svc_rdma.c revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley
* 4.3 BSD under license from the Regents of the University of
* California.
*/
/*
* Server side of RPC over RDMA in the kernel.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/sysmacros.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/kstat.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <rpc/auth.h>
#include <rpc/clnt.h>
#include <rpc/rpc_msg.h>
#include <rpc/svc.h>
#include <rpc/rpc_rdma.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <inet/common.h>
#include <inet/ip.h>
#include <inet/ip6.h>
#include <nfs/nfs.h>
#include <sys/sdt.h>
#define SVC_RDMA_SUCCESS 0
#define SVC_RDMA_FAIL -1
#define SVC_CREDIT_FACTOR (0.5)
#define MSG_IS_RPCSEC_GSS(msg) \
((msg)->rm_reply.rp_acpt.ar_verf.oa_flavor == RPCSEC_GSS)
uint32_t rdma_bufs_granted = RDMA_BUFS_GRANT;
/*
* RDMA transport specific data associated with SVCMASTERXPRT
*/
struct rdma_data {
SVCMASTERXPRT *rd_xprt; /* back ptr to SVCMASTERXPRT */
struct rdma_svc_data rd_data; /* rdma data */
rdma_mod_t *r_mod; /* RDMA module containing ops ptr */
};
/*
* Plugin connection specific data stashed away in clone SVCXPRT
*/
struct clone_rdma_data {
bool_t cloned; /* xprt cloned for thread processing */
CONN *conn; /* RDMA connection */
rdma_buf_t rpcbuf; /* RPC req/resp buffer */
struct clist *cl_reply; /* reply chunk buffer info */
struct clist *cl_wlist; /* write list clist */
};
#define MAXADDRLEN 128 /* max length for address mask */
/*
* Routines exported through ops vector.
*/
static bool_t svc_rdma_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
static bool_t svc_rdma_ksend(SVCXPRT *, struct rpc_msg *);
static bool_t svc_rdma_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
static bool_t svc_rdma_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
void svc_rdma_kdestroy(SVCMASTERXPRT *);
static int svc_rdma_kdup(struct svc_req *, caddr_t, int,
struct dupreq **, bool_t *);
static void svc_rdma_kdupdone(struct dupreq *, caddr_t,
void (*)(), int, int);
static int32_t *svc_rdma_kgetres(SVCXPRT *, int);
static void svc_rdma_kfreeres(SVCXPRT *);
static void svc_rdma_kclone_destroy(SVCXPRT *);
static void svc_rdma_kstart(SVCMASTERXPRT *);
void svc_rdma_kstop(SVCMASTERXPRT *);
static void svc_rdma_kclone_xprt(SVCXPRT *, SVCXPRT *);
static void svc_rdma_ktattrs(SVCXPRT *, int, void **);
static int svc_process_long_reply(SVCXPRT *, xdrproc_t,
caddr_t, struct rpc_msg *, bool_t, int *,
int *, int *, unsigned int *);
static int svc_compose_rpcmsg(SVCXPRT *, CONN *, xdrproc_t,
caddr_t, rdma_buf_t *, XDR **, struct rpc_msg *,
bool_t, uint_t *);
static bool_t rpcmsg_length(xdrproc_t,
caddr_t,
struct rpc_msg *, bool_t, int);
/*
* Server transport operations vector.
*/
struct svc_ops rdma_svc_ops = {
svc_rdma_krecv, /* Get requests */
svc_rdma_kgetargs, /* Deserialize arguments */
svc_rdma_ksend, /* Send reply */
svc_rdma_kfreeargs, /* Free argument data space */
svc_rdma_kdestroy, /* Destroy transport handle */
svc_rdma_kdup, /* Check entry in dup req cache */
svc_rdma_kdupdone, /* Mark entry in dup req cache as done */
svc_rdma_kgetres, /* Get pointer to response buffer */
svc_rdma_kfreeres, /* Destroy pre-serialized response header */
svc_rdma_kclone_destroy, /* Destroy a clone xprt */
svc_rdma_kstart, /* Tell `ready-to-receive' to rpcmod */
svc_rdma_kclone_xprt, /* Transport specific clone xprt */
svc_rdma_ktattrs /* Get Transport Attributes */
};
/*
* Server statistics
* NOTE: This structure type is duplicated in the NFS fast path.
*/
struct {
kstat_named_t rscalls;
kstat_named_t rsbadcalls;
kstat_named_t rsnullrecv;
kstat_named_t rsbadlen;
kstat_named_t rsxdrcall;
kstat_named_t rsdupchecks;
kstat_named_t rsdupreqs;
kstat_named_t rslongrpcs;
kstat_named_t rstotalreplies;
kstat_named_t rstotallongreplies;
kstat_named_t rstotalinlinereplies;
} rdmarsstat = {
{ "calls", KSTAT_DATA_UINT64 },
{ "badcalls", KSTAT_DATA_UINT64 },
{ "nullrecv", KSTAT_DATA_UINT64 },
{ "badlen", KSTAT_DATA_UINT64 },
{ "xdrcall", KSTAT_DATA_UINT64 },
{ "dupchecks", KSTAT_DATA_UINT64 },
{ "dupreqs", KSTAT_DATA_UINT64 },
{ "longrpcs", KSTAT_DATA_UINT64 },
{ "totalreplies", KSTAT_DATA_UINT64 },
{ "totallongreplies", KSTAT_DATA_UINT64 },
{ "totalinlinereplies", KSTAT_DATA_UINT64 },
};
kstat_named_t *rdmarsstat_ptr = (kstat_named_t *)&rdmarsstat;
uint_t rdmarsstat_ndata = sizeof (rdmarsstat) / sizeof (kstat_named_t);
#define RSSTAT_INCR(x) atomic_inc_64(&rdmarsstat.x.value.ui64)
/*
* Create a transport record.
