szc);
anon_shmap_free_pages(amp,
an_idx, len);
}
/*
* Unreserve swap space for the
* unmapped chunk of this segment in
* case it's MAP_SHARED
*/
if (svd->type == MAP_SHARED) {
anon_unresv(len);
amp->swresv -= len;
}
}
ANON_LOCK_EXIT(&amp->a_rwlock);
}
if (svd->swresv) {
if (svd->flags & MAP_NORESERVE) {
ASSERT(amp);
oswresv = svd->swresv;
svd->swresv = ptob(anon_pages(amp->ahp,
svd->anon_index, npages));
anon_unresv(oswresv - svd->swresv);
} else {
anon_unresv(len);
svd->swresv -= len;
}
TRACE_3(TR_FAC_VM, TR_ANON_PROC,
"anon proc:%p %lu %u", seg, len, 0);
}
seg->s_size -= len;
return (0);
}
/*
* The section to go is in the middle of the segment,
* have to make it into two segments. nseg is made for
* the high end while seg is cut down at the low end.
*/
nbase = addr + len; /* new seg base */
nsize = (seg->s_base + seg->s_size) - nbase; /* new seg size */
seg->s_size = addr - seg->s_base; /* shrink old seg */
nseg = seg_alloc(seg->s_as, nbase, nsize);
if (nseg == NULL) {
panic("segvn_unmap seg_alloc");
/*NOTREACHED*/
}
nseg->s_ops = seg->s_ops;
nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
nseg->s_data = (void *)nsvd;
nseg->s_szc = seg->s_szc;
*nsvd = *svd;
nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
nsvd->swresv = 0;
nsvd->softlockcnt = 0;
if (svd->vp != NULL) {
VN_HOLD(nsvd->vp);
if (nsvd->type == MAP_SHARED)
lgrp_shm_policy_init(NULL, nsvd->vp);
}
crhold(svd->cred);
if (svd->vpage == NULL) {
nsvd->vpage = NULL;
} else {
/* need to split vpage into two arrays */
size_t nbytes;
struct vpage *ovpage;
ovpage = svd->vpage; /* keep pointer to vpage */
npages = seg_pages(seg); /* seg has shrunk */
nbytes = vpgtob(npages);
svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
bcopy(ovpage, svd->vpage, nbytes);
npages = seg_pages(nseg);
nbytes = vpgtob(npages);
nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
/* free up old vpage */
kmem_free(ovpage, vpgtob(opages));
}
if (amp == NULL) {
nsvd->amp = NULL;
nsvd->anon_index = 0;
} else {
/*
* Need to create a new anon map for the new segment.
* We'll also allocate a new smaller array for the old
* smaller segment to save space.
*/
opages = btop((uintptr_t)(addr - seg->s_base));
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
/*
* Free up now unused parts of anon_map array.
*/
ulong_t an_idx = svd->anon_index + opages;
if (amp->a_szc == seg->s_szc) {
if (seg->s_szc != 0) {
anon_free_pages(amp->ahp, an_idx, len,
seg->s_szc);
} else {
anon_free(amp->ahp, an_idx,
len);
}
} else {
ASSERT(svd->type == MAP_SHARED);
ASSERT(amp->a_szc > seg->s_szc);
anon_shmap_free_pages(amp, an_idx, len);
}
/*
* Unreserve swap space for the
* unmapped chunk of this segment in
* case it's MAP_SHARED
*/
if (svd->type == MAP_SHARED) {
anon_unresv(len);
amp->swresv -= len;
}
}
nsvd->anon_index = svd->anon_index +
btop((uintptr_t)(nseg->s_base - seg->s_base));
if (svd->type == MAP_SHARED) {
amp->refcnt++;
nsvd->amp = amp;
} else {
struct anon_map *namp;
struct anon_hdr *nahp;
ASSERT(svd->type == MAP_PRIVATE);
nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
namp = anonmap_alloc(nseg->s_size, 0);
namp->a_szc = seg->s_szc;
(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
0, btop(seg->s_size), ANON_SLEEP);
(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
anon_release(amp->ahp, btop(amp->size));
svd->anon_index = 0;
nsvd->anon_index = 0;
amp->ahp = nahp;
amp->size = seg->s_size;
nsvd->amp = namp;
}
ANON_LOCK_EXIT(&amp->a_rwlock);
}
if (svd->swresv) {
if (svd->flags & MAP_NORESERVE) {
ASSERT(amp);
oswresv = svd->swresv;
svd->swresv = ptob(anon_pages(amp->ahp,
svd->anon_index, btop(seg->s_size)));
nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
nsvd->anon_index, btop(nseg->s_size)));
ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
} else {
if (seg->s_size + nseg->s_size + len != svd->swresv) {
panic("segvn_unmap: "
"cannot split swap reservation");
/*NOTREACHED*/
}
anon_unresv(len);
svd->swresv = seg->s_size;
nsvd->swresv = nseg->s_size;
}
TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
seg, len, 0);
}
return (0); /* I'm glad that's all over with! */
}
static void
segvn_free(struct seg *seg)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
pgcnt_t npages = seg_pages(seg);
struct anon_map *amp;
size_t len;
/*
* We don't need any segment level locks for "segvn" data
* since the address space is "write" locked.
*/
ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* Be sure to unlock pages. XXX Why do things get free'ed instead
* of unmapped? XXX
*/
(void) segvn_lockop(seg, seg->s_base, seg->s_size,
0, MC_UNLOCK, NULL, 0);
/*
* Deallocate the vpage and anon pointers if necessary and possible.
*/
if (svd->vpage != NULL) {
kmem_free(svd->vpage, vpgtob(npages));
svd->vpage = NULL;
}
if ((amp = svd->amp) != NULL) {
/*
* If there are no more references to this anon_map
* structure, then deallocate the structure after freeing
* up all the anon slot pointers that we can.
*/
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
ASSERT(amp->a_szc >= seg->s_szc);
if (--amp->refcnt == 0) {
if (svd->type == MAP_PRIVATE) {
/*
* Private - we only need to anon_free
* the part that this segment refers to.
*/
if (seg->s_szc != 0) {
anon_free_pages(amp->ahp,
svd->anon_index, seg->s_size,
seg->s_szc);
} else {
anon_free(amp->ahp, svd->anon_index,
seg->s_size);
}
} else {
/*
* Shared - anon_free the entire
* anon_map's worth of stuff and
* release any swap reservation.
*/
if (amp->a_szc != 0) {
anon_shmap_free_pages(amp, 0,
amp->size);
} else {
anon_free(amp->ahp, 0, amp->size);
}
if ((len = amp->swresv) != 0) {
anon_unresv(len);
TRACE_3(TR_FAC_VM, TR_ANON_PROC,
"anon proc:%p %lu %u",
seg, len, 0);
}
}
svd->amp = NULL;
ANON_LOCK_EXIT(&amp->a_rwlock);
anonmap_free(amp);
} else if (svd->type == MAP_PRIVATE) {
/*
* We had a private mapping which still has
* a held anon_map so just free up all the
* anon slot pointers that we were using.
*/
if (seg->s_szc != 0) {
anon_free_pages(amp->ahp, svd->anon_index,
seg->s_size, seg->s_szc);
} else {
anon_free(amp->ahp, svd->anon_index,
seg->s_size);
}
ANON_LOCK_EXIT(&amp->a_rwlock);
} else {
ANON_LOCK_EXIT(&amp->a_rwlock);
}
}
/*
* Release swap reservation.
*/
if ((len = svd->swresv) != 0) {
anon_unresv(svd->swresv);
TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
seg, len, 0);
svd->swresv = 0;
}
/*
* Release claim on vnode, credentials, and finally free the
* private data.
*/
if (svd->vp != NULL) {
if (svd->type == MAP_SHARED)
lgrp_shm_policy_fini(NULL, svd->vp);
VN_RELE(svd->vp);
svd->vp = NULL;
}
crfree(svd->cred);
svd->cred = NULL;
seg->s_data = NULL;
kmem_cache_free(segvn_cache, svd);
}
ulong_t segvn_lpglck_limit = 0;
/*
* Support routines used by segvn_pagelock() and softlock faults for anonymous
* pages to implement availrmem accounting in a way that makes sure the
* same memory is accounted just once for all softlock/pagelock purposes.
* This prevents a bug when availrmem is quickly incorrectly exausted from
* several pagelocks to different parts of the same large page since each
* pagelock has to decrement availrmem by the size of the entire large
* page. Note those pages are not COW shared until softunlock/pageunlock so
* we don't need to use cow style accounting here. We also need to make sure
* the entire large page is accounted even if softlock range is less than the
* entire large page because large anon pages can't be demoted when any of
* constituent pages is locked. The caller calls this routine for every page_t
* it locks. The very first page in the range may not be the root page of a
* large page. For all other pages it's guranteed we are going to visit the
* root of a particular large page before any other constituent page as we are
* locking sequential pages belonging to the same anon map. So we do all the
* locking when the root is encountered except for the very first page. Since
* softlocking is not supported (except S_READ_NOCOW special case) for vmpss
* segments and since vnode pages can be demoted without locking all
* constituent pages vnode pages don't come here. Unlocking relies on the
* fact that pagesize can't change whenever any of constituent large pages is
* locked at least SE_SHARED. This allows unlocking code to find the right
* root and decrement availrmem by the same amount it was incremented when the
* page was locked.
*/
static int
segvn_pp_lock_anonpages(page_t *pp, int first)
{
pgcnt_t pages;
pfn_t pfn;
uchar_t szc = pp->p_szc;
ASSERT(PAGE_LOCKED(pp));
ASSERT(pp->p_vnode != NULL);
ASSERT(IS_SWAPFSVP(pp->p_vnode));
/*
* pagesize won't change as long as any constituent page is locked.
*/
pages = page_get_pagecnt(pp->p_szc);
pfn = page_pptonum(pp);
if (!first) {
if (!IS_P2ALIGNED(pfn, pages)) {
#ifdef DEBUG
pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
pfn = page_pptonum(pp);
ASSERT(IS_P2ALIGNED(pfn, pages));
ASSERT(pp->p_szc == szc);
ASSERT(pp->p_vnode != NULL);
ASSERT(IS_SWAPFSVP(pp->p_vnode));
ASSERT(pp->p_slckcnt != 0);
#endif /* DEBUG */
return (1);
}
} else if (!IS_P2ALIGNED(pfn, pages)) {
pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
#ifdef DEBUG
pfn = page_pptonum(pp);
ASSERT(IS_P2ALIGNED(pfn, pages));
ASSERT(pp->p_szc == szc);
ASSERT(pp->p_vnode != NULL);
ASSERT(IS_SWAPFSVP(pp->p_vnode));
#endif /* DEBUG */
}
/*
* pp is a root page.
* We haven't locked this large page yet.
*/
page_struct_lock(pp);
if (pp->p_slckcnt != 0) {
if (pp->p_slckcnt < PAGE_SLOCK_MAXIMUM) {
pp->p_slckcnt++;
page_struct_unlock(pp);
return (1);
}
page_struct_unlock(pp);
segvn_lpglck_limit++;
return (0);
}
mutex_enter(&freemem_lock);
if (availrmem < tune.t_minarmem + pages) {
mutex_exit(&freemem_lock);
page_struct_unlock(pp);
return (0);
}
pp->p_slckcnt++;
availrmem -= pages;
mutex_exit(&freemem_lock);
page_struct_unlock(pp);
return (1);
}
static void
segvn_pp_unlock_anonpages(page_t *pp, int first)
{
pgcnt_t pages;
pfn_t pfn;
ASSERT(PAGE_LOCKED(pp));
ASSERT(pp->p_vnode != NULL);
ASSERT(IS_SWAPFSVP(pp->p_vnode));
/*
* pagesize won't change as long as any constituent page is locked.
*/
pages = page_get_pagecnt(pp->p_szc);
pfn = page_pptonum(pp);
if (!first) {
if (!IS_P2ALIGNED(pfn, pages)) {
return;
}
} else if (!IS_P2ALIGNED(pfn, pages)) {
pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
#ifdef DEBUG
pfn = page_pptonum(pp);
ASSERT(IS_P2ALIGNED(pfn, pages));
#endif /* DEBUG */
}
ASSERT(pp->p_vnode != NULL);
ASSERT(IS_SWAPFSVP(pp->p_vnode));
ASSERT(pp->p_slckcnt != 0);
page_struct_lock(pp);
if (--pp->p_slckcnt == 0) {
mutex_enter(&freemem_lock);
availrmem += pages;
mutex_exit(&freemem_lock);
}
page_struct_unlock(pp);
}
/*
* Do a F_SOFTUNLOCK call over the range requested. The range must have
* already been F_SOFTLOCK'ed.
* Caller must always match addr and len of a softunlock with a previous
* softlock with exactly the same addr and len.
*/
static void
segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
page_t *pp;
caddr_t adr;
struct vnode *vp;
u_offset_t offset;
ulong_t anon_index;
struct anon_map *amp;
struct anon *ap = NULL;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
if ((amp = svd->amp) != NULL)
anon_index = svd->anon_index + seg_page(seg, addr);
hat_unlock(seg->s_as->a_hat, addr, len);
for (adr = addr; adr < addr + len; adr += PAGESIZE) {
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
if ((ap = anon_get_ptr(amp->ahp, anon_index++))
!= NULL) {
swap_xlate(ap, &vp, &offset);
} else {
vp = svd->vp;
offset = svd->offset +
(uintptr_t)(adr - seg->s_base);
}
ANON_LOCK_EXIT(&amp->a_rwlock);
} else {
vp = svd->vp;
offset = svd->offset +
(uintptr_t)(adr - seg->s_base);
}
/*
* Use page_find() instead of page_lookup() to
* find the page since we know that it is locked.
*/
pp = page_find(vp, offset);
if (pp == NULL) {
panic(
"segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
(void *)adr, (void *)ap, (void *)vp, offset);
/*NOTREACHED*/
}
if (rw == S_WRITE) {
hat_setrefmod(pp);
if (seg->s_as->a_vbits)
hat_setstat(seg->s_as, adr, PAGESIZE,
P_REF | P_MOD);
} else if (rw != S_OTHER) {
hat_setref(pp);
if (seg->s_as->a_vbits)
hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
}
TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
if (svd->vp == NULL) {
segvn_pp_unlock_anonpages(pp, adr == addr);
}
page_unlock(pp);
}
mutex_enter(&freemem_lock); /* for availrmem */
if (svd->vp != NULL) {
availrmem += btop(len);
}
segvn_pages_locked -= btop(len);
svd->softlockcnt -= btop(len);
mutex_exit(&freemem_lock);
if (svd->softlockcnt == 0) {
/*
* All SOFTLOCKS are gone. Wakeup any waiting
* unmappers so they can try again to unmap.
* Check for waiters first without the mutex
* held so we don't always grab the mutex on
* softunlocks.
*/
if (AS_ISUNMAPWAIT(seg->s_as)) {
mutex_enter(&seg->s_as->a_contents);
if (AS_ISUNMAPWAIT(seg->s_as)) {
AS_CLRUNMAPWAIT(seg->s_as);
cv_broadcast(&seg->s_as->a_cv);
}
mutex_exit(&seg->s_as->a_contents);
}
}
}
#define PAGE_HANDLED ((page_t *)-1)
/*
* Release all the pages in the NULL terminated ppp list
* which haven't already been converted to PAGE_HANDLED.
*/
static void
segvn_pagelist_rele(page_t **ppp)
{
for (; *ppp != NULL; ppp++) {
if (*ppp != PAGE_HANDLED)
page_unlock(*ppp);
}
}
static int stealcow = 1;
/*
* Workaround for viking chip bug. See bug id 1220902.
* To fix this down in pagefault() would require importing so
* much as and segvn code as to be unmaintainable.
*/
int enable_mbit_wa = 0;
/*
* Handles all the dirty work of getting the right
* anonymous pages and loading up the translations.
* This routine is called only from segvn_fault()
* when looping over the range of addresses requested.
*
* The basic algorithm here is:
* If this is an anon_zero case
* Call anon_zero to allocate page
* Load up translation
* Return
* endif
* If this is an anon page
* Use anon_getpage to get the page
* else
* Find page in pl[] list passed in
* endif
* If not a cow
* Load up the translation to the page
* return
* endif
* Call anon_private to handle cow
* Load up (writable) translation to new page
*/
static faultcode_t
segvn_faultpage(
struct hat *hat, /* the hat to use for mapping */
struct seg *seg, /* seg_vn of interest */
caddr_t addr, /* address in as */
u_offset_t off, /* offset in vp */
struct vpage *vpage, /* pointer to vpage for vp, off */
page_t *pl[], /* object source page pointer */
uint_t vpprot, /* access allowed to object pages */
enum fault_type type, /* type of fault */
enum seg_rw rw, /* type of access at fault */
int brkcow, /* we may need to break cow */
int first) /* first page for this fault if 1 */
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
page_t *pp, **ppp;
uint_t pageflags = 0;
page_t *anon_pl[1 + 1];
page_t *opp = NULL; /* original page */
uint_t prot;
int err;
int cow;
int claim;
int steal = 0;
ulong_t anon_index;
struct anon *ap, *oldap;
struct anon_map *amp;
int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
int anon_lock = 0;
anon_sync_obj_t cookie;
if (svd->flags & MAP_TEXT) {
hat_flag |= HAT_LOAD_TEXT;
}
ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
ASSERT(seg->s_szc == 0);
/*
* Initialize protection value for this page.
* If we have per page protection values check it now.
*/
if (svd->pageprot) {
uint_t protchk;
switch (rw) {
case S_READ:
protchk = PROT_READ;
break;
case S_WRITE:
protchk = PROT_WRITE;
break;
case S_EXEC:
protchk = PROT_EXEC;
break;
case S_OTHER:
default:
protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
break;
}
prot = VPP_PROT(vpage);
if ((prot & protchk) == 0)
return (FC_PROT); /* illegal access type */
} else {
prot = svd->prot;
}
if (type == F_SOFTLOCK && svd->vp != NULL) {
mutex_enter(&freemem_lock);
if (availrmem <= tune.t_minarmem) {
mutex_exit(&freemem_lock);
return (FC_MAKE_ERR(ENOMEM)); /* out of real memory */
} else {
availrmem--;
svd->softlockcnt++;
segvn_pages_locked++;
}
mutex_exit(&freemem_lock);
}
/*
* Always acquire the anon array lock to prevent 2 threads from
* allocating separate anon slots for the same "addr".
*/
if ((amp = svd->amp) != NULL) {
ASSERT(RW_READ_HELD(&amp->a_rwlock));
anon_index = svd->anon_index + seg_page(seg, addr);
anon_array_enter(amp, anon_index, &cookie);
anon_lock = 1;
}
if (svd->vp == NULL && amp != NULL) {
if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
/*
* Allocate a (normally) writable anonymous page of
* zeroes. If no advance reservations, reserve now.
*/
if (svd->flags & MAP_NORESERVE) {
if (anon_resv(ptob(1))) {
svd->swresv += ptob(1);
} else {
err = ENOMEM;
goto out;
}
}
if ((pp = anon_zero(seg, addr, &ap,
svd->cred)) == NULL) {
err = ENOMEM;
goto out; /* out of swap space */
}
/*
* Re-acquire the anon_map lock and
* initialize the anon array entry.
*/
(void) anon_set_ptr(amp->ahp, anon_index, ap,
ANON_SLEEP);
ASSERT(pp->p_szc == 0);
/*
* Handle pages that have been marked for migration
*/
if (lgrp_optimizations())
page_migrate(seg, addr, &pp, 1);
if (type == F_SOFTLOCK) {
if (!segvn_pp_lock_anonpages(pp, first)) {
page_unlock(pp);
err = ENOMEM;
goto out;
} else {
mutex_enter(&freemem_lock);
svd->softlockcnt++;
segvn_pages_locked++;
mutex_exit(&freemem_lock);
}
}
if (enable_mbit_wa) {
if (rw == S_WRITE)
hat_setmod(pp);
else if (!hat_ismod(pp))
prot &= ~PROT_WRITE;
}
/*
* If AS_PAGLCK is set in a_flags (via memcntl(2)
* with MC_LOCKAS, MCL_FUTURE) and this is a
* MAP_NORESERVE segment, we may need to
* permanently lock the page as it is being faulted
* for the first time. The following text applies
* only to MAP_NORESERVE segments:
*
* As per memcntl(2), if this segment was created
* after MCL_FUTURE was applied (a "future"
* segment), its pages must be locked. If this
* segment existed at MCL_FUTURE application (a
* "past" segment), the interface is unclear.
*
* We decide to lock only if vpage is present:
*
* - "future" segments will have a vpage array (see
* as_map), and so will be locked as required
*
* - "past" segments may not have a vpage array,
* depending on whether events (such as
* mprotect) have occurred. Locking if vpage
* exists will preserve legacy behavior. Not
* locking if vpage is absent, will not break
* the interface or legacy behavior. Note that
* allocating vpage here if it's absent requires
* upgrading the segvn reader lock, the cost of
* which does not seem worthwhile.
*
* Usually testing and setting VPP_ISPPLOCK and
* VPP_SETPPLOCK requires holding the segvn lock as
* writer, but in this case all readers are
* serializing on the anon array lock.
