svc_rdma.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley
* 4.3 BSD under license from the Regents of the University of
* California.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Server side of RPC over RDMA in the kernel.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/sysmacros.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/kstat.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <rpc/auth.h>
#include <rpc/clnt.h>
#include <rpc/rpc_msg.h>
#include <rpc/svc.h>
#include <rpc/rpc_rdma.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip6.h>
/*
* RDMA transport specific data associated with SVCMASTERXPRT
*/
struct rdma_data {
SVCMASTERXPRT *rd_xprt; /* back ptr to SVCMASTERXPRT */
struct rdma_svc_data rd_data; /* rdma data */
rdma_mod_t *r_mod; /* RDMA module containing ops ptr */
};
/*
* Plugin connection specific data stashed away in clone SVCXPRT
*/
struct clone_rdma_data {
CONN *conn; /* RDMA connection */
rdma_buf_t rpcbuf; /* RPC req/resp buffer */
};
#ifdef DEBUG
int rdma_svc_debug = 0;
#endif
#define MAXADDRLEN 128 /* max length for address mask */
/*
* Routines exported through ops vector.
*/
static bool_t svc_rdma_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
static bool_t svc_rdma_ksend(SVCXPRT *, struct rpc_msg *);
static bool_t svc_rdma_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
static bool_t svc_rdma_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
void svc_rdma_kdestroy(SVCMASTERXPRT *);
static int svc_rdma_kdup(struct svc_req *, caddr_t, int,
struct dupreq **, bool_t *);
static void svc_rdma_kdupdone(struct dupreq *, caddr_t,
void (*)(), int, int);
static int32_t *svc_rdma_kgetres(SVCXPRT *, int);
static void svc_rdma_kfreeres(SVCXPRT *);
static void svc_rdma_kclone_destroy(SVCXPRT *);
static void svc_rdma_kstart(SVCMASTERXPRT *);
void svc_rdma_kstop(SVCMASTERXPRT *);
/*
* Server transport operations vector.
*/
struct svc_ops rdma_svc_ops = {
svc_rdma_krecv, /* Get requests */
svc_rdma_kgetargs, /* Deserialize arguments */
svc_rdma_ksend, /* Send reply */
svc_rdma_kfreeargs, /* Free argument data space */
svc_rdma_kdestroy, /* Destroy transport handle */
svc_rdma_kdup, /* Check entry in dup req cache */
svc_rdma_kdupdone, /* Mark entry in dup req cache as done */
svc_rdma_kgetres, /* Get pointer to response buffer */
svc_rdma_kfreeres, /* Destroy pre-serialized response header */
svc_rdma_kclone_destroy, /* Destroy a clone xprt */
svc_rdma_kstart /* Tell `ready-to-receive' to rpcmod */
};
/*
* Server statistics
* NOTE: This structure type is duplicated in the NFS fast path.
*/
struct {
kstat_named_t rscalls;
kstat_named_t rsbadcalls;
kstat_named_t rsnullrecv;
kstat_named_t rsbadlen;
kstat_named_t rsxdrcall;
kstat_named_t rsdupchecks;
kstat_named_t rsdupreqs;
kstat_named_t rslongrpcs;
} rdmarsstat = {
{ "calls", KSTAT_DATA_UINT64 },
{ "badcalls", KSTAT_DATA_UINT64 },
{ "nullrecv", KSTAT_DATA_UINT64 },
{ "badlen", KSTAT_DATA_UINT64 },
{ "xdrcall", KSTAT_DATA_UINT64 },
{ "dupchecks", KSTAT_DATA_UINT64 },
{ "dupreqs", KSTAT_DATA_UINT64 },
{ "longrpcs", KSTAT_DATA_UINT64 }
};
kstat_named_t *rdmarsstat_ptr = (kstat_named_t *)&rdmarsstat;
uint_t rdmarsstat_ndata = sizeof (rdmarsstat) / sizeof (kstat_named_t);
#define RSSTAT_INCR(x) rdmarsstat.x.value.ui64++
/*
* Create a transport record.
* The transport record, output buffer, and private data structure
* are allocated. The output buffer is serialized into using xdrmem.
* There is one transport record per user process which implements a
* set of services.
*/
/* ARGSUSED */
int
svc_rdma_kcreate(char *netid, SVC_CALLOUT_TABLE *sct, int id,
rdma_xprt_group_t *started_xprts)
{
int error;
SVCMASTERXPRT *xprt;
struct rdma_data *rd;
rdma_registry_t *rmod;
rdma_xprt_record_t *xprt_rec;
queue_t *q;
/*
* modload the RDMA plugins is not already done.
