svc_cots.c revision 1a5e258f5471356ca102c7176637cdce45bac147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley 4.3 BSD
* under license from the Regents of the University of California.
*/
/*
* svc_cots.c
* Server side for connection-oriented RPC in the kernel.
*
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/file.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/strsun.h>
#include <sys/stropts.h>
#include <sys/tiuser.h>
#include <sys/timod.h>
#include <sys/tihdr.h>
#include <sys/fcntl.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/kstat.h>
#include <sys/vtrace.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#include <rpc/auth.h>
#include <rpc/rpc_msg.h>
#include <rpc/svc.h>
#include <inet/ip.h>
#define COTS_MAX_ALLOCSIZE 2048
#define MSG_OFFSET 128 /* offset of call into the mblk */
#define RM_HDR_SIZE 4 /* record mark header size */
/*
* Routines exported through ops vector.
*/
static bool_t svc_cots_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
static bool_t svc_cots_ksend(SVCXPRT *, struct rpc_msg *);
static bool_t svc_cots_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
static bool_t svc_cots_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
static void svc_cots_kdestroy(SVCMASTERXPRT *);
static int svc_cots_kdup(struct svc_req *, caddr_t, int,
struct dupreq **, bool_t *);
static void svc_cots_kdupdone(struct dupreq *, caddr_t,
void (*)(), int, int);
static int32_t *svc_cots_kgetres(SVCXPRT *, int);
static void svc_cots_kfreeres(SVCXPRT *);
static void svc_cots_kclone_destroy(SVCXPRT *);
static void svc_cots_kstart(SVCMASTERXPRT *);
static void svc_cots_ktattrs(SVCXPRT *, int, void **);
/*
* Server transport operations vector.
*/
struct svc_ops svc_cots_op = {
svc_cots_krecv, /* Get requests */
svc_cots_kgetargs, /* Deserialize arguments */
svc_cots_ksend, /* Send reply */
svc_cots_kfreeargs, /* Free argument data space */
svc_cots_kdestroy, /* Destroy transport handle */
svc_cots_kdup, /* Check entry in dup req cache */
svc_cots_kdupdone, /* Mark entry in dup req cache as done */
svc_cots_kgetres, /* Get pointer to response buffer */
svc_cots_kfreeres, /* Destroy pre-serialized response header */
svc_cots_kclone_destroy, /* Destroy a clone xprt */
svc_cots_kstart, /* Tell `ready-to-receive' to rpcmod */
NULL, /* Transport specific clone xprt */
svc_cots_ktattrs /* Transport Attributes */
};
/*
* Master transport private data.
* Kept in xprt->xp_p2.
*/
struct cots_master_data {
char *cmd_src_addr; /* client's address */
int cmd_xprt_started; /* flag for clone routine to call */
/* rpcmod's start routine. */
struct rpc_cots_server *cmd_stats; /* stats for zone */
};
/*
* Transport private data.
* Kept in clone_xprt->xp_p2buf.
*/
typedef struct cots_data {
mblk_t *cd_mp; /* pre-allocated reply message */
mblk_t *cd_req_mp; /* request message */
} cots_data_t;
/*
* Server statistics
* NOTE: This structure type is duplicated in the NFS fast path.
*/
static const struct rpc_cots_server {
kstat_named_t rscalls;
kstat_named_t rsbadcalls;
kstat_named_t rsnullrecv;
kstat_named_t rsbadlen;
kstat_named_t rsxdrcall;
kstat_named_t rsdupchecks;
kstat_named_t rsdupreqs;
} cots_rsstat_tmpl = {
{ "calls", KSTAT_DATA_UINT64 },
{ "badcalls", KSTAT_DATA_UINT64 },
{ "nullrecv", KSTAT_DATA_UINT64 },
{ "badlen", KSTAT_DATA_UINT64 },
{ "xdrcall", KSTAT_DATA_UINT64 },
{ "dupchecks", KSTAT_DATA_UINT64 },
{ "dupreqs", KSTAT_DATA_UINT64 }
};
#define CLONE2STATS(clone_xprt) \
((struct cots_master_data *)(clone_xprt)->xp_master->xp_p2)->cmd_stats
#define RSSTAT_INCR(s, x) \
atomic_inc_64(&(s)->x.value.ui64)
/*
* Pointer to a transport specific `ready to receive' function in rpcmod
* (set from rpcmod).
*/
void (*mir_start)(queue_t *);
uint_t *svc_max_msg_sizep;
/*
* the address size of the underlying transport can sometimes be
* unknown (tinfo->ADDR_size == -1). For this case, it is
* necessary to figure out what the size is so the correct amount
* of data is allocated. This is an itterative process:
* 1. take a good guess (use T_MINADDRSIZE)
* 2. try it.
* 3. if it works then everything is ok
* 4. if the error is ENAMETOLONG, double the guess
* 5. go back to step 2.
*/
#define T_UNKNOWNADDRSIZE (-1)
#define T_MINADDRSIZE 32
/*
* Create a transport record.
* The transport record, output buffer, and private data structure
* are allocated. The output buffer is serialized into using xdrmem.
* There is one transport record per user process which implements a
* set of services.