*/
if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
(svd->flags & MAP_NORESERVE) &&
!VPP_ISPPLOCK(vpage)) {
proc_t *p = seg->s_as->a_proc;
ASSERT(svd->type == MAP_PRIVATE);
mutex_enter(&p->p_lock);
if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
1) == 0) {
claim = VPP_PROT(vpage) & PROT_WRITE;
if (page_pp_lock(pp, claim, 0)) {
VPP_SETPPLOCK(vpage);
} else {
rctl_decr_locked_mem(p, NULL,
PAGESIZE, 1);
}
}
mutex_exit(&p->p_lock);
}
hat_memload(hat, addr, pp, prot, hat_flag);
if (!(hat_flag & HAT_LOAD_LOCK))
page_unlock(pp);
anon_array_exit(&cookie);
return (0);
}
}
/*
* Obtain the page structure via anon_getpage() if it is
* a private copy of an object (the result of a previous
* copy-on-write).
*/
if (amp != NULL) {
if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
seg, addr, rw, svd->cred);
if (err)
goto out;
if (svd->type == MAP_SHARED) {
/*
* If this is a shared mapping to an
* anon_map, then ignore the write
* permissions returned by anon_getpage().
* They apply to the private mappings
* of this anon_map.
*/
vpprot |= PROT_WRITE;
}
opp = anon_pl[0];
}
}
/*
* Search the pl[] list passed in if it is from the
* original object (i.e., not a private copy).
*/
if (opp == NULL) {
/*
* Find original page. We must be bringing it in
* from the list in pl[].
*/
for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
if (opp == PAGE_HANDLED)
continue;
ASSERT(opp->p_vnode == svd->vp); /* XXX */
if (opp->p_offset == off)
break;
}
if (opp == NULL) {
panic("segvn_faultpage not found");
/*NOTREACHED*/
}
*ppp = PAGE_HANDLED;
}
ASSERT(PAGE_LOCKED(opp));
TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
"segvn_fault:pp %p vp %p offset %llx",
opp, NULL, 0);
/*
* The fault is treated as a copy-on-write fault if a
* write occurs on a private segment and the object
* page (i.e., mapping) is write protected. We assume
* that fatal protection checks have already been made.
*/
cow = brkcow && ((vpprot & PROT_WRITE) == 0);
/*
* If not a copy-on-write case load the translation
* and return.
*/
if (cow == 0) {
/*
* Handle pages that have been marked for migration
*/
if (lgrp_optimizations())
page_migrate(seg, addr, &opp, 1);
if (type == F_SOFTLOCK && svd->vp == NULL) {
ASSERT(opp->p_szc == 0 ||
(svd->type == MAP_SHARED &&
amp != NULL && amp->a_szc != 0));
if (!segvn_pp_lock_anonpages(opp, first)) {
page_unlock(opp);
err = ENOMEM;
goto out;
} else {
mutex_enter(&freemem_lock);
svd->softlockcnt++;
segvn_pages_locked++;
mutex_exit(&freemem_lock);
}
}
if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
if (rw == S_WRITE)
hat_setmod(opp);
else if (rw != S_OTHER && !hat_ismod(opp))
prot &= ~PROT_WRITE;
}
hat_memload(hat, addr, opp, prot & vpprot, hat_flag);
if (!(hat_flag & HAT_LOAD_LOCK))
page_unlock(opp);
if (anon_lock) {
anon_array_exit(&cookie);
}
return (0);
}
hat_setref(opp);
ASSERT(amp != NULL && anon_lock);
/*
* Steal the page only if it isn't a private page
* since stealing a private page is not worth the effort.
*/
if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
steal = 1;
/*
* Steal the original page if the following conditions are true:
*
* We are low on memory, the page is not private, page is not large,
* not shared, not modified, not `locked' or if we have it `locked'
* (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
* that the page is not shared) and if it doesn't have any
* translations. page_struct_lock isn't needed to look at p_cowcnt
* and p_lckcnt because we first get exclusive lock on page.
*/
(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
page_tryupgrade(opp) && !hat_ismod(opp) &&
((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
(opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
vpage != NULL && VPP_ISPPLOCK(vpage)))) {
/*
* Check if this page has other translations
* after unloading our translation.
*/
if (hat_page_is_mapped(opp)) {
hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
HAT_UNLOAD);
}
/*
* hat_unload() might sync back someone else's recent
* modification, so check again.
*/
if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
pageflags |= STEAL_PAGE;
}
/*
* If we have a vpage pointer, see if it indicates that we have
* ``locked'' the page we map -- if so, tell anon_private to
* transfer the locking resource to the new page.
*
* See Statement at the beginning of segvn_lockop regarding
* the way lockcnts/cowcnts are handled during COW.
*
*/
if (vpage != NULL && VPP_ISPPLOCK(vpage))
pageflags |= LOCK_PAGE;
/*
* Allocate a private page and perform the copy.
* For MAP_NORESERVE reserve swap space now, unless this
* is a cow fault on an existing anon page in which case
* MAP_NORESERVE will have made advance reservations.
*/
if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
if (anon_resv(ptob(1))) {
svd->swresv += ptob(1);
} else {
page_unlock(opp);
err = ENOMEM;
goto out;
}
}
oldap = ap;
pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
if (pp == NULL) {
err = ENOMEM; /* out of swap space */
goto out;
}
/*
* If we copied away from an anonymous page, then
* we are one step closer to freeing up an anon slot.
*
* NOTE: The original anon slot must be released while
* holding the "anon_map" lock. This is necessary to prevent
* other threads from obtaining a pointer to the anon slot
* which may be freed if its "refcnt" is 1.
*/
if (oldap != NULL)
anon_decref(oldap);
(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
/*
* Handle pages that have been marked for migration
*/
if (lgrp_optimizations())
page_migrate(seg, addr, &pp, 1);
ASSERT(pp->p_szc == 0);
if (type == F_SOFTLOCK && svd->vp == NULL) {
if (!segvn_pp_lock_anonpages(pp, first)) {
page_unlock(pp);
err = ENOMEM;
goto out;
} else {
mutex_enter(&freemem_lock);
svd->softlockcnt++;
segvn_pages_locked++;
mutex_exit(&freemem_lock);
}
}
ASSERT(!IS_VMODSORT(pp->p_vnode));
if (enable_mbit_wa) {
if (rw == S_WRITE)
hat_setmod(pp);
else if (!hat_ismod(pp))
prot &= ~PROT_WRITE;
}
hat_memload(hat, addr, pp, prot, hat_flag);
if (!(hat_flag & HAT_LOAD_LOCK))
page_unlock(pp);
ASSERT(anon_lock);
anon_array_exit(&cookie);
return (0);
out:
if (anon_lock)
anon_array_exit(&cookie);
if (type == F_SOFTLOCK && svd->vp != NULL) {
mutex_enter(&freemem_lock);
availrmem++;
segvn_pages_locked--;
svd->softlockcnt--;
mutex_exit(&freemem_lock);
}
return (FC_MAKE_ERR(err));
}
/*
* relocate a bunch of smaller targ pages into one large repl page. all targ
* pages must be complete pages smaller than replacement pages.
* it's assumed that no page's szc can change since they are all PAGESIZE or
* complete large pages locked SHARED.
*/
static void
segvn_relocate_pages(page_t **targ, page_t *replacement)
{
page_t *pp;
pgcnt_t repl_npgs, curnpgs;
pgcnt_t i;
uint_t repl_szc = replacement->p_szc;
page_t *first_repl = replacement;
page_t *repl;
spgcnt_t npgs;
VM_STAT_ADD(segvnvmstats.relocatepages[0]);
ASSERT(repl_szc != 0);
npgs = repl_npgs = page_get_pagecnt(repl_szc);
i = 0;
while (repl_npgs) {
spgcnt_t nreloc;
int err;
ASSERT(replacement != NULL);
pp = targ[i];
ASSERT(pp->p_szc < repl_szc);
ASSERT(PAGE_EXCL(pp));
ASSERT(!PP_ISFREE(pp));
curnpgs = page_get_pagecnt(pp->p_szc);
if (curnpgs == 1) {
VM_STAT_ADD(segvnvmstats.relocatepages[1]);
repl = replacement;
page_sub(&replacement, repl);
ASSERT(PAGE_EXCL(repl));
ASSERT(!PP_ISFREE(repl));
ASSERT(repl->p_szc == repl_szc);
} else {
page_t *repl_savepp;
int j;
VM_STAT_ADD(segvnvmstats.relocatepages[2]);
repl_savepp = replacement;
for (j = 0; j < curnpgs; j++) {
repl = replacement;
page_sub(&replacement, repl);
ASSERT(PAGE_EXCL(repl));
ASSERT(!PP_ISFREE(repl));
ASSERT(repl->p_szc == repl_szc);
ASSERT(page_pptonum(targ[i + j]) ==
page_pptonum(targ[i]) + j);
}
repl = repl_savepp;
ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
}
err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
if (err || nreloc != curnpgs) {
panic("segvn_relocate_pages: "
"page_relocate failed err=%d curnpgs=%ld "
"nreloc=%ld", err, curnpgs, nreloc);
}
ASSERT(curnpgs <= repl_npgs);
repl_npgs -= curnpgs;
i += curnpgs;
}
ASSERT(replacement == NULL);
repl = first_repl;
repl_npgs = npgs;
for (i = 0; i < repl_npgs; i++) {
ASSERT(PAGE_EXCL(repl));
ASSERT(!PP_ISFREE(repl));
targ[i] = repl;
page_downgrade(targ[i]);
repl++;
}
}
/*
* Check if all pages in ppa array are complete smaller than szc pages and
* their roots will still be aligned relative to their current size if the
* entire ppa array is relocated into one szc page. If these conditions are
* not met return 0.
*
* If all pages are properly aligned attempt to upgrade their locks
* to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
* upgrdfail was set to 0 by caller.
*
* Return 1 if all pages are aligned and locked exclusively.
*
* If all pages in ppa array happen to be physically contiguous to make one
* szc page and all exclusive locks are successfully obtained promote the page
* size to szc and set *pszc to szc. Return 1 with pages locked shared.
*/
static int
segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
{
page_t *pp;
pfn_t pfn;
pgcnt_t totnpgs = page_get_pagecnt(szc);
pfn_t first_pfn;
int contig = 1;
pgcnt_t i;
pgcnt_t j;
uint_t curszc;
pgcnt_t curnpgs;
int root = 0;
ASSERT(szc > 0);
VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
for (i = 0; i < totnpgs; i++) {
pp = ppa[i];
ASSERT(PAGE_SHARED(pp));
ASSERT(!PP_ISFREE(pp));
pfn = page_pptonum(pp);
if (i == 0) {
if (!IS_P2ALIGNED(pfn, totnpgs)) {
contig = 0;
} else {
first_pfn = pfn;
}
} else if (contig && pfn != first_pfn + i) {
contig = 0;
}
if (pp->p_szc == 0) {
if (root) {
VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
return (0);
}
} else if (!root) {
if ((curszc = pp->p_szc) >= szc) {
VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
return (0);
}
if (curszc == 0) {
/*
* p_szc changed means we don't have all pages
* locked. return failure.
*/
VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
return (0);
}
curnpgs = page_get_pagecnt(curszc);
if (!IS_P2ALIGNED(pfn, curnpgs) ||
!IS_P2ALIGNED(i, curnpgs)) {
VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
return (0);
}
root = 1;
} else {
ASSERT(i > 0);
VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
if (pp->p_szc != curszc) {
VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
return (0);
}
if (pfn - 1 != page_pptonum(ppa[i - 1])) {
panic("segvn_full_szcpages: "
"large page not physically contiguous");
}
if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
root = 0;
}
}
}
for (i = 0; i < totnpgs; i++) {
ASSERT(ppa[i]->p_szc < szc);
if (!page_tryupgrade(ppa[i])) {
for (j = 0; j < i; j++) {
page_downgrade(ppa[j]);
}
*pszc = ppa[i]->p_szc;
*upgrdfail = 1;
VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
return (0);
}
}
/*
* When a page is put a free cachelist its szc is set to 0. if file
* system reclaimed pages from cachelist targ pages will be physically
* contiguous with 0 p_szc. in this case just upgrade szc of targ
* pages without any relocations.
* To avoid any hat issues with previous small mappings
* hat_pageunload() the target pages first.
*/
if (contig) {
VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
for (i = 0; i < totnpgs; i++) {
(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
}
for (i = 0; i < totnpgs; i++) {
ppa[i]->p_szc = szc;
}
for (i = 0; i < totnpgs; i++) {
ASSERT(PAGE_EXCL(ppa[i]));
page_downgrade(ppa[i]);
}
if (pszc != NULL) {
*pszc = szc;
}
}
VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
return (1);
}
/*
* Create physically contiguous pages for [vp, off] - [vp, off +
* page_size(szc)) range and for private segment return them in ppa array.
* Pages are created either via IO or relocations.
*
* Return 1 on sucess and 0 on failure.
*
* If physically contiguos pages already exist for this range return 1 without
* filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
* array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
*/
static int
segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
int *downsize)
{
page_t *pplist = *ppplist;
size_t pgsz = page_get_pagesize(szc);
pgcnt_t pages = btop(pgsz);
ulong_t start_off = off;
u_offset_t eoff = off + pgsz;
spgcnt_t nreloc;
u_offset_t io_off = off;
size_t io_len;
page_t *io_pplist = NULL;
page_t *done_pplist = NULL;
pgcnt_t pgidx = 0;
page_t *pp;
page_t *newpp;
page_t *targpp;
int io_err = 0;
int i;
pfn_t pfn;
ulong_t ppages;
page_t *targ_pplist = NULL;
page_t *repl_pplist = NULL;
page_t *tmp_pplist;
int nios = 0;
uint_t pszc;
struct vattr va;
VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
ASSERT(szc != 0);
ASSERT(pplist->p_szc == szc);
/*
* downsize will be set to 1 only if we fail to lock pages. this will
* allow subsequent faults to try to relocate the page again. If we
* fail due to misalignment don't downsize and let the caller map the
* whole region with small mappings to avoid more faults into the area
* where we can't get large pages anyway.
*/
*downsize = 0;
while (off < eoff) {
newpp = pplist;
ASSERT(newpp != NULL);
ASSERT(PAGE_EXCL(newpp));
ASSERT(!PP_ISFREE(newpp));
/*
* we pass NULL for nrelocp to page_lookup_create()
* so that it doesn't relocate. We relocate here
* later only after we make sure we can lock all
* pages in the range we handle and they are all
* aligned.
*/
pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
ASSERT(pp != NULL);
ASSERT(!PP_ISFREE(pp));
ASSERT(pp->p_vnode == vp);
ASSERT(pp->p_offset == off);
if (pp == newpp) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
page_sub(&pplist, pp);
ASSERT(PAGE_EXCL(pp));
ASSERT(page_iolock_assert(pp));
page_list_concat(&io_pplist, &pp);
off += PAGESIZE;
continue;
}
VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
pfn = page_pptonum(pp);
pszc = pp->p_szc;
if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
IS_P2ALIGNED(pfn, pages)) {
ASSERT(repl_pplist == NULL);
ASSERT(done_pplist == NULL);
ASSERT(pplist == *ppplist);
page_unlock(pp);
page_free_replacement_page(pplist);
page_create_putback(pages);
*ppplist = NULL;
VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
return (1);
}
if (pszc >= szc) {
page_unlock(pp);
segvn_faultvnmpss_align_err1++;
goto out;
}
ppages = page_get_pagecnt(pszc);
if (!IS_P2ALIGNED(pfn, ppages)) {
ASSERT(pszc > 0);
/*
* sizing down to pszc won't help.
*/
page_unlock(pp);
segvn_faultvnmpss_align_err2++;
goto out;
}
pfn = page_pptonum(newpp);
if (!IS_P2ALIGNED(pfn, ppages)) {
ASSERT(pszc > 0);
/*
* sizing down to pszc won't help.
*/
page_unlock(pp);
segvn_faultvnmpss_align_err3++;
goto out;
}
if (!PAGE_EXCL(pp)) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
page_unlock(pp);
*downsize = 1;
*ret_pszc = pp->p_szc;
goto out;
}
targpp = pp;
if (io_pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
io_len = off - io_off;
/*
* Some file systems like NFS don't check EOF
* conditions in VOP_PAGEIO(). Check it here
* now that pages are locked SE_EXCL. Any file
* truncation will wait until the pages are
* unlocked so no need to worry that file will
* be truncated after we check its size here.
* XXX fix NFS to remove this check.
*/
va.va_mask = AT_SIZE;
if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
page_unlock(targpp);
goto out;
}
if (btopr(va.va_size) < btopr(io_off + io_len)) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
*downsize = 1;
*ret_pszc = 0;
page_unlock(targpp);
goto out;
}
io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
B_READ, svd->cred);
if (io_err) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
page_unlock(targpp);
if (io_err == EDEADLK) {
segvn_vmpss_pageio_deadlk_err++;
}
goto out;
}
nios++;
VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
while (io_pplist != NULL) {
pp = io_pplist;
page_sub(&io_pplist, pp);
ASSERT(page_iolock_assert(pp));
page_io_unlock(pp);
pgidx = (pp->p_offset - start_off) >>
PAGESHIFT;
ASSERT(pgidx < pages);
ppa[pgidx] = pp;
page_list_concat(&done_pplist, &pp);
}
}
pp = targpp;
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_szc <= pszc);
if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
page_unlock(pp);
*downsize = 1;
*ret_pszc = pp->p_szc;
goto out;
}
VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
/*
* page szc chould have changed before the entire group was
* locked. reread page szc.
*/
pszc = pp->p_szc;
ppages = page_get_pagecnt(pszc);
/* link just the roots */
page_list_concat(&targ_pplist, &pp);
page_sub(&pplist, newpp);
page_list_concat(&repl_pplist, &newpp);
off += PAGESIZE;
while (--ppages != 0) {
newpp = pplist;
page_sub(&pplist, newpp);
off += PAGESIZE;
}
io_off = off;
}
if (io_pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
io_len = eoff - io_off;
va.va_mask = AT_SIZE;
if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
goto out;
}
if (btopr(va.va_size) < btopr(io_off + io_len)) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
*downsize = 1;
*ret_pszc = 0;
goto out;
}
io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
B_READ, svd->cred);
if (io_err) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
if (io_err == EDEADLK) {
segvn_vmpss_pageio_deadlk_err++;
}
goto out;
}
nios++;
while (io_pplist != NULL) {
pp = io_pplist;
page_sub(&io_pplist, pp);
ASSERT(page_iolock_assert(pp));
page_io_unlock(pp);
pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
ASSERT(pgidx < pages);
ppa[pgidx] = pp;
}
}
/*
* we're now bound to succeed or panic.
* remove pages from done_pplist. it's not needed anymore.
*/
while (done_pplist != NULL) {
pp = done_pplist;
page_sub(&done_pplist, pp);
}
VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
ASSERT(pplist == NULL);
*ppplist = NULL;
while (targ_pplist != NULL) {
int ret;
VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
ASSERT(repl_pplist);
pp = targ_pplist;
page_sub(&targ_pplist, pp);
pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
newpp = repl_pplist;
page_sub(&repl_pplist, newpp);
#ifdef DEBUG
pfn = page_pptonum(pp);
pszc = pp->p_szc;
ppages = page_get_pagecnt(pszc);
ASSERT(IS_P2ALIGNED(pfn, ppages));
pfn = page_pptonum(newpp);
ASSERT(IS_P2ALIGNED(pfn, ppages));
ASSERT(P2PHASE(pfn, pages) == pgidx);
#endif
nreloc = 0;
ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
if (ret != 0 || nreloc == 0) {
panic("segvn_fill_vp_pages: "
"page_relocate failed");
}
pp = newpp;
while (nreloc-- != 0) {
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_vnode == vp);
ASSERT(pgidx ==
((pp->p_offset - start_off) >> PAGESHIFT));
ppa[pgidx++] = pp;
pp++;
}
}
if (svd->type == MAP_PRIVATE) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
for (i = 0; i < pages; i++) {
ASSERT(ppa[i] != NULL);
ASSERT(PAGE_EXCL(ppa[i]));
ASSERT(ppa[i]->p_vnode == vp);
ASSERT(ppa[i]->p_offset ==
start_off + (i << PAGESHIFT));
page_downgrade(ppa[i]);
}
ppa[pages] = NULL;
} else {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
/*
* the caller will still call VOP_GETPAGE() for shared segments
* to check FS write permissions. For private segments we map
* file read only anyway. so no VOP_GETPAGE is needed.
*/
for (i = 0; i < pages; i++) {
ASSERT(ppa[i] != NULL);
ASSERT(PAGE_EXCL(ppa[i]));
ASSERT(ppa[i]->p_vnode == vp);
ASSERT(ppa[i]->p_offset ==
start_off + (i << PAGESHIFT));
page_unlock(ppa[i]);
}
ppa[0] = NULL;
}
return (1);
out:
/*
* Do the cleanup. Unlock target pages we didn't relocate. They are
* linked on targ_pplist by root pages. reassemble unused replacement
* and io pages back to pplist.
