strsubr.h revision 9acbbeaf2a1ffe5c14b244867d427714fab43c5c
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SYS_STRSUBR_H
#define _SYS_STRSUBR_H
#pragma ident "%Z%%M% %I% %E% SMI" /* SVr4.0 1.17 */
/*
* WARNING:
* Everything in this file is private, belonging to the
* STREAMS subsystem. The only guarantee made about the
* contents of this file is that if you include it, your
* code will not port to the next release.
*/
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/kstat.h>
#include <sys/uio.h>
#include <sys/proc.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* In general, the STREAMS locks are disjoint; they are only held
* locally, and not simultaneously by a thread. However, module
* code, including at the stream head, requires some locks to be
* acquired in order for its safety.
* 1. Stream level claim. This prevents the value of q_next
* from changing while module code is executing.
* 2. Queue level claim. This prevents the value of q_ptr
* from changing while put or service code is executing.
* In addition, it provides for queue single-threading
* for QPAIR and PERQ MT-safe modules.
* 3. Stream head lock. May be held by the stream head module
* to implement a read/write/open/close monitor.
* Note: that the only types of twisted stream supported are
* the pipe and transports which have read and write service
* procedures on both sides of the twist.
* 4. Queue lock. May be acquired by utility routines on
* behalf of a module.
*/
/*
* In general, sd_lock protects the consistency of the stdata
* structure. Additionally, it is used with sd_monitor
* to implement an open/close monitor. In particular, it protects
* the following fields:
* sd_iocblk
* sd_flag
* sd_copyflag
* sd_iocid
* sd_iocwait
* sd_sidp
* sd_pgidp
* sd_wroff
* sd_tail
* sd_rerror
* sd_werror
* sd_pushcnt
* sd_sigflags
* sd_siglist
* sd_pollist
* sd_mark
* sd_closetime
* sd_wakeq
* sd_uiordq
* sd_uiowrq
* sd_maxblk
*
* The following fields are modified only by the allocator, which
* has exclusive access to them at that time:
* sd_wrq
* sd_strtab
*
* The following field is protected by the overlying file system
* code, guaranteeing single-threading of opens:
* sd_vnode
*
* Stream-level locks should be acquired before any queue-level locks
* are acquired.
*
* The stream head write queue lock(sd_wrq) is used to protect the
* fields qn_maxpsz and qn_minpsz because freezestr() which is
* necessary for strqset() only gets the queue lock.
*/
/*
* Function types for the parameterized stream head.
* The msgfunc_t takes the parameters:
* msgfunc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups,
* strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs,
* strpollset_t *pollwakeups);
* It returns an optional message to be processed by the stream head.
*
* The parameters for errfunc_t are:
* errfunc(vnode *vp, int ispeek, int *clearerr);
* It returns an errno and zero if there was no pending error.
*/
typedef uint_t strwakeup_t;
typedef uint_t strsigset_t;
typedef short strpollset_t;
typedef uintptr_t callbparams_id_t;
typedef mblk_t *(*msgfunc_t)(vnode_t *, mblk_t *, strwakeup_t *,
strsigset_t *, strsigset_t *, strpollset_t *);
typedef int (*errfunc_t)(vnode_t *, int, int *);
/*
* Per stream sd_lock in putnext may be replaced by per cpu stream_putlocks
* each living in a separate cache line. putnext/canputnext grabs only one of
* stream_putlocks while strlock() (called on behalf of insertq()/removeq())
* acquires all stream_putlocks. Normally stream_putlocks are only employed
* for highly contended streams that have SQ_CIPUT queues in the critical path
* (e.g. NFS/UDP stream).
*
* stream_putlocks are dynamically assigned to stdata structure through
* sd_ciputctrl pointer possibly when a stream is already in use. Since
* strlock() uses stream_putlocks only under sd_lock acquiring sd_lock when
* assigning stream_putlocks to the stream ensures synchronization with
* strlock().
*
* For lock ordering purposes stream_putlocks are treated as the extension of
* sd_lock and are always grabbed right after grabbing sd_lock and released
* right before releasing sd_lock except putnext/canputnext where only one of
* stream_putlocks locks is used and where it is the first lock to grab.
*/
typedef struct ciputctrl_str {
union _ciput_un {
uchar_t pad[64];
struct _ciput_str {
kmutex_t ciput_lck;
ushort_t ciput_cnt;
} ciput_str;
} ciput_un;
} ciputctrl_t;
#define ciputctrl_lock ciput_un.ciput_str.ciput_lck
#define ciputctrl_count ciput_un.ciput_str.ciput_cnt
/*
* Header for a stream: interface to rest of system.
*/
typedef struct stdata {
struct queue *sd_wrq; /* write queue */
struct msgb *sd_iocblk; /* return block for ioctl */
struct vnode *sd_vnode; /* pointer to associated vnode */
struct streamtab *sd_strtab; /* pointer to streamtab for stream */
uint_t sd_flag; /* state/flags */
uint_t sd_iocid; /* ioctl id */
struct pid *sd_sidp; /* controlling session info */
struct pid *sd_pgidp; /* controlling process group info */
ushort_t sd_unused; /* UNUSED, retained for binary */
/* compatibility */
ushort_t sd_wroff; /* write offset */
ushort_t sd_tail; /* reserved space in written mblks */
int sd_rerror; /* error to return on read ops */
int sd_werror; /* error to return on write ops */
int sd_pushcnt; /* number of pushes done on stream */
int sd_sigflags; /* logical OR of all siglist events */
struct strsig *sd_siglist; /* pid linked list to rcv SIGPOLL sig */
struct pollhead sd_pollist; /* list of all pollers to wake up */
struct msgb *sd_mark; /* "marked" message on read queue */
clock_t sd_closetime; /* time to wait to drain q in close */
kmutex_t sd_lock; /* protect head consistency */
kcondvar_t sd_monitor; /* open/close/push/pop monitor */
kcondvar_t sd_iocmonitor; /* ioctl single-threading */
kcondvar_t sd_refmonitor; /* sd_refcnt monitor */
ssize_t sd_qn_minpsz; /* These two fields are a performance */
ssize_t sd_qn_maxpsz; /* enhancements, cache the values in */
/* the stream head so we don't have */
/* to ask the module below the stream */
/* head to get this information. */
struct stdata *sd_mate; /* pointer to twisted stream mate */
kthread_id_t sd_freezer; /* thread that froze stream */
kmutex_t sd_reflock; /* Protects sd_refcnt */
int sd_refcnt; /* number of claimstr */
uint_t sd_wakeq; /* strwakeq()'s copy of sd_flag */
struct queue *sd_struiordq; /* sync barrier struio() read queue */
struct queue *sd_struiowrq; /* sync barrier struio() write queue */
char sd_struiodnak; /* defer NAK of M_IOCTL by rput() */
struct msgb *sd_struionak; /* pointer M_IOCTL mblk(s) to NAK */
caddr_t sd_t_audit_data; /* For audit purposes only */
ssize_t sd_maxblk; /* maximum message block size */
uint_t sd_rput_opt; /* options/flags for strrput */
uint_t sd_wput_opt; /* options/flags for write/putmsg */
uint_t sd_read_opt; /* options/flags for strread */
msgfunc_t sd_rprotofunc; /* rput M_*PROTO routine */
msgfunc_t sd_rputdatafunc; /* read M_DATA routine */
msgfunc_t sd_rmiscfunc; /* rput routine (non-data/proto) */
msgfunc_t sd_wputdatafunc; /* wput M_DATA routine */
errfunc_t sd_rderrfunc; /* read side error callback */
errfunc_t sd_wrerrfunc; /* write side error callback */
/*
* support for low contention concurrent putnext.