*/
if (!rdma_modloaded) {
mutex_enter(&rdma_modload_lock);
if (!rdma_modloaded) {
error = rdma_modload();
}
mutex_exit(&rdma_modload_lock);
if (error)
return (error);
}
/*
* master_xprt_count is the count of master transport handles
* that were successfully created and are ready to recieve for
* RDMA based access.
*/
error = 0;
xprt_rec = NULL;
rw_enter(&rdma_lock, RW_READER);
if (rdma_mod_head == NULL) {
started_xprts->rtg_count = 0;
rw_exit(&rdma_lock);
if (rdma_dev_available)
return (EPROTONOSUPPORT);
else
return (ENODEV);
}
/*
* If we have reached here, then atleast one RDMA plugin has loaded.
* Create a master_xprt, make it start listenining on the device,
* if an error is generated, record it, we might need to shut
* the master_xprt.
* SVC_START() calls svc_rdma_kstart which calls plugin binding
* routines.
*/
for (rmod = rdma_mod_head; rmod != NULL; rmod = rmod->r_next) {
/*
* One SVCMASTERXPRT per RDMA plugin.
*/
xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
xprt->xp_ops = &rdma_svc_ops;
xprt->xp_sct = sct;
xprt->xp_type = T_RDMA;
mutex_init(&xprt->xp_req_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&xprt->xp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
xprt->xp_req_head = (mblk_t *)0;
xprt->xp_req_tail = (mblk_t *)0;
xprt->xp_threads = 0;
xprt->xp_detached_threads = 0;
rd = kmem_zalloc(sizeof (*rd), KM_SLEEP);
xprt->xp_p2 = (caddr_t)rd;
rd->rd_xprt = xprt;
rd->r_mod = rmod->r_mod;
q = &rd->rd_data.q;
xprt->xp_wq = q;
q->q_ptr = &rd->rd_xprt;
xprt->xp_netid = NULL;
if (netid != NULL) {
xprt->xp_netid = kmem_alloc(strlen(netid) + 1,
KM_SLEEP);
(void) strcpy(xprt->xp_netid, netid);
}
xprt->xp_addrmask.maxlen =
xprt->xp_addrmask.len = sizeof (struct sockaddr_in);
xprt->xp_addrmask.buf =
kmem_zalloc(xprt->xp_addrmask.len, KM_SLEEP);
((struct sockaddr_in *)xprt->xp_addrmask.buf)->sin_addr.s_addr =
(uint32_t)~0;
((struct sockaddr_in *)xprt->xp_addrmask.buf)->sin_family =
(ushort_t)~0;
/*
* Each of the plugins will have their own Service ID
* to listener specific mapping, like port number for VI
* and service name for IB.
*/
rd->rd_data.svcid = id;
error = svc_xprt_register(xprt, id);
if (error) {
cmn_err(CE_WARN, "svc_rdma_kcreate: svc_xprt_register"
"failed");
goto cleanup;
}
SVC_START(xprt);
if (!rd->rd_data.active) {
svc_xprt_unregister(xprt);
error = rd->rd_data.err_code;
goto cleanup;
}
/*
* This is set only when there is atleast one or more
* transports successfully created. We insert the pointer
* to the created RDMA master xprt into a separately maintained
* list. This way we can easily reference it later to cleanup,
* when NFS kRPC service pool is going away/unregistered.
*/
started_xprts->rtg_count ++;
xprt_rec = kmem_alloc(sizeof (*xprt_rec), KM_SLEEP);
xprt_rec->rtr_xprt_ptr = xprt;
xprt_rec->rtr_next = started_xprts->rtg_listhead;
started_xprts->rtg_listhead = xprt_rec;
continue;
cleanup:
SVC_DESTROY(xprt);
if (error == RDMA_FAILED)
error = EPROTONOSUPPORT;
}
rw_exit(&rdma_lock);
/*
* Don't return any error even if a single plugin was started
* successfully.
*/
if (started_xprts->rtg_count == 0)
return (error);
return (0);
}
/*
* Cleanup routine for freeing up memory allocated by
* svc_rdma_kcreate()
*/
void
svc_rdma_kdestroy(SVCMASTERXPRT *xprt)
{
struct rdma_data *rd = (struct rdma_data *)xprt->xp_p2;
mutex_destroy(&xprt->xp_req_lock);
mutex_destroy(&xprt->xp_thread_lock);
kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
kmem_free(rd, sizeof (*rd));
kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
kmem_free(xprt, sizeof (*xprt));
}
static void
svc_rdma_kstart(SVCMASTERXPRT *xprt)
{
struct rdma_svc_data *svcdata;
rdma_mod_t *rmod;
svcdata = &((struct rdma_data *)xprt->xp_p2)->rd_data;
rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
/*
* Create a listener for module at this port
*/
(*rmod->rdma_ops->rdma_svc_listen)(svcdata);
}
void
svc_rdma_kstop(SVCMASTERXPRT *xprt)
{
struct rdma_svc_data *svcdata;
rdma_mod_t *rmod;
svcdata = &((struct rdma_data *)xprt->xp_p2)->rd_data;
rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
/*
* Call the stop listener routine for each plugin.