*/
if (io_pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
pp = io_pplist;
do {
ASSERT(pp->p_vnode == vp);
ASSERT(pp->p_offset == io_off);
ASSERT(page_iolock_assert(pp));
page_io_unlock(pp);
page_hashout(pp, NULL);
io_off += PAGESIZE;
} while ((pp = pp->p_next) != io_pplist);
page_list_concat(&io_pplist, &pplist);
pplist = io_pplist;
}
tmp_pplist = NULL;
while (targ_pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
pp = targ_pplist;
ASSERT(PAGE_EXCL(pp));
page_sub(&targ_pplist, pp);
pszc = pp->p_szc;
ppages = page_get_pagecnt(pszc);
ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
if (pszc != 0) {
group_page_unlock(pp);
}
page_unlock(pp);
pp = repl_pplist;
ASSERT(pp != NULL);
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_szc == szc);
page_sub(&repl_pplist, pp);
ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
/* relink replacement page */
page_list_concat(&tmp_pplist, &pp);
while (--ppages != 0) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
pp++;
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_szc == szc);
page_list_concat(&tmp_pplist, &pp);
}
}
if (tmp_pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
page_list_concat(&tmp_pplist, &pplist);
pplist = tmp_pplist;
}
/*
* at this point all pages are either on done_pplist or
* pplist. They can't be all on done_pplist otherwise
* we'd've been done.
*/
ASSERT(pplist != NULL);
if (nios != 0) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
pp = pplist;
do {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
ASSERT(pp->p_szc == szc);
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_vnode != vp);
pp->p_szc = 0;
} while ((pp = pp->p_next) != pplist);
pp = done_pplist;
do {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
ASSERT(pp->p_szc == szc);
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_vnode == vp);
pp->p_szc = 0;
} while ((pp = pp->p_next) != done_pplist);
while (pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
pp = pplist;
page_sub(&pplist, pp);
page_free(pp, 0);
}
while (done_pplist != NULL) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
pp = done_pplist;
page_sub(&done_pplist, pp);
page_unlock(pp);
}
*ppplist = NULL;
return (0);
}
ASSERT(pplist == *ppplist);
if (io_err) {
VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
/*
* don't downsize on io error.
* see if vop_getpage succeeds.
* pplist may still be used in this case
* for relocations.
*/
return (0);
}
VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
page_free_replacement_page(pplist);
page_create_putback(pages);
*ppplist = NULL;
return (0);
}
int segvn_anypgsz = 0;
#define SEGVN_RESTORE_SOFTLOCK(type, pages) \
if ((type) == F_SOFTLOCK) { \
mutex_enter(&freemem_lock); \
availrmem += (pages); \
segvn_pages_locked -= (pages); \
svd->softlockcnt -= (pages); \
mutex_exit(&freemem_lock); \
}
#define SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot) \
if (IS_VMODSORT((ppa)[0]->p_vnode)) { \
if ((rw) == S_WRITE) { \
for (i = 0; i < (pages); i++) { \
ASSERT((ppa)[i]->p_vnode == \
(ppa)[0]->p_vnode); \
hat_setmod((ppa)[i]); \
} \
} else if ((rw) != S_OTHER && \
((prot) & (vpprot) & PROT_WRITE)) { \
for (i = 0; i < (pages); i++) { \
ASSERT((ppa)[i]->p_vnode == \
(ppa)[0]->p_vnode); \
if (!hat_ismod((ppa)[i])) { \
prot &= ~PROT_WRITE; \
break; \
} \
} \
} \
}
#ifdef VM_STATS
#define SEGVN_VMSTAT_FLTVNPAGES(idx) \
VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
#else /* VM_STATS */
#define SEGVN_VMSTAT_FLTVNPAGES(idx)
#endif
static faultcode_t
segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
caddr_t eaddr, int brkcow)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon_map *amp = svd->amp;
uchar_t segtype = svd->type;
uint_t szc = seg->s_szc;
size_t pgsz = page_get_pagesize(szc);
size_t maxpgsz = pgsz;
pgcnt_t pages = btop(pgsz);
pgcnt_t maxpages = pages;
size_t ppasize = (pages + 1) * sizeof (page_t *);
caddr_t a = lpgaddr;
caddr_t maxlpgeaddr = lpgeaddr;
u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
ulong_t aindx = svd->anon_index + seg_page(seg, a);
struct vpage *vpage = (svd->vpage != NULL) ?
&svd->vpage[seg_page(seg, a)] : NULL;
vnode_t *vp = svd->vp;
page_t **ppa;
uint_t pszc;
size_t ppgsz;
pgcnt_t ppages;
faultcode_t err = 0;
int ierr;
int vop_size_err = 0;
uint_t protchk, prot, vpprot;
ulong_t i;
int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
anon_sync_obj_t an_cookie;
enum seg_rw arw;
int alloc_failed = 0;
int adjszc_chk;
struct vattr va;
int xhat = 0;
page_t *pplist;
pfn_t pfn;
int physcontig;
int upgrdfail;
int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
ASSERT(szc != 0);
ASSERT(vp != NULL);
ASSERT(brkcow == 0 || amp != NULL);
ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
ASSERT(!(svd->flags & MAP_NORESERVE));
ASSERT(type != F_SOFTUNLOCK);
ASSERT(IS_P2ALIGNED(a, maxpgsz));
ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
ASSERT(seg->s_szc < NBBY * sizeof (int));
ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
if (svd->flags & MAP_TEXT) {
hat_flag |= HAT_LOAD_TEXT;
}
if (svd->pageprot) {
switch (rw) {
case S_READ:
protchk = PROT_READ;
break;
case S_WRITE:
protchk = PROT_WRITE;
break;
case S_EXEC:
protchk = PROT_EXEC;
break;
case S_OTHER:
default:
protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
break;
}
} else {
prot = svd->prot;
/* caller has already done segment level protection check. */
}
if (seg->s_as->a_hat != hat) {
xhat = 1;
}
if (rw == S_WRITE && segtype == MAP_PRIVATE) {
SEGVN_VMSTAT_FLTVNPAGES(2);
arw = S_READ;
} else {
arw = rw;
}
ppa = kmem_alloc(ppasize, KM_SLEEP);
VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
for (;;) {
adjszc_chk = 0;
for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
if (adjszc_chk) {
while (szc < seg->s_szc) {
uintptr_t e;
uint_t tszc;
tszc = segvn_anypgsz_vnode ? szc + 1 :
seg->s_szc;
ppgsz = page_get_pagesize(tszc);
if (!IS_P2ALIGNED(a, ppgsz) ||
((alloc_failed >> tszc) &
0x1)) {
break;
}
SEGVN_VMSTAT_FLTVNPAGES(4);
szc = tszc;
pgsz = ppgsz;
pages = btop(pgsz);
e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
lpgeaddr = (caddr_t)e;
}
}
again:
if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
ASSERT(IS_P2ALIGNED(aindx, maxpages));
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
anon_array_enter(amp, aindx, &an_cookie);
if (anon_get_ptr(amp->ahp, aindx) != NULL) {
SEGVN_VMSTAT_FLTVNPAGES(5);
if (anon_pages(amp->ahp, aindx,
maxpages) != maxpages) {
panic("segvn_fault_vnodepages:"
" empty anon slots\n");
}
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
err = segvn_fault_anonpages(hat, seg,
a, a + maxpgsz, type, rw,
MAX(a, addr),
MIN(a + maxpgsz, eaddr), brkcow);
if (err != 0) {
SEGVN_VMSTAT_FLTVNPAGES(6);
goto out;
}
if (szc < seg->s_szc) {
szc = seg->s_szc;
pgsz = maxpgsz;
pages = maxpages;
lpgeaddr = maxlpgeaddr;
}
goto next;
} else if (anon_pages(amp->ahp, aindx,
maxpages)) {
panic("segvn_fault_vnodepages:"
" non empty anon slots\n");
} else {
SEGVN_VMSTAT_FLTVNPAGES(7);
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
}
ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
ASSERT(vpage != NULL);
prot = VPP_PROT(vpage);
ASSERT(sameprot(seg, a, maxpgsz));
if ((prot & protchk) == 0) {
SEGVN_VMSTAT_FLTVNPAGES(8);
err = FC_PROT;
goto out;
}
}
if (type == F_SOFTLOCK) {
mutex_enter(&freemem_lock);
if (availrmem < tune.t_minarmem + pages) {
mutex_exit(&freemem_lock);
err = FC_MAKE_ERR(ENOMEM);
goto out;
} else {
availrmem -= pages;
segvn_pages_locked += pages;
svd->softlockcnt += pages;
}
mutex_exit(&freemem_lock);
}
pplist = NULL;
physcontig = 0;
ppa[0] = NULL;
if (!brkcow && szc &&
!page_exists_physcontig(vp, off, szc,
segtype == MAP_PRIVATE ? ppa : NULL)) {
SEGVN_VMSTAT_FLTVNPAGES(9);
if (page_alloc_pages(vp, seg, a, &pplist, NULL,
szc, 0) && type != F_SOFTLOCK) {
SEGVN_VMSTAT_FLTVNPAGES(10);
pszc = 0;
ierr = -1;
alloc_failed |= (1 << szc);
break;
}
if (pplist != NULL &&
vp->v_mpssdata == SEGVN_PAGEIO) {
int downsize;
SEGVN_VMSTAT_FLTVNPAGES(11);
physcontig = segvn_fill_vp_pages(svd,
vp, off, szc, ppa, &pplist,
&pszc, &downsize);
ASSERT(!physcontig || pplist == NULL);
if (!physcontig && downsize &&
type != F_SOFTLOCK) {
ASSERT(pplist == NULL);
SEGVN_VMSTAT_FLTVNPAGES(12);
ierr = -1;
break;
}
ASSERT(!physcontig ||
segtype == MAP_PRIVATE ||
ppa[0] == NULL);
if (physcontig && ppa[0] == NULL) {
physcontig = 0;
}
}
} else if (!brkcow && szc && ppa[0] != NULL) {
SEGVN_VMSTAT_FLTVNPAGES(13);
ASSERT(segtype == MAP_PRIVATE);
physcontig = 1;
}
if (!physcontig) {
SEGVN_VMSTAT_FLTVNPAGES(14);
ppa[0] = NULL;
ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
&vpprot, ppa, pgsz, seg, a, arw,
svd->cred);
if (segtype == MAP_PRIVATE) {
SEGVN_VMSTAT_FLTVNPAGES(15);
vpprot &= ~PROT_WRITE;
}
} else {
ASSERT(segtype == MAP_PRIVATE);
SEGVN_VMSTAT_FLTVNPAGES(16);
vpprot = PROT_ALL & ~PROT_WRITE;
ierr = 0;
}
if (ierr != 0) {
SEGVN_VMSTAT_FLTVNPAGES(17);
if (pplist != NULL) {
SEGVN_VMSTAT_FLTVNPAGES(18);
page_free_replacement_page(pplist);
page_create_putback(pages);
}
SEGVN_RESTORE_SOFTLOCK(type, pages);
if (a + pgsz <= eaddr) {
SEGVN_VMSTAT_FLTVNPAGES(19);
err = FC_MAKE_ERR(ierr);
goto out;
}
va.va_mask = AT_SIZE;
if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
SEGVN_VMSTAT_FLTVNPAGES(20);
err = FC_MAKE_ERR(EIO);
goto out;
}
if (btopr(va.va_size) >= btopr(off + pgsz)) {
SEGVN_VMSTAT_FLTVNPAGES(21);
err = FC_MAKE_ERR(ierr);
goto out;
}
if (btopr(va.va_size) <
btopr(off + (eaddr - a))) {
SEGVN_VMSTAT_FLTVNPAGES(22);
err = FC_MAKE_ERR(ierr);
goto out;
}
if (brkcow || type == F_SOFTLOCK) {
/* can't reduce map area */
SEGVN_VMSTAT_FLTVNPAGES(23);
vop_size_err = 1;
goto out;
}
SEGVN_VMSTAT_FLTVNPAGES(24);
ASSERT(szc != 0);
pszc = 0;
ierr = -1;
break;
}
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
anon_array_enter(amp, aindx, &an_cookie);
}
if (amp != NULL &&
anon_get_ptr(amp->ahp, aindx) != NULL) {
ulong_t taindx = P2ALIGN(aindx, maxpages);
SEGVN_VMSTAT_FLTVNPAGES(25);
if (anon_pages(amp->ahp, taindx, maxpages) !=
maxpages) {
panic("segvn_fault_vnodepages:"
" empty anon slots\n");
}
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
if (pplist != NULL) {
page_free_replacement_page(pplist);
page_create_putback(pages);
}
SEGVN_RESTORE_SOFTLOCK(type, pages);
if (szc < seg->s_szc) {
SEGVN_VMSTAT_FLTVNPAGES(26);
/*
* For private segments SOFTLOCK
* either always breaks cow (any rw
* type except S_READ_NOCOW) or
* address space is locked as writer
* (S_READ_NOCOW case) and anon slots
* can't show up on second check.
* Therefore if we are here for
* SOFTLOCK case it must be a cow
* break but cow break never reduces
* szc. Thus the assert below.
*/
ASSERT(!brkcow && type != F_SOFTLOCK);
pszc = seg->s_szc;
ierr = -2;
break;
}
ASSERT(IS_P2ALIGNED(a, maxpgsz));
goto again;
}
#ifdef DEBUG
if (amp != NULL) {
ulong_t taindx = P2ALIGN(aindx, maxpages);
ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
}
#endif /* DEBUG */
if (brkcow) {
ASSERT(amp != NULL);
ASSERT(pplist == NULL);
ASSERT(szc == seg->s_szc);
ASSERT(IS_P2ALIGNED(a, maxpgsz));
ASSERT(IS_P2ALIGNED(aindx, maxpages));
SEGVN_VMSTAT_FLTVNPAGES(27);
ierr = anon_map_privatepages(amp, aindx, szc,
seg, a, prot, ppa, vpage, segvn_anypgsz,
svd->cred);
if (ierr != 0) {
SEGVN_VMSTAT_FLTVNPAGES(28);
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
SEGVN_RESTORE_SOFTLOCK(type, pages);
err = FC_MAKE_ERR(ierr);
goto out;
}
ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
/*
* p_szc can't be changed for locked
* swapfs pages.
*/
hat_memload_array(hat, a, pgsz, ppa, prot,
hat_flag);
if (!(hat_flag & HAT_LOAD_LOCK)) {
SEGVN_VMSTAT_FLTVNPAGES(29);
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
}
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
goto next;
}
pfn = page_pptonum(ppa[0]);
/*
* hat_page_demote() needs an EXCl lock on one of
* constituent page_t's and it decreases root's p_szc
* last. This means if root's p_szc is equal szc and
* all its constituent pages are locked
* hat_page_demote() that could have changed p_szc to
* szc is already done and no new have page_demote()
* can start for this large page.
*/
/*
* we need to make sure same mapping size is used for
* the same address range if there's a possibility the
* adddress is already mapped because hat layer panics
* when translation is loaded for the range already
* mapped with a different page size. We achieve it
* by always using largest page size possible subject
* to the constraints of page size, segment page size
* and page alignment. Since mappings are invalidated
* when those constraints change and make it
* impossible to use previously used mapping size no
* mapping size conflicts should happen.
*/
chkszc:
if ((pszc = ppa[0]->p_szc) == szc &&
IS_P2ALIGNED(pfn, pages)) {
SEGVN_VMSTAT_FLTVNPAGES(30);
#ifdef DEBUG
for (i = 0; i < pages; i++) {
ASSERT(PAGE_LOCKED(ppa[i]));
ASSERT(!PP_ISFREE(ppa[i]));
ASSERT(page_pptonum(ppa[i]) ==
pfn + i);
ASSERT(ppa[i]->p_szc == szc);
ASSERT(ppa[i]->p_vnode == vp);
ASSERT(ppa[i]->p_offset ==
off + (i << PAGESHIFT));
}
#endif /* DEBUG */
/*
* All pages are of szc we need and they are
* all locked so they can't change szc. load
* translations.
*
* if page got promoted since last check
* we don't need pplist.
*/
if (pplist != NULL) {
page_free_replacement_page(pplist);
page_create_putback(pages);
}
if (PP_ISMIGRATE(ppa[0])) {
page_migrate(seg, a, ppa, pages);
}
SEGVN_UPDATE_MODBITS(ppa, pages, rw,
prot, vpprot);
if (!xhat) {
hat_memload_array(hat, a, pgsz, ppa,
prot & vpprot, hat_flag);
} else {
/*
* avoid large xhat mappings to FS
* pages so that hat_page_demote()
* doesn't need to check for xhat
* large mappings.
*/
for (i = 0; i < pages; i++) {
hat_memload(hat,
a + (i << PAGESHIFT),
ppa[i], prot & vpprot,
hat_flag);
}
}
if (!(hat_flag & HAT_LOAD_LOCK)) {
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
goto next;
}
/*
* See if upsize is possible.
*/
if (pszc > szc && szc < seg->s_szc &&
(segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
pgcnt_t aphase;
uint_t pszc1 = MIN(pszc, seg->s_szc);
ppgsz = page_get_pagesize(pszc1);
ppages = btop(ppgsz);
aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
ASSERT(type != F_SOFTLOCK);
SEGVN_VMSTAT_FLTVNPAGES(31);
if (aphase != P2PHASE(pfn, ppages)) {
segvn_faultvnmpss_align_err4++;
} else {
SEGVN_VMSTAT_FLTVNPAGES(32);
if (pplist != NULL) {
page_t *pl = pplist;
page_free_replacement_page(pl);
page_create_putback(pages);
}
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
pszc = pszc1;
ierr = -2;
break;
}
}
/*
* check if we should use smallest mapping size.
*/
upgrdfail = 0;
if (szc == 0 || xhat ||
(pszc >= szc &&
!IS_P2ALIGNED(pfn, pages)) ||
(pszc < szc &&
!segvn_full_szcpages(ppa, szc, &upgrdfail,
&pszc))) {
if (upgrdfail && type != F_SOFTLOCK) {
/*
* segvn_full_szcpages failed to lock
* all pages EXCL. Size down.
*/
ASSERT(pszc < szc);
SEGVN_VMSTAT_FLTVNPAGES(33);
if (pplist != NULL) {
page_t *pl = pplist;
page_free_replacement_page(pl);
page_create_putback(pages);
}
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
ierr = -1;
break;
}
if (szc != 0 && !xhat) {
segvn_faultvnmpss_align_err5++;
}
SEGVN_VMSTAT_FLTVNPAGES(34);
if (pplist != NULL) {
page_free_replacement_page(pplist);
page_create_putback(pages);
}
SEGVN_UPDATE_MODBITS(ppa, pages, rw,
prot, vpprot);
if (upgrdfail && segvn_anypgsz_vnode) {
/* SOFTLOCK case */
hat_memload_array(hat, a, pgsz,
ppa, prot & vpprot, hat_flag);
} else {
for (i = 0; i < pages; i++) {
hat_memload(hat,
a + (i << PAGESHIFT),
ppa[i], prot & vpprot,
hat_flag);
}
}
if (!(hat_flag & HAT_LOAD_LOCK)) {
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
goto next;
}
if (pszc == szc) {
/*
* segvn_full_szcpages() upgraded pages szc.
*/
ASSERT(pszc == ppa[0]->p_szc);
ASSERT(IS_P2ALIGNED(pfn, pages));
goto chkszc;
}
if (pszc > szc) {
kmutex_t *szcmtx;
SEGVN_VMSTAT_FLTVNPAGES(35);
/*
* p_szc of ppa[0] can change since we haven't
* locked all constituent pages. Call
* page_lock_szc() to prevent szc changes.
* This should be a rare case that happens when
* multiple segments use a different page size
* to map the same file offsets.
*/
szcmtx = page_szc_lock(ppa[0]);
pszc = ppa[0]->p_szc;
ASSERT(szcmtx != NULL || pszc == 0);
ASSERT(ppa[0]->p_szc <= pszc);
if (pszc <= szc) {
SEGVN_VMSTAT_FLTVNPAGES(36);
if (szcmtx != NULL) {
mutex_exit(szcmtx);
}
goto chkszc;
}
if (pplist != NULL) {
/*
* page got promoted since last check.
* we don't need preaalocated large
* page.
*/
SEGVN_VMSTAT_FLTVNPAGES(37);
page_free_replacement_page(pplist);
page_create_putback(pages);
}
SEGVN_UPDATE_MODBITS(ppa, pages, rw,
prot, vpprot);
hat_memload_array(hat, a, pgsz, ppa,
prot & vpprot, hat_flag);
mutex_exit(szcmtx);
if (!(hat_flag & HAT_LOAD_LOCK)) {
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
goto next;
}
/*
* if page got demoted since last check
* we could have not allocated larger page.
* allocate now.
*/
if (pplist == NULL &&
page_alloc_pages(vp, seg, a, &pplist, NULL,
szc, 0) && type != F_SOFTLOCK) {
SEGVN_VMSTAT_FLTVNPAGES(38);
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
ierr = -1;
alloc_failed |= (1 << szc);
break;
}
SEGVN_VMSTAT_FLTVNPAGES(39);
if (pplist != NULL) {
segvn_relocate_pages(ppa, pplist);
#ifdef DEBUG
} else {
ASSERT(type == F_SOFTLOCK);
SEGVN_VMSTAT_FLTVNPAGES(40);
#endif /* DEBUG */
}
SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
if (pplist == NULL && segvn_anypgsz_vnode == 0) {
ASSERT(type == F_SOFTLOCK);
for (i = 0; i < pages; i++) {
ASSERT(ppa[i]->p_szc < szc);
hat_memload(hat, a + (i << PAGESHIFT),
ppa[i], prot & vpprot, hat_flag);
}
} else {
ASSERT(pplist != NULL || type == F_SOFTLOCK);
hat_memload_array(hat, a, pgsz, ppa,
prot & vpprot, hat_flag);
}
if (!(hat_flag & HAT_LOAD_LOCK)) {
for (i = 0; i < pages; i++) {
ASSERT(PAGE_SHARED(ppa[i]));
page_unlock(ppa[i]);
}
}
if (amp != NULL) {
anon_array_exit(&an_cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
next:
if (vpage != NULL) {
vpage += pages;
}
adjszc_chk = 1;
}
if (a == lpgeaddr)
break;
ASSERT(a < lpgeaddr);
ASSERT(!brkcow && type != F_SOFTLOCK);
/*
* ierr == -1 means we failed to map with a large page.