*/
ciputctrl_t *sd_ciputctrl;
uint_t sd_nciputctrl;
int sd_anchor; /* position of anchor in stream */
/*
* Service scheduling at the stream head.
*/
kmutex_t sd_qlock;
struct queue *sd_qhead; /* Head of queues to be serviced. */
struct queue *sd_qtail; /* Tail of queues to be serviced. */
void *sd_servid; /* Service ID for bckgrnd schedule */
ushort_t sd_svcflags; /* Servicing flags */
short sd_nqueues; /* Number of queues in the list */
kcondvar_t sd_qcv; /* Waiters for qhead to become empty */
kcondvar_t sd_zcopy_wait;
uint_t sd_copyflag; /* copy-related flags */
} stdata_t;
/*
* stdata servicing flags.
*/
#define STRS_WILLSERVICE 0x01
#define STRS_SCHEDULED 0x02
#define STREAM_NEEDSERVICE(stp) ((stp)->sd_qhead != NULL)
/*
* stdata flag field defines
*/
#define IOCWAIT 0x00000001 /* Someone is doing an ioctl */
#define RSLEEP 0x00000002 /* Someone wants to read/recv msg */
#define WSLEEP 0x00000004 /* Someone wants to write */
#define STRPRI 0x00000008 /* An M_PCPROTO is at stream head */
#define STRHUP 0x00000010 /* Device has vanished */
#define STWOPEN 0x00000020 /* waiting for 1st open */
#define STPLEX 0x00000040 /* stream is being multiplexed */
#define STRISTTY 0x00000080 /* stream is a terminal */
#define STRGETINPROG 0x00000100 /* (k)strgetmsg is running */
#define IOCWAITNE 0x00000200 /* STR_NOERROR ioctl running */
#define STRDERR 0x00000400 /* fatal read error from M_ERROR */
#define STWRERR 0x00000800 /* fatal write error from M_ERROR */
#define STRDERRNONPERSIST 0x00001000 /* nonpersistent read errors */
#define STWRERRNONPERSIST 0x00002000 /* nonpersistent write errors */
#define STRCLOSE 0x00004000 /* wait for a close to complete */
#define SNDMREAD 0x00008000 /* used for read notification */
#define OLDNDELAY 0x00010000 /* use old TTY semantics for */
/* NDELAY reads and writes */
/* 0x00020000 unused */
/* 0x00040000 unused */
#define STRTOSTOP 0x00080000 /* block background writes */
/* 0x00100000 unused */
/* 0x00200000 unused */
#define STRMOUNT 0x00400000 /* stream is mounted */
#define STRNOTATMARK 0x00800000 /* Not at mark (when empty read q) */
#define STRDELIM 0x01000000 /* generate delimited messages */
#define STRATMARK 0x02000000 /* At mark (due to MSGMARKNEXT) */
#define STZCNOTIFY 0x04000000 /* wait for zerocopy mblk to be acked */
#define STRPLUMB 0x08000000 /* push/pop pending */
#define STREOF 0x10000000 /* End-of-file indication */
#define STREOPENFAIL 0x20000000 /* indicates if re-open has failed */
#define STRMATE 0x40000000 /* this stream is a mate */
#define STRHASLINKS 0x80000000 /* I_LINKs under this stream */
/*
* Copy-related flags (sd_copyflag), set by SO_COPYOPT.
*/
#define STZCVMSAFE 0x00000001 /* safe to borrow file (segmapped) */
/* pages instead of bcopy */
#define STZCVMUNSAFE 0x00000002 /* unsafe to borrow file pages */
#define STRCOPYCACHED 0x00000004 /* copy should NOT bypass cache */
/*
* Options and flags for strrput (sd_rput_opt)
*/
#define SR_POLLIN 0x00000001 /* pollwakeup needed for band0 data */
#define SR_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */
#define SR_CONSOL_DATA 0x00000004 /* Consolidate M_DATA onto q_last */
#define SR_IGN_ZEROLEN 0x00000008 /* Ignore zero-length M_DATA */
/*
* Options and flags for strwrite/strputmsg (sd_wput_opt)
*/
#define SW_SIGPIPE 0x00000001 /* Send SIGPIPE for write error */
#define SW_RECHECK_ERR 0x00000002 /* Recheck errors in strwrite loop */
#define SW_SNDZERO 0x00000004 /* send 0-length msg down pipe/FIFO */
/*
* Options and flags for strread (sd_read_opt)
*/
#define RD_MSGDIS 0x00000001 /* read msg discard */
#define RD_MSGNODIS 0x00000002 /* read msg no discard */
#define RD_PROTDAT 0x00000004 /* read M_[PC]PROTO contents as data */
#define RD_PROTDIS 0x00000008 /* discard M_[PC]PROTO blocks and */
/* retain data blocks */
/*
* Flags parameter for strsetrputhooks() and strsetwputhooks().
