hermon_event.h revision 17a2b317610f531d565bf4e940433aab2d9e6985
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#ifndef _SYS_IB_ADAPTERS_HERMON_EVENT_H
#define _SYS_IB_ADAPTERS_HERMON_EVENT_H
/*
* hermon_event.h
* Contains all of the prototypes, #defines, and structures necessary
* for the Interrupt and Event Processing routines
* Specifically it contains the various event types, event flags,
* structures used for managing Hermon event queues, and prototypes for
* many of the functions consumed by other parts of the Hermon driver.
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Hermon UAR Doorbell Write Macro - writes UAR registers
*
* If on a 32-bit system, we must hold a lock around the ddi_put64() to
* ensure that the 64-bit write is an atomic operation. This is a
* requirement of the Hermon hardware and is to protect from the race
* condition present when more than one kernel thread attempts to do each
* of their two 32-bit accesses (for 64-bit doorbell) simultaneously.
*
* If we are on a 64-bit system then the ddi_put64() is completed as one
* 64-bit instruction, and the lock is not needed.
*
* This is done as a preprocessor #if to speed up execution at run-time
* since doorbell ringing is a "fast-path" operation.
*/
#if (DATAMODEL_NATIVE == DATAMODEL_ILP32)
#define HERMON_UAR_DOORBELL(state, uarhdl, hs_uar, doorbell) { \
mutex_enter(&state->hs_uar_lock); \
ddi_put64(uarhdl, hs_uar, doorbell); \
mutex_exit(&state->hs_uar_lock); \
}
#else
#define HERMON_UAR_DOORBELL(state, uarhdl, hs_uar, doorbell) { \
ddi_put64(uarhdl, hs_uar, doorbell); \
}
#endif
/*
* HERMON Doorbell Record (DBr) Write Macro - writes doorbell record in memory
*
* Since the DBr is only 32 bits at a time, this can be just a put32, not
* put64.
*/
#define HERMON_UAR_DB_RECORD_WRITE(db_addr, dbr) \
*(uint32_t *)(db_addr) = htonl(dbr)
/*
* The following defines specify the default number of Event Queues (EQ) and
* their default size. By default the size of each EQ is set to 8K entries,
* but this value is controllable through the "cp_log_eq_sz" configuration
* variable. We also specify the number of EQs which the Arbel driver
* currently uses (HERMON_NUM_EQ_USED). Note: this value should be less than
* or equal to HERMON_NUM_EQ.
* HERMON: will limit to 4 total - in anticipation of VMM implementation
* logical Eq (0)-catastrophic,
* (1)-error completions,
* (2)-misc events and
* (3)-completions
*/
#define HERMON_NUM_EQ_SHIFT 0x9 /* hermon has 512 EQs available */
#define HERMON_NUM_EQ (1 << HERMON_NUM_EQ_SHIFT)
#define HERMON_NUM_EQ_USED 4 /* four per domain */
#define HERMON_DEFAULT_EQ_SZ_SHIFT 0xd /* 8192 entries/EQ */
#define HERMON_EQ_CI_MASK 0xFFFFFF /* low 24 bits */
/*
* These are the defines for the Hermon event types. They are specified by
* the Hermon PRM. Below are the "event type masks" in
* which each event type corresponds to one of the 64-bits in the mask.