* (either due to allocation/relocation failures or
* misalignment with other mappings to this file.
*
* ierr == -2 means some other thread allocated a large page
* after we gave up tp map with a large page. retry with
* larger mapping.
*/
ASSERT(ierr == -1 || ierr == -2);
ASSERT(ierr == -2 || szc != 0);
ASSERT(ierr == -1 || szc < seg->s_szc);
if (ierr == -2) {
SEGVN_VMSTAT_FLTVNPAGES(41);
ASSERT(pszc > szc && pszc <= seg->s_szc);
szc = pszc;
} else if (segvn_anypgsz_vnode) {
SEGVN_VMSTAT_FLTVNPAGES(42);
szc--;
} else {
SEGVN_VMSTAT_FLTVNPAGES(43);
ASSERT(pszc < szc);
/*
* other process created pszc large page.
* but we still have to drop to 0 szc.
*/
szc = 0;
}
pgsz = page_get_pagesize(szc);
pages = btop(pgsz);
if (ierr == -2) {
/*
* Size up case. Note lpgaddr may only be needed for
* softlock case so we don't adjust it here.
*/
a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
ASSERT(a >= lpgaddr);
lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
off = svd->offset + (uintptr_t)(a - seg->s_base);
aindx = svd->anon_index + seg_page(seg, a);
vpage = (svd->vpage != NULL) ?
&svd->vpage[seg_page(seg, a)] : NULL;
} else {
/*
* Size down case. Note lpgaddr may only be needed for
* softlock case so we don't adjust it here.
*/
ASSERT(IS_P2ALIGNED(a, pgsz));
ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
ASSERT(a < lpgeaddr);
if (a < addr) {
SEGVN_VMSTAT_FLTVNPAGES(44);
/*
* The beginning of the large page region can
* be pulled to the right to make a smaller
* region. We haven't yet faulted a single
* page.
*/
a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
ASSERT(a >= lpgaddr);
off = svd->offset +
(uintptr_t)(a - seg->s_base);
aindx = svd->anon_index + seg_page(seg, a);
vpage = (svd->vpage != NULL) ?
&svd->vpage[seg_page(seg, a)] : NULL;
}
}
}
out:
kmem_free(ppa, ppasize);
if (!err && !vop_size_err) {
SEGVN_VMSTAT_FLTVNPAGES(45);
return (0);
}
if (type == F_SOFTLOCK && a > lpgaddr) {
SEGVN_VMSTAT_FLTVNPAGES(46);
segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
}
if (!vop_size_err) {
SEGVN_VMSTAT_FLTVNPAGES(47);
return (err);
}
ASSERT(brkcow || type == F_SOFTLOCK);
/*
* Large page end is mapped beyond the end of file and it's a cow
* fault or softlock so we can't reduce the map area. For now just
* demote the segment. This should really only happen if the end of
* the file changed after the mapping was established since when large
* page segments are created we make sure they don't extend beyond the
* end of the file.
*/
SEGVN_VMSTAT_FLTVNPAGES(48);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
err = 0;
if (seg->s_szc != 0) {
segvn_fltvnpages_clrszc_cnt++;
ASSERT(svd->softlockcnt == 0);
err = segvn_clrszc(seg);
if (err != 0) {
segvn_fltvnpages_clrszc_err++;
}
}
ASSERT(err || seg->s_szc == 0);
SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
/* segvn_fault will do its job as if szc had been zero to begin with */
return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
}
/*
* This routine will attempt to fault in one large page.
* it will use smaller pages if that fails.
* It should only be called for pure anonymous segments.
*/
static faultcode_t
segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
caddr_t eaddr, int brkcow)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon_map *amp = svd->amp;
uchar_t segtype = svd->type;
uint_t szc = seg->s_szc;
size_t pgsz = page_get_pagesize(szc);
size_t maxpgsz = pgsz;
pgcnt_t pages = btop(pgsz);
size_t ppasize = pages * sizeof (page_t *);
caddr_t a = lpgaddr;
ulong_t aindx = svd->anon_index + seg_page(seg, a);
struct vpage *vpage = (svd->vpage != NULL) ?
&svd->vpage[seg_page(seg, a)] : NULL;
page_t **ppa;
uint_t ppa_szc;
faultcode_t err;
int ierr;
uint_t protchk, prot, vpprot;
ulong_t i;
int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
anon_sync_obj_t cookie;
int first = 1;
int adjszc_chk;
int purged = 0;
ASSERT(szc != 0);
ASSERT(amp != NULL);
ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
ASSERT(!(svd->flags & MAP_NORESERVE));
ASSERT(type != F_SOFTUNLOCK);
ASSERT(IS_P2ALIGNED(a, maxpgsz));
ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
if (svd->flags & MAP_TEXT) {
hat_flag |= HAT_LOAD_TEXT;
}
if (svd->pageprot) {
switch (rw) {
case S_READ:
protchk = PROT_READ;
break;
case S_WRITE:
protchk = PROT_WRITE;
break;
case S_EXEC:
protchk = PROT_EXEC;
break;
case S_OTHER:
default:
protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
break;
}
VM_STAT_ADD(segvnvmstats.fltanpages[2]);
} else {
prot = svd->prot;
/* caller has already done segment level protection check. */
}
ppa = kmem_alloc(ppasize, KM_SLEEP);
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
for (;;) {
adjszc_chk = 0;
for (; a < lpgeaddr; a += pgsz, aindx += pages) {
if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
VM_STAT_ADD(segvnvmstats.fltanpages[3]);
ASSERT(vpage != NULL);
prot = VPP_PROT(vpage);
ASSERT(sameprot(seg, a, maxpgsz));
if ((prot & protchk) == 0) {
err = FC_PROT;
goto error;
}
}
if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
pgsz < maxpgsz) {
ASSERT(a > lpgaddr);
szc = seg->s_szc;
pgsz = maxpgsz;
pages = btop(pgsz);
ASSERT(IS_P2ALIGNED(aindx, pages));
lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
pgsz);
}
if (type == F_SOFTLOCK && svd->vp != NULL) {
mutex_enter(&freemem_lock);
if (availrmem < tune.t_minarmem + pages) {
mutex_exit(&freemem_lock);
err = FC_MAKE_ERR(ENOMEM);
goto error;
} else {
availrmem -= pages;
segvn_pages_locked += pages;
svd->softlockcnt += pages;
}
mutex_exit(&freemem_lock);
}
anon_array_enter(amp, aindx, &cookie);
ppa_szc = (uint_t)-1;
ierr = anon_map_getpages(amp, aindx, szc, seg, a,
prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
segvn_anypgsz, svd->cred);
if (ierr != 0) {
anon_array_exit(&cookie);
VM_STAT_ADD(segvnvmstats.fltanpages[4]);
if (type == F_SOFTLOCK && svd->vp != NULL) {
VM_STAT_ADD(segvnvmstats.fltanpages[5]);
mutex_enter(&freemem_lock);
availrmem += pages;
segvn_pages_locked -= pages;
svd->softlockcnt -= pages;
mutex_exit(&freemem_lock);
}
if (ierr > 0) {
VM_STAT_ADD(segvnvmstats.fltanpages[6]);
err = FC_MAKE_ERR(ierr);
goto error;
}
break;
}
ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
ASSERT(segtype == MAP_SHARED ||
ppa[0]->p_szc <= szc);
ASSERT(segtype == MAP_PRIVATE ||
ppa[0]->p_szc >= szc);
/*
* Handle pages that have been marked for migration
*/
if (lgrp_optimizations())
page_migrate(seg, a, ppa, pages);
if (type == F_SOFTLOCK && svd->vp == NULL) {
/*
* All pages in ppa array belong to the same
* large page. This means it's ok to call
* segvn_pp_lock_anonpages just for ppa[0].
*/
if (!segvn_pp_lock_anonpages(ppa[0], first)) {
for (i = 0; i < pages; i++) {
page_unlock(ppa[i]);
}
err = FC_MAKE_ERR(ENOMEM);
goto error;
}
first = 0;
mutex_enter(&freemem_lock);
svd->softlockcnt += pages;
segvn_pages_locked += pages;
mutex_exit(&freemem_lock);
}
if (segtype == MAP_SHARED) {
vpprot |= PROT_WRITE;
}
hat_memload_array(hat, a, pgsz, ppa,
prot & vpprot, hat_flag);
if (hat_flag & HAT_LOAD_LOCK) {
VM_STAT_ADD(segvnvmstats.fltanpages[7]);
} else {
VM_STAT_ADD(segvnvmstats.fltanpages[8]);
for (i = 0; i < pages; i++)
page_unlock(ppa[i]);
}
if (vpage != NULL)
vpage += pages;
anon_array_exit(&cookie);
adjszc_chk = 1;
}
if (a == lpgeaddr)
break;
ASSERT(a < lpgeaddr);
/*
* ierr == -1 means we failed to allocate a large page.
* so do a size down operation.
*
* ierr == -2 means some other process that privately shares
* pages with this process has allocated a larger page and we
* need to retry with larger pages. So do a size up
* operation. This relies on the fact that large pages are
* never partially shared i.e. if we share any constituent
* page of a large page with another process we must share the
* entire large page. Note this cannot happen for SOFTLOCK
* case, unless current address (a) is at the beginning of the
* next page size boundary because the other process couldn't
* have relocated locked pages.
*/
ASSERT(ierr == -1 || ierr == -2);
/*
* For the very first relocation failure try to purge this
* segment's cache so that the relocator can obtain an
* exclusive lock on pages we want to relocate.
*/
if (!purged && ierr == -1 && ppa_szc != (uint_t)-1 &&
svd->softlockcnt != 0) {
purged = 1;
segvn_purge(seg);
continue;
}
if (segvn_anypgsz) {
ASSERT(ierr == -2 || szc != 0);
ASSERT(ierr == -1 || szc < seg->s_szc);
szc = (ierr == -1) ? szc - 1 : szc + 1;
} else {
/*
* For non COW faults and segvn_anypgsz == 0
* we need to be careful not to loop forever
* if existing page is found with szc other
* than 0 or seg->s_szc. This could be due
* to page relocations on behalf of DR or
* more likely large page creation. For this
* case simply re-size to existing page's szc
* if returned by anon_map_getpages().
*/
if (ppa_szc == (uint_t)-1) {
szc = (ierr == -1) ? 0 : seg->s_szc;
} else {
ASSERT(ppa_szc <= seg->s_szc);
ASSERT(ierr == -2 || ppa_szc < szc);
ASSERT(ierr == -1 || ppa_szc > szc);
szc = ppa_szc;
}
}
pgsz = page_get_pagesize(szc);
pages = btop(pgsz);
ASSERT(type != F_SOFTLOCK || ierr == -1 ||
(IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
if (type == F_SOFTLOCK) {
/*
* For softlocks we cannot reduce the fault area
* (calculated based on the largest page size for this
* segment) for size down and a is already next
* page size aligned as assertted above for size
* ups. Therefore just continue in case of softlock.
*/
VM_STAT_ADD(segvnvmstats.fltanpages[9]);
continue; /* keep lint happy */
} else if (ierr == -2) {
/*
* Size up case. Note lpgaddr may only be needed for
* softlock case so we don't adjust it here.
*/
VM_STAT_ADD(segvnvmstats.fltanpages[10]);
a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
ASSERT(a >= lpgaddr);
lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
aindx = svd->anon_index + seg_page(seg, a);
vpage = (svd->vpage != NULL) ?
&svd->vpage[seg_page(seg, a)] : NULL;
} else {
/*
* Size down case. Note lpgaddr may only be needed for
* softlock case so we don't adjust it here.
*/
VM_STAT_ADD(segvnvmstats.fltanpages[11]);
ASSERT(IS_P2ALIGNED(a, pgsz));
ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
ASSERT(a < lpgeaddr);
if (a < addr) {
/*
* The beginning of the large page region can
* be pulled to the right to make a smaller
* region. We haven't yet faulted a single
* page.
*/
VM_STAT_ADD(segvnvmstats.fltanpages[12]);
a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
ASSERT(a >= lpgaddr);
aindx = svd->anon_index + seg_page(seg, a);
vpage = (svd->vpage != NULL) ?
&svd->vpage[seg_page(seg, a)] : NULL;
}
}
}
VM_STAT_ADD(segvnvmstats.fltanpages[13]);
ANON_LOCK_EXIT(&amp->a_rwlock);
kmem_free(ppa, ppasize);
return (0);
error:
VM_STAT_ADD(segvnvmstats.fltanpages[14]);
ANON_LOCK_EXIT(&amp->a_rwlock);
kmem_free(ppa, ppasize);
if (type == F_SOFTLOCK && a > lpgaddr) {
VM_STAT_ADD(segvnvmstats.fltanpages[15]);
segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
}
return (err);
}
int fltadvice = 1; /* set to free behind pages for sequential access */
/*
* This routine is called via a machine specific fault handling routine.
* It is also called by software routines wishing to lock or unlock
* a range of addresses.
*
* Here is the basic algorithm:
* If unlocking
* Call segvn_softunlock
* Return
* endif
* Checking and set up work
* If we will need some non-anonymous pages
* Call VOP_GETPAGE over the range of non-anonymous pages
* endif
* Loop over all addresses requested
* Call segvn_faultpage passing in page list
* to load up translations and handle anonymous pages
* endloop
* Load up translation to any additional pages in page list not
* already handled that fit into this segment
*/
static faultcode_t
segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
enum fault_type type, enum seg_rw rw)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
page_t **plp, **ppp, *pp;
u_offset_t off;
caddr_t a;
struct vpage *vpage;
uint_t vpprot, prot;
int err;
page_t *pl[PVN_GETPAGE_NUM + 1];
size_t plsz, pl_alloc_sz;
size_t page;
ulong_t anon_index;
struct anon_map *amp;
int dogetpage = 0;
caddr_t lpgaddr, lpgeaddr;
size_t pgsz;
anon_sync_obj_t cookie;
int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* First handle the easy stuff
*/
if (type == F_SOFTUNLOCK) {
if (rw == S_READ_NOCOW) {
rw = S_READ;
ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
}
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
pgsz = (seg->s_szc == 0) ? PAGESIZE :
page_get_pagesize(seg->s_szc);
VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
top:
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
/*
* If we have the same protections for the entire segment,
* insure that the access being attempted is legitimate.
*/
if (svd->pageprot == 0) {
uint_t protchk;
switch (rw) {
case S_READ:
case S_READ_NOCOW:
protchk = PROT_READ;
break;
case S_WRITE:
protchk = PROT_WRITE;
break;
case S_EXEC:
protchk = PROT_EXEC;
break;
case S_OTHER:
default:
protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
break;
}
if ((svd->prot & protchk) == 0) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (FC_PROT); /* illegal access type */
}
}
/*
* We can't allow the long term use of softlocks for vmpss segments,
* because in some file truncation cases we should be able to demote
* the segment, which requires that there are no softlocks. The
* only case where it's ok to allow a SOFTLOCK fault against a vmpss
* segment is S_READ_NOCOW, where the caller holds the address space
* locked as writer and calls softunlock before dropping the as lock.
* S_READ_NOCOW is used by /proc to read memory from another user.
*
* Another deadlock between SOFTLOCK and file truncation can happen
* because segvn_fault_vnodepages() calls the FS one pagesize at
* a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
* can cause a deadlock because the first set of page_t's remain
* locked SE_SHARED. To avoid this, we demote segments on a first
* SOFTLOCK if they have a length greater than the segment's
* page size.
*
* So for now, we only avoid demoting a segment on a SOFTLOCK when
* the access type is S_READ_NOCOW and the fault length is less than
* or equal to the segment's page size. While this is quite restrictive,
* it should be the most common case of SOFTLOCK against a vmpss
* segment.
*
* For S_READ_NOCOW, it's safe not to do a copy on write because the
* caller makes sure no COW will be caused by another thread for a
* softlocked page.
*/
if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
int demote = 0;
if (rw != S_READ_NOCOW) {
demote = 1;
}
if (!demote && len > PAGESIZE) {
pgsz = page_get_pagesize(seg->s_szc);
CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
lpgeaddr);
if (lpgeaddr - lpgaddr > pgsz) {
demote = 1;
}
}
ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
if (demote) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
if (seg->s_szc != 0) {
segvn_vmpss_clrszc_cnt++;
ASSERT(svd->softlockcnt == 0);
err = segvn_clrszc(seg);
if (err) {
segvn_vmpss_clrszc_err++;
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (FC_MAKE_ERR(err));
}
}
ASSERT(seg->s_szc == 0);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
goto top;
}
}
/*
* Check to see if we need to allocate an anon_map structure.
*/
if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
/*
* Drop the "read" lock on the segment and acquire
* the "write" version since we have to allocate the
* anon_map.
*/
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
if (svd->amp == NULL) {
svd->amp = anonmap_alloc(seg->s_size, 0);
svd->amp->a_szc = seg->s_szc;
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
/*
* Start all over again since segment protections
* may have changed after we dropped the "read" lock.
*/
goto top;
}
/*
* S_READ_NOCOW vs S_READ distinction was
* only needed for the code above. After
* that we treat it as S_READ.
*/
if (rw == S_READ_NOCOW) {
ASSERT(type == F_SOFTLOCK);
ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
rw = S_READ;
}
amp = svd->amp;
/*
* MADV_SEQUENTIAL work is ignored for large page segments.
*/
if (seg->s_szc != 0) {
pgsz = page_get_pagesize(seg->s_szc);
ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
if (svd->vp == NULL) {
err = segvn_fault_anonpages(hat, seg, lpgaddr,
lpgeaddr, type, rw, addr, addr + len, brkcow);
} else {
err = segvn_fault_vnodepages(hat, seg, lpgaddr,
lpgeaddr, type, rw, addr, addr + len, brkcow);
if (err == IE_RETRY) {
ASSERT(seg->s_szc == 0);
ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
goto top;
}
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
page = seg_page(seg, addr);
if (amp != NULL) {
anon_index = svd->anon_index + page;
if ((type == F_PROT) && (rw == S_READ) &&
svd->type == MAP_PRIVATE && svd->pageprot == 0) {
size_t index = anon_index;
struct anon *ap;
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
/*
* The fast path could apply to S_WRITE also, except
* that the protection fault could be caused by lazy
* tlb flush when ro->rw. In this case, the pte is
* RW already. But RO in the other cpu's tlb causes
* the fault. Since hat_chgprot won't do anything if
* pte doesn't change, we may end up faulting
* indefinitely until the RO tlb entry gets replaced.
*/
for (a = addr; a < addr + len; a += PAGESIZE, index++) {
anon_array_enter(amp, index, &cookie);
ap = anon_get_ptr(amp->ahp, index);
anon_array_exit(&cookie);
if ((ap == NULL) || (ap->an_refcnt != 1)) {
ANON_LOCK_EXIT(&amp->a_rwlock);
goto slow;
}
}
hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
ANON_LOCK_EXIT(&amp->a_rwlock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
}
slow:
if (svd->vpage == NULL)
vpage = NULL;
else
vpage = &svd->vpage[page];
off = svd->offset + (uintptr_t)(addr - seg->s_base);
/*
* If MADV_SEQUENTIAL has been set for the particular page we
* are faulting on, free behind all pages in the segment and put
* them on the free list.
*/
if ((page != 0) && fltadvice) { /* not if first page in segment */
struct vpage *vpp;
ulong_t fanon_index;
size_t fpage;
u_offset_t pgoff, fpgoff;
struct vnode *fvp;
struct anon *fap = NULL;
if (svd->advice == MADV_SEQUENTIAL ||
(svd->pageadvice &&
VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
pgoff = off - PAGESIZE;
fpage = page - 1;
if (vpage != NULL)
vpp = &svd->vpage[fpage];
if (amp != NULL)
fanon_index = svd->anon_index + fpage;
while (pgoff > svd->offset) {
if (svd->advice != MADV_SEQUENTIAL &&
(!svd->pageadvice || (vpage &&
VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
break;
/*
* If this is an anon page, we must find the
* correct <vp, offset> for it
*/
fap = NULL;
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock,
RW_READER);
anon_array_enter(amp, fanon_index,
&cookie);
fap = anon_get_ptr(amp->ahp,
fanon_index);
if (fap != NULL) {
swap_xlate(fap, &fvp, &fpgoff);
} else {
fpgoff = pgoff;
fvp = svd->vp;
}
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
} else {
fpgoff = pgoff;
fvp = svd->vp;
}
if (fvp == NULL)
break; /* XXX */
/*
* Skip pages that are free or have an
* "exclusive" lock.
*/
pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
if (pp == NULL)
break;
/*
* We don't need the page_struct_lock to test
* as this is only advisory; even if we
* acquire it someone might race in and lock
* the page after we unlock and before the
* PUTPAGE, then VOP_PUTPAGE will do nothing.