* These flags define the interface for setting the above internal
* flags in sd_rput_opt and sd_wput_opt.
*/
#define SH_CONSOL_DATA 0x00000001 /* Consolidate M_DATA onto q_last */
#define SH_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */
#define SH_IGN_ZEROLEN 0x00000004 /* Drop zero-length M_DATA */
#define SH_SIGPIPE 0x00000100 /* Send SIGPIPE for write error */
#define SH_RECHECK_ERR 0x00000200 /* Recheck errors in strwrite loop */
/*
* Each queue points to a sync queue (the inner perimeter) which keeps
* track of the number of threads that are inside a given queue (sq_count)
* and also is used to implement the asynchronous putnext
* (by queuing messages if the queue can not be entered.)
*
* Messages are queued on sq_head/sq_tail including deferred qwriter(INNER)
* messages. The sq_head/sq_tail list is a singly-linked list with
* b_queue recording the queue and b_prev recording the function to
* be called (either the put procedure or a qwriter callback function.)
*
* The sq_count counter tracks the number of threads that are
* executing inside the perimeter or (in the case of outer perimeters)
* have some work queued for them relating to the perimeter. The sq_rmqcount
* counter tracks the subset which are in removeq() (usually invoked from
* qprocsoff(9F)).
*
* In addition a module writer can declare that the module has an outer
* perimeter (by setting D_MTOUTPERIM) in which case all inner perimeter
* syncq's for the module point (through sq_outer) to an outer perimeter
* syncq. The outer perimeter consists of the doubly linked list (sq_onext and
* sq_oprev) linking all the inner perimeter syncq's with out outer perimeter
* syncq. This is used to implement qwriter(OUTER) (an asynchronous way of
* getting exclusive access at the outer perimeter) and outer_enter/exit
* which are used by the framework to acquire exclusive access to the outer
* perimeter during open and close of modules that have set D_MTOUTPERIM.
*
* In the inner perimeter case sq_save is available for use by machine
* dependent code. sq_head/sq_tail are used to queue deferred messages on
* the inner perimeter syncqs and to queue become_writer requests on the
* outer perimeter syncqs.
*
* Note: machine dependent optimized versions of putnext may depend
* on the order of sq_flags and sq_count (so that they can e.g.
* read these two fields in a single load instruction.)
*
* Per perimeter SQLOCK/sq_count in putnext/put may be replaced by per cpu
* sq_putlocks/sq_putcounts each living in a separate cache line. Obviously
* sq_putlock[x] protects sq_putcount[x]. putnext/put routine will grab only 1
* of sq_putlocks and update only 1 of sq_putcounts. strlock() and many
* other routines in strsubr.c and ddi.c will grab all sq_putlocks (as well as
* SQLOCK) and figure out the count value as the sum of sq_count and all of
* sq_putcounts. The idea is to make critical fast path -- putnext -- much
* faster at the expense of much less often used slower path like
* strlock(). One known case where entersq/strlock is executed pretty often is
* SpecWeb but since IP is SQ_CIOC and socket TCP/IP stream is nextless
* there's no need to grab multiple sq_putlocks and look at sq_putcounts. See
* strsubr.c for more comments.
*
* Note regular SQLOCK and sq_count are still used in many routines
* (e.g. entersq(), rwnext()) in the same way as before sq_putlocks were
* introduced.
*
* To understand when all sq_putlocks need to be held and all sq_putcounts
* need to be added up one needs to look closely at putnext code. Basically if
* a routine like e.g. wait_syncq() needs to be sure that perimeter is empty
* all sq_putlocks/sq_putcounts need to be held/added up. On the other hand
* there's no need to hold all sq_putlocks and count all sq_putcounts in
* routines like leavesq()/dropsq() and etc. since the are usually exit
* counterparts of entersq/outer_enter() and etc. which have already either
* prevented put entry poins from executing or did not care about put
* entrypoints. entersq() doesn't need to care about sq_putlocks/sq_putcounts
* if the entry point has a shared access since put has the highest degree of
* concurrency and such entersq() does not intend to block out put
* entrypoints.
*
* Before sq_putcounts were introduced the standard way to wait for perimeter
* to become empty was:
*
* mutex_enter(SQLOCK(sq));
* while (sq->sq_count > 0) {
* sq->sq_flags |= SQ_WANTWAKEUP;
* cv_wait(&sq->sq_wait, SQLOCK(sq));
* }
* mutex_exit(SQLOCK(sq));
*
* The new way is:
*
* mutex_enter(SQLOCK(sq));
* count = sq->sq_count;
* SQ_PUTLOCKS_ENTER(sq);
* SUM_SQ_PUTCOUNTS(sq, count);
* while (count != 0) {
* sq->sq_flags |= SQ_WANTWAKEUP;
* SQ_PUTLOCKS_EXIT(sq);
* cv_wait(&sq->sq_wait, SQLOCK(sq));
* count = sq->sq_count;
* SQ_PUTLOCKS_ENTER(sq);
* SUM_SQ_PUTCOUNTS(sq, count);
* }
* SQ_PUTLOCKS_EXIT(sq);
* mutex_exit(SQLOCK(sq));
*
* Note that SQ_WANTWAKEUP is set before dropping SQ_PUTLOCKS. This makes sure
* putnext won't skip a wakeup.
*
* sq_putlocks are treated as the extension of SQLOCK for lock ordering
* purposes and are always grabbed right after grabbing SQLOCK and released
* right before releasing SQLOCK. This also allows dynamic creation of
* sq_putlocks while holding SQLOCK (by making sq_ciputctrl non null even when
* the stream is already in use). Only in putnext one of sq_putlocks
* is grabbed instead of SQLOCK. putnext return path remembers what counter it
* incremented and decrements the right counter on its way out.
*/
struct syncq {
kmutex_t sq_lock; /* atomic access to syncq */
uint16_t sq_count; /* # threads inside */
uint16_t sq_flags; /* state and some type info */
/*
* Distributed syncq scheduling
* The list of queue's is handled by sq_head and
* sq_tail fields.
*
* The list of events is handled by the sq_evhead and sq_evtail
* fields.