* The transport record, output buffer, and private data structure
* are allocated. The output buffer is serialized into using xdrmem.
* There is one transport record per user process which implements a
* set of services.
*/
/* ARGSUSED */
int
svc_rdma_kcreate(char *netid, SVC_CALLOUT_TABLE *sct, int id,
rdma_xprt_group_t *started_xprts)
{
int error;
SVCMASTERXPRT *xprt;
struct rdma_data *rd;
rdma_registry_t *rmod;
rdma_xprt_record_t *xprt_rec;
queue_t *q;
/*
* modload the RDMA plugins is not already done.
*/
if (!rdma_modloaded) {
/*CONSTANTCONDITION*/
ASSERT(sizeof (struct clone_rdma_data) <= SVC_P2LEN);
mutex_enter(&rdma_modload_lock);
if (!rdma_modloaded) {
error = rdma_modload();
}
mutex_exit(&rdma_modload_lock);
if (error)
return (error);
}
/*
* master_xprt_count is the count of master transport handles
* that were successfully created and are ready to recieve for
* RDMA based access.
*/
error = 0;
xprt_rec = NULL;
rw_enter(&rdma_lock, RW_READER);
if (rdma_mod_head == NULL) {
started_xprts->rtg_count = 0;
rw_exit(&rdma_lock);
if (rdma_dev_available)
return (EPROTONOSUPPORT);
else
return (ENODEV);
}
/*
* If we have reached here, then atleast one RDMA plugin has loaded.
* Create a master_xprt, make it start listenining on the device,
* if an error is generated, record it, we might need to shut
* the master_xprt.
* SVC_START() calls svc_rdma_kstart which calls plugin binding
* routines.
*/
for (rmod = rdma_mod_head; rmod != NULL; rmod = rmod->r_next) {
/*
* One SVCMASTERXPRT per RDMA plugin.
*/
xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
xprt->xp_ops = &rdma_svc_ops;
xprt->xp_sct = sct;
xprt->xp_type = T_RDMA;
mutex_init(&xprt->xp_req_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&xprt->xp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
xprt->xp_req_head = (mblk_t *)0;
xprt->xp_req_tail = (mblk_t *)0;
xprt->xp_threads = 0;
xprt->xp_detached_threads = 0;
rd = kmem_zalloc(sizeof (*rd), KM_SLEEP);
xprt->xp_p2 = (caddr_t)rd;
rd->rd_xprt = xprt;
rd->r_mod = rmod->r_mod;
q = &rd->rd_data.q;
xprt->xp_wq = q;
q->q_ptr = &rd->rd_xprt;
xprt->xp_netid = NULL;
/*
* Each of the plugins will have their own Service ID
* to listener specific mapping, like port number for VI
* and service name for IB.
*/
rd->rd_data.svcid = id;
error = svc_xprt_register(xprt, id);
if (error) {
DTRACE_PROBE(krpc__e__svcrdma__xprt__reg);
goto cleanup;
}
SVC_START(xprt);
if (!rd->rd_data.active) {
svc_xprt_unregister(xprt);
error = rd->rd_data.err_code;
goto cleanup;
}
/*
* This is set only when there is atleast one or more
* transports successfully created. We insert the pointer
* to the created RDMA master xprt into a separately maintained
* list. This way we can easily reference it later to cleanup,
* when NFS kRPC service pool is going away/unregistered.
*/
started_xprts->rtg_count ++;
xprt_rec = kmem_alloc(sizeof (*xprt_rec), KM_SLEEP);
xprt_rec->rtr_xprt_ptr = xprt;
xprt_rec->rtr_next = started_xprts->rtg_listhead;
started_xprts->rtg_listhead = xprt_rec;
continue;
cleanup:
SVC_DESTROY(xprt);
if (error == RDMA_FAILED)
error = EPROTONOSUPPORT;
}
rw_exit(&rdma_lock);
/*
* Don't return any error even if a single plugin was started
* successfully.
*/
if (started_xprts->rtg_count == 0)
return (error);
return (0);
}
/*
* Cleanup routine for freeing up memory allocated by
* svc_rdma_kcreate()
*/
void
svc_rdma_kdestroy(SVCMASTERXPRT *xprt)
{
struct rdma_data *rd = (struct rdma_data *)xprt->xp_p2;
mutex_destroy(&xprt->xp_req_lock);
mutex_destroy(&xprt->xp_thread_lock);
kmem_free(rd, sizeof (*rd));
kmem_free(xprt, sizeof (*xprt));
}
static void
svc_rdma_kstart(SVCMASTERXPRT *xprt)
{
struct rdma_svc_data *svcdata;
rdma_mod_t *rmod;
svcdata = &((struct rdma_data *)xprt->xp_p2)->rd_data;
rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
/*
* Create a listener for module at this port
*/
if (rmod->rdma_count != 0)
(*rmod->rdma_ops->rdma_svc_listen)(svcdata);
else
svcdata->err_code = RDMA_FAILED;
}
void
svc_rdma_kstop(SVCMASTERXPRT *xprt)
{
struct rdma_svc_data *svcdata;
rdma_mod_t *rmod;
svcdata = &((struct rdma_data *)xprt->xp_p2)->rd_data;
rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
/*
* Call the stop listener routine for each plugin. If rdma_count is
* already zero set active to zero.