*/
if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
/*
* Hold the vnode before releasing
* the page lock to prevent it from
* being freed and re-used by some
* other thread.
*/
VN_HOLD(fvp);
page_unlock(pp);
/*
* We should build a page list
* to kluster putpages XXX
*/
(void) VOP_PUTPAGE(fvp,
(offset_t)fpgoff, PAGESIZE,
(B_DONTNEED|B_FREE|B_ASYNC),
svd->cred);
VN_RELE(fvp);
} else {
/*
* XXX - Should the loop terminate if
* the page is `locked'?
*/
page_unlock(pp);
}
--vpp;
--fanon_index;
pgoff -= PAGESIZE;
}
}
}
plp = pl;
*plp = NULL;
pl_alloc_sz = 0;
/*
* See if we need to call VOP_GETPAGE for
* *any* of the range being faulted on.
* We can skip all of this work if there
* was no original vnode.
*/
if (svd->vp != NULL) {
u_offset_t vp_off;
size_t vp_len;
struct anon *ap;
vnode_t *vp;
vp_off = off;
vp_len = len;
if (amp == NULL)
dogetpage = 1;
else {
/*
* Only acquire reader lock to prevent amp->ahp
* from being changed. It's ok to miss pages,
* hence we don't do anon_array_enter
*/
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
ap = anon_get_ptr(amp->ahp, anon_index);
if (len <= PAGESIZE)
/* inline non_anon() */
dogetpage = (ap == NULL);
else
dogetpage = non_anon(amp->ahp, anon_index,
&vp_off, &vp_len);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
if (dogetpage) {
enum seg_rw arw;
struct as *as = seg->s_as;
if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
/*
* Page list won't fit in local array,
* allocate one of the needed size.
*/
pl_alloc_sz =
(btop(len) + 1) * sizeof (page_t *);
plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
plp[0] = NULL;
plsz = len;
} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
rw == S_OTHER ||
(((size_t)(addr + PAGESIZE) <
(size_t)(seg->s_base + seg->s_size)) &&
hat_probe(as->a_hat, addr + PAGESIZE))) {
/*
* Ask VOP_GETPAGE to return the exact number
* of pages if
* (a) this is a COW fault, or
* (b) this is a software fault, or
* (c) next page is already mapped.
*/
plsz = len;
} else {
/*
* Ask VOP_GETPAGE to return adjacent pages
* within the segment.
*/
plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
((seg->s_base + seg->s_size) - addr));
ASSERT((addr + plsz) <=
(seg->s_base + seg->s_size));
}
/*
* Need to get some non-anonymous pages.
* We need to make only one call to GETPAGE to do
* this to prevent certain deadlocking conditions
* when we are doing locking. In this case
* non_anon() should have picked up the smallest
* range which includes all the non-anonymous
* pages in the requested range. We have to
* be careful regarding which rw flag to pass in
* because on a private mapping, the underlying
* object is never allowed to be written.
*/
if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
arw = S_READ;
} else {
arw = rw;
}
vp = svd->vp;
TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
"segvn_getpage:seg %p addr %p vp %p",
seg, addr, vp);
err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
&vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
svd->cred);
if (err) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
segvn_pagelist_rele(plp);
if (pl_alloc_sz)
kmem_free(plp, pl_alloc_sz);
return (FC_MAKE_ERR(err));
}
if (svd->type == MAP_PRIVATE)
vpprot &= ~PROT_WRITE;
}
}
/*
* N.B. at this time the plp array has all the needed non-anon
* pages in addition to (possibly) having some adjacent pages.
*/
/*
* Always acquire the anon_array_lock to prevent
* 2 threads from allocating separate anon slots for
* the same "addr".
*
* If this is a copy-on-write fault and we don't already
* have the anon_array_lock, acquire it to prevent the
* fault routine from handling multiple copy-on-write faults
* on the same "addr" in the same address space.
*
* Only one thread should deal with the fault since after
* it is handled, the other threads can acquire a translation
* to the newly created private page. This prevents two or
* more threads from creating different private pages for the
* same fault.
*
* We grab "serialization" lock here if this is a MAP_PRIVATE segment
* to prevent deadlock between this thread and another thread
* which has soft-locked this page and wants to acquire serial_lock.
* ( bug 4026339 )
*
* The fix for bug 4026339 becomes unnecessary when using the
* locking scheme with per amp rwlock and a global set of hash
* lock, anon_array_lock. If we steal a vnode page when low
* on memory and upgrad the page lock through page_rename,
* then the page is PAGE_HANDLED, nothing needs to be done
* for this page after returning from segvn_faultpage.
*
* But really, the page lock should be downgraded after
* the stolen page is page_rename'd.
*/
if (amp != NULL)
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
/*
* Ok, now loop over the address range and handle faults
*/
for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
type, rw, brkcow, a == addr);
if (err) {
if (amp != NULL)
ANON_LOCK_EXIT(&amp->a_rwlock);
if (type == F_SOFTLOCK && a > addr) {
segvn_softunlock(seg, addr, (a - addr),
S_OTHER);
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
segvn_pagelist_rele(plp);
if (pl_alloc_sz)
kmem_free(plp, pl_alloc_sz);
return (err);
}
if (vpage) {
vpage++;
} else if (svd->vpage) {
page = seg_page(seg, addr);
vpage = &svd->vpage[++page];
}
}
/* Didn't get pages from the underlying fs so we're done */
if (!dogetpage)
goto done;
/*
* Now handle any other pages in the list returned.
* If the page can be used, load up the translations now.
* Note that the for loop will only be entered if "plp"
* is pointing to a non-NULL page pointer which means that
* VOP_GETPAGE() was called and vpprot has been initialized.
*/
if (svd->pageprot == 0)
prot = svd->prot & vpprot;
/*
* Large Files: diff should be unsigned value because we started
* supporting > 2GB segment sizes from 2.5.1 and when a
* large file of size > 2GB gets mapped to address space
* the diff value can be > 2GB.
*/
for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
size_t diff;
struct anon *ap;
int anon_index;
anon_sync_obj_t cookie;
int hat_flag = HAT_LOAD_ADV;
if (svd->flags & MAP_TEXT) {
hat_flag |= HAT_LOAD_TEXT;
}
if (pp == PAGE_HANDLED)
continue;
if (pp->p_offset >= svd->offset &&
(pp->p_offset < svd->offset + seg->s_size)) {
diff = pp->p_offset - svd->offset;
/*
* Large Files: Following is the assertion
* validating the above cast.
*/
ASSERT(svd->vp == pp->p_vnode);
page = btop(diff);
if (svd->pageprot)
prot = VPP_PROT(&svd->vpage[page]) & vpprot;
/*
* Prevent other threads in the address space from
* creating private pages (i.e., allocating anon slots)
* while we are in the process of loading translations
* to additional pages returned by the underlying
* object.
*/
if (amp != NULL) {
anon_index = svd->anon_index + page;
anon_array_enter(amp, anon_index, &cookie);
ap = anon_get_ptr(amp->ahp, anon_index);
}
if ((amp == NULL) || (ap == NULL)) {
if (IS_VMODSORT(pp->p_vnode) ||
enable_mbit_wa) {
if (rw == S_WRITE)
hat_setmod(pp);
else if (rw != S_OTHER &&
!hat_ismod(pp))
prot &= ~PROT_WRITE;
}
/*
* Skip mapping read ahead pages marked
* for migration, so they will get migrated
* properly on fault
*/
if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
hat_memload(hat, seg->s_base + diff,
pp, prot, hat_flag);
}
}
if (amp != NULL)
anon_array_exit(&cookie);
}
page_unlock(pp);
}
done:
if (amp != NULL)
ANON_LOCK_EXIT(&amp->a_rwlock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
if (pl_alloc_sz)
kmem_free(plp, pl_alloc_sz);
return (0);
}
/*
* This routine is used to start I/O on pages asynchronously. XXX it will
* only create PAGESIZE pages. At fault time they will be relocated into
* larger pages.
*/
static faultcode_t
segvn_faulta(struct seg *seg, caddr_t addr)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
int err;
struct anon_map *amp;
vnode_t *vp;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
if ((amp = svd->amp) != NULL) {
struct anon *ap;
/*
* Reader lock to prevent amp->ahp from being changed.
* This is advisory, it's ok to miss a page, so
* we don't do anon_array_enter lock.
*/
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
if ((ap = anon_get_ptr(amp->ahp,
svd->anon_index + seg_page(seg, addr))) != NULL) {
err = anon_getpage(&ap, NULL, NULL,
0, seg, addr, S_READ, svd->cred);
ANON_LOCK_EXIT(&amp->a_rwlock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
if (err)
return (FC_MAKE_ERR(err));
return (0);
}
ANON_LOCK_EXIT(&amp->a_rwlock);
}
if (svd->vp == NULL) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0); /* zfod page - do nothing now */
}
vp = svd->vp;
TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
err = VOP_GETPAGE(vp,
(offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
PAGESIZE, NULL, NULL, 0, seg, addr,
S_OTHER, svd->cred);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
if (err)
return (FC_MAKE_ERR(err));
return (0);
}
static int
segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vpage *svp, *evp;
struct vnode *vp;
size_t pgsz;
pgcnt_t pgcnt;
anon_sync_obj_t cookie;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
if ((svd->maxprot & prot) != prot)
return (EACCES); /* violated maxprot */
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
/* return if prot is the same */
if (!svd->pageprot && svd->prot == prot) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
/*
* Since we change protections we first have to flush the cache.
* This makes sure all the pagelock calls have to recheck
* protections.
*/
if (svd->softlockcnt > 0) {
/*
* Since we do have the segvn writers lock nobody can fill
* the cache with entries belonging to this seg during
* the purge. The flush either succeeds or we still have
* pending I/Os.
*/
segvn_purge(seg);
if (svd->softlockcnt > 0) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (EAGAIN);
}
}
if (seg->s_szc != 0) {
int err;
pgsz = page_get_pagesize(seg->s_szc);
pgcnt = pgsz >> PAGESHIFT;
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
ASSERT(seg->s_base != addr || seg->s_size != len);
/*
* If we are holding the as lock as a reader then
* we need to return IE_RETRY and let the as
* layer drop and re-aquire the lock as a writer.
*/
if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
return (IE_RETRY);
VM_STAT_ADD(segvnvmstats.demoterange[1]);
if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
err = segvn_demote_range(seg, addr, len,
SDR_END, 0);
} else {
uint_t szcvec = map_shm_pgszcvec(seg->s_base,
pgsz, (uintptr_t)seg->s_base);
err = segvn_demote_range(seg, addr, len,
SDR_END, szcvec);
}
if (err == 0)
return (IE_RETRY);
if (err == ENOMEM)
return (IE_NOMEM);
return (err);
}
}
/*
* If it's a private mapping and we're making it writable
* and no swap space has been reserved, have to reserve
* it all now. If it's a private mapping to a file (i.e., vp != NULL)
* and we're removing write permission on the entire segment and
* we haven't modified any pages, we can release the swap space.
*/
if (svd->type == MAP_PRIVATE) {
if (prot & PROT_WRITE) {
size_t sz;
if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
if (anon_resv(seg->s_size) == 0) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (IE_NOMEM);
}
sz = svd->swresv = seg->s_size;
TRACE_3(TR_FAC_VM, TR_ANON_PROC,
"anon proc:%p %lu %u",
seg, sz, 1);
}
} else {
/*
* Swap space is released only if this segment
* does not map anonymous memory, since read faults
* on such segments still need an anon slot to read
* in the data.
*/
if (svd->swresv != 0 && svd->vp != NULL &&
svd->amp == NULL && addr == seg->s_base &&
len == seg->s_size && svd->pageprot == 0) {
anon_unresv(svd->swresv);
svd->swresv = 0;
TRACE_3(TR_FAC_VM, TR_ANON_PROC,
"anon proc:%p %lu %u",
seg, 0, 0);
}
}
}
if (addr == seg->s_base && len == seg->s_size && svd->pageprot == 0) {
if (svd->prot == prot) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0); /* all done */
}
svd->prot = (uchar_t)prot;
} else if (svd->type == MAP_PRIVATE) {
struct anon *ap = NULL;
page_t *pp;
u_offset_t offset, off;
struct anon_map *amp;
ulong_t anon_idx = 0;
/*
* A vpage structure exists or else the change does not
* involve the entire segment. Establish a vpage structure
* if none is there. Then, for each page in the range,
* adjust its individual permissions. Note that write-
* enabling a MAP_PRIVATE page can affect the claims for
* locked down memory. Overcommitting memory terminates
* the operation.
*/
segvn_vpage(seg);
if ((amp = svd->amp) != NULL) {
anon_idx = svd->anon_index + seg_page(seg, addr);
ASSERT(seg->s_szc == 0 ||
IS_P2ALIGNED(anon_idx, pgcnt));
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
}
offset = svd->offset + (uintptr_t)(addr - seg->s_base);
evp = &svd->vpage[seg_page(seg, addr + len)];
/*
* See Statement at the beginning of segvn_lockop regarding
* the way cowcnts and lckcnts are handled.
*/
for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
if (seg->s_szc != 0) {
if (amp != NULL) {
anon_array_enter(amp, anon_idx,
&cookie);
}
if (IS_P2ALIGNED(anon_idx, pgcnt) &&
!segvn_claim_pages(seg, svp, offset,
anon_idx, prot)) {
if (amp != NULL) {
anon_array_exit(&cookie);
}
break;
}
if (amp != NULL) {
anon_array_exit(&cookie);
}
anon_idx++;
} else {
if (amp != NULL) {
anon_array_enter(amp, anon_idx,
&cookie);
ap = anon_get_ptr(amp->ahp, anon_idx++);
}
if (VPP_ISPPLOCK(svp) &&
VPP_PROT(svp) != prot) {
if (amp == NULL || ap == NULL) {
vp = svd->vp;
off = offset;
} else
swap_xlate(ap, &vp, &off);
if (amp != NULL)
anon_array_exit(&cookie);
if ((pp = page_lookup(vp, off,
SE_SHARED)) == NULL) {
panic("segvn_setprot: no page");
/*NOTREACHED*/
}
ASSERT(seg->s_szc == 0);
if ((VPP_PROT(svp) ^ prot) &
PROT_WRITE) {
if (prot & PROT_WRITE) {
if (!page_addclaim(pp)) {
page_unlock(pp);
break;
}
} else {
if (!page_subclaim(pp)) {
page_unlock(pp);
break;
}
}
}
page_unlock(pp);
} else if (amp != NULL)
anon_array_exit(&cookie);
}
VPP_SETPROT(svp, prot);
offset += PAGESIZE;
}
if (amp != NULL)
ANON_LOCK_EXIT(&amp->a_rwlock);
/*
* Did we terminate prematurely? If so, simply unload
* the translations to the things we've updated so far.
*/
if (svp != evp) {
len = (svp - &svd->vpage[seg_page(seg, addr)]) *
PAGESIZE;
ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
if (len != 0)
hat_unload(seg->s_as->a_hat, addr,
len, HAT_UNLOAD);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (IE_NOMEM);
}
} else {
segvn_vpage(seg);
evp = &svd->vpage[seg_page(seg, addr + len)];
for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
VPP_SETPROT(svp, prot);
}
}
if (((prot & PROT_WRITE) != 0 &&
(svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
(prot & ~PROT_USER) == PROT_NONE) {
/*
* Either private or shared data with write access (in
* which case we need to throw out all former translations
* so that we get the right translations set up on fault
* and we don't allow write access to any copy-on-write pages
* that might be around or to prevent write access to pages
* representing holes in a file), or we don't have permission
* to access the memory at all (in which case we have to
* unload any current translations that might exist).
*/
hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
} else {
/*
* A shared mapping or a private mapping in which write
* protection is going to be denied - just change all the
* protections over the range of addresses in question.
* segvn does not support any other attributes other
* than prot so we can use hat_chgattr.
*/
hat_chgattr(seg->s_as->a_hat, addr, len, prot);
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
/*
* segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
* to determine if the seg is capable of mapping the requested szc.
*/
static int
segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct segvn_data *nsvd;
struct anon_map *amp = svd->amp;
struct seg *nseg;
caddr_t eaddr = addr + len, a;
size_t pgsz = page_get_pagesize(szc);
pgcnt_t pgcnt = page_get_pagecnt(szc);
int err;
u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
extern struct vnode kvp;
ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
if (seg->s_szc == szc || segvn_lpg_disable != 0) {
return (0);
}
/*
* addr should always be pgsz aligned but eaddr may be misaligned if
* it's at the end of the segment.
*
* XXX we should assert this condition since as_setpagesize() logic
* guarantees it.
*/
if (!IS_P2ALIGNED(addr, pgsz) ||
(!IS_P2ALIGNED(eaddr, pgsz) &&
eaddr != seg->s_base + seg->s_size)) {
segvn_setpgsz_align_err++;
return (EINVAL);
}
if (amp != NULL && svd->type == MAP_SHARED) {
ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
if (!IS_P2ALIGNED(an_idx, pgcnt)) {
segvn_setpgsz_anon_align_err++;
return (EINVAL);
}
}
if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
szc > segvn_maxpgszc) {
return (EINVAL);
}
/* paranoid check */
if (svd->vp != NULL &&
(IS_SWAPFSVP(svd->vp) || svd->vp == &kvp)) {
return (EINVAL);
}
if (seg->s_szc == 0 && svd->vp != NULL &&
map_addr_vacalign_check(addr, off)) {
return (EINVAL);
}
/*
* Check that protections are the same within new page
* size boundaries.
*/
if (svd->pageprot) {
for (a = addr; a < eaddr; a += pgsz) {
if ((a + pgsz) > eaddr) {
if (!sameprot(seg, a, eaddr - a)) {
return (EINVAL);
}
} else {
if (!sameprot(seg, a, pgsz)) {
return (EINVAL);
}
}
}
}
/*
* Since we are changing page size we first have to flush
* the cache. This makes sure all the pagelock calls have
* to recheck protections.
*/
if (svd->softlockcnt > 0) {
/*
* Since we do have the segvn writers lock nobody can fill
* the cache with entries belonging to this seg during
* the purge. The flush either succeeds or we still have
* pending I/Os.
*/
segvn_purge(seg);
if (svd->softlockcnt > 0) {
return (EAGAIN);
}
}
/*
* Operation for sub range of existing segment.
*/
if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
if (szc < seg->s_szc) {
VM_STAT_ADD(segvnvmstats.demoterange[2]);
err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
if (err == 0) {
return (IE_RETRY);
}
if (err == ENOMEM) {
return (IE_NOMEM);
}
return (err);
}
if (addr != seg->s_base) {
nseg = segvn_split_seg(seg, addr);
if (eaddr != (nseg->s_base + nseg->s_size)) {
/* eaddr is szc aligned */
(void) segvn_split_seg(nseg, eaddr);
}
return (IE_RETRY);
}
if (eaddr != (seg->s_base + seg->s_size)) {
/* eaddr is szc aligned */
(void) segvn_split_seg(seg, eaddr);
}
return (IE_RETRY);
}
/*
* Break any low level sharing and reset seg->s_szc to 0.
*/
if ((err = segvn_clrszc(seg)) != 0) {
if (err == ENOMEM) {
err = IE_NOMEM;
}
return (err);
}
ASSERT(seg->s_szc == 0);
/*
* If the end of the current segment is not pgsz aligned
* then attempt to concatenate with the next segment.
*/
if (!IS_P2ALIGNED(eaddr, pgsz)) {
nseg = AS_SEGNEXT(seg->s_as, seg);
if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
return (ENOMEM);
}
if (nseg->s_ops != &segvn_ops) {
return (EINVAL);
}
nsvd = (struct segvn_data *)nseg->s_data;
if (nsvd->softlockcnt > 0) {
segvn_purge(nseg);
if (nsvd->softlockcnt > 0) {
return (EAGAIN);
}
}
err = segvn_clrszc(nseg);
if (err == ENOMEM) {
err = IE_NOMEM;
}
if (err != 0) {
return (err);
}
err = segvn_concat(seg, nseg, 1);
if (err == -1) {
return (EINVAL);
}
if (err == -2) {
return (IE_NOMEM);
}
return (IE_RETRY);
}
/*
* May need to re-align anon array to
* new szc.
*/
if (amp != NULL) {
if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
struct anon_hdr *nahp;
ASSERT(svd->type == MAP_PRIVATE);
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
ASSERT(amp->refcnt == 1);
nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
if (nahp == NULL) {
ANON_LOCK_EXIT(&amp->a_rwlock);
return (IE_NOMEM);
}
if (anon_copy_ptr(amp->ahp, svd->anon_index,
nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
anon_release(nahp, btop(amp->size));
ANON_LOCK_EXIT(&amp->a_rwlock);
return (IE_NOMEM);
}
anon_release(amp->ahp, btop(amp->size));
amp->ahp = nahp;
svd->anon_index = 0;
ANON_LOCK_EXIT(&amp->a_rwlock);
}
}
if (svd->vp != NULL && szc != 0) {
struct vattr va;
u_offset_t eoffpage = svd->offset;
va.va_mask = AT_SIZE;
eoffpage += seg->s_size;
eoffpage = btopr(eoffpage);
if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
segvn_setpgsz_getattr_err++;
return (EINVAL);
}
if (btopr(va.va_size) < eoffpage) {
segvn_setpgsz_eof_err++;
return (EINVAL);
}
if (amp != NULL) {
/*
* anon_fill_cow_holes() may call VOP_GETPAGE().