*/
(*rmod->rdma_ops->rdma_svc_stop)(svcdata);
if (svcdata->active)
cmn_err(CE_WARN, "rdma_stop: Failed to shutdown RDMA based kRPC"
" listener");
}
/* ARGSUSED */
static void
svc_rdma_kclone_destroy(SVCXPRT *clone_xprt)
{
}
static bool_t
svc_rdma_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
{
XDR *xdrs;
rdma_stat status;
struct recv_data *rdp = (struct recv_data *)mp->b_rptr;
CONN *conn;
struct clone_rdma_data *vd;
struct clist *cl;
uint_t vers, op, pos;
uint32_t xid;
vd = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
RSSTAT_INCR(rscalls);
conn = rdp->conn;
/*
* Post a receive descriptor on this
* endpoint to ensure all packets are received.
*/
status = rdma_svc_postrecv(conn);
if (status != RDMA_SUCCESS) {
cmn_err(CE_NOTE,
"svc_rdma_krecv: rdma_svc_postrecv failed %d", status);
}
if (rdp->status != 0) {
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
RSSTAT_INCR(rsbadcalls);
freeb(mp);
return (FALSE);
}
/*
* Decode rpc message
*/
xdrs = &clone_xprt->xp_xdrin;
xdrmem_create(xdrs, rdp->rpcmsg.addr, rdp->rpcmsg.len, XDR_DECODE);
/*
* Get the XID
*/
/*
* Treat xid as opaque (xid is the first entity
* in the rpc rdma message).
*/
xid = *(uint32_t *)rdp->rpcmsg.addr;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(xdrs, sizeof (uint32_t));
if (! xdr_u_int(xdrs, &vers) ||
! xdr_u_int(xdrs, &op)) {
cmn_err(CE_WARN, "svc_rdma_krecv: xdr_u_int failed");
XDR_DESTROY(xdrs);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
freeb(mp);
RSSTAT_INCR(rsbadcalls);
return (FALSE);
}
if (op == RDMA_DONE) {
/*
* Should not get RDMA_DONE
*/
freeb(mp);
XDR_DESTROY(xdrs);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
RSSTAT_INCR(rsbadcalls);
return (FALSE); /* no response */
}
#ifdef DEBUG
if (rdma_svc_debug)
printf("svc_rdma_krecv: recv'd call xid %u\n", xid);
#endif
/*
* Now decode the chunk list
*/
cl = NULL;
if (! xdr_do_clist(xdrs, &cl)) {
cmn_err(CE_WARN, "svc_rdma_krecv: xdr_do_clist failed");
}
/*
* A chunk at 0 offset indicates that the RPC call message
* is in a chunk. Get the RPC call message chunk.
*/
if (cl != NULL && op == RDMA_NOMSG) {
struct clist *cllong; /* Long RPC chunk */
/* Remove RPC call message chunk from chunklist */
cllong = cl;
cl = cl->c_next;
cllong->c_next = NULL;
/* Allocate and register memory for the RPC call msg chunk */
cllong->c_daddr = (uint64)(uintptr_t)
kmem_alloc(cllong->c_len, KM_SLEEP);
if (cllong->c_daddr == NULL) {
cmn_err(CE_WARN,
"svc_rdma_krecv: no memory for rpc call");
XDR_DESTROY(xdrs);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
freeb(mp);
RSSTAT_INCR(rsbadcalls);
clist_free(cl);
clist_free(cllong);
return (FALSE);
}
status = clist_register(conn, cllong, 0);
if (status) {
cmn_err(CE_WARN,
"svc_rdma_krecv: clist_register failed");
kmem_free((void *)(uintptr_t)cllong->c_daddr,
cllong->c_len);
XDR_DESTROY(xdrs);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
freeb(mp);
RSSTAT_INCR(rsbadcalls);
clist_free(cl);
clist_free(cllong);
return (FALSE);
}
/*
* Now read the RPC call message in
*/
status = RDMA_READ(conn, cllong, WAIT);
if (status) {
cmn_err(CE_WARN,
"svc_rdma_krecv: rdma_read failed %d", status);
(void) clist_deregister(conn, cllong, 0);
kmem_free((void *)(uintptr_t)cllong->c_daddr,
cllong->c_len);
XDR_DESTROY(xdrs);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
freeb(mp);
RSSTAT_INCR(rsbadcalls);
clist_free(cl);
clist_free(cllong);
return (FALSE);
}
/*
* Sync memory for CPU after DMA
*/
status = clist_syncmem(conn, cllong, 0);
/*
* Deregister the chunk
*/
(void) clist_deregister(conn, cllong, 0);
/*
* Setup the XDR for the RPC call message
*/
xdrrdma_create(xdrs, (caddr_t)(uintptr_t)cllong->c_daddr,
cllong->c_len, 0, cl, XDR_DECODE, conn);
vd->rpcbuf.type = CHUNK_BUFFER;
vd->rpcbuf.addr = (caddr_t)(uintptr_t)cllong->c_daddr;
vd->rpcbuf.len = cllong->c_len;
vd->rpcbuf.handle.mrc_rmr = 0;
/*
* Free the chunk element with the Long RPC details and
* the message received.