*/
if (rmod->rdma_count != 0)
(*rmod->rdma_ops->rdma_svc_stop)(svcdata);
else
svcdata->active = 0;
if (svcdata->active)
DTRACE_PROBE(krpc__e__svcrdma__kstop);
}
/* ARGSUSED */
static void
svc_rdma_kclone_destroy(SVCXPRT *clone_xprt)
{
struct clone_rdma_data *cdrp;
cdrp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
/*
* Only free buffers and release connection when cloned is set.
*/
if (cdrp->cloned != TRUE)
return;
rdma_buf_free(cdrp->conn, &cdrp->rpcbuf);
if (cdrp->cl_reply) {
clist_free(cdrp->cl_reply);
cdrp->cl_reply = NULL;
}
RDMA_REL_CONN(cdrp->conn);
cdrp->cloned = 0;
}
/*
* Clone the xprt specific information. It will be freed by
* SVC_CLONE_DESTROY.
*/
static void
svc_rdma_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
{
struct clone_rdma_data *srcp2;
struct clone_rdma_data *dstp2;
srcp2 = (struct clone_rdma_data *)src_xprt->xp_p2buf;
dstp2 = (struct clone_rdma_data *)dst_xprt->xp_p2buf;
if (srcp2->conn != NULL) {
srcp2->cloned = TRUE;
*dstp2 = *srcp2;
}
}
static void
svc_rdma_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
{
CONN *conn;
*tattr = NULL;
switch (attrflag) {
case SVC_TATTR_ADDRMASK:
conn = ((struct clone_rdma_data *)clone_xprt->xp_p2buf)->conn;
ASSERT(conn != NULL);
if (conn)
*tattr = (void *)&conn->c_addrmask;
}
}
static bool_t
svc_rdma_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
{
XDR *xdrs;
CONN *conn;
rdma_recv_data_t *rdp = (rdma_recv_data_t *)mp->b_rptr;
struct clone_rdma_data *crdp;
struct clist *cl = NULL;
struct clist *wcl = NULL;
struct clist *cllong = NULL;
rdma_stat status;
uint32_t vers, op, pos, xid;
uint32_t rdma_credit;
uint32_t wcl_total_length = 0;
bool_t wwl = FALSE;
crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
RSSTAT_INCR(rscalls);
conn = rdp->conn;
status = rdma_svc_postrecv(conn);
if (status != RDMA_SUCCESS) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__postrecv);
goto badrpc_call;
}
xdrs = &clone_xprt->xp_xdrin;
xdrmem_create(xdrs, rdp->rpcmsg.addr, rdp->rpcmsg.len, XDR_DECODE);
xid = *(uint32_t *)rdp->rpcmsg.addr;
XDR_SETPOS(xdrs, sizeof (uint32_t));
if (! xdr_u_int(xdrs, &vers) ||
! xdr_u_int(xdrs, &rdma_credit) ||
! xdr_u_int(xdrs, &op)) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__uint);
goto xdr_err;
}
/* Checking if the status of the recv operation was normal */
if (rdp->status != 0) {
DTRACE_PROBE1(krpc__e__svcrdma__krecv__invalid__status,
int, rdp->status);
goto badrpc_call;
}
if (! xdr_do_clist(xdrs, &cl)) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__do__clist);
goto xdr_err;
}
if (!xdr_decode_wlist_svc(xdrs, &wcl, &wwl, &wcl_total_length, conn)) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__decode__wlist);
if (cl)
clist_free(cl);
goto xdr_err;
}
crdp->cl_wlist = wcl;
crdp->cl_reply = NULL;
(void) xdr_decode_reply_wchunk(xdrs, &crdp->cl_reply);
/*
* A chunk at 0 offset indicates that the RPC call message
* is in a chunk. Get the RPC call message chunk.
*/
if (cl != NULL && op == RDMA_NOMSG) {
/* Remove RPC call message chunk from chunklist */
cllong = cl;
cl = cl->c_next;
cllong->c_next = NULL;
/* Allocate and register memory for the RPC call msg chunk */
cllong->rb_longbuf.type = RDMA_LONG_BUFFER;
cllong->rb_longbuf.len = cllong->c_len > LONG_REPLY_LEN ?