* don't take anon map lock here to avoid holding it
* across VOP_GETPAGE() calls that may call back into
* segvn for klsutering checks. We don't really need
* anon map lock here since it's a private segment and
* we hold as level lock as writers.
*/
if ((err = anon_fill_cow_holes(seg, seg->s_base,
amp->ahp, svd->anon_index, svd->vp, svd->offset,
seg->s_size, szc, svd->prot, svd->vpage,
svd->cred)) != 0) {
return (EINVAL);
}
}
segvn_setvnode_mpss(svd->vp);
}
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
if (svd->type == MAP_PRIVATE) {
amp->a_szc = szc;
} else if (szc > amp->a_szc) {
amp->a_szc = szc;
}
ANON_LOCK_EXIT(&amp->a_rwlock);
}
seg->s_szc = szc;
return (0);
}
static int
segvn_clrszc(struct seg *seg)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon_map *amp = svd->amp;
size_t pgsz;
pgcnt_t pages;
int err = 0;
caddr_t a = seg->s_base;
caddr_t ea = a + seg->s_size;
ulong_t an_idx = svd->anon_index;
vnode_t *vp = svd->vp;
struct vpage *vpage = svd->vpage;
page_t *anon_pl[1 + 1], *pp;
struct anon *ap, *oldap;
uint_t prot = svd->prot, vpprot;
ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
if (vp == NULL && amp == NULL) {
seg->s_szc = 0;
return (0);
}
/*
* do HAT_UNLOAD_UNMAP since we are changing the pagesize.
* unload argument is 0 when we are freeing the segment
* and unload was already done.
*/
hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
HAT_UNLOAD_UNMAP);
if (amp == NULL || svd->type == MAP_SHARED) {
seg->s_szc = 0;
return (0);
}
pgsz = page_get_pagesize(seg->s_szc);
pages = btop(pgsz);
/*
* XXX anon rwlock is not really needed because this is a
* private segment and we are writers.
*/
ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
for (; a < ea; a += pgsz, an_idx += pages) {
if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
if (svd->pageprot != 0) {
ASSERT(vpage != NULL);
prot = VPP_PROT(vpage);
ASSERT(sameprot(seg, a, pgsz));
}
if (seg->s_szc != 0) {
ASSERT(vp == NULL || anon_pages(amp->ahp,
an_idx, pages) == pages);
if ((err = anon_map_demotepages(amp, an_idx,
seg, a, prot, vpage, svd->cred)) != 0) {
goto out;
}
} else {
if (oldap->an_refcnt == 1) {
continue;
}
if ((err = anon_getpage(&oldap, &vpprot,
anon_pl, PAGESIZE, seg, a, S_READ,
svd->cred))) {
goto out;
}
if ((pp = anon_private(&ap, seg, a, prot,
anon_pl[0], 0, svd->cred)) == NULL) {
err = ENOMEM;
goto out;
}
anon_decref(oldap);
(void) anon_set_ptr(amp->ahp, an_idx, ap,
ANON_SLEEP);
page_unlock(pp);
}
}
vpage = (vpage == NULL) ? NULL : vpage + pages;
}
amp->a_szc = 0;
seg->s_szc = 0;
out:
ANON_LOCK_EXIT(&amp->a_rwlock);
return (err);
}
static int
segvn_claim_pages(
struct seg *seg,
struct vpage *svp,
u_offset_t off,
ulong_t anon_idx,
uint_t prot)
{
pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
page_t **ppa;
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon_map *amp = svd->amp;
struct vpage *evp = svp + pgcnt;
caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
+ seg->s_base;
struct anon *ap;
struct vnode *vp = svd->vp;
page_t *pp;
pgcnt_t pg_idx, i;
int err = 0;
anoff_t aoff;
int anon = (amp != NULL) ? 1 : 0;
ASSERT(svd->type == MAP_PRIVATE);
ASSERT(svd->vpage != NULL);
ASSERT(seg->s_szc != 0);
ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
if (VPP_PROT(svp) == prot)
return (1);
if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
return (1);
ppa = kmem_alloc(ppasize, KM_SLEEP);
if (anon && vp != NULL) {
if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
anon = 0;
ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
}
ASSERT(!anon ||
anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
}
for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
if (!VPP_ISPPLOCK(svp))
continue;
if (anon) {
ap = anon_get_ptr(amp->ahp, anon_idx);
if (ap == NULL) {
panic("segvn_claim_pages: no anon slot");
}
swap_xlate(ap, &vp, &aoff);
off = (u_offset_t)aoff;
}
ASSERT(vp != NULL);
if ((pp = page_lookup(vp,
(u_offset_t)off, SE_SHARED)) == NULL) {
panic("segvn_claim_pages: no page");
}
ppa[pg_idx++] = pp;
off += PAGESIZE;
}
if (ppa[0] == NULL) {
kmem_free(ppa, ppasize);
return (1);
}
ASSERT(pg_idx <= pgcnt);
ppa[pg_idx] = NULL;
if (prot & PROT_WRITE)
err = page_addclaim_pages(ppa);
else
err = page_subclaim_pages(ppa);
for (i = 0; i < pg_idx; i++) {
ASSERT(ppa[i] != NULL);
page_unlock(ppa[i]);
}
kmem_free(ppa, ppasize);
return (err);
}
/*
* Returns right (upper address) segment if split occured.
* If the address is equal to the beginning or end of its segment it returns
* the current segment.
*/
static struct seg *
segvn_split_seg(struct seg *seg, caddr_t addr)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct seg *nseg;
size_t nsize;
struct segvn_data *nsvd;
ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
ASSERT(addr >= seg->s_base);
ASSERT(addr <= seg->s_base + seg->s_size);
if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
return (seg);
nsize = seg->s_base + seg->s_size - addr;
seg->s_size = addr - seg->s_base;
nseg = seg_alloc(seg->s_as, addr, nsize);
ASSERT(nseg != NULL);
nseg->s_ops = seg->s_ops;
nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
nseg->s_data = (void *)nsvd;
nseg->s_szc = seg->s_szc;
*nsvd = *svd;
rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
if (nsvd->vp != NULL) {
VN_HOLD(nsvd->vp);
nsvd->offset = svd->offset +
(uintptr_t)(nseg->s_base - seg->s_base);
if (nsvd->type == MAP_SHARED)
lgrp_shm_policy_init(NULL, nsvd->vp);
} else {
/*
* The offset for an anonymous segment has no signifigance in
* terms of an offset into a file. If we were to use the above
* calculation instead, the structures read out of
* /proc/<pid>/xmap would be more difficult to decipher since
* it would be unclear whether two seemingly contiguous
* prxmap_t structures represented different segments or a
* single segment that had been split up into multiple prxmap_t
* structures (e.g. if some part of the segment had not yet
* been faulted in).
*/
nsvd->offset = 0;
}
ASSERT(svd->softlockcnt == 0);
crhold(svd->cred);
if (svd->vpage != NULL) {
size_t bytes = vpgtob(seg_pages(seg));
size_t nbytes = vpgtob(seg_pages(nseg));
struct vpage *ovpage = svd->vpage;
svd->vpage = kmem_alloc(bytes, KM_SLEEP);
bcopy(ovpage, svd->vpage, bytes);
nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
kmem_free(ovpage, bytes + nbytes);
}
if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
struct anon_map *oamp = svd->amp, *namp;
struct anon_hdr *nahp;
ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
ASSERT(oamp->refcnt == 1);
nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
nahp, 0, btop(seg->s_size), ANON_SLEEP);
namp = anonmap_alloc(nseg->s_size, 0);
namp->a_szc = nseg->s_szc;
(void) anon_copy_ptr(oamp->ahp,
svd->anon_index + btop(seg->s_size),
namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
anon_release(oamp->ahp, btop(oamp->size));
oamp->ahp = nahp;
oamp->size = seg->s_size;
svd->anon_index = 0;
nsvd->amp = namp;
nsvd->anon_index = 0;
ANON_LOCK_EXIT(&oamp->a_rwlock);
} else if (svd->amp != NULL) {
pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
ASSERT(svd->amp == nsvd->amp);
ASSERT(seg->s_szc <= svd->amp->a_szc);
nsvd->anon_index = svd->anon_index + seg_pages(seg);
ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
svd->amp->refcnt++;
ANON_LOCK_EXIT(&svd->amp->a_rwlock);
}
/*
* Split amount of swap reserve
*/
if (svd->swresv) {
/*
* For MAP_NORESERVE, only allocate swap reserve for pages
* being used. Other segments get enough to cover whole
* segment.
*/
if (svd->flags & MAP_NORESERVE) {
size_t oswresv;
ASSERT(svd->amp);
oswresv = svd->swresv;
svd->swresv = ptob(anon_pages(svd->amp->ahp,
svd->anon_index, btop(seg->s_size)));
nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
nsvd->anon_index, btop(nseg->s_size)));
ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
} else {
ASSERT(svd->swresv == seg->s_size + nseg->s_size);
svd->swresv = seg->s_size;
nsvd->swresv = nseg->s_size;
}
}
return (nseg);
}
/*
* called on memory operations (unmap, setprot, setpagesize) for a subset
* of a large page segment to either demote the memory range (SDR_RANGE)
* or the ends (SDR_END) by addr/len.
*
* returns 0 on success. returns errno, including ENOMEM, on failure.
*/
static int
segvn_demote_range(
struct seg *seg,
caddr_t addr,
size_t len,
int flag,
uint_t szcvec)
{
caddr_t eaddr = addr + len;
caddr_t lpgaddr, lpgeaddr;
struct seg *nseg;
struct seg *badseg1 = NULL;
struct seg *badseg2 = NULL;
size_t pgsz;
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
int err;
uint_t szc = seg->s_szc;
uint_t tszcvec;
ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
ASSERT(szc != 0);
pgsz = page_get_pagesize(szc);
ASSERT(seg->s_base != addr || seg->s_size != len);
ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
ASSERT(svd->softlockcnt == 0);
ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
if (flag == SDR_RANGE) {
/* demote entire range */
badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
(void) segvn_split_seg(nseg, lpgeaddr);
ASSERT(badseg1->s_base == lpgaddr);
ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
} else if (addr != lpgaddr) {
ASSERT(flag == SDR_END);
badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
eaddr < lpgaddr + 2 * pgsz) {
(void) segvn_split_seg(nseg, lpgeaddr);
ASSERT(badseg1->s_base == lpgaddr);
ASSERT(badseg1->s_size == 2 * pgsz);
} else {
nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
ASSERT(badseg1->s_base == lpgaddr);
ASSERT(badseg1->s_size == pgsz);
if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
badseg2 = nseg;
(void) segvn_split_seg(nseg, lpgeaddr);
ASSERT(badseg2->s_base == lpgeaddr - pgsz);
ASSERT(badseg2->s_size == pgsz);
}
}
} else {
ASSERT(flag == SDR_END);
ASSERT(eaddr < lpgeaddr);
badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
(void) segvn_split_seg(nseg, lpgeaddr);
ASSERT(badseg1->s_base == lpgeaddr - pgsz);
ASSERT(badseg1->s_size == pgsz);
}
ASSERT(badseg1 != NULL);
ASSERT(badseg1->s_szc == szc);
ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
badseg1->s_size == 2 * pgsz);
ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
ASSERT(badseg1->s_size == pgsz ||
sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
if (err = segvn_clrszc(badseg1)) {
return (err);
}
ASSERT(badseg1->s_szc == 0);
if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
uint_t tszc = highbit(tszcvec) - 1;
caddr_t ta = MAX(addr, badseg1->s_base);
caddr_t te;
size_t tpgsz = page_get_pagesize(tszc);
ASSERT(svd->type == MAP_SHARED);
ASSERT(flag == SDR_END);
ASSERT(tszc < szc && tszc > 0);
if (eaddr > badseg1->s_base + badseg1->s_size) {
te = badseg1->s_base + badseg1->s_size;
} else {
te = eaddr;
}
ASSERT(ta <= te);
badseg1->s_szc = tszc;
if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
if (badseg2 != NULL) {
err = segvn_demote_range(badseg1, ta, te - ta,
SDR_END, tszcvec);
if (err != 0) {
return (err);
}
} else {
return (segvn_demote_range(badseg1, ta,
te - ta, SDR_END, tszcvec));
}
}
}
if (badseg2 == NULL)
return (0);
ASSERT(badseg2->s_szc == szc);
ASSERT(badseg2->s_size == pgsz);
ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
if (err = segvn_clrszc(badseg2)) {
return (err);
}
ASSERT(badseg2->s_szc == 0);
if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
uint_t tszc = highbit(tszcvec) - 1;
size_t tpgsz = page_get_pagesize(tszc);
ASSERT(svd->type == MAP_SHARED);
ASSERT(flag == SDR_END);
ASSERT(tszc < szc && tszc > 0);
ASSERT(badseg2->s_base > addr);
ASSERT(eaddr > badseg2->s_base);
ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
badseg2->s_szc = tszc;
if (!IS_P2ALIGNED(eaddr, tpgsz)) {
return (segvn_demote_range(badseg2, badseg2->s_base,
eaddr - badseg2->s_base, SDR_END, tszcvec));
}
}
return (0);
}
static int
segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vpage *vp, *evp;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
/*
* If segment protection can be used, simply check against them.
*/
if (svd->pageprot == 0) {
int err;
err = ((svd->prot & prot) != prot) ? EACCES : 0;
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
/*
* Have to check down to the vpage level.
*/
evp = &svd->vpage[seg_page(seg, addr + len)];
for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
if ((VPP_PROT(vp) & prot) != prot) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (EACCES);
}
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
static int
segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
if (pgno != 0) {
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
if (svd->pageprot == 0) {
do
protv[--pgno] = svd->prot;
while (pgno != 0);
} else {
size_t pgoff = seg_page(seg, addr);
do {
pgno--;
protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
} while (pgno != 0);
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
}
return (0);
}
static u_offset_t
segvn_getoffset(struct seg *seg, caddr_t addr)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
return (svd->offset + (uintptr_t)(addr - seg->s_base));
}
/*ARGSUSED*/
static int
segvn_gettype(struct seg *seg, caddr_t addr)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
return (svd->type | (svd->flags & MAP_NORESERVE));
}
/*ARGSUSED*/
static int
segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
*vpp = svd->vp;
return (0);
}
/*
* Check to see if it makes sense to do kluster/read ahead to
* addr + delta relative to the mapping at addr. We assume here
* that delta is a signed PAGESIZE'd multiple (which can be negative).
*
* For segvn, we currently "approve" of the action if we are
* still in the segment and it maps from the same vp/off,
* or if the advice stored in segvn_data or vpages allows it.
* Currently, klustering is not allowed only if MADV_RANDOM is set.
*/
static int
segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon *oap, *ap;
ssize_t pd;
size_t page;
struct vnode *vp1, *vp2;
u_offset_t off1, off2;
struct anon_map *amp;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
if (addr + delta < seg->s_base ||
addr + delta >= (seg->s_base + seg->s_size))
return (-1); /* exceeded segment bounds */
pd = delta / (ssize_t)PAGESIZE; /* divide to preserve sign bit */
page = seg_page(seg, addr);
/*
* Check to see if either of the pages addr or addr + delta
* have advice set that prevents klustering (if MADV_RANDOM advice
* is set for entire segment, or MADV_SEQUENTIAL is set and delta
* is negative).
*/
if (svd->advice == MADV_RANDOM ||
svd->advice == MADV_SEQUENTIAL && delta < 0)
return (-1);
else if (svd->pageadvice && svd->vpage) {
struct vpage *bvpp, *evpp;
bvpp = &svd->vpage[page];
evpp = &svd->vpage[page + pd];
if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
return (-1);
if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
VPP_ADVICE(evpp) == MADV_RANDOM)
return (-1);
}
if (svd->type == MAP_SHARED)
return (0); /* shared mapping - all ok */
if ((amp = svd->amp) == NULL)
return (0); /* off original vnode */
page += svd->anon_index;
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
oap = anon_get_ptr(amp->ahp, page);
ap = anon_get_ptr(amp->ahp, page + pd);
ANON_LOCK_EXIT(&amp->a_rwlock);
if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
return (-1); /* one with and one without an anon */
}
if (oap == NULL) { /* implies that ap == NULL */
return (0); /* off original vnode */
}
/*
* Now we know we have two anon pointers - check to
* see if they happen to be properly allocated.
*/
/*
* XXX We cheat here and don't lock the anon slots. We can't because
* we may have been called from the anon layer which might already
* have locked them. We are holding a refcnt on the slots so they
* can't disappear. The worst that will happen is we'll get the wrong
* names (vp, off) for the slots and make a poor klustering decision.
*/
swap_xlate(ap, &vp1, &off1);
swap_xlate(oap, &vp2, &off2);
if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
return (-1);
return (0);
}
/*
* Swap the pages of seg out to secondary storage, returning the
* number of bytes of storage freed.
*
* The basic idea is first to unload all translations and then to call
* VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
* swap device. Pages to which other segments have mappings will remain
* mapped and won't be swapped. Our caller (as_swapout) has already
* performed the unloading step.
*
* The value returned is intended to correlate well with the process's
* memory requirements. However, there are some caveats:
* 1) When given a shared segment as argument, this routine will
* only succeed in swapping out pages for the last sharer of the
* segment. (Previous callers will only have decremented mapping
* reference counts.)
* 2) We assume that the hat layer maintains a large enough translation
* cache to capture process reference patterns.
*/
static size_t
segvn_swapout(struct seg *seg)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon_map *amp;
pgcnt_t pgcnt = 0;
pgcnt_t npages;
pgcnt_t page;
ulong_t anon_index;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
/*
* Find pages unmapped by our caller and force them
* out to the virtual swap device.
*/
if ((amp = svd->amp) != NULL)
anon_index = svd->anon_index;
npages = seg->s_size >> PAGESHIFT;
for (page = 0; page < npages; page++) {
page_t *pp;
struct anon *ap;
struct vnode *vp;
u_offset_t off;
anon_sync_obj_t cookie;
/*
* Obtain <vp, off> pair for the page, then look it up.
*
* Note that this code is willing to consider regular
* pages as well as anon pages. Is this appropriate here?
*/
ap = NULL;
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
if (anon_array_try_enter(amp, anon_index + page,
&cookie)) {
ANON_LOCK_EXIT(&amp->a_rwlock);
continue;
}
ap = anon_get_ptr(amp->ahp, anon_index + page);
if (ap != NULL) {
swap_xlate(ap, &vp, &off);
} else {
vp = svd->vp;
off = svd->offset + ptob(page);
}
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
} else {
vp = svd->vp;
off = svd->offset + ptob(page);
}
if (vp == NULL) { /* untouched zfod page */
ASSERT(ap == NULL);
continue;
}
pp = page_lookup_nowait(vp, off, SE_SHARED);
if (pp == NULL)
continue;
/*
* Examine the page to see whether it can be tossed out,
* keeping track of how many we've found.
*/
if (!page_tryupgrade(pp)) {
/*
* If the page has an i/o lock and no mappings,
* it's very likely that the page is being
* written out as a result of klustering.
* Assume this is so and take credit for it here.
*/
if (!page_io_trylock(pp)) {
if (!hat_page_is_mapped(pp))
pgcnt++;
} else {
page_io_unlock(pp);
}
page_unlock(pp);
continue;
}
ASSERT(!page_iolock_assert(pp));
/*
* Skip if page is locked or has mappings.
* We don't need the page_struct_lock to look at lckcnt
* and cowcnt because the page is exclusive locked.
*/
if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
hat_page_is_mapped(pp)) {
page_unlock(pp);
continue;
}
/*
* dispose skips large pages so try to demote first.
*/
if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
page_unlock(pp);
/*
* XXX should skip the remaining page_t's of this
* large page.
*/
continue;
}
ASSERT(pp->p_szc == 0);
/*
* No longer mapped -- we can toss it out. How
* we do so depends on whether or not it's dirty.
*/
if (hat_ismod(pp) && pp->p_vnode) {
/*
* We must clean the page before it can be
* freed. Setting B_FREE will cause pvn_done
* to free the page when the i/o completes.
* XXX: This also causes it to be accounted
* as a pageout instead of a swap: need
* B_SWAPOUT bit to use instead of B_FREE.
*
* Hold the vnode before releasing the page lock
* to prevent it from being freed and re-used by
* some other thread.
*/
VN_HOLD(vp);
page_unlock(pp);
/*
* Queue all i/o requests for the pageout thread
* to avoid saturating the pageout devices.
*/
if (!queue_io_request(vp, off))
VN_RELE(vp);
} else {
/*
* The page was clean, free it.
*
* XXX: Can we ever encounter modified pages
* with no associated vnode here?
*/
ASSERT(pp->p_vnode != NULL);
/*LINTED: constant in conditional context*/
VN_DISPOSE(pp, B_FREE, 0, kcred);
}
/*
* Credit now even if i/o is in progress.
*/
pgcnt++;
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
/*
* Wakeup pageout to initiate i/o on all queued requests.
*/
cv_signal_pageout();
return (ptob(pgcnt));
}
/*
* Synchronize primary storage cache with real object in virtual memory.
*
* XXX - Anonymous pages should not be sync'ed out at all.