*/
/* Note: In order per PRM listing */
/* Completion Events */
#define HERMON_EVT_COMPLETION 0x00
/* IB Affiliated Asynch Events */
#define HERMON_EVT_PATH_MIGRATED 0x01
#define HERMON_EVT_COMM_ESTABLISHED 0x02
#define HERMON_EVT_SEND_QUEUE_DRAINED 0x03
#define HERMON_EVT_SRQ_LAST_WQE_REACHED 0x13
#define HERMON_EVT_SRQ_LIMIT 0x14
/* QP Affiliated Asynch Event */
#define HERMON_EVT_CQ_ERRORS 0x04 /* overrun, protection */
#define HERMON_EVT_LOCAL_WQ_CAT_ERROR 0x05
#define HERMON_EVT_LOCAL_QPC_CAT_ERROR 0x06
#define HERMON_EVT_PATH_MIGRATE_FAILED 0x07
#define HERMON_EVT_INV_REQ_LOCAL_WQ_ERROR 0x10
#define HERMON_EVT_LOCAL_ACC_VIO_WQ_ERROR 0x11
#define HERMON_EVT_SRQ_CATASTROPHIC_ERROR 0x12
#define HERMON_EVT_SPOOF_FAIL 0x16 /* enet only */
/* FEXCH Errors (QP Affiliated) */
#define HERMON_EVT_FEXCH_ERROR 0x0B
/* Unaffiliated Asynch Events/Errors */
#define HERMON_EVT_PORT_STATE_CHANGE 0x09
#define HERMON_EVT_GPIO 0x15
/* Command Interface */
#define HERMON_EVT_COMMAND_INTF_COMP 0x0A
/* Miscellaneous */
#define HERMON_EVT_LOCAL_CAT_ERROR 0x08
#define HERMON_EVT_MSK_COMPLETION \
(1 << HERMON_EVT_COMPLETION)
#define HERMON_EVT_MSK_PATH_MIGRATED \
(1 << HERMON_EVT_PATH_MIGRATED)
#define HERMON_EVT_MSK_COMM_ESTABLISHED \
(1 << HERMON_EVT_COMM_ESTABLISHED)
#define HERMON_EVT_MSK_SEND_QUEUE_DRAINED \
(1 << HERMON_EVT_SEND_QUEUE_DRAINED)
#define HERMON_EVT_MSK_SRQ_LAST_WQE_REACHED \
(1 << HERMON_EVT_SRQ_LAST_WQE_REACHED)
#define HERMON_EVT_MSK_SRQ_LIMIT \
(1 << HERMON_EVT_SRQ_LIMIT)
#define HERMON_EVT_MSK_CQ_ERRORS \
(1 << HERMON_EVT_CQ_ERRORS)
#define HERMON_EVT_MSK_LOCAL_WQ_CAT_ERROR \
(1 << HERMON_EVT_LOCAL_WQ_CAT_ERROR)
#define HERMON_EVT_MSK_LOCAL_QPC_CAT_ERROR \
(1 << HERMON_EVT_LOCAL_QPC_CAT_ERROR)
#define HERMON_EVT_MSK_PATH_MIGRATE_FAILED \
(1 << HERMON_EVT_PATH_MIGRATE_FAILED)
#define HERMON_EVT_MSK_INV_REQ_LOCAL_WQ_ERROR \
(1 << HERMON_EVT_INV_REQ_LOCAL_WQ_ERROR)
#define HERMON_EVT_MSK_LOCAL_ACC_VIO_WQ_ERROR \
(1 << HERMON_EVT_LOCAL_ACC_VIO_WQ_ERROR)
#define HERMON_EVT_MSK_SRQ_CATASTROPHIC_ERROR \
(1 << HERMON_EVT_SRQ_CATASTROPHIC_ERROR)
#define HERMON_EVT_MSK_SPOOF_FAIL \
(1 << HERMON_EVT_SPOOF_FAIL)
#define HERMON_EVT_MSK_FEXCH_ERROR \
(1 << HERMON_EVT_FEXCH_ERROR)
#define HERMON_EVT_MSK_PORT_STATE_CHANGE \
(1 << HERMON_EVT_PORT_STATE_CHANGE)
#define HERMON_EVT_MSK_GPIO \
(1 << HERMON_EVT_GPIO)
#define HERMON_EVT_MSK_COMMAND_INTF_COMP \
(1 << HERMON_EVT_COMMAND_INTF_COMP)
#define HERMON_EVT_MSK_LOCAL_CAT_ERROR \
(1 << HERMON_EVT_LOCAL_CAT_ERROR)
#define HERMON_EVT_NO_MASK 0
/* For now, "catchall" is just HERMON_EVT_LOCAL_QPC_CAT_ERROR. */
#define HERMON_EVT_CATCHALL_MASK 0x0040
/*
* The last defines are used by hermon_eqe_sync() to indicate whether or not
* to force a DMA sync. The case for forcing a DMA sync on a EQE comes from
* the possibility that we could receive an interrupt, read of the ECR, and
* have each of these operations complete successfully _before_ the hardware
* has finished its DMA to the event queue.