*/
queue_t *sq_head; /* queue of deferred messages */
queue_t *sq_tail; /* queue of deferred messages */
mblk_t *sq_evhead; /* Event message on the syncq */
mblk_t *sq_evtail;
uint_t sq_nqueues; /* # of queues on this sq */
/*
* Concurrency and condition variables
*/
uint16_t sq_type; /* type (concurrency) of syncq */
uint16_t sq_rmqcount; /* # threads inside removeq() */
kcondvar_t sq_wait; /* block on this sync queue */
kcondvar_t sq_exitwait; /* waiting for thread to leave the */
/* inner perimeter */
/*
* Handling synchronous callbacks such as qtimeout and qbufcall
*/
ushort_t sq_callbflags; /* flags for callback synchronization */
callbparams_id_t sq_cancelid; /* id of callback being cancelled */
struct callbparams *sq_callbpend; /* Pending callbacks */
/*
* Links forming an outer perimeter from one outer syncq and
* a set of inner sync queues.
*/
struct syncq *sq_outer; /* Pointer to outer perimeter */
struct syncq *sq_onext; /* Linked list of syncq's making */
struct syncq *sq_oprev; /* up the outer perimeter. */
/*
* support for low contention concurrent putnext.
*/
ciputctrl_t *sq_ciputctrl;
uint_t sq_nciputctrl;
/*
* Counter for the number of threads wanting to become exclusive.
*/
uint_t sq_needexcl;
/*
* These two fields are used for scheduling a syncq for
* background processing. The sq_svcflag is protected by
* SQLOCK lock.
*/
struct syncq *sq_next; /* for syncq scheduling */
void * sq_servid;
uint_t sq_servcount; /* # pending background threads */
uint_t sq_svcflags; /* Scheduling flags */
clock_t sq_tstamp; /* Time when was enabled */
/*
* Maximum priority of the queues on this syncq.
*/
pri_t sq_pri;
};
typedef struct syncq syncq_t;
/*
* sync queue scheduling flags (for sq_svcflags).
*/
#define SQ_SERVICE 0x1 /* being serviced */
#define SQ_BGTHREAD 0x2 /* awaiting service by bg thread */
#define SQ_DISABLED 0x4 /* don't put syncq in service list */
/*
* FASTPUT bit in sd_count/putcount.
*/
#define SQ_FASTPUT 0x8000
#define SQ_FASTMASK 0x7FFF
/*
* sync queue state flags
*/
#define SQ_EXCL 0x0001 /* exclusive access to inner */
/* perimeter */
#define SQ_BLOCKED 0x0002 /* qprocsoff */
#define SQ_FROZEN 0x0004 /* freezestr */
#define SQ_WRITER 0x0008 /* qwriter(OUTER) pending or running */
#define SQ_MESSAGES 0x0010 /* messages on syncq */
#define SQ_WANTWAKEUP 0x0020 /* do cv_broadcast on sq_wait */
#define SQ_WANTEXWAKEUP 0x0040 /* do cv_broadcast on sq_exitwait */
#define SQ_EVENTS 0x0080 /* Events pending */
#define SQ_QUEUED (SQ_MESSAGES | SQ_EVENTS)
#define SQ_FLAGMASK 0x00FF
/*
* Test a queue to see if inner perimeter is exclusive.
*/
#define PERIM_EXCL(q) ((q)->q_syncq->sq_flags & SQ_EXCL)
/*
* If any of these flags are set it is not possible for a thread to
* enter a put or service procedure. Instead it must either block
* or put the message on the syncq.
*/
#define SQ_GOAWAY (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN|SQ_WRITER|\
SQ_QUEUED)
/*
* If any of these flags are set it not possible to drain the syncq
*/
#define SQ_STAYAWAY (SQ_BLOCKED|SQ_FROZEN|SQ_WRITER)
/*
* Flags to trigger syncq tail processing.
*/
#define SQ_TAIL (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)
/*
* Syncq types (stored in sq_type)
* The SQ_TYPES_IN_FLAGS (ciput) are also stored in sq_flags
* for performance reasons. Thus these type values have to be in the low
* 16 bits and not conflict with the sq_flags values above.
*
* Notes:
* - putnext() and put() assume that the put procedures have the highest
* degree of concurrency. Thus if any of the SQ_CI* are set then SQ_CIPUT
* has to be set. This restriction can be lifted by adding code to putnext
* and put that check that sq_count == 0 like entersq does.
* - putnext() and put() does currently not handle !SQ_COPUT
* - In order to implement !SQ_COCB outer_enter has to be fixed so that
* the callback can be cancelled while cv_waiting in outer_enter.
* - If SQ_CISVC needs to be implemented, qprocsoff() needs to wait
* for the currently running services to stop (wait for QINSERVICE
* to go off). disable_svc called from qprcosoff disables only
* services that will be run in future.
*
* All the SQ_CO flags are set when there is no outer perimeter.
*/
#define SQ_CIPUT 0x0100 /* Concurrent inner put proc */
#define SQ_CISVC 0x0200 /* Concurrent inner svc proc */
#define SQ_CIOC 0x0400 /* Concurrent inner open/close */
#define SQ_CICB 0x0800 /* Concurrent inner callback */
#define SQ_COPUT 0x1000 /* Concurrent outer put proc */
#define SQ_COSVC 0x2000 /* Concurrent outer svc proc */
#define SQ_COOC 0x4000 /* Concurrent outer open/close */
#define SQ_COCB 0x8000 /* Concurrent outer callback */
/* Types also kept in sq_flags for performance */
#define SQ_TYPES_IN_FLAGS (SQ_CIPUT)
#define SQ_CI (SQ_CIPUT|SQ_CISVC|SQ_CIOC|SQ_CICB)
#define SQ_CO (SQ_COPUT|SQ_COSVC|SQ_COOC|SQ_COCB)
#define SQ_TYPEMASK (SQ_CI|SQ_CO)
/*
* Flag combinations passed to entersq and leavesq to specify the type
* of entry point.
*/
#define SQ_PUT (SQ_CIPUT|SQ_COPUT)
#define SQ_SVC (SQ_CISVC|SQ_COSVC)
#define SQ_OPENCLOSE (SQ_CIOC|SQ_COOC)
#define SQ_CALLBACK (SQ_CICB|SQ_COCB)
/*
* Other syncq types which are not copied into flags.