*/
clist_free(cllong);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
} else {
pos = XDR_GETPOS(xdrs);
/*
* Now the RPC call message header
*/
xdrrdma_create(xdrs, rdp->rpcmsg.addr + pos,
rdp->rpcmsg.len - pos, 0, cl, XDR_DECODE, conn);
vd->rpcbuf = rdp->rpcmsg;
}
if (! xdr_callmsg(xdrs, msg)) {
cmn_err(CE_WARN, "svc_rdma_krecv: xdr_callmsg failed");
if (cl != NULL)
clist_free(cl);
XDR_DESTROY(xdrs);
rdma_buf_free(conn, &vd->rpcbuf);
RDMA_REL_CONN(conn);
freeb(mp);
RSSTAT_INCR(rsxdrcall);
RSSTAT_INCR(rsbadcalls);
return (FALSE);
}
/*
* Point the remote transport address in the service_transport
* handle at the address in the request.
*/
clone_xprt->xp_rtaddr.buf = conn->c_raddr.buf;
clone_xprt->xp_rtaddr.len = conn->c_raddr.len;
clone_xprt->xp_rtaddr.maxlen = conn->c_raddr.len;
#ifdef DEBUG
if (rdma_svc_debug) {
struct sockaddr_in *sin4;
char print_addr[INET_ADDRSTRLEN];
sin4 = (struct sockaddr_in *)clone_xprt->xp_rtaddr.buf;
bzero(print_addr, INET_ADDRSTRLEN);
(void) inet_ntop(AF_INET,
&sin4->sin_addr, print_addr, INET_ADDRSTRLEN);
cmn_err(CE_NOTE,
"svc_rdma_krecv: remote clnt_addr: %s", print_addr);
}
#endif
clone_xprt->xp_xid = xid;
vd->conn = conn;
freeb(mp);
return (TRUE);
}
/*
* Send rpc reply.
*/
static bool_t
svc_rdma_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
{
struct clone_rdma_data *vd;
XDR *xdrs = &(clone_xprt->xp_xdrout), rxdrs;
int retval = FALSE;
xdrproc_t xdr_results;
caddr_t xdr_location;
bool_t has_args, reg = FALSE;
uint_t len, op;
uint_t vers;
struct clist *cl = NULL, *cle = NULL;
struct clist *sendlist = NULL;
int status;
int msglen;
rdma_buf_t clmsg, longreply, rpcreply;
vd = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
/*
* If there is a result procedure specified in the reply message,
* it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
* We need to make sure it won't be processed twice, so we null
* it for xdr_replymsg here.
*/
has_args = FALSE;
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
has_args = TRUE;
xdr_location = msg->acpted_rply.ar_results.where;
msg->acpted_rply.ar_results.proc = xdr_void;
msg->acpted_rply.ar_results.where = NULL;
}
}
/*
* Get the size of the rpc reply message. Need this
* to determine if the rpc reply message will fit in
* the pre-allocated RDMA buffers. If the rpc reply
* message length is greater that the pre-allocated
* buffers then, a one time use buffer is allocated
* and registered for this rpc reply.