cllong->c_len : LONG_REPLY_LEN;
if (rdma_buf_alloc(conn, &cllong->rb_longbuf)) {
clist_free(cllong);
goto cll_malloc_err;
}
cllong->u.c_daddr3 = cllong->rb_longbuf.addr;
if (cllong->u.c_daddr == NULL) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__nomem);
rdma_buf_free(conn, &cllong->rb_longbuf);
clist_free(cllong);
goto cll_malloc_err;
}
status = clist_register(conn, cllong, CLIST_REG_DST);
if (status) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__clist__reg);
rdma_buf_free(conn, &cllong->rb_longbuf);
clist_free(cllong);
goto cll_malloc_err;
}
/*
* Now read the RPC call message in
*/
status = RDMA_READ(conn, cllong, WAIT);
if (status) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__read);
(void) clist_deregister(conn, cllong);
rdma_buf_free(conn, &cllong->rb_longbuf);
clist_free(cllong);
goto cll_malloc_err;
}
status = clist_syncmem(conn, cllong, CLIST_REG_DST);
(void) clist_deregister(conn, cllong);
xdrrdma_create(xdrs, (caddr_t)(uintptr_t)cllong->u.c_daddr3,
cllong->c_len, 0, cl, XDR_DECODE, conn);
crdp->rpcbuf = cllong->rb_longbuf;
crdp->rpcbuf.len = cllong->c_len;
clist_free(cllong);
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
} else {
pos = XDR_GETPOS(xdrs);
xdrrdma_create(xdrs, rdp->rpcmsg.addr + pos,
rdp->rpcmsg.len - pos, 0, cl, XDR_DECODE, conn);
crdp->rpcbuf = rdp->rpcmsg;
/* Use xdrrdmablk_ops to indicate there is a read chunk list */
if (cl != NULL) {
int32_t flg = XDR_RDMA_RLIST_REG;
XDR_CONTROL(xdrs, XDR_RDMA_SET_FLAGS, &flg);
xdrs->x_ops = &xdrrdmablk_ops;
}
}
if (crdp->cl_wlist) {
int32_t flg = XDR_RDMA_WLIST_REG;
XDR_CONTROL(xdrs, XDR_RDMA_SET_WLIST, crdp->cl_wlist);
XDR_CONTROL(xdrs, XDR_RDMA_SET_FLAGS, &flg);
}
if (! xdr_callmsg(xdrs, msg)) {
DTRACE_PROBE(krpc__e__svcrdma__krecv__callmsg);
RSSTAT_INCR(rsxdrcall);
goto callmsg_err;
}
/*
* Point the remote transport address in the service_transport
* handle at the address in the request.
*/
clone_xprt->xp_rtaddr.buf = conn->c_raddr.buf;
clone_xprt->xp_rtaddr.len = conn->c_raddr.len;
clone_xprt->xp_rtaddr.maxlen = conn->c_raddr.len;
clone_xprt->xp_lcladdr.buf = conn->c_laddr.buf;
clone_xprt->xp_lcladdr.len = conn->c_laddr.len;
clone_xprt->xp_lcladdr.maxlen = conn->c_laddr.len;
/*
* In case of RDMA, connection management is
* entirely done in rpcib module and netid in the
* SVCMASTERXPRT is NULL. Initialize the clone netid
* from the connection.
*/
clone_xprt->xp_netid = conn->c_netid;
clone_xprt->xp_xid = xid;
crdp->conn = conn;
freeb(mp);
return (TRUE);
callmsg_err:
rdma_buf_free(conn, &crdp->rpcbuf);
cll_malloc_err:
if (cl)
clist_free(cl);
xdr_err:
XDR_DESTROY(xdrs);
badrpc_call:
RDMA_BUF_FREE(conn, &rdp->rpcmsg);
RDMA_REL_CONN(conn);
freeb(mp);
RSSTAT_INCR(rsbadcalls);
return (FALSE);
}
static int
svc_process_long_reply(SVCXPRT * clone_xprt,
xdrproc_t xdr_results, caddr_t xdr_location,
struct rpc_msg *msg, bool_t has_args, int *msglen,
int *freelen, int *numchunks, unsigned int *final_len)
{
int status;
XDR xdrslong;
struct clist *wcl = NULL;
int count = 0;
int alloc_len;
char *memp;
rdma_buf_t long_rpc = {0};
struct clone_rdma_data *crdp;
crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
bzero(&xdrslong, sizeof (xdrslong));
/* Choose a size for the long rpc response */
if (MSG_IS_RPCSEC_GSS(msg)) {
alloc_len = RNDUP(MAX_AUTH_BYTES + *msglen);
} else {
alloc_len = RNDUP(*msglen);
}
if (alloc_len <= 64 * 1024) {
if (alloc_len > 32 * 1024) {
alloc_len = 64 * 1024;
} else {
if (alloc_len > 16 * 1024) {
alloc_len = 32 * 1024;
} else {
alloc_len = 16 * 1024;
}
}
}
long_rpc.type = RDMA_LONG_BUFFER;
long_rpc.len = alloc_len;
if (rdma_buf_alloc(crdp->conn, &long_rpc)) {
return (SVC_RDMA_FAIL);
}
memp = long_rpc.addr;
xdrmem_create(&xdrslong, memp, alloc_len, XDR_ENCODE);
msg->rm_xid = clone_xprt->xp_xid;
if (!(xdr_replymsg(&xdrslong, msg) &&
(!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, &xdrslong,
xdr_results, xdr_location)))) {
rdma_buf_free(crdp->conn, &long_rpc);
DTRACE_PROBE(krpc__e__svcrdma__longrep__authwrap);
return (SVC_RDMA_FAIL);
}
*final_len = XDR_GETPOS(&xdrslong);
DTRACE_PROBE1(krpc__i__replylen, uint_t, *final_len);
*numchunks = 0;
*freelen = 0;
wcl = crdp->cl_reply;
wcl->rb_longbuf = long_rpc;
count = *final_len;
while ((wcl != NULL) && (count > 0)) {
if (wcl->c_dmemhandle.mrc_rmr == 0)