*/
static int
segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vpage *vpp;
page_t *pp;
u_offset_t offset;
struct vnode *vp;
u_offset_t off;
caddr_t eaddr;
int bflags;
int err = 0;
int segtype;
int pageprot;
int prot;
ulong_t anon_index;
struct anon_map *amp;
struct anon *ap;
anon_sync_obj_t cookie;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
if (svd->softlockcnt > 0) {
/*
* flush all pages from seg cache
* otherwise we may deadlock in swap_putpage
* for B_INVAL page (4175402).
*
* Even if we grab segvn WRITER's lock or segp_slock
* here, there might be another thread which could've
* successfully performed lookup/insert just before
* we acquired the lock here. So, grabbing either
* lock here is of not much use. Until we devise
* a strategy at upper layers to solve the
* synchronization issues completely, we expect
* applications to handle this appropriately.
*/
segvn_purge(seg);
if (svd->softlockcnt > 0) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (EAGAIN);
}
}
vpp = svd->vpage;
offset = svd->offset + (uintptr_t)(addr - seg->s_base);
bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
((flags & MS_INVALIDATE) ? B_INVAL : 0);
if (attr) {
pageprot = attr & ~(SHARED|PRIVATE);
segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
/*
* We are done if the segment types don't match
* or if we have segment level protections and
* they don't match.
*/
if (svd->type != segtype) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
if (vpp == NULL) {
if (svd->prot != pageprot) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
prot = svd->prot;
} else
vpp = &svd->vpage[seg_page(seg, addr)];
} else if (svd->vp && svd->amp == NULL &&
(flags & MS_INVALIDATE) == 0) {
/*
* No attributes, no anonymous pages and MS_INVALIDATE flag
* is not on, just use one big request.
*/
err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
bflags, svd->cred);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
if ((amp = svd->amp) != NULL)
anon_index = svd->anon_index + seg_page(seg, addr);
for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
ap = NULL;
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
anon_array_enter(amp, anon_index, &cookie);
ap = anon_get_ptr(amp->ahp, anon_index++);
if (ap != NULL) {
swap_xlate(ap, &vp, &off);
} else {
vp = svd->vp;
off = offset;
}
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
} else {
vp = svd->vp;
off = offset;
}
offset += PAGESIZE;
if (vp == NULL) /* untouched zfod page */
continue;
if (attr) {
if (vpp) {
prot = VPP_PROT(vpp);
vpp++;
}
if (prot != pageprot) {
continue;
}
}
/*
* See if any of these pages are locked -- if so, then we
* will have to truncate an invalidate request at the first
* locked one. We don't need the page_struct_lock to test
* as this is only advisory; even if we acquire it someone
* might race in and lock the page after we unlock and before
* we do the PUTPAGE, then PUTPAGE simply does nothing.
*/
if (flags & MS_INVALIDATE) {
if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
page_unlock(pp);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (EBUSY);
}
if (ap != NULL && pp->p_szc != 0 &&
page_tryupgrade(pp)) {
if (pp->p_lckcnt == 0 &&
pp->p_cowcnt == 0) {
/*
* swapfs VN_DISPOSE() won't
* invalidate large pages.
* Attempt to demote.
* XXX can't help it if it
* fails. But for swapfs
* pages it is no big deal.
*/
(void) page_try_demote_pages(
pp);
}
}
page_unlock(pp);
}
} else if (svd->type == MAP_SHARED && amp != NULL) {
/*
* Avoid writting out to disk ISM's large pages
* because segspt_free_pages() relies on NULL an_pvp
* of anon slots of such pages.
*/
ASSERT(svd->vp == NULL);
/*
* swapfs uses page_lookup_nowait if not freeing or
* invalidating and skips a page if
* page_lookup_nowait returns NULL.
*/
pp = page_lookup_nowait(vp, off, SE_SHARED);
if (pp == NULL) {
continue;
}
if (pp->p_szc != 0) {
page_unlock(pp);
continue;
}
/*
* Note ISM pages are created large so (vp, off)'s
* page cannot suddenly become large after we unlock
* pp.
*/
page_unlock(pp);
}
/*
* XXX - Should ultimately try to kluster
* calls to VOP_PUTPAGE() for performance.
*/
VN_HOLD(vp);
err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
bflags, svd->cred);
VN_RELE(vp);
if (err)
break;
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
/*
* Determine if we have data corresponding to pages in the
* primary storage virtual memory cache (i.e., "in core").
*/
static size_t
segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vnode *vp, *avp;
u_offset_t offset, aoffset;
size_t p, ep;
int ret;
struct vpage *vpp;
page_t *pp;
uint_t start;
struct anon_map *amp; /* XXX - for locknest */
struct anon *ap;
uint_t attr;
anon_sync_obj_t cookie;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
if (svd->amp == NULL && svd->vp == NULL) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
bzero(vec, btopr(len));
return (len); /* no anonymous pages created yet */
}
p = seg_page(seg, addr);
ep = seg_page(seg, addr + len);
start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
amp = svd->amp;
for (; p < ep; p++, addr += PAGESIZE) {
vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
ret = start;
ap = NULL;
avp = NULL;
/* Grab the vnode/offset for the anon slot */
if (amp != NULL) {
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
anon_array_enter(amp, svd->anon_index + p, &cookie);
ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
if (ap != NULL) {
swap_xlate(ap, &avp, &aoffset);
}
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
}
if ((avp != NULL) && page_exists(avp, aoffset)) {
/* A page exists for the anon slot */
ret |= SEG_PAGE_INCORE;
/*
* If page is mapped and writable
*/
attr = (uint_t)0;
if ((hat_getattr(seg->s_as->a_hat, addr,
&attr) != -1) && (attr & PROT_WRITE)) {
ret |= SEG_PAGE_ANON;
}
/*
* Don't get page_struct lock for lckcnt and cowcnt,
* since this is purely advisory.
*/
if ((pp = page_lookup_nowait(avp, aoffset,
SE_SHARED)) != NULL) {
if (pp->p_lckcnt)
ret |= SEG_PAGE_SOFTLOCK;
if (pp->p_cowcnt)
ret |= SEG_PAGE_HASCOW;
page_unlock(pp);
}
}
/* Gather vnode statistics */
vp = svd->vp;
offset = svd->offset + (uintptr_t)(addr - seg->s_base);
if (vp != NULL) {
/*
* Try to obtain a "shared" lock on the page
* without blocking. If this fails, determine
* if the page is in memory.
*/
pp = page_lookup_nowait(vp, offset, SE_SHARED);
if ((pp == NULL) && (page_exists(vp, offset))) {
/* Page is incore, and is named */
ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
}
/*
* Don't get page_struct lock for lckcnt and cowcnt,
* since this is purely advisory.
*/
if (pp != NULL) {
ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
if (pp->p_lckcnt)
ret |= SEG_PAGE_SOFTLOCK;
if (pp->p_cowcnt)
ret |= SEG_PAGE_HASCOW;
page_unlock(pp);
}
}
/* Gather virtual page information */
if (vpp) {
if (VPP_ISPPLOCK(vpp))
ret |= SEG_PAGE_LOCKED;
vpp++;
}
*vec++ = (char)ret;
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (len);
}
/*
* Statement for p_cowcnts/p_lckcnts.
*
* p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
* irrespective of the following factors or anything else:
*
* (1) anon slots are populated or not
* (2) cow is broken or not
* (3) refcnt on ap is 1 or greater than 1
*
* If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
* and munlock.
*
*
* Handling p_cowcnts/p_lckcnts during copy-on-write fault:
*
* if vpage has PROT_WRITE
* transfer cowcnt on the oldpage -> cowcnt on the newpage
* else
* transfer lckcnt on the oldpage -> lckcnt on the newpage
*
* During copy-on-write, decrement p_cowcnt on the oldpage and increment
* p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
*
* We may also break COW if softlocking on read access in the physio case.
* In this case, vpage may not have PROT_WRITE. So, we need to decrement
* p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
* vpage doesn't have PROT_WRITE.
*
*
* Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
*
* If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
* increment p_lckcnt by calling page_subclaim() which takes care of
* availrmem accounting and p_lckcnt overflow.
*
* If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
* increment p_cowcnt by calling page_addclaim() which takes care of
* availrmem availability and p_cowcnt overflow.
*/
/*
* Lock down (or unlock) pages mapped by this segment.
*
* XXX only creates PAGESIZE pages if anon slots are not initialized.
* At fault time they will be relocated into larger pages.
*/
static int
segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
int attr, int op, ulong_t *lockmap, size_t pos)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vpage *vpp;
struct vpage *evp;
page_t *pp;
u_offset_t offset;
u_offset_t off;
int segtype;
int pageprot;
int claim;
struct vnode *vp;
ulong_t anon_index;
struct anon_map *amp;
struct anon *ap;
struct vattr va;
anon_sync_obj_t cookie;
struct kshmid *sp = NULL;
struct proc *p = curproc;
kproject_t *proj = NULL;
int chargeproc = 1;
size_t locked_bytes = 0;
size_t unlocked_bytes = 0;
int err = 0;
/*
* Hold write lock on address space because may split or concatenate
* segments
*/
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* If this is a shm, use shm's project and zone, else use
* project and zone of calling process
*/
/* Determine if this segment backs a sysV shm */
if (svd->amp != NULL && svd->amp->a_sp != NULL) {
sp = svd->amp->a_sp;
proj = sp->shm_perm.ipc_proj;
chargeproc = 0;
}
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
if (attr) {
pageprot = attr & ~(SHARED|PRIVATE);
segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
/*
* We are done if the segment types don't match
* or if we have segment level protections and
* they don't match.
*/
if (svd->type != segtype) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
if (svd->pageprot == 0 && svd->prot != pageprot) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
}
/*
* If we're locking, then we must create a vpage structure if
* none exists. If we're unlocking, then check to see if there
* is a vpage -- if not, then we could not have locked anything.
*/
if ((vpp = svd->vpage) == NULL) {
if (op == MC_LOCK)
segvn_vpage(seg);
else {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
}
/*
* The anonymous data vector (i.e., previously
* unreferenced mapping to swap space) can be allocated
* by lazily testing for its existence.
*/
if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
svd->amp = anonmap_alloc(seg->s_size, 0);
svd->amp->a_szc = seg->s_szc;
}
if ((amp = svd->amp) != NULL) {
anon_index = svd->anon_index + seg_page(seg, addr);
}
offset = svd->offset + (uintptr_t)(addr - seg->s_base);
evp = &svd->vpage[seg_page(seg, addr + len)];
if (sp != NULL)
mutex_enter(&sp->shm_mlock);
/* determine number of unlocked bytes in range for lock operation */
if (op == MC_LOCK) {
if (sp == NULL) {
for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
vpp++) {
if (!VPP_ISPPLOCK(vpp))
unlocked_bytes += PAGESIZE;
}
} else {
ulong_t i_idx, i_edx;
anon_sync_obj_t i_cookie;
struct anon *i_ap;
struct vnode *i_vp;
u_offset_t i_off;
/* Only count sysV pages once for locked memory */
i_edx = svd->anon_index + seg_page(seg, addr + len);
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
anon_array_enter(amp, i_idx, &i_cookie);
i_ap = anon_get_ptr(amp->ahp, i_idx);
if (i_ap == NULL) {
unlocked_bytes += PAGESIZE;
anon_array_exit(&i_cookie);
continue;
}
swap_xlate(i_ap, &i_vp, &i_off);
anon_array_exit(&i_cookie);
pp = page_lookup(i_vp, i_off, SE_SHARED);
if (pp == NULL) {
unlocked_bytes += PAGESIZE;
continue;
} else if (pp->p_lckcnt == 0)
unlocked_bytes += PAGESIZE;
page_unlock(pp);
}
ANON_LOCK_EXIT(&amp->a_rwlock);
}
mutex_enter(&p->p_lock);
err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
chargeproc);
mutex_exit(&p->p_lock);
if (err) {
if (sp != NULL)
mutex_exit(&sp->shm_mlock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
}
/*
* Loop over all pages in the range. Process if we're locking and
* page has not already been locked in this mapping; or if we're
* unlocking and the page has been locked.
*/
for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
(op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
if (amp != NULL)
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
/*
* If this isn't a MAP_NORESERVE segment and
* we're locking, allocate anon slots if they
* don't exist. The page is brought in later on.
*/
if (op == MC_LOCK && svd->vp == NULL &&
((svd->flags & MAP_NORESERVE) == 0) &&
amp != NULL &&
((ap = anon_get_ptr(amp->ahp, anon_index))
== NULL)) {
anon_array_enter(amp, anon_index, &cookie);
if ((ap = anon_get_ptr(amp->ahp,
anon_index)) == NULL) {
pp = anon_zero(seg, addr, &ap,
svd->cred);
if (pp == NULL) {
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
err = ENOMEM;
goto out;
}
ASSERT(anon_get_ptr(amp->ahp,
anon_index) == NULL);
(void) anon_set_ptr(amp->ahp,
anon_index, ap, ANON_SLEEP);
page_unlock(pp);
}
anon_array_exit(&cookie);
}
/*
* Get name for page, accounting for
* existence of private copy.
*/
ap = NULL;
if (amp != NULL) {
anon_array_enter(amp, anon_index, &cookie);
ap = anon_get_ptr(amp->ahp, anon_index);
if (ap != NULL) {
swap_xlate(ap, &vp, &off);
} else {
if (svd->vp == NULL &&
(svd->flags & MAP_NORESERVE)) {
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
continue;
}
vp = svd->vp;
off = offset;
}
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
} else {
vp = svd->vp;
off = offset;
}
/*
* Get page frame. It's ok if the page is
* not available when we're unlocking, as this
* may simply mean that a page we locked got
* truncated out of existence after we locked it.
*
* Invoke VOP_GETPAGE() to obtain the page struct
* since we may need to read it from disk if its
* been paged out.
*/
if (op != MC_LOCK)
pp = page_lookup(vp, off, SE_SHARED);
else {
page_t *pl[1 + 1];
int error;
ASSERT(vp != NULL);
error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
(uint_t *)NULL, pl, PAGESIZE, seg, addr,
S_OTHER, svd->cred);
/*
* If the error is EDEADLK then we must bounce
* up and drop all vm subsystem locks and then
* retry the operation later
* This behavior is a temporary measure because
* ufs/sds logging is badly designed and will
* deadlock if we don't allow this bounce to
* happen. The real solution is to re-design
* the logging code to work properly. See bug
* 4125102 for details of the problem.
*/
if (error == EDEADLK) {
err = error;
goto out;
}
/*
* Quit if we fail to fault in the page. Treat
* the failure as an error, unless the addr
* is mapped beyond the end of a file.
*/
if (error && svd->vp) {
va.va_mask = AT_SIZE;
if (VOP_GETATTR(svd->vp, &va, 0,
svd->cred) != 0) {
err = EIO;
goto out;
}
if (btopr(va.va_size) >=
btopr(off + 1)) {
err = EIO;
goto out;
}
goto out;
} else if (error) {
err = EIO;
goto out;
}
pp = pl[0];
ASSERT(pp != NULL);
}
/*
* See Statement at the beginning of this routine.
*
* claim is always set if MAP_PRIVATE and PROT_WRITE
* irrespective of following factors:
*
* (1) anon slots are populated or not
* (2) cow is broken or not
* (3) refcnt on ap is 1 or greater than 1
*
* See 4140683 for details
*/
claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
(svd->type == MAP_PRIVATE));
/*
* Perform page-level operation appropriate to
* operation. If locking, undo the SOFTLOCK
* performed to bring the page into memory
* after setting the lock. If unlocking,
* and no page was found, account for the claim
* separately.
*/
if (op == MC_LOCK) {
int ret = 1; /* Assume success */
ASSERT(!VPP_ISPPLOCK(vpp));
ret = page_pp_lock(pp, claim, 0);
if (ret == 0) {
/* locking page failed */
page_unlock(pp);
err = EAGAIN;
goto out;
}
VPP_SETPPLOCK(vpp);
if (sp != NULL) {
if (pp->p_lckcnt == 1)
locked_bytes += PAGESIZE;
} else
locked_bytes += PAGESIZE;
if (lockmap != (ulong_t *)NULL)
BT_SET(lockmap, pos);
page_unlock(pp);
} else {
ASSERT(VPP_ISPPLOCK(vpp));
if (pp != NULL) {
/* sysV pages should be locked */
ASSERT(sp == NULL || pp->p_lckcnt > 0);
page_pp_unlock(pp, claim, 0);
if (sp != NULL) {
if (pp->p_lckcnt == 0)
unlocked_bytes
+= PAGESIZE;
} else
unlocked_bytes += PAGESIZE;
page_unlock(pp);
} else {
ASSERT(sp != NULL);
unlocked_bytes += PAGESIZE;
}
VPP_CLRPPLOCK(vpp);
}
}
}
out:
if (op == MC_LOCK) {
/* Credit back bytes that did not get locked */
if ((unlocked_bytes - locked_bytes) > 0) {
if (proj == NULL)
mutex_enter(&p->p_lock);
rctl_decr_locked_mem(p, proj,
(unlocked_bytes - locked_bytes), chargeproc);
if (proj == NULL)
mutex_exit(&p->p_lock);
}
} else {
/* Account bytes that were unlocked */
if (unlocked_bytes > 0) {
if (proj == NULL)
mutex_enter(&p->p_lock);
rctl_decr_locked_mem(p, proj, unlocked_bytes,
chargeproc);
if (proj == NULL)
mutex_exit(&p->p_lock);
}
}
if (sp != NULL)
mutex_exit(&sp->shm_mlock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
/*
* Set advice from user for specified pages
* There are 5 types of advice:
* MADV_NORMAL - Normal (default) behavior (whatever that is)
* MADV_RANDOM - Random page references
* do not allow readahead or 'klustering'
* MADV_SEQUENTIAL - Sequential page references
* Pages previous to the one currently being
* accessed (determined by fault) are 'not needed'
* and are freed immediately
* MADV_WILLNEED - Pages are likely to be used (fault ahead in mctl)
* MADV_DONTNEED - Pages are not needed (synced out in mctl)
* MADV_FREE - Contents can be discarded
* MADV_ACCESS_DEFAULT- Default access
* MADV_ACCESS_LWP - Next LWP will access heavily
* MADV_ACCESS_MANY- Many LWPs or processes will access heavily
*/
static int
segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
size_t page;
int err = 0;
int already_set;
struct anon_map *amp;
ulong_t anon_index;
struct seg *next;
lgrp_mem_policy_t policy;
struct seg *prev;
struct vnode *vp;
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
/*
* In case of MADV_FREE, we won't be modifying any segment private
* data structures; so, we only need to grab READER's lock
*/
if (behav != MADV_FREE)
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
else
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
/*
* Large pages are assumed to be only turned on when accesses to the
* segment's address range have spatial and temporal locality. That
* justifies ignoring MADV_SEQUENTIAL for large page segments.
* Also, ignore advice affecting lgroup memory allocation
* if don't need to do lgroup optimizations on this system
*/
if ((behav == MADV_SEQUENTIAL && seg->s_szc != 0) ||
(!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
/*
* Since we are going to unload hat mappings
* we first have to flush the cache. Otherwise
* this might lead to system panic if another
* thread is doing physio on the range whose
* mappings are unloaded by madvise(3C).
*/
if (svd->softlockcnt > 0) {
/*
* Since we do have the segvn writers lock
* nobody can fill the cache with entries
* belonging to this seg during the purge.
* The flush either succeeds or we still
* have pending I/Os. In the later case,
* madvise(3C) fails.
*/
segvn_purge(seg);
if (svd->softlockcnt > 0) {
/*
* Since madvise(3C) is advisory and
* it's not part of UNIX98, madvise(3C)
* failure here doesn't cause any hardship.
* Note that we don't block in "as" layer.
*/
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (EAGAIN);
}
}
}
amp = svd->amp;
vp = svd->vp;
if (behav == MADV_FREE) {
/*
* MADV_FREE is not supported for segments with
* underlying object; if anonmap is NULL, anon slots
* are not yet populated and there is nothing for
* us to do. As MADV_FREE is advisory, we don't
* return error in either case.
*/
if (vp || amp == NULL) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
page = seg_page(seg, addr);
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
anon_disclaim(amp, svd->anon_index + page, len, 0);
ANON_LOCK_EXIT(&amp->a_rwlock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (0);
}
/*
* If advice is to be applied to entire segment,
* use advice field in seg_data structure
* otherwise use appropriate vpage entry.
*/
if ((addr == seg->s_base) && (len == seg->s_size)) {
switch (behav) {
case MADV_ACCESS_LWP:
case MADV_ACCESS_MANY:
case MADV_ACCESS_DEFAULT:
/*
* Set memory allocation policy for this segment
*/
policy = lgrp_madv_to_policy(behav, len, svd->type);
if (svd->type == MAP_SHARED)
already_set = lgrp_shm_policy_set(policy, amp,
svd->anon_index, vp, svd->offset, len);
else {
/*
* For private memory, need writers lock on
* address space because the segment may be
* split or concatenated when changing policy
*/
if (AS_READ_HELD(seg->s_as,
&seg->s_as->a_lock)) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (IE_RETRY);
}
already_set = lgrp_privm_policy_set(policy,
&svd->policy_info, len);
}
/*
* If policy set already and it shouldn't be reapplied,
* don't do anything.