*/
#define HERMON_EQ_SYNC_NORMAL 0x0
#define HERMON_EQ_SYNC_FORCE 0x1
/*
* Catastrophic error values. In case of a catastrophic error, the following
* errors are reported in a special buffer space. The buffer location is
* returned from a QUERY_FW command. We check that buffer against these error
* values to determine what kind of error occurred.
*/
#define HERMON_CATASTROPHIC_INTERNAL_ERROR 0x0
#define HERMON_CATASTROPHIC_UPLINK_BUS_ERROR 0x3
#define HERMON_CATASTROPHIC_INTERNAL_PARITY_ERROR 0x5
/* Presumably, this is no longer supported */
#define HERMON_CATASTROPHIC_DDR_DATA_ERROR 0x4
/*
* This define is the 'enable' flag used when programming the MSI number
* into event queues. It is or'd with the MSI number and the result is
* written into the EX context.
*/
#define HERMON_EQ_MSI_ENABLE_FLAG 0x200 /* bit 9 of 0x14 in EQC */
/*
* The following#defines are for the EQ's in the UAR pages. In Hermon, the
* arm mechanism is new - in the first 128 (that is, 0 - 127) UAR pages, which
* are reserved, the only useful thing is the EQ registers. In turn those
* locations are ignored in any other UAR page.
*
* The driver writes to the with the MSB bit set to arm it, and the current
* CI (consumer index).
*/
#define G_EQ0 0x0800
#define G_EQ1 0x0808
#define G_EQ2 0x0810
#define G_EQ3 0x0818
/*
* They should be written as a 32-bit entity:
* bit 31: Arm (if set)
* bit 23:0 Consumer Index
*/
#define EQ_ARM_BIT 0x80000000
/*
* The register to be written is:
* (EQ_num / 4) == UAR page
* (EQ_NUM % 4) == G_EQx
*/
#define ARM_EQ_INDEX(eq) \
(((eq >> 2) * PAGESIZE) + (0x0800 + ((eq & 0x03) * 0x08)))
/*
* The hermon_sw_eq_s structure is also referred to using the "hermon_eqhdl_t"
* typedef (see hermon_typedef.h). It encodes all the information necessary
* to track the various resources needed to allocate, initialize, poll, and
* (later) free an event queue (EQ).
*
* Specifically, it has a consumer index and a lock to ensure single threaded
* access to it. It has pointers to the various resources allocated for the
* event queue, i.e. an EQC resource and the memory for the event queue
* itself. It has flags to indicate which type of event class(es) the EQ
* has been mapped to (eq_evttypemask).
*
* It also has a pointer to the associated MR handle (for the mapped queue
* memory) and a function pointer that points to the handler that should
* be called when the corresponding EQ has fired. Note: the "eq_func"
* handler takes a Hermon softstate pointer, a pointer to the EQ handle, and a
* pointer to a generic hermon_hw_eqe_t structure. It is up to the "eq_func"
* handler function to determine what specific type of event is being passed.
*
* Lastly, we have the always necessary backpointer to the resource for the
* EQ handle structure itself.
*/
struct hermon_sw_eq_s {
uint32_t eq_consindx;
uint32_t eq_eqnum;
hermon_hw_eqe_t *eq_buf;
uint32_t *eq_doorbell;
hermon_mrhdl_t eq_mrhdl;
uint32_t eq_bufsz;
uint32_t eq_log_eqsz;
uint_t eq_evttypemask;
hermon_rsrc_t *eq_eqcrsrcp;
hermon_rsrc_t *eq_rsrcp;
int (*eq_func)(hermon_state_t *state, hermon_eqhdl_t eq,
hermon_hw_eqe_t *eqe);
struct hermon_qalloc_info_s eq_eqinfo;
};
int hermon_eq_init_all(hermon_state_t *state);
int hermon_eq_fini_all(hermon_state_t *state);
int hermon_eq_arm_all(hermon_state_t *state);
uint_t hermon_isr(caddr_t arg1, caddr_t arg2);
void hermon_eq_doorbell(hermon_state_t *state, uint32_t eq_cmd, uint32_t eqn,
uint32_t eq_param);
void hermon_eq_overflow_handler(hermon_state_t *state, hermon_eqhdl_t eq,
hermon_hw_eqe_t *eqe);
void hermon_eq_reset_uar_baseaddr(hermon_state_t *state);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_IB_ADAPTERS_HERMON_EVENT_H */