*/
msglen = xdr_sizeof(xdr_replymsg, msg);
if (has_args && msg->rm_reply.rp_acpt.ar_verf.oa_flavor != RPCSEC_GSS) {
msglen += xdrrdma_sizeof(xdr_results, xdr_location,
rdma_minchunk);
if (msglen > RPC_MSG_SZ) {
/*
* Allocate chunk buffer for rpc reply
*/
rpcreply.type = CHUNK_BUFFER;
rpcreply.addr = kmem_zalloc(msglen, KM_SLEEP);
cle = kmem_zalloc(sizeof (*cle), KM_SLEEP);
cle->c_xdroff = 0;
cle->c_len = rpcreply.len = msglen;
cle->c_saddr = (uint64)(uintptr_t)rpcreply.addr;
cle->c_next = NULL;
xdrrdma_create(xdrs, rpcreply.addr, msglen,
rdma_minchunk, cle, XDR_ENCODE, NULL);
op = RDMA_NOMSG;
} else {
/*
* Get a pre-allocated buffer for rpc reply
*/
rpcreply.type = SEND_BUFFER;
if (RDMA_BUF_ALLOC(vd->conn, &rpcreply)) {
cmn_err(CE_WARN,
"svc_rdma_ksend: no free buffers!");
return (retval);
}
xdrrdma_create(xdrs, rpcreply.addr, rpcreply.len,
rdma_minchunk, NULL, XDR_ENCODE, NULL);
op = RDMA_MSG;
}
/*
* Initialize the XDR encode stream.
*/
msg->rm_xid = clone_xprt->xp_xid;
if (!(xdr_replymsg(xdrs, msg) &&
(!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
xdr_results, xdr_location)))) {
rdma_buf_free(vd->conn, &rpcreply);
if (cle)
clist_free(cle);
cmn_err(CE_WARN,
"svc_rdma_ksend: xdr_replymsg/SVCAUTH_WRAP "
"failed");
goto out;
}
len = XDR_GETPOS(xdrs);
}
if (has_args && msg->rm_reply.rp_acpt.ar_verf.oa_flavor == RPCSEC_GSS) {
/*
* For RPCSEC_GSS since we cannot accurately presize the
* buffer required for encoding, we assume that its going
* to be a Long RPC to start with. We also create the
* the XDR stream with min_chunk set to 0 which instructs
* the XDR layer to not chunk the incoming byte stream.
*/
msglen += 2 * MAX_AUTH_BYTES + 2 * sizeof (struct opaque_auth);
msglen += xdr_sizeof(xdr_results, xdr_location);
/*
* Long RPC. Allocate one time use custom buffer.
*/
longreply.type = CHUNK_BUFFER;
longreply.addr = kmem_zalloc(msglen, KM_SLEEP);
cle = kmem_zalloc(sizeof (*cle), KM_SLEEP);
cle->c_xdroff = 0;
cle->c_len = longreply.len = msglen;
cle->c_saddr = (uint64)(uintptr_t)longreply.addr;
cle->c_next = NULL;
xdrrdma_create(xdrs, longreply.addr, msglen, 0, cle,
XDR_ENCODE, NULL);
op = RDMA_NOMSG;
/*
* Initialize the XDR encode stream.
*/
msg->rm_xid = clone_xprt->xp_xid;
if (!(xdr_replymsg(xdrs, msg) &&
(!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
xdr_results, xdr_location)))) {
if (longreply.addr != xdrs->x_base) {
longreply.addr = xdrs->x_base;
longreply.len = xdr_getbufsize(xdrs);
}
rdma_buf_free(vd->conn, &longreply);
if (cle)
clist_free(cle);
cmn_err(CE_WARN,
"svc_rdma_ksend: xdr_replymsg/SVCAUTH_WRAP "
"failed");
goto out;
}
/*
* If we had to allocate a new buffer while encoding
* then update the addr and len.
*/
if (longreply.addr != xdrs->x_base) {
longreply.addr = xdrs->x_base;
longreply.len = xdr_getbufsize(xdrs);
}
len = XDR_GETPOS(xdrs);
/*
* If it so happens that the encoded message is after all
* not long enough to be a Long RPC then allocate a
* SEND_BUFFER and copy the encoded message into it.