break;
DTRACE_PROBE2(krpc__i__write__chunks, uint32_t, count,
uint32_t, wcl->c_len);
if (wcl->c_len > count) {
wcl->c_len = count;
}
wcl->w.c_saddr3 = (caddr_t)memp;
count -= wcl->c_len;
*numchunks += 1;
memp += wcl->c_len;
wcl = wcl->c_next;
}
/*
* Make rest of the chunks 0-len
*/
while (wcl != NULL) {
if (wcl->c_dmemhandle.mrc_rmr == 0)
break;
wcl->c_len = 0;
wcl = wcl->c_next;
}
wcl = crdp->cl_reply;
/*
* MUST fail if there are still more data
*/
if (count > 0) {
rdma_buf_free(crdp->conn, &long_rpc);
DTRACE_PROBE(krpc__e__svcrdma__longrep__dlen__clist);
return (SVC_RDMA_FAIL);
}
if (clist_register(crdp->conn, wcl, CLIST_REG_SOURCE) != RDMA_SUCCESS) {
rdma_buf_free(crdp->conn, &long_rpc);
DTRACE_PROBE(krpc__e__svcrdma__longrep__clistreg);
return (SVC_RDMA_FAIL);
}
status = clist_syncmem(crdp->conn, wcl, CLIST_REG_SOURCE);
if (status) {
(void) clist_deregister(crdp->conn, wcl);
rdma_buf_free(crdp->conn, &long_rpc);
DTRACE_PROBE(krpc__e__svcrdma__longrep__syncmem);
return (SVC_RDMA_FAIL);
}
status = RDMA_WRITE(crdp->conn, wcl, WAIT);
(void) clist_deregister(crdp->conn, wcl);
rdma_buf_free(crdp->conn, &wcl->rb_longbuf);
if (status != RDMA_SUCCESS) {
DTRACE_PROBE(krpc__e__svcrdma__longrep__write);
return (SVC_RDMA_FAIL);
}
return (SVC_RDMA_SUCCESS);
}
static int
svc_compose_rpcmsg(SVCXPRT * clone_xprt, CONN * conn, xdrproc_t xdr_results,
caddr_t xdr_location, rdma_buf_t *rpcreply, XDR ** xdrs,
struct rpc_msg *msg, bool_t has_args, uint_t *len)
{
/*
* Get a pre-allocated buffer for rpc reply
*/
rpcreply->type = SEND_BUFFER;
if (rdma_buf_alloc(conn, rpcreply)) {
DTRACE_PROBE(krpc__e__svcrdma__rpcmsg__reply__nofreebufs);
return (SVC_RDMA_FAIL);
}
xdrrdma_create(*xdrs, rpcreply->addr, rpcreply->len,
0, NULL, XDR_ENCODE, conn);
msg->rm_xid = clone_xprt->xp_xid;
if (has_args) {
if (!(xdr_replymsg(*xdrs, msg) &&
(!has_args ||
SVCAUTH_WRAP(&clone_xprt->xp_auth, *xdrs,
xdr_results, xdr_location)))) {
rdma_buf_free(conn, rpcreply);
DTRACE_PROBE(
krpc__e__svcrdma__rpcmsg__reply__authwrap1);
return (SVC_RDMA_FAIL);
}
} else {
if (!xdr_replymsg(*xdrs, msg)) {
rdma_buf_free(conn, rpcreply);
DTRACE_PROBE(
krpc__e__svcrdma__rpcmsg__reply__authwrap2);
return (SVC_RDMA_FAIL);
}
}
*len = XDR_GETPOS(*xdrs);
return (SVC_RDMA_SUCCESS);
}
/*
* Send rpc reply.
*/
static bool_t
svc_rdma_ksend(SVCXPRT * clone_xprt, struct rpc_msg *msg)
{
XDR *xdrs_rpc = &(clone_xprt->xp_xdrout);
XDR xdrs_rhdr;
CONN *conn = NULL;
rdma_buf_t rbuf_resp = {0}, rbuf_rpc_resp = {0};
struct clone_rdma_data *crdp;
struct clist *cl_read = NULL;
struct clist *cl_send = NULL;
struct clist *cl_write = NULL;
xdrproc_t xdr_results; /* results XDR encoding function */
caddr_t xdr_location; /* response results pointer */
int retval = FALSE;
int status, msglen, num_wreply_segments = 0;
uint32_t rdma_credit = 0;
int freelen = 0;
bool_t has_args;
uint_t final_resp_len, rdma_response_op, vers;
bzero(&xdrs_rhdr, sizeof (XDR));
crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
conn = crdp->conn;
/*
* If there is a result procedure specified in the reply message,
* it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
* We need to make sure it won't be processed twice, so we null
* it for xdr_replymsg here.
*/
has_args = FALSE;
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
has_args = TRUE;
xdr_location = msg->acpted_rply.ar_results.where;
msg->acpted_rply.ar_results.proc = xdr_void;
msg->acpted_rply.ar_results.where = NULL;
}
}
/*
* Given the limit on the inline response size (RPC_MSG_SZ),
* there is a need to make a guess as to the overall size of
* the response. If the resultant size is beyond the inline
* size, then the server needs to use the "reply chunk list"
* provided by the client (if the client provided one). An
* example of this type of response would be a READDIR
* response (e.g. a small directory read would fit in RPC_MSG_SZ
* and that is the preference but it may not fit)
*
* Combine the encoded size and the size of the true results
* and then make the decision about where to encode and send results.
*
* One important note, this calculation is ignoring the size
* of the encoding of the authentication overhead. The reason
* for this is rooted in the complexities of access to the
* encoded size of RPCSEC_GSS related authentiation,
* integrity, and privacy.