*/
#define SQ_PERMOD 0x01 /* Syncq is PERMOD */
/*
* Asynchronous callback qun*** flag.
* The mechanism these flags are used in is one where callbacks enter
* the perimeter thanks to framework support. To use this mechanism
* the q* and qun* flavors of the callback routines must be used.
* e.g. qtimeout and quntimeout. The synchronization provided by the flags
* avoids deadlocks between blocking qun* routines and the perimeter
* lock.
*/
#define SQ_CALLB_BYPASSED 0x01 /* bypassed callback fn */
/*
* Cancel callback mask.
* The mask expands as the number of cancelable callback types grows
* Note - separate callback flag because different callbacks have
* overlapping id space.
*/
#define SQ_CALLB_CANCEL_MASK (SQ_CANCEL_TOUT|SQ_CANCEL_BUFCALL)
#define SQ_CANCEL_TOUT 0x02 /* cancel timeout request */
#define SQ_CANCEL_BUFCALL 0x04 /* cancel bufcall request */
typedef struct callbparams {
syncq_t *cbp_sq;
void (*cbp_func)(void *);
void *cbp_arg;
callbparams_id_t cbp_id;
uint_t cbp_flags;
struct callbparams *cbp_next;
size_t cbp_size;
} callbparams_t;
typedef struct strbufcall {
void (*bc_func)(void *);
void *bc_arg;
size_t bc_size;
bufcall_id_t bc_id;
struct strbufcall *bc_next;
kthread_id_t bc_executor;
} strbufcall_t;
/*
* Structure of list of processes to be sent SIGPOLL/SIGURG signal
* on request. The valid S_* events are defined in stropts.h.
*/
typedef struct strsig {
struct pid *ss_pidp; /* pid/pgrp pointer */
pid_t ss_pid; /* positive pid, negative pgrp */
int ss_events; /* S_* events */
struct strsig *ss_next;
} strsig_t;
/*
* bufcall list
*/
struct bclist {
strbufcall_t *bc_head;
strbufcall_t *bc_tail;
};
/*
* Structure used to track mux links and unlinks.
*/
struct mux_node {
major_t mn_imaj; /* internal major device number */
uint16_t mn_indegree; /* number of incoming edges */
struct mux_node *mn_originp; /* where we came from during search */
struct mux_edge *mn_startp; /* where search left off in mn_outp */
struct mux_edge *mn_outp; /* list of outgoing edges */
uint_t mn_flags; /* see below */
};
/*
* Flags for mux_nodes.
*/
#define VISITED 1
/*
* Edge structure - a list of these is hung off the
* mux_node to represent the outgoing edges.
*/
struct mux_edge {
struct mux_node *me_nodep; /* edge leads to this node */
struct mux_edge *me_nextp; /* next edge */
int me_muxid; /* id of link */
};
/*
* Queue info
*
* The syncq is included here to reduce memory fragmentation
* for kernel memory allocators that only allocate in sizes that are
* powers of two. If the kernel memory allocator changes this should
* be revisited.
*/
typedef struct queinfo {
struct queue qu_rqueue; /* read queue - must be first */
struct queue qu_wqueue; /* write queue - must be second */
struct syncq qu_syncq; /* syncq - must be third */
} queinfo_t;
/*
* Multiplexed streams info
*/
typedef struct linkinfo {
struct linkblk li_lblk; /* must be first */
struct file *li_fpdown; /* file pointer for lower stream */
struct linkinfo *li_next; /* next in list */
struct linkinfo *li_prev; /* previous in list */
} linkinfo_t;
/*
* List of syncq's used by freeezestr/unfreezestr
*/
typedef struct syncql {
struct syncql *sql_next;
syncq_t *sql_sq;
} syncql_t;
typedef struct sqlist {
syncql_t *sqlist_head;
size_t sqlist_size; /* structure size in bytes */
size_t sqlist_index; /* next free entry in array */
syncql_t sqlist_array[4]; /* 4 or more entries */
} sqlist_t;
typedef struct perdm {
struct perdm *dm_next;
syncq_t *dm_sq;
struct streamtab *dm_str;
uint_t dm_ref;
} perdm_t;
#define NEED_DM(dmp, qflag) \
(dmp == NULL && (qflag & (QPERMOD | QMTOUTPERIM)))
/*
* fmodsw_impl_t is used within the kernel. fmodsw is used by
* the modules/drivers. The information is copied from fmodsw
* defined in the module/driver into the fmodsw_impl_t structure
* during the module/driver initialization.
*/
typedef struct fmodsw_impl fmodsw_impl_t;
struct fmodsw_impl {
fmodsw_impl_t *f_next;
char f_name[FMNAMESZ + 1];
struct streamtab *f_str;
uint32_t f_qflag;
uint32_t f_sqtype;
perdm_t *f_dmp;
uint32_t f_ref;
uint32_t f_hits;
};
typedef enum {
FMODSW_HOLD = 0x00000001,
FMODSW_LOAD = 0x00000002
} fmodsw_flags_t;
typedef struct cdevsw_impl {
struct streamtab *d_str;
uint32_t d_qflag;
uint32_t d_sqtype;
perdm_t *d_dmp;
} cdevsw_impl_t;
/*
* Enumeration of the types of access that can be requested for a
* controlling terminal under job control.