*/
if (len > RPC_MSG_SZ) {
rpcreply.type = CHUNK_BUFFER;
rpcreply.addr = longreply.addr;
rpcreply.len = longreply.len;
} else {
clist_free(cle);
XDR_DESTROY(xdrs);
/*
* Get a pre-allocated buffer for rpc reply
*/
rpcreply.type = SEND_BUFFER;
if (RDMA_BUF_ALLOC(vd->conn, &rpcreply)) {
cmn_err(CE_WARN,
"svc_rdma_ksend: no free buffers!");
rdma_buf_free(vd->conn, &longreply);
return (retval);
}
bcopy(longreply.addr, rpcreply.addr, len);
xdrrdma_create(xdrs, rpcreply.addr, len, 0, NULL,
XDR_ENCODE, NULL);
rdma_buf_free(vd->conn, &longreply);
op = RDMA_MSG;
}
}
if (has_args == FALSE) {
if (msglen > RPC_MSG_SZ) {
/*
* Allocate chunk buffer for rpc reply
*/
rpcreply.type = CHUNK_BUFFER;
rpcreply.addr = kmem_zalloc(msglen, KM_SLEEP);
cle = kmem_zalloc(sizeof (*cle), KM_SLEEP);
cle->c_xdroff = 0;
cle->c_len = rpcreply.len = msglen;
cle->c_saddr = (uint64)(uintptr_t)rpcreply.addr;
cle->c_next = NULL;
xdrrdma_create(xdrs, rpcreply.addr, msglen,
rdma_minchunk, cle, XDR_ENCODE, NULL);
op = RDMA_NOMSG;
} else {
/*
* Get a pre-allocated buffer for rpc reply
*/
rpcreply.type = SEND_BUFFER;
if (RDMA_BUF_ALLOC(vd->conn, &rpcreply)) {
cmn_err(CE_WARN,
"svc_rdma_ksend: no free buffers!");
return (retval);
}
xdrrdma_create(xdrs, rpcreply.addr, rpcreply.len,
rdma_minchunk, NULL, XDR_ENCODE, NULL);
op = RDMA_MSG;
}
/*
* Initialize the XDR encode stream.
*/
msg->rm_xid = clone_xprt->xp_xid;
if (!xdr_replymsg(xdrs, msg)) {
rdma_buf_free(vd->conn, &rpcreply);
if (cle)
clist_free(cle);
cmn_err(CE_WARN,
"svc_rdma_ksend: xdr_replymsg/SVCAUTH_WRAP "
"failed");
goto out;
}
len = XDR_GETPOS(xdrs);
}
/*
* Get clist and a buffer for sending it across
*/
cl = xdrrdma_clist(xdrs);
clmsg.type = SEND_BUFFER;
if (RDMA_BUF_ALLOC(vd->conn, &clmsg)) {
rdma_buf_free(vd->conn, &rpcreply);
cmn_err(CE_WARN, "svc_rdma_ksend: no free buffers!!");
goto out;
}
/*
* Now register the chunks in the list
*/
if (cl != NULL) {
status = clist_register(vd->conn, cl, 1);
if (status != RDMA_SUCCESS) {
rdma_buf_free(vd->conn, &clmsg);
cmn_err(CE_WARN,
"svc_rdma_ksend: clist register failed");
goto out;
}
reg = TRUE;
}
/*
* XDR the XID, vers, and op
*/
/*
* Treat xid as opaque (xid is the first entity
* in the rpc rdma message).
*/
vers = RPCRDMA_VERS;
xdrs = &rxdrs;
xdrmem_create(xdrs, clmsg.addr, clmsg.len, XDR_ENCODE);
(*(uint32_t *)clmsg.addr) = msg->rm_xid;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(xdrs, sizeof (uint32_t));
if (! xdr_u_int(xdrs, &vers) ||
! xdr_u_int(xdrs, &op)) {
rdma_buf_free(vd->conn, &rpcreply);
rdma_buf_free(vd->conn, &clmsg);
cmn_err(CE_WARN, "svc_rdma_ksend: xdr_u_int failed");
goto out;
}
/*
* Now XDR the chunk list
*/
(void) xdr_do_clist(xdrs, &cl);
clist_add(&sendlist, 0, XDR_GETPOS(xdrs), &clmsg.handle, clmsg.addr,
NULL, NULL);
if (op == RDMA_MSG) {
clist_add(&sendlist, 0, len, &rpcreply.handle, rpcreply.addr,
NULL, NULL);
} else {
cl->c_len = len;
RSSTAT_INCR(rslongrpcs);
}
/*
* Send the reply message to the client
*/
if (cl != NULL) {
status = clist_syncmem(vd->conn, cl, 1);
if (status != RDMA_SUCCESS) {
rdma_buf_free(vd->conn, &rpcreply);
rdma_buf_free(vd->conn, &clmsg);
goto out;
}
#ifdef DEBUG
if (rdma_svc_debug)
printf("svc_rdma_ksend: chunk response len %d xid %u\n",
cl->c_len, msg->rm_xid);
#endif
/*
* Post a receive buffer because we expect a RDMA_DONE
* message.