*
* If it turns out that the encoded authentication bumps the
* response over the RPC_MSG_SZ limit, then it may need to
* attempt to encode for the reply chunk list.
*/
/*
* Calculating the "sizeof" the RPC response header and the
* encoded results.
*/
msglen = xdr_sizeof(xdr_replymsg, msg);
if (msglen > 0) {
RSSTAT_INCR(rstotalreplies);
}
if (has_args)
msglen += xdrrdma_sizeof(xdr_results, xdr_location,
rdma_minchunk, NULL, NULL);
DTRACE_PROBE1(krpc__i__svcrdma__ksend__msglen, int, msglen);
status = SVC_RDMA_SUCCESS;
if (msglen < RPC_MSG_SZ) {
/*
* Looks like the response will fit in the inline
* response; let's try
*/
RSSTAT_INCR(rstotalinlinereplies);
rdma_response_op = RDMA_MSG;
status = svc_compose_rpcmsg(clone_xprt, conn, xdr_results,
xdr_location, &rbuf_rpc_resp, &xdrs_rpc, msg,
has_args, &final_resp_len);
DTRACE_PROBE1(krpc__i__srdma__ksend__compose_status,
int, status);
DTRACE_PROBE1(krpc__i__srdma__ksend__compose_len,
int, final_resp_len);
if (status == SVC_RDMA_SUCCESS && crdp->cl_reply) {
clist_free(crdp->cl_reply);
crdp->cl_reply = NULL;
}
}
/*
* If the encode failed (size?) or the message really is
* larger than what is allowed, try the response chunk list.
*/
if (status != SVC_RDMA_SUCCESS || msglen >= RPC_MSG_SZ) {
/*
* attempting to use a reply chunk list when there
* isn't one won't get very far...
*/
if (crdp->cl_reply == NULL) {
DTRACE_PROBE(krpc__e__svcrdma__ksend__noreplycl);
goto out;
}
RSSTAT_INCR(rstotallongreplies);
msglen = xdr_sizeof(xdr_replymsg, msg);
msglen += xdrrdma_sizeof(xdr_results, xdr_location, 0,
NULL, NULL);
status = svc_process_long_reply(clone_xprt, xdr_results,
xdr_location, msg, has_args, &msglen, &freelen,
&num_wreply_segments, &final_resp_len);
DTRACE_PROBE1(krpc__i__svcrdma__ksend__longreplen,
int, final_resp_len);
if (status != SVC_RDMA_SUCCESS) {
DTRACE_PROBE(krpc__e__svcrdma__ksend__compose__failed);
goto out;
}
rdma_response_op = RDMA_NOMSG;
}
DTRACE_PROBE1(krpc__i__svcrdma__ksend__rdmamsg__len,
int, final_resp_len);
rbuf_resp.type = SEND_BUFFER;
if (rdma_buf_alloc(conn, &rbuf_resp)) {
rdma_buf_free(conn, &rbuf_rpc_resp);
DTRACE_PROBE(krpc__e__svcrdma__ksend__nofreebufs);
goto out;
}
rdma_credit = rdma_bufs_granted;
vers = RPCRDMA_VERS;
xdrmem_create(&xdrs_rhdr, rbuf_resp.addr, rbuf_resp.len, XDR_ENCODE);
(*(uint32_t *)rbuf_resp.addr) = msg->rm_xid;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(&xdrs_rhdr, sizeof (uint32_t));
if (!xdr_u_int(&xdrs_rhdr, &vers) ||
!xdr_u_int(&xdrs_rhdr, &rdma_credit) ||
!xdr_u_int(&xdrs_rhdr, &rdma_response_op)) {
rdma_buf_free(conn, &rbuf_rpc_resp);
rdma_buf_free(conn, &rbuf_resp);
DTRACE_PROBE(krpc__e__svcrdma__ksend__uint);
goto out;
}
/*
* Now XDR the read chunk list, actually always NULL
*/
(void) xdr_encode_rlist_svc(&xdrs_rhdr, cl_read);
/*
* encode write list -- we already drove RDMA_WRITEs
*/
cl_write = crdp->cl_wlist;
if (!xdr_encode_wlist(&xdrs_rhdr, cl_write)) {
DTRACE_PROBE(krpc__e__svcrdma__ksend__enc__wlist);
rdma_buf_free(conn, &rbuf_rpc_resp);
rdma_buf_free(conn, &rbuf_resp);
goto out;
}
/*
* XDR encode the RDMA_REPLY write chunk
*/
if (!xdr_encode_reply_wchunk(&xdrs_rhdr, crdp->cl_reply,
num_wreply_segments)) {
rdma_buf_free(conn, &rbuf_rpc_resp);
rdma_buf_free(conn, &rbuf_resp);
goto out;
}
clist_add(&cl_send, 0, XDR_GETPOS(&xdrs_rhdr), &rbuf_resp.handle,
rbuf_resp.addr, NULL, NULL);
if (rdma_response_op == RDMA_MSG) {
clist_add(&cl_send, 0, final_resp_len, &rbuf_rpc_resp.handle,
rbuf_rpc_resp.addr, NULL, NULL);
}
status = RDMA_SEND(conn, cl_send, msg->rm_xid);
if (status == RDMA_SUCCESS) {
retval = TRUE;
}
out:
/*
* Free up sendlist chunks
*/
if (cl_send != NULL)
clist_free(cl_send);
/*
* Destroy private data for xdr rdma
*/
if (clone_xprt->xp_xdrout.x_ops != NULL) {
XDR_DESTROY(&(clone_xprt->xp_xdrout));
}
if (crdp->cl_reply) {
clist_free(crdp->cl_reply);
crdp->cl_reply = NULL;
}
/*
* This is completely disgusting. If public is set it is
* a pointer to a structure whose first field is the address
* of the function to free that structure and any related
* stuff. (see rrokfree in nfs_xdr.c).