*/
enum jcaccess {
JCREAD, /* read data on a ctty */
JCWRITE, /* write data to a ctty */
JCSETP, /* set ctty parameters */
JCGETP /* get ctty parameters */
};
/*
* Finding related queues
*/
#define STREAM(q) ((q)->q_stream)
#define SQ(rq) ((syncq_t *)((rq) + 2))
/*
* Locking macros
*/
#define QLOCK(q) (&(q)->q_lock)
#define SQLOCK(sq) (&(sq)->sq_lock)
#define STREAM_PUTLOCKS_ENTER(stp) { \
ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \
if ((stp)->sd_ciputctrl != NULL) { \
int i; \
int nlocks = (stp)->sd_nciputctrl; \
ciputctrl_t *cip = (stp)->sd_ciputctrl; \
for (i = 0; i <= nlocks; i++) { \
mutex_enter(&cip[i].ciputctrl_lock); \
} \
} \
}
#define STREAM_PUTLOCKS_EXIT(stp) { \
ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \
if ((stp)->sd_ciputctrl != NULL) { \
int i; \
int nlocks = (stp)->sd_nciputctrl; \
ciputctrl_t *cip = (stp)->sd_ciputctrl; \
for (i = 0; i <= nlocks; i++) { \
mutex_exit(&cip[i].ciputctrl_lock); \
} \
} \
}
#define SQ_PUTLOCKS_ENTER(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
mutex_enter(&cip[i].ciputctrl_lock); \
} \
} \
}
#define SQ_PUTLOCKS_EXIT(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
mutex_exit(&cip[i].ciputctrl_lock); \
} \
} \
}
#define SQ_PUTCOUNT_SETFAST(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
mutex_enter(&cip[i].ciputctrl_lock); \
cip[i].ciputctrl_count |= SQ_FASTPUT; \
mutex_exit(&cip[i].ciputctrl_lock); \
} \
} \
}
#define SQ_PUTCOUNT_CLRFAST(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
mutex_enter(&cip[i].ciputctrl_lock); \
cip[i].ciputctrl_count &= ~SQ_FASTPUT; \
mutex_exit(&cip[i].ciputctrl_lock); \
} \
} \
}
#ifdef DEBUG
#define SQ_PUTLOCKS_HELD(sq) { \
ASSERT(MUTEX_HELD(SQLOCK(sq))); \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int nlocks = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= nlocks; i++) { \
ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
} \
} \
}
#define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) { \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
uint_t count = 0; \
int ncounts = (sq)->sq_nciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= ncounts; i++) { \
count += \
(((sq)->sq_ciputctrl[i].ciputctrl_count) & \
SQ_FASTMASK); \
} \
ASSERT(count == (countcheck)); \
} \
}
#define SUMCHECK_CIPUTCTRL_COUNTS(ciput, nciput, countcheck) { \
int i; \
uint_t count = 0; \
ASSERT((ciput) != NULL); \
for (i = 0; i <= (nciput); i++) { \
count += (((ciput)[i].ciputctrl_count) & \
SQ_FASTMASK); \
} \
ASSERT(count == (countcheck)); \
}
#else /* DEBUG */
#define SQ_PUTLOCKS_HELD(sq)
#define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck)
#define SUMCHECK_CIPUTCTRL_COUNTS(sq, nciput, countcheck)
#endif /* DEBUG */
#define SUM_SQ_PUTCOUNTS(sq, count) { \
if ((sq)->sq_ciputctrl != NULL) { \
int i; \
int ncounts = (sq)->sq_nciputctrl; \
ciputctrl_t *cip = (sq)->sq_ciputctrl; \
ASSERT((sq)->sq_type & SQ_CIPUT); \
for (i = 0; i <= ncounts; i++) { \
(count) += ((cip[i].ciputctrl_count) & \
SQ_FASTMASK); \
} \
} \
}
#define CLAIM_QNEXT_LOCK(stp) mutex_enter(&(stp)->sd_lock)
#define RELEASE_QNEXT_LOCK(stp) mutex_exit(&(stp)->sd_lock)
/*
* syncq message manipulation macros.
*/
/*
* Put a message on the queue syncq.
* Assumes QLOCK held.
*/
#define SQPUT_MP(qp, mp) \
{ \
qp->q_syncqmsgs++; \
if (qp->q_sqhead == NULL) { \
qp->q_sqhead = qp->q_sqtail = mp; \
} else { \
qp->q_sqtail->b_next = mp; \
qp->q_sqtail = mp; \
} \
}
/*
* Miscellaneous parameters and flags.
*/
/*
* Default timeout in milliseconds for ioctls and close
*/
#define STRTIMOUT 15000
/*
* Flag values for stream io
*/
#define WRITEWAIT 0x1 /* waiting for write event */
#define READWAIT 0x2 /* waiting for read event */
#define NOINTR 0x4 /* error is not to be set for signal */
#define GETWAIT 0x8 /* waiting for getmsg event */
/*
* These flags need to be unique for stream io name space
* and copy modes name space. These flags allow strwaitq
* and strdoioctl to proceed as if signals or errors on the stream
* head have not occurred; i.e. they will be detected by some other
* means.
* STR_NOSIG does not allow signals to interrupt the call
* STR_NOERROR does not allow stream head read, write or hup errors to
* affect the call. When used with strdoioctl(), if a previous ioctl
* is pending and times out, STR_NOERROR will cause strdoioctl() to not
* return ETIME. If, however, the requested ioctl times out, ETIME
* will be returned (use ic_timout instead)
* STR_PEEK is used to inform strwaitq that the reader is peeking at data
* and that a non-persistent error should not be cleared.
* STR_DELAYERR is used to inform strwaitq that it should not check errors
* after being awoken since, in addition to an error, there might also be
* data queued on the stream head read queue.
*/
#define STR_NOSIG 0x10 /* Ignore signals during strdoioctl/strwaitq */
#define STR_NOERROR 0x20 /* Ignore errors during strdoioctl/strwaitq */
#define STR_PEEK 0x40 /* Peeking behavior on non-persistent errors */
#define STR_DELAYERR 0x80 /* Do not check errors on return */
/*
* Copy modes for tty and I_STR ioctls
*/
#define U_TO_K 01 /* User to Kernel */
#define K_TO_K 02 /* Kernel to Kernel */
/*
* Mux defines.
*/
#define LINKNORMAL 0x01 /* normal mux link */
#define LINKPERSIST 0x02 /* persistent mux link */
#define LINKTYPEMASK 0x03 /* bitmask of all link types */
#define LINKCLOSE 0x04 /* unlink from strclose */
/*
* Definitions of Streams macros and function interfaces.
*/
/*
* Obsolete queue scheduling macros. They are not used anymore, but still kept
* here for 3-d party modules and drivers who might still use them.
*/
#define setqsched()
#define qready() 1
#ifdef _KERNEL
#define runqueues()
#define queuerun()
#endif
/* compatibility module for style 2 drivers with DR race condition */
#define DRMODNAME "drcompat"
/*
* Macros dealing with mux_nodes.