*/
status = rdma_svc_postrecv(vd->conn);
/*
* Send the RPC reply message and wait for RDMA_DONE
*/
status = RDMA_SEND_RESP(vd->conn, sendlist, msg->rm_xid);
if (status != RDMA_SUCCESS) {
#ifdef DEBUG
if (rdma_svc_debug)
cmn_err(CE_NOTE, "svc_rdma_ksend: "
"rdma_send_resp failed %d", status);
#endif
goto out;
}
#ifdef DEBUG
if (rdma_svc_debug)
printf("svc_rdma_ksend: got RDMA_DONE xid %u\n", msg->rm_xid);
#endif
} else {
#ifdef DEBUG
if (rdma_svc_debug)
printf("svc_rdma_ksend: msg response xid %u\n", msg->rm_xid);
#endif
status = RDMA_SEND(vd->conn, sendlist, msg->rm_xid);
if (status != RDMA_SUCCESS) {
#ifdef DEBUG
if (rdma_svc_debug)
cmn_err(CE_NOTE, "svc_rdma_ksend: "
"rdma_send failed %d", status);
#endif
goto out;
}
}
retval = TRUE;
out:
/*
* Deregister the chunks
*/
if (cl != NULL) {
if (reg)
(void) clist_deregister(vd->conn, cl, 1);
if (op == RDMA_NOMSG) {
/*
* Long RPC reply in chunk. Free it up.
*/
rdma_buf_free(vd->conn, &rpcreply);
}
clist_free(cl);
}
/*
* Free up sendlist chunks
*/
if (sendlist != NULL)
clist_free(sendlist);
/*
* Destroy private data for xdr rdma
*/
XDR_DESTROY(&(clone_xprt->xp_xdrout));
/*
* This is completely disgusting. If public is set it is
* a pointer to a structure whose first field is the address
* of the function to free that structure and any related
* stuff. (see rrokfree in nfs_xdr.c).
*/
if (xdrs->x_public) {
/* LINTED pointer alignment */
(**((int (**)())xdrs->x_public))(xdrs->x_public);
}
return (retval);
}
/*
* Deserialize arguments.
*/
static bool_t
svc_rdma_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, caddr_t args_ptr)
{
if ((SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
xdr_args, args_ptr)) != TRUE)
return (FALSE);
return (TRUE);
}
static bool_t
svc_rdma_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
caddr_t args_ptr)
{
struct clone_rdma_data *vd;
bool_t retval;
vd = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
if (args_ptr) {
XDR *xdrs = &clone_xprt->xp_xdrin;
struct clist *cl;
cl = xdrrdma_clist(xdrs);
if (cl != NULL)
clist_free(cl);
xdrs->x_op = XDR_FREE;
retval = (*xdr_args)(xdrs, args_ptr);
}
XDR_DESTROY(&(clone_xprt->xp_xdrin));
rdma_buf_free(vd->conn, &vd->rpcbuf);
RDMA_REL_CONN(vd->conn);
return (retval);
}
/* ARGSUSED */
static int32_t *
svc_rdma_kgetres(SVCXPRT *clone_xprt, int size)
{
return (NULL);
}
/* ARGSUSED */
static void
svc_rdma_kfreeres(SVCXPRT *clone_xprt)
{
}
/*
* the dup cacheing routines below provide a cache of non-failure
* transaction id's. rpc service routines can use this to detect
* retransmissions and re-send a non-failure response.
*/
/*
* MAXDUPREQS is the number of cached items. It should be adjusted
* to the service load so that there is likely to be a response entry
* when the first retransmission comes in.
*/
#define MAXDUPREQS 1024
/*
* This should be appropriately scaled to MAXDUPREQS.
*/
#define DRHASHSZ 257
#if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
#define XIDHASH(xid) ((xid) & (DRHASHSZ - 1))
#else
#define XIDHASH(xid) ((xid) % DRHASHSZ)
#endif
#define DRHASH(dr) XIDHASH((dr)->dr_xid)
#define REQTOXID(req) ((req)->rq_xprt->xp_xid)
static int rdmandupreqs = 0;
static int rdmamaxdupreqs = MAXDUPREQS;
static kmutex_t rdmadupreq_lock;
static struct dupreq *rdmadrhashtbl[DRHASHSZ];
static int rdmadrhashstat[DRHASHSZ];
static void unhash(struct dupreq *);
/*
* rdmadrmru points to the head of a circular linked list in lru order.
* rdmadrmru->dr_next == drlru
*/
struct dupreq *rdmadrmru;
/*
* svc_rdma_kdup searches the request cache and returns 0 if the
* request is not found in the cache. If it is found, then it
* returns the state of the request (in progress or done) and
* the status or attributes that were part of the original reply.