*/
if (xdrs_rpc->x_public) {
/* LINTED pointer alignment */
(**((int (**)()) xdrs_rpc->x_public)) (xdrs_rpc->x_public);
}
if (xdrs_rhdr.x_ops != NULL) {
XDR_DESTROY(&xdrs_rhdr);
}
return (retval);
}
/*
* Deserialize arguments.
*/
static bool_t
svc_rdma_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, caddr_t args_ptr)
{
if ((SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
xdr_args, args_ptr)) != TRUE)
return (FALSE);
return (TRUE);
}
static bool_t
svc_rdma_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
caddr_t args_ptr)
{
struct clone_rdma_data *crdp;
bool_t retval;
/*
* If the cloned bit is true, then this transport specific
* rmda data has been duplicated into another cloned xprt. Do
* not free, or release the connection, it is still in use. The
* buffers will be freed and the connection released later by
* SVC_CLONE_DESTROY().
*/
crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
if (crdp->cloned == TRUE) {
crdp->cloned = 0;
return (TRUE);
}
/*
* Free the args if needed then XDR_DESTROY
*/
if (args_ptr) {
XDR *xdrs = &clone_xprt->xp_xdrin;
xdrs->x_op = XDR_FREE;
retval = (*xdr_args)(xdrs, args_ptr);
}
XDR_DESTROY(&(clone_xprt->xp_xdrin));
rdma_buf_free(crdp->conn, &crdp->rpcbuf);
if (crdp->cl_reply) {
clist_free(crdp->cl_reply);
crdp->cl_reply = NULL;
}
RDMA_REL_CONN(crdp->conn);
return (retval);
}
/* ARGSUSED */
static int32_t *
svc_rdma_kgetres(SVCXPRT *clone_xprt, int size)
{
return (NULL);
}
/* ARGSUSED */
static void
svc_rdma_kfreeres(SVCXPRT *clone_xprt)
{
}
/*
* the dup cacheing routines below provide a cache of non-failure
* transaction id's. rpc service routines can use this to detect
* retransmissions and re-send a non-failure response.
*/
/*
* MAXDUPREQS is the number of cached items. It should be adjusted
* to the service load so that there is likely to be a response entry
* when the first retransmission comes in.
*/
#define MAXDUPREQS 1024
/*
* This should be appropriately scaled to MAXDUPREQS.
*/
#define DRHASHSZ 257
#if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
#define XIDHASH(xid) ((xid) & (DRHASHSZ - 1))
#else
#define XIDHASH(xid) ((xid) % DRHASHSZ)
#endif
#define DRHASH(dr) XIDHASH((dr)->dr_xid)
#define REQTOXID(req) ((req)->rq_xprt->xp_xid)
static int rdmandupreqs = 0;
int rdmamaxdupreqs = MAXDUPREQS;
static kmutex_t rdmadupreq_lock;
static struct dupreq *rdmadrhashtbl[DRHASHSZ];
static int rdmadrhashstat[DRHASHSZ];
static void unhash(struct dupreq *);
/*
* rdmadrmru points to the head of a circular linked list in lru order.
* rdmadrmru->dr_next == drlru
*/
struct dupreq *rdmadrmru;
/*
* svc_rdma_kdup searches the request cache and returns 0 if the
* request is not found in the cache. If it is found, then it
* returns the state of the request (in progress or done) and
* the status or attributes that were part of the original reply.
*/
static int
svc_rdma_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
bool_t *dupcachedp)
{
struct dupreq *dr;
uint32_t xid;
uint32_t drhash;
int status;
xid = REQTOXID(req);
mutex_enter(&rdmadupreq_lock);
RSSTAT_INCR(rsdupchecks);
/*
* Check to see whether an entry already exists in the cache.
*/
dr = rdmadrhashtbl[XIDHASH(xid)];
while (dr != NULL) {
if (dr->dr_xid == xid &&
dr->dr_proc == req->rq_proc &&
dr->dr_prog == req->rq_prog &&
dr->dr_vers == req->rq_vers &&
dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
bcmp((caddr_t)dr->dr_addr.buf,
(caddr_t)req->rq_xprt->xp_rtaddr.buf,
dr->dr_addr.len) == 0) {
status = dr->dr_status;
if (status == DUP_DONE) {
bcopy(dr->dr_resp.buf, res, size);
if (dupcachedp != NULL)
*dupcachedp = (dr->dr_resfree != NULL);
} else {
dr->dr_status = DUP_INPROGRESS;
*drpp = dr;
}
RSSTAT_INCR(rsdupreqs);
mutex_exit(&rdmadupreq_lock);
return (status);
}
dr = dr->dr_chain;
}
/*
* There wasn't an entry, either allocate a new one or recycle
* an old one.