*/
#define MUX_VISIT(X) ((X)->mn_flags |= VISITED)
#define MUX_CLEAR(X) ((X)->mn_flags &= (~VISITED)); \
((X)->mn_originp = NULL)
#define MUX_DIDVISIT(X) ((X)->mn_flags & VISITED)
/*
* Twisted stream macros
*/
#define STRMATED(X) ((X)->sd_flag & STRMATE)
#define STRLOCKMATES(X) if (&((X)->sd_lock) > &(((X)->sd_mate)->sd_lock)) { \
mutex_enter(&((X)->sd_lock)); \
mutex_enter(&(((X)->sd_mate)->sd_lock)); \
} else { \
mutex_enter(&(((X)->sd_mate)->sd_lock)); \
mutex_enter(&((X)->sd_lock)); \
}
#define STRUNLOCKMATES(X) mutex_exit(&((X)->sd_lock)); \
mutex_exit(&(((X)->sd_mate)->sd_lock))
#ifdef _KERNEL
extern void strinit(void);
extern int strdoioctl(struct stdata *, struct strioctl *, int, int,
cred_t *, int *);
extern void strsendsig(struct strsig *, int, uchar_t, int);
extern void str_sendsig(vnode_t *, int, uchar_t, int);
extern void strhup(struct stdata *);
extern int qattach(queue_t *, dev_t *, int, cred_t *, fmodsw_impl_t *,
boolean_t);
extern int qreopen(queue_t *, dev_t *, int, cred_t *);
extern void qdetach(queue_t *, int, int, cred_t *, boolean_t);
extern void enterq(queue_t *);
extern void leaveq(queue_t *);
extern int putiocd(mblk_t *, caddr_t, int, cred_t *);
extern int getiocd(mblk_t *, caddr_t, int);
extern struct linkinfo *alloclink(queue_t *, queue_t *, struct file *);
extern void lbfree(struct linkinfo *);
extern int linkcycle(stdata_t *, stdata_t *);
extern struct linkinfo *findlinks(stdata_t *, int, int);
extern queue_t *getendq(queue_t *);
extern int mlink(vnode_t *, int, int, cred_t *, int *, int);
extern int mlink_file(vnode_t *, int, struct file *, cred_t *, int *, int);
extern int munlink(struct stdata *, struct linkinfo *, int, cred_t *, int *);
extern int munlinkall(struct stdata *, int, cred_t *, int *);
extern void mux_addedge(stdata_t *, stdata_t *, int);
extern void mux_rmvedge(stdata_t *, int);
extern int devflg_to_qflag(struct streamtab *, uint32_t, uint32_t *,
uint32_t *);
extern void setq(queue_t *, struct qinit *, struct qinit *, perdm_t *,
uint32_t, uint32_t, boolean_t);
extern perdm_t *hold_dm(struct streamtab *, uint32_t, uint32_t);
extern void rele_dm(perdm_t *);
extern int strmakectl(struct strbuf *, int32_t, int32_t, mblk_t **);
extern int strmakedata(ssize_t *, struct uio *, stdata_t *, int32_t, mblk_t **);
extern int strmakemsg(struct strbuf *, ssize_t *, struct uio *,
struct stdata *, int32_t, mblk_t **);
extern int strgetmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t *,
int *, int, rval_t *);
extern int strputmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t,
int flag, int fmode);
extern int strstartplumb(struct stdata *, int, int);
extern void strendplumb(struct stdata *);
extern int stropen(struct vnode *, dev_t *, int, cred_t *);
extern int strclose(struct vnode *, int, cred_t *);
extern int strpoll(register struct stdata *, short, int, short *,
struct pollhead **);
extern void strclean(struct vnode *);
extern void str_cn_clean(); /* XXX hook for consoles signal cleanup */
extern int strwrite(struct vnode *, struct uio *, cred_t *);
extern int strwrite_common(struct vnode *, struct uio *, cred_t *, int);
extern int kstrwritemp(struct vnode *, mblk_t *, ushort_t);
extern int strread(struct vnode *, struct uio *, cred_t *);
extern int strioctl(struct vnode *, int, intptr_t, int, int, cred_t *, int *);
extern int strrput(queue_t *, mblk_t *);
extern int strrput_nondata(queue_t *, mblk_t *);
extern mblk_t *strrput_proto(vnode_t *, mblk_t *,
strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *);
extern mblk_t *strrput_misc(vnode_t *, mblk_t *,
strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *);
extern int getiocseqno(void);
extern int strwaitbuf(size_t, int);
extern int strwaitq(stdata_t *, int, ssize_t, int, clock_t, int *);
extern struct stdata *shalloc(queue_t *);
extern void shfree(struct stdata *s);
extern queue_t *allocq(void);
extern void freeq(queue_t *);
extern qband_t *allocband(void);
extern void freeband(qband_t *);
extern void freebs_enqueue(mblk_t *, dblk_t *);
extern void setqback(queue_t *, unsigned char);
extern int strcopyin(void *, void *, size_t, int);
extern int strcopyout(void *, void *, size_t, int);
extern void strsignal(struct stdata *, int, int32_t);
extern clock_t str_cv_wait(kcondvar_t *, kmutex_t *, clock_t, int);
extern void disable_svc(queue_t *);
extern void remove_runlist(queue_t *);
extern void wait_svc(queue_t *);
extern void backenable(queue_t *, uchar_t);
extern void set_qend(queue_t *);
extern int strgeterr(stdata_t *, int32_t, int);
extern void qenable_locked(queue_t *);
extern mblk_t *getq_noenab(queue_t *);
extern void rmvq_noenab(queue_t *, mblk_t *);
extern void qbackenable(queue_t *, uchar_t);
extern void strblock(queue_t *);
extern void strunblock(queue_t *);
extern int qclaimed(queue_t *);
extern int straccess(struct stdata *, enum jcaccess);
extern void entersq(syncq_t *, int);
extern void leavesq(syncq_t *, int);
extern void claimq(queue_t *);
extern void releaseq(queue_t *);
extern void claimstr(queue_t *);
extern void releasestr(queue_t *);
extern void removeq(queue_t *);
extern void insertq(struct stdata *, queue_t *);