*/
if (already_set &&
!LGRP_MEM_POLICY_REAPPLICABLE(policy))
break;
/*
* Mark any existing pages in given range for
* migration
*/
page_mark_migrate(seg, addr, len, amp, svd->anon_index,
vp, svd->offset, 1);
/*
* If same policy set already or this is a shared
* memory segment, don't need to try to concatenate
* segment with adjacent ones.
*/
if (already_set || svd->type == MAP_SHARED)
break;
/*
* Try to concatenate this segment with previous
* one and next one, since we changed policy for
* this one and it may be compatible with adjacent
* ones now.
*/
prev = AS_SEGPREV(seg->s_as, seg);
next = AS_SEGNEXT(seg->s_as, seg);
if (next && next->s_ops == &segvn_ops &&
addr + len == next->s_base)
(void) segvn_concat(seg, next, 1);
if (prev && prev->s_ops == &segvn_ops &&
addr == prev->s_base + prev->s_size) {
/*
* Drop lock for private data of current
* segment before concatenating (deleting) it
* and return IE_REATTACH to tell as_ctl() that
* current segment has changed
*/
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
if (!segvn_concat(prev, seg, 1))
err = IE_REATTACH;
return (err);
}
break;
case MADV_SEQUENTIAL:
/*
* unloading mapping guarantees
* detection in segvn_fault
*/
ASSERT(seg->s_szc == 0);
hat_unload(seg->s_as->a_hat, addr, len,
HAT_UNLOAD);
/* FALLTHROUGH */
case MADV_NORMAL:
case MADV_RANDOM:
svd->advice = (uchar_t)behav;
svd->pageadvice = 0;
break;
case MADV_WILLNEED: /* handled in memcntl */
case MADV_DONTNEED: /* handled in memcntl */
case MADV_FREE: /* handled above */
break;
default:
err = EINVAL;
}
} else {
caddr_t eaddr;
struct seg *new_seg;
struct segvn_data *new_svd;
u_offset_t off;
caddr_t oldeaddr;
page = seg_page(seg, addr);
segvn_vpage(seg);
switch (behav) {
struct vpage *bvpp, *evpp;
case MADV_ACCESS_LWP:
case MADV_ACCESS_MANY:
case MADV_ACCESS_DEFAULT:
/*
* Set memory allocation policy for portion of this
* segment
*/
/*
* Align address and length of advice to page
* boundaries for large pages
*/
if (seg->s_szc != 0) {
size_t pgsz;
pgsz = page_get_pagesize(seg->s_szc);
addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
len = P2ROUNDUP(len, pgsz);
}
/*
* Check to see whether policy is set already
*/
policy = lgrp_madv_to_policy(behav, len, svd->type);
anon_index = svd->anon_index + page;
off = svd->offset + (uintptr_t)(addr - seg->s_base);
if (svd->type == MAP_SHARED)
already_set = lgrp_shm_policy_set(policy, amp,
anon_index, vp, off, len);
else
already_set =
(policy == svd->policy_info.mem_policy);
/*
* If policy set already and it shouldn't be reapplied,
* don't do anything.
*/
if (already_set &&
!LGRP_MEM_POLICY_REAPPLICABLE(policy))
break;
/*
* For private memory, need writers lock on
* address space because the segment may be
* split or concatenated when changing policy
*/
if (svd->type == MAP_PRIVATE &&
AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (IE_RETRY);
}
/*
* Mark any existing pages in given range for
* migration
*/
page_mark_migrate(seg, addr, len, amp, svd->anon_index,
vp, svd->offset, 1);
/*
* Don't need to try to split or concatenate
* segments, since policy is same or this is a shared
* memory segment
*/
if (already_set || svd->type == MAP_SHARED)
break;
/*
* Split off new segment if advice only applies to a
* portion of existing segment starting in middle
*/
new_seg = NULL;
eaddr = addr + len;
oldeaddr = seg->s_base + seg->s_size;
if (addr > seg->s_base) {
/*
* Must flush I/O page cache
* before splitting segment
*/
if (svd->softlockcnt > 0)
segvn_purge(seg);
/*
* Split segment and return IE_REATTACH to tell
* as_ctl() that current segment changed
*/
new_seg = segvn_split_seg(seg, addr);
new_svd = (struct segvn_data *)new_seg->s_data;
err = IE_REATTACH;
/*
* If new segment ends where old one
* did, try to concatenate the new
* segment with next one.
*/
if (eaddr == oldeaddr) {
/*
* Set policy for new segment
*/
(void) lgrp_privm_policy_set(policy,
&new_svd->policy_info,
new_seg->s_size);
next = AS_SEGNEXT(new_seg->s_as,
new_seg);
if (next &&
next->s_ops == &segvn_ops &&
eaddr == next->s_base)
(void) segvn_concat(new_seg,
next, 1);
}
}
/*
* Split off end of existing segment if advice only
* applies to a portion of segment ending before
* end of the existing segment
*/
if (eaddr < oldeaddr) {
/*
* Must flush I/O page cache
* before splitting segment
*/
if (svd->softlockcnt > 0)
segvn_purge(seg);
/*
* If beginning of old segment was already
* split off, use new segment to split end off
* from.
*/
if (new_seg != NULL && new_seg != seg) {
/*
* Split segment
*/
(void) segvn_split_seg(new_seg, eaddr);
/*
* Set policy for new segment
*/
(void) lgrp_privm_policy_set(policy,
&new_svd->policy_info,
new_seg->s_size);
} else {
/*
* Split segment and return IE_REATTACH
* to tell as_ctl() that current
* segment changed
*/
(void) segvn_split_seg(seg, eaddr);
err = IE_REATTACH;
(void) lgrp_privm_policy_set(policy,
&svd->policy_info, seg->s_size);
/*
* If new segment starts where old one
* did, try to concatenate it with
* previous segment.
*/
if (addr == seg->s_base) {
prev = AS_SEGPREV(seg->s_as,
seg);
/*
* Drop lock for private data
* of current segment before
* concatenating (deleting) it
*/
if (prev &&
prev->s_ops ==
&segvn_ops &&
addr == prev->s_base +
prev->s_size) {
SEGVN_LOCK_EXIT(
seg->s_as,
&svd->lock);
(void) segvn_concat(
prev, seg, 1);
return (err);
}
}
}
}
break;
case MADV_SEQUENTIAL:
ASSERT(seg->s_szc == 0);
hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
/* FALLTHROUGH */
case MADV_NORMAL:
case MADV_RANDOM:
bvpp = &svd->vpage[page];
evpp = &svd->vpage[page + (len >> PAGESHIFT)];
for (; bvpp < evpp; bvpp++)
VPP_SETADVICE(bvpp, behav);
svd->advice = MADV_NORMAL;
break;
case MADV_WILLNEED: /* handled in memcntl */
case MADV_DONTNEED: /* handled in memcntl */
case MADV_FREE: /* handled above */
break;
default:
err = EINVAL;
}
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
return (err);
}
/*
* Create a vpage structure for this seg.
*/
static void
segvn_vpage(struct seg *seg)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vpage *vp, *evp;
ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
/*
* If no vpage structure exists, allocate one. Copy the protections
* and the advice from the segment itself to the individual pages.
*/
if (svd->vpage == NULL) {
svd->pageprot = 1;
svd->pageadvice = 1;
svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
KM_SLEEP);
evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
for (vp = svd->vpage; vp < evp; vp++) {
VPP_SETPROT(vp, svd->prot);
VPP_SETADVICE(vp, svd->advice);
}
}
}
/*
* Dump the pages belonging to this segvn segment.
*/
static void
segvn_dump(struct seg *seg)
{
struct segvn_data *svd;
page_t *pp;
struct anon_map *amp;
ulong_t anon_index;
struct vnode *vp;
u_offset_t off, offset;
pfn_t pfn;
pgcnt_t page, npages;
caddr_t addr;
npages = seg_pages(seg);
svd = (struct segvn_data *)seg->s_data;
vp = svd->vp;
off = offset = svd->offset;
addr = seg->s_base;
if ((amp = svd->amp) != NULL) {
anon_index = svd->anon_index;
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
}
for (page = 0; page < npages; page++, offset += PAGESIZE) {
struct anon *ap;
int we_own_it = 0;
if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
swap_xlate_nopanic(ap, &vp, &off);
} else {
vp = svd->vp;
off = offset;
}
/*
* If pp == NULL, the page either does not exist
* or is exclusively locked. So determine if it
* exists before searching for it.
*/
if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
we_own_it = 1;
else
pp = page_exists(vp, off);
if (pp) {
pfn = page_pptonum(pp);
dump_addpage(seg->s_as, addr, pfn);
if (we_own_it)
page_unlock(pp);
}
addr += PAGESIZE;
dump_timeleft = dump_timeout;
}
if (amp != NULL)
ANON_LOCK_EXIT(&amp->a_rwlock);
}
/*
* lock/unlock anon pages over a given range. Return shadow list
*/
static int
segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
enum lock_type type, enum seg_rw rw)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
ulong_t anon_index;
uint_t protchk;
uint_t error;
struct anon_map *amp;
struct page **pplist, **pl, *pp;
caddr_t a;
size_t page;
caddr_t lpgaddr, lpgeaddr;
pgcnt_t szc0_npages = 0;
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
"segvn_pagelock: start seg %p addr %p", seg, addr);
ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
/*
* We are adjusting the pagelock region to the large page size
* boundary because the unlocked part of a large page cannot
* be freed anyway unless all constituent pages of a large
* page are locked. Therefore this adjustment allows us to
* decrement availrmem by the right value (note we don't want
* to just decrement availrem by the large page size without
* adjusting addr and len because then we may end up
* decrementing availrmem by large page size for every
* constituent page locked by a new as_pagelock call).
* as_pageunlock caller must always match as_pagelock call's
* addr and len.
*
* Note segment's page size cannot change while we are holding
* as lock. And then it cannot change while softlockcnt is
* not 0. This will allow us to correctly recalculate large
* page size region for the matching pageunlock/reclaim call.
*
* for pageunlock *ppp points to the pointer of page_t that
* corresponds to the real unadjusted start address. Similar
* for pagelock *ppp must point to the pointer of page_t that
* corresponds to the real unadjusted start address.
*/
size_t pgsz = page_get_pagesize(seg->s_szc);
CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
}
if (type == L_PAGEUNLOCK) {
/*
* update hat ref bits for /proc. We need to make sure
* that threads tracing the ref and mod bits of the
* address space get the right data.
* Note: page ref and mod bits are updated at reclaim time
*/
if (seg->s_as->a_vbits) {
for (a = addr; a < addr + len; a += PAGESIZE) {
if (rw == S_WRITE) {
hat_setstat(seg->s_as, a,
PAGESIZE, P_REF | P_MOD);
} else {
hat_setstat(seg->s_as, a,
PAGESIZE, P_REF);
}
}
}
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
if (seg->s_szc != 0) {
VM_STAT_ADD(segvnvmstats.pagelock[0]);
seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
*ppp - adjustpages, rw, segvn_reclaim);
} else {
seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
}
/*
* If someone is blocked while unmapping, we purge
* segment page cache and thus reclaim pplist synchronously
* without waiting for seg_pasync_thread. This speeds up
* unmapping in cases where munmap(2) is called, while
* raw async i/o is still in progress or where a thread
* exits on data fault in a multithreaded application.
*/
if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
/*
* Even if we grab segvn WRITER's lock or segp_slock
* here, there might be another thread which could've
* successfully performed lookup/insert just before
* we acquired the lock here. So, grabbing either
* lock here is of not much use. Until we devise
* a strategy at upper layers to solve the
* synchronization issues completely, we expect
* applications to handle this appropriately.
*/
segvn_purge(seg);
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
"segvn_pagelock: unlock seg %p addr %p", seg, addr);
return (0);
} else if (type == L_PAGERECLAIM) {
VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
(void) segvn_reclaim(seg, addr, len, *ppp, rw);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
return (0);
}
if (seg->s_szc != 0) {
VM_STAT_ADD(segvnvmstats.pagelock[2]);
addr = lpgaddr;
len = lpgeaddr - lpgaddr;
npages = (len >> PAGESHIFT);
}
/*
* for now we only support pagelock to anon memory. We've to check
* protections for vnode objects and call into the vnode driver.
* That's too much for a fast path. Let the fault entry point handle it.
*/
if (svd->vp != NULL) {
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
"segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
*ppp = NULL;
return (ENOTSUP);
}
/*
* if anonmap is not yet created, let the fault entry point populate it
* with anon ptrs.
*/
if ((amp = svd->amp) == NULL) {
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
"segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
*ppp = NULL;
return (EFAULT);
}
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
/*
* we acquire segp_slock to prevent duplicate entries
* in seg_pcache
*/
mutex_enter(&svd->segp_slock);
/*
* try to find pages in segment page cache
*/
pplist = seg_plookup(seg, addr, len, rw);
if (pplist != NULL) {
mutex_exit(&svd->segp_slock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
*ppp = pplist + adjustpages;
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
return (0);
}
if (rw == S_READ) {
protchk = PROT_READ;
} else {
protchk = PROT_WRITE;
}
if (svd->pageprot == 0) {
if ((svd->prot & protchk) == 0) {
mutex_exit(&svd->segp_slock);
error = EFAULT;
goto out;
}
} else {
/*
* check page protections
*/
for (a = addr; a < addr + len; a += PAGESIZE) {
struct vpage *vp;
vp = &svd->vpage[seg_page(seg, a)];
if ((VPP_PROT(vp) & protchk) == 0) {
mutex_exit(&svd->segp_slock);
error = EFAULT;
goto out;
}
}
}
/*
* Avoid per page overhead of segvn_pp_lock_anonpages() for small
* pages. For large pages segvn_pp_lock_anonpages() only does real
* work once per large page. The tradeoff is that we may decrement
* availrmem more than once for the same page but this is ok
* for small pages.
*/
if (seg->s_szc == 0) {
mutex_enter(&freemem_lock);
if (availrmem < tune.t_minarmem + npages) {
mutex_exit(&freemem_lock);
mutex_exit(&svd->segp_slock);
error = ENOMEM;
goto out;
}
availrmem -= npages;
mutex_exit(&freemem_lock);
}
pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
pl = pplist;
*ppp = pplist + adjustpages;
page = seg_page(seg, addr);
anon_index = svd->anon_index + page;
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
struct anon *ap;
struct vnode *vp;
u_offset_t off;
anon_sync_obj_t cookie;
anon_array_enter(amp, anon_index, &cookie);
ap = anon_get_ptr(amp->ahp, anon_index);
if (ap == NULL) {
anon_array_exit(&cookie);
break;
} else {
/*
* We must never use seg_pcache for COW pages
* because we might end up with original page still
* lying in seg_pcache even after private page is
* created. This leads to data corruption as
* aio_write refers to the page still in cache
* while all other accesses refer to the private
* page.
*/
if (ap->an_refcnt != 1) {
anon_array_exit(&cookie);
break;
}
}
swap_xlate(ap, &vp, &off);
anon_array_exit(&cookie);
pp = page_lookup_nowait(vp, off, SE_SHARED);
if (pp == NULL) {
break;
}
if (seg->s_szc != 0 || pp->p_szc != 0) {
if (!segvn_pp_lock_anonpages(pp, a == addr)) {
page_unlock(pp);
break;
}
} else {
szc0_npages++;
}
*pplist++ = pp;
}
ANON_LOCK_EXIT(&amp->a_rwlock);
ASSERT(npages >= szc0_npages);
if (a >= addr + len) {
mutex_enter(&freemem_lock);
if (seg->s_szc == 0 && npages != szc0_npages) {
ASSERT(svd->type == MAP_SHARED && amp->a_szc > 0);
availrmem += (npages - szc0_npages);
}
svd->softlockcnt += npages;
segvn_pages_locked += npages;
mutex_exit(&freemem_lock);
(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
segvn_reclaim);
mutex_exit(&svd->segp_slock);
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
"segvn_pagelock: cache fill seg %p addr %p", seg, addr);
return (0);
}
mutex_exit(&svd->segp_slock);
if (seg->s_szc == 0) {
mutex_enter(&freemem_lock);
availrmem += npages;
mutex_exit(&freemem_lock);
}
error = EFAULT;
pplist = pl;
np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
while (np > (uint_t)0) {
ASSERT(PAGE_LOCKED(*pplist));
if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
segvn_pp_unlock_anonpages(*pplist, pplist == pl);
}
page_unlock(*pplist);
np--;
pplist++;
}
kmem_free(pl, sizeof (page_t *) * npages);
out:
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
*ppp = NULL;
TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
return (error);
}
/*
* purge any cached pages in the I/O page cache
*/
static void
segvn_purge(struct seg *seg)
{
seg_ppurge(seg);
}
static int
segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
enum seg_rw rw)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
pgcnt_t np, npages;
struct page **pl;
pgcnt_t szc0_npages = 0;
#ifdef lint
addr = addr;
#endif
npages = np = (len >> PAGESHIFT);
ASSERT(npages);
pl = pplist;
if (seg->s_szc != 0) {
size_t pgsz = page_get_pagesize(seg->s_szc);
if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
panic("segvn_reclaim: unaligned addr or len");
/*NOTREACHED*/
}
}
ASSERT(svd->vp == NULL && svd->amp != NULL);
while (np > (uint_t)0) {
if (rw == S_WRITE) {
hat_setrefmod(*pplist);
} else {
hat_setref(*pplist);
}
if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
segvn_pp_unlock_anonpages(*pplist, pplist == pl);
} else {
szc0_npages++;
}
page_unlock(*pplist);
np--;
pplist++;
}
kmem_free(pl, sizeof (page_t *) * npages);
mutex_enter(&freemem_lock);
segvn_pages_locked -= npages;
svd->softlockcnt -= npages;
if (szc0_npages != 0) {
availrmem += szc0_npages;
}
mutex_exit(&freemem_lock);
if (svd->softlockcnt <= 0) {
if (AS_ISUNMAPWAIT(seg->s_as)) {
mutex_enter(&seg->s_as->a_contents);
if (AS_ISUNMAPWAIT(seg->s_as)) {
AS_CLRUNMAPWAIT(seg->s_as);
cv_broadcast(&seg->s_as->a_cv);
}
mutex_exit(&seg->s_as->a_contents);
}
}
return (0);
}
/*
* get a memory ID for an addr in a given segment
*
* XXX only creates PAGESIZE pages if anon slots are not initialized.
* At fault time they will be relocated into larger pages.
*/
static int
segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct anon *ap = NULL;
ulong_t anon_index;
struct anon_map *amp;
anon_sync_obj_t cookie;
if (svd->type == MAP_PRIVATE) {
memidp->val[0] = (uintptr_t)seg->s_as;
memidp->val[1] = (uintptr_t)addr;
return (0);
}
if (svd->type == MAP_SHARED) {
if (svd->vp) {
memidp->val[0] = (uintptr_t)svd->vp;
memidp->val[1] = (u_longlong_t)svd->offset +
(uintptr_t)(addr - seg->s_base);
return (0);
} else {
SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
if ((amp = svd->amp) != NULL) {
anon_index = svd->anon_index +
seg_page(seg, addr);
}
SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
ASSERT(amp != NULL);
ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
anon_array_enter(amp, anon_index, &cookie);
ap = anon_get_ptr(amp->ahp, anon_index);
if (ap == NULL) {
page_t *pp;
pp = anon_zero(seg, addr, &ap, svd->cred);
if (pp == NULL) {
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
return (ENOMEM);
}
ASSERT(anon_get_ptr(amp->ahp, anon_index)
== NULL);
(void) anon_set_ptr(amp->ahp, anon_index,
ap, ANON_SLEEP);
page_unlock(pp);
}
anon_array_exit(&cookie);
ANON_LOCK_EXIT(&amp->a_rwlock);
memidp->val[0] = (uintptr_t)ap;
memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
return (0);
}
}
return (EINVAL);
}
static int
sameprot(struct seg *seg, caddr_t a, size_t len)
{
struct segvn_data *svd = (struct segvn_data *)seg->s_data;
struct vpage *vpage;
spgcnt_t pages = btop(len);
uint_t prot;
if (svd->pageprot == 0)
return (1);
ASSERT(svd->vpage != NULL);
vpage = &svd->vpage[seg_page(seg, a)];
prot = VPP_PROT(vpage);
vpage++;
pages--;
while (pages-- > 0) {
if (prot != VPP_PROT(vpage))
return (0);
vpage++;
}
return (1);
}
/*
* Get memory allocation policy info for specified address in given segment
*/
static lgrp_mem_policy_info_t *
segvn_getpolicy(struct seg *seg, caddr_t addr)
{
struct anon_map *amp;
ulong_t anon_index;
lgrp_mem_policy_info_t *policy_info;
struct segvn_data *svn_data;
u_offset_t vn_off;
vnode_t *vp;
ASSERT(seg != NULL);
svn_data = (struct segvn_data *)seg->s_data;
if (svn_data == NULL)
return (NULL);
/*
* Get policy info for private or shared memory
*/
if (svn_data->type != MAP_SHARED)
policy_info = &svn_data->policy_info;
else {
amp = svn_data->amp;
anon_index = svn_data->anon_index + seg_page(seg, addr);
vp = svn_data->vp;
vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
}
return (policy_info);
}
/*ARGSUSED*/
static int
segvn_capable(struct seg *seg, segcapability_t capability)
{
return (0);
}