*/
static int
svc_rdma_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
bool_t *dupcachedp)
{
struct dupreq *dr;
uint32_t xid;
uint32_t drhash;
int status;
xid = REQTOXID(req);
mutex_enter(&rdmadupreq_lock);
RSSTAT_INCR(rsdupchecks);
/*
* Check to see whether an entry already exists in the cache.
*/
dr = rdmadrhashtbl[XIDHASH(xid)];
while (dr != NULL) {
if (dr->dr_xid == xid &&
dr->dr_proc == req->rq_proc &&
dr->dr_prog == req->rq_prog &&
dr->dr_vers == req->rq_vers &&
dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
bcmp((caddr_t)dr->dr_addr.buf,
(caddr_t)req->rq_xprt->xp_rtaddr.buf,
dr->dr_addr.len) == 0) {
status = dr->dr_status;
if (status == DUP_DONE) {
bcopy(dr->dr_resp.buf, res, size);
if (dupcachedp != NULL)
*dupcachedp = (dr->dr_resfree != NULL);
} else {
dr->dr_status = DUP_INPROGRESS;
*drpp = dr;
}
RSSTAT_INCR(rsdupreqs);
mutex_exit(&rdmadupreq_lock);
return (status);
}
dr = dr->dr_chain;
}
/*
* There wasn't an entry, either allocate a new one or recycle
* an old one.
*/
if (rdmandupreqs < rdmamaxdupreqs) {
dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
if (dr == NULL) {
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
dr->dr_resp.buf = NULL;
dr->dr_resp.maxlen = 0;
dr->dr_addr.buf = NULL;
dr->dr_addr.maxlen = 0;
if (rdmadrmru) {
dr->dr_next = rdmadrmru->dr_next;
rdmadrmru->dr_next = dr;
} else {
dr->dr_next = dr;
}
rdmandupreqs++;
} else {
dr = rdmadrmru->dr_next;
while (dr->dr_status == DUP_INPROGRESS) {
dr = dr->dr_next;
if (dr == rdmadrmru->dr_next) {
cmn_err(CE_WARN, "svc_rdma_kdup no slots free");
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
}
unhash(dr);
if (dr->dr_resfree) {
(*dr->dr_resfree)(dr->dr_resp.buf);
}
}
dr->dr_resfree = NULL;
rdmadrmru = dr;
dr->dr_xid = REQTOXID(req);
dr->dr_prog = req->rq_prog;
dr->dr_vers = req->rq_vers;
dr->dr_proc = req->rq_proc;
if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
if (dr->dr_addr.buf != NULL)
kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
if (dr->dr_addr.buf == NULL) {
dr->dr_addr.maxlen = 0;
dr->dr_status = DUP_DROP;
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
}
dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
if (dr->dr_resp.maxlen < size) {
if (dr->dr_resp.buf != NULL)
kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
dr->dr_resp.maxlen = (unsigned int)size;
dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
if (dr->dr_resp.buf == NULL) {
dr->dr_resp.maxlen = 0;
dr->dr_status = DUP_DROP;
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
}
dr->dr_status = DUP_INPROGRESS;
drhash = (uint32_t)DRHASH(dr);
dr->dr_chain = rdmadrhashtbl[drhash];
rdmadrhashtbl[drhash] = dr;
rdmadrhashstat[drhash]++;
mutex_exit(&rdmadupreq_lock);
*drpp = dr;
return (DUP_NEW);
}
/*
* svc_rdma_kdupdone marks the request done (DUP_DONE or DUP_DROP)
* and stores the response.
*/
static void
svc_rdma_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
int size, int status)
{
ASSERT(dr->dr_resfree == NULL);
if (status == DUP_DONE) {
bcopy(res, dr->dr_resp.buf, size);
dr->dr_resfree = dis_resfree;
}
dr->dr_status = status;
}
/*
* This routine expects that the mutex, rdmadupreq_lock, is already held.
*/
static void
unhash(struct dupreq *dr)
{
struct dupreq *drt;
struct dupreq *drtprev = NULL;
uint32_t drhash;
ASSERT(MUTEX_HELD(&rdmadupreq_lock));
drhash = (uint32_t)DRHASH(dr);
drt = rdmadrhashtbl[drhash];
while (drt != NULL) {
if (drt == dr) {
rdmadrhashstat[drhash]--;
if (drtprev == NULL) {
rdmadrhashtbl[drhash] = drt->dr_chain;
} else {
drtprev->dr_chain = drt->dr_chain;
}
return;
}
drtprev = drt;
drt = drt->dr_chain;
}
}