extern void drain_syncq(syncq_t *);
extern void qfill_syncq(syncq_t *, queue_t *, mblk_t *);
extern void qdrain_syncq(syncq_t *, queue_t *);
extern int flush_syncq(syncq_t *, queue_t *);
extern void wait_sq_svc(syncq_t *);
extern void outer_enter(syncq_t *, uint16_t);
extern void outer_exit(syncq_t *);
extern void qwriter_inner(queue_t *, mblk_t *, void (*)());
extern void qwriter_outer(queue_t *, mblk_t *, void (*)());
extern callbparams_t *callbparams_alloc(syncq_t *, void (*)(void *),
void *, int);
extern void callbparams_free(syncq_t *, callbparams_t *);
extern void callbparams_free_id(syncq_t *, callbparams_id_t, int32_t);
extern void qcallbwrapper(void *);
extern mblk_t *esballoc_wait(unsigned char *, size_t, uint_t, frtn_t *);
extern mblk_t *esballoca(unsigned char *, size_t, uint_t, frtn_t *);
extern mblk_t *desballoca(unsigned char *, size_t, uint_t, frtn_t *);
extern int do_sendfp(struct stdata *, struct file *, struct cred *);
extern int frozenstr(queue_t *);
extern size_t xmsgsize(mblk_t *);
extern void putnext_tail(syncq_t *, queue_t *, uint32_t);
extern void stream_willservice(stdata_t *);
extern void stream_runservice(stdata_t *);
extern void strmate(vnode_t *, vnode_t *);
extern queue_t *strvp2wq(vnode_t *);
extern vnode_t *strq2vp(queue_t *);
extern mblk_t *allocb_wait(size_t, uint_t, uint_t, int *);
extern mblk_t *allocb_cred(size_t, cred_t *);
extern mblk_t *allocb_cred_wait(size_t, uint_t, int *, cred_t *);
extern mblk_t *allocb_tmpl(size_t, const mblk_t *);
extern mblk_t *allocb_tryhard(size_t);
extern void mblk_setcred(mblk_t *, cred_t *);
extern void strpollwakeup(vnode_t *, short);
extern int putnextctl_wait(queue_t *, int);
extern int kstrputmsg(struct vnode *, mblk_t *, struct uio *, ssize_t,
unsigned char, int, int);
extern int kstrgetmsg(struct vnode *, mblk_t **, struct uio *,
unsigned char *, int *, clock_t, rval_t *);
extern void strsetrerror(vnode_t *, int, int, errfunc_t);
extern void strsetwerror(vnode_t *, int, int, errfunc_t);
extern void strseteof(vnode_t *, int);
extern void strflushrq(vnode_t *, int);
extern void strsetrputhooks(vnode_t *, uint_t, msgfunc_t, msgfunc_t);
extern void strsetwputhooks(vnode_t *, uint_t, clock_t);
extern void strsetrwputdatahooks(vnode_t *, msgfunc_t, msgfunc_t);
extern int strwaitmark(vnode_t *);
extern void strsignal_nolock(stdata_t *, int, int32_t);
struct multidata_s;
struct pdesc_s;
extern int hcksum_assoc(mblk_t *, struct multidata_s *, struct pdesc_s *,
uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, int);
extern void hcksum_retrieve(mblk_t *, struct multidata_s *, struct pdesc_s *,
uint32_t *, uint32_t *, uint32_t *, uint32_t *, uint32_t *);
extern unsigned int bcksum(uchar_t *, int, unsigned int);
extern boolean_t is_vmloaned_mblk(mblk_t *, struct multidata_s *,
struct pdesc_s *);
extern int fmodsw_register(const char *, struct streamtab *, int);
extern int fmodsw_unregister(const char *);
extern fmodsw_impl_t *fmodsw_find(const char *, fmodsw_flags_t);
extern void fmodsw_rele(fmodsw_impl_t *);
extern void freemsgchain(mblk_t *);
extern mblk_t *copymsgchain(mblk_t *);
extern mblk_t *mcopyinuio(struct stdata *, uio_t *, ssize_t, ssize_t, int *);
/*
* shared or externally configured data structures
*/
extern ssize_t strmsgsz; /* maximum stream message size */
extern ssize_t strctlsz; /* maximum size of ctl message */
extern int nstrpush; /* maximum number of pushes allowed */
/*
* Bufcalls related variables.
*/
extern struct bclist strbcalls; /* List of bufcalls */
extern kmutex_t strbcall_lock; /* Protects the list of bufcalls */
extern kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */
extern kcondvar_t bcall_cv; /* wait of executing bufcall completes */
extern frtn_t frnop;
extern struct kmem_cache *ciputctrl_cache;
extern int n_ciputctrl;
extern int max_n_ciputctrl;
extern int min_n_ciputctrl;
extern cdevsw_impl_t *devimpl;
#endif /* _KERNEL */
/*
* Note: Use of these macros are restricted to kernel/unix and
* intended for the STREAMS framework.
* All modules/drivers should include sys/ddi.h.
*
* Finding related queues
*/
#define _OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1)
#define _WR(q) ((q)->q_flag&QREADR? (q)+1: (q))
#define _RD(q) ((q)->q_flag&QREADR? (q): (q)-1)
#define _SAMESTR(q) (!((q)->q_flag & QEND))
/*
* These are also declared here for modules/drivers that erroneously
* include strsubr.h after ddi.h or fail to include ddi.h at all.
*/
extern struct queue *OTHERQ(queue_t *); /* stream.h */
extern struct queue *RD(queue_t *);
extern struct queue *WR(queue_t *);
extern int SAMESTR(queue_t *);
/*
* The following hardware checksum related macros are private
* interfaces that are subject to change without notice.
*/
#ifdef _KERNEL
#define DB_CKSUMSTART(mp) ((mp)->b_datap->db_cksumstart)
#define DB_CKSUMEND(mp) ((mp)->b_datap->db_cksumend)
#define DB_CKSUMSTUFF(mp) ((mp)->b_datap->db_cksumstuff)
#define DB_CKSUMFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags)
#define DB_CKSUM16(mp) ((mp)->b_datap->db_cksum16)
#define DB_CKSUM32(mp) ((mp)->b_datap->db_cksum32)
#endif /* _KERNEL */
#ifdef __cplusplus
}
#endif
#endif /* _SYS_STRSUBR_H */