*/
if (rdmandupreqs < rdmamaxdupreqs) {
dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
if (dr == NULL) {
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
dr->dr_resp.buf = NULL;
dr->dr_resp.maxlen = 0;
dr->dr_addr.buf = NULL;
dr->dr_addr.maxlen = 0;
if (rdmadrmru) {
dr->dr_next = rdmadrmru->dr_next;
rdmadrmru->dr_next = dr;
} else {
dr->dr_next = dr;
}
rdmandupreqs++;
} else {
dr = rdmadrmru->dr_next;
while (dr->dr_status == DUP_INPROGRESS) {
dr = dr->dr_next;
if (dr == rdmadrmru->dr_next) {
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
}
unhash(dr);
if (dr->dr_resfree) {
(*dr->dr_resfree)(dr->dr_resp.buf);
}
}
dr->dr_resfree = NULL;
rdmadrmru = dr;
dr->dr_xid = REQTOXID(req);
dr->dr_prog = req->rq_prog;
dr->dr_vers = req->rq_vers;
dr->dr_proc = req->rq_proc;
if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
if (dr->dr_addr.buf != NULL)
kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
if (dr->dr_addr.buf == NULL) {
dr->dr_addr.maxlen = 0;
dr->dr_status = DUP_DROP;
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
}
dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
if (dr->dr_resp.maxlen < size) {
if (dr->dr_resp.buf != NULL)
kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
dr->dr_resp.maxlen = (unsigned int)size;
dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
if (dr->dr_resp.buf == NULL) {
dr->dr_resp.maxlen = 0;
dr->dr_status = DUP_DROP;
mutex_exit(&rdmadupreq_lock);
return (DUP_ERROR);
}
}
dr->dr_status = DUP_INPROGRESS;
drhash = (uint32_t)DRHASH(dr);
dr->dr_chain = rdmadrhashtbl[drhash];
rdmadrhashtbl[drhash] = dr;
rdmadrhashstat[drhash]++;
mutex_exit(&rdmadupreq_lock);
*drpp = dr;
return (DUP_NEW);
}
/*
* svc_rdma_kdupdone marks the request done (DUP_DONE or DUP_DROP)
* and stores the response.
*/
static void
svc_rdma_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
int size, int status)
{
ASSERT(dr->dr_resfree == NULL);
if (status == DUP_DONE) {
bcopy(res, dr->dr_resp.buf, size);
dr->dr_resfree = dis_resfree;
}
dr->dr_status = status;
}
/*
* This routine expects that the mutex, rdmadupreq_lock, is already held.
*/
static void
unhash(struct dupreq *dr)
{
struct dupreq *drt;
struct dupreq *drtprev = NULL;
uint32_t drhash;
ASSERT(MUTEX_HELD(&rdmadupreq_lock));
drhash = (uint32_t)DRHASH(dr);
drt = rdmadrhashtbl[drhash];
while (drt != NULL) {
if (drt == dr) {
rdmadrhashstat[drhash]--;
if (drtprev == NULL) {
rdmadrhashtbl[drhash] = drt->dr_chain;
} else {
drtprev->dr_chain = drt->dr_chain;
}
return;
}
drtprev = drt;
drt = drt->dr_chain;
}
}
bool_t
rdma_get_wchunk(struct svc_req *req, iovec_t *iov, struct clist *wlist)
{
struct clist *clist;
uint32_t tlen;
if (req->rq_xprt->xp_type != T_RDMA) {
return (FALSE);
}
tlen = 0;
clist = wlist;
while (clist) {
tlen += clist->c_len;
clist = clist->c_next;
}
/*
* set iov to addr+len of first segment of first wchunk of
* wlist sent by client. krecv() already malloc'd a buffer
* large enough, but registration is deferred until we write
* the buffer back to (NFS) client using RDMA_WRITE.
*/
iov->iov_base = (caddr_t)(uintptr_t)wlist->w.c_saddr;
iov->iov_len = tlen;
return (TRUE);
}
/*
* routine to setup the read chunk lists
*/
int
rdma_setup_read_chunks(struct clist *wcl, uint32_t count, int *wcl_len)
{
int data_len, avail_len;
uint_t round_len;
data_len = avail_len = 0;
while (wcl != NULL && count > 0) {
if (wcl->c_dmemhandle.mrc_rmr == 0)
break;
if (wcl->c_len < count) {
data_len += wcl->c_len;
avail_len = 0;
} else {
data_len += count;
avail_len = wcl->c_len - count;
wcl->c_len = count;
}
count -= wcl->c_len;
if (count == 0)
break;
wcl = wcl->c_next;
}
/*
* MUST fail if there are still more data
*/
if (count > 0) {
DTRACE_PROBE2(krpc__e__rdma_setup_read_chunks_clist_len,
int, data_len, int, count);
return (FALSE);
}
/*
* Round up the last chunk to 4-byte boundary
*/
*wcl_len = roundup(data_len, BYTES_PER_XDR_UNIT);
round_len = *wcl_len - data_len;
if (round_len) {
/*
* If there is space in the current chunk,
* add the roundup to the chunk.
*/
if (avail_len >= round_len) {
wcl->c_len += round_len;
} else {
/*
* try the next one.
*/
wcl = wcl->c_next;
if ((wcl == NULL) || (wcl->c_len < round_len)) {
DTRACE_PROBE1(
krpc__e__rdma_setup_read_chunks_rndup,
int, round_len);
return (FALSE);
}
wcl->c_len = round_len;
}
}
wcl = wcl->c_next;
/*
* Make rest of the chunks 0-len
*/
clist_zero_len(wcl);
return (TRUE);
}