*/
static kmutex_t cots_kcreate_lock;
int
svc_cots_kcreate(file_t *fp, uint_t max_msgsize, struct T_info_ack *tinfo,
SVCMASTERXPRT **nxprt)
{
struct cots_master_data *cmd;
int err, retval;
SVCMASTERXPRT *xprt;
struct rpcstat *rpcstat;
struct T_addr_ack *ack_p;
struct strioctl getaddr;
if (nxprt == NULL)
return (EINVAL);
rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
ASSERT(rpcstat != NULL);
xprt = kmem_zalloc(sizeof (SVCMASTERXPRT), KM_SLEEP);
cmd = kmem_zalloc(sizeof (*cmd) + sizeof (*ack_p)
+ (2 * sizeof (sin6_t)), KM_SLEEP);
ack_p = (struct T_addr_ack *)&cmd[1];
if ((tinfo->TIDU_size > COTS_MAX_ALLOCSIZE) ||
(tinfo->TIDU_size <= 0))
xprt->xp_msg_size = COTS_MAX_ALLOCSIZE;
else {
xprt->xp_msg_size = tinfo->TIDU_size -
(tinfo->TIDU_size % BYTES_PER_XDR_UNIT);
}
xprt->xp_ops = &svc_cots_op;
xprt->xp_p2 = (caddr_t)cmd;
cmd->cmd_xprt_started = 0;
cmd->cmd_stats = rpcstat->rpc_cots_server;
getaddr.ic_cmd = TI_GETINFO;
getaddr.ic_timout = -1;
getaddr.ic_len = sizeof (*ack_p) + (2 * sizeof (sin6_t));
getaddr.ic_dp = (char *)ack_p;
ack_p->PRIM_type = T_ADDR_REQ;
err = strioctl(fp->f_vnode, I_STR, (intptr_t)&getaddr,
0, K_TO_K, CRED(), &retval);
if (err) {
kmem_free(cmd, sizeof (*cmd) + sizeof (*ack_p) +
(2 * sizeof (sin6_t)));
kmem_free(xprt, sizeof (SVCMASTERXPRT));
return (err);
}
xprt->xp_rtaddr.maxlen = ack_p->REMADDR_length;
xprt->xp_rtaddr.len = ack_p->REMADDR_length;
cmd->cmd_src_addr = xprt->xp_rtaddr.buf =
(char *)ack_p + ack_p->REMADDR_offset;
xprt->xp_lcladdr.maxlen = ack_p->LOCADDR_length;
xprt->xp_lcladdr.len = ack_p->LOCADDR_length;
xprt->xp_lcladdr.buf = (char *)ack_p + ack_p->LOCADDR_offset;
/*
* If the current sanity check size in rpcmod is smaller
* than the size needed for this xprt, then increase
* the sanity check.
*/
if (max_msgsize != 0 && svc_max_msg_sizep &&
max_msgsize > *svc_max_msg_sizep) {
/* This check needs a lock */
mutex_enter(&cots_kcreate_lock);
if (svc_max_msg_sizep && max_msgsize > *svc_max_msg_sizep)
*svc_max_msg_sizep = max_msgsize;
mutex_exit(&cots_kcreate_lock);
}
*nxprt = xprt;
return (0);
}
/*
* Destroy a master transport record.
* Frees the space allocated for a transport record.
*/
static void
svc_cots_kdestroy(SVCMASTERXPRT *xprt)
{
struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2;
ASSERT(cmd);
if (xprt->xp_netid)
kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
if (xprt->xp_addrmask.maxlen)
kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
mutex_destroy(&xprt->xp_req_lock);
mutex_destroy(&xprt->xp_thread_lock);
kmem_free(cmd, sizeof (*cmd) + sizeof (struct T_addr_ack) +
(2 * sizeof (sin6_t)));
kmem_free(xprt, sizeof (SVCMASTERXPRT));
}
/*
* svc_tli_kcreate() calls this function at the end to tell
* rpcmod that the transport is ready to receive requests.
*/
static void
svc_cots_kstart(SVCMASTERXPRT *xprt)
{
struct cots_master_data *cmd = (struct cots_master_data *)xprt->xp_p2;
if (cmd->cmd_xprt_started == 0) {
/*
* Acquire the xp_req_lock in order to use xp_wq
* safely (we don't want to qenable a queue that has
* already been closed).
*/
mutex_enter(&xprt->xp_req_lock);
if (cmd->cmd_xprt_started == 0 &&
xprt->xp_wq != NULL) {
(*mir_start)(xprt->xp_wq);
cmd->cmd_xprt_started = 1;
}
mutex_exit(&xprt->xp_req_lock);
}
}
/*
* Transport-type specific part of svc_xprt_cleanup().
*/
static void
svc_cots_kclone_destroy(SVCXPRT *clone_xprt)
{
cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
if (cd->cd_req_mp) {
freemsg(cd->cd_req_mp);
cd->cd_req_mp = (mblk_t *)0;
}
ASSERT(cd->cd_mp == NULL);
}
/*
* Transport Attributes.
*/
static void
svc_cots_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
{
*tattr = NULL;
switch (attrflag) {
case SVC_TATTR_ADDRMASK:
*tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
}
}
/*
* Receive rpc requests.
* Checks if the message is intact, and deserializes the call packet.
*/
static bool_t
svc_cots_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
{
cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
XDR *xdrs = &clone_xprt->xp_xdrin;
struct rpc_cots_server *stats = CLONE2STATS(clone_xprt);
TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KRECV_START,
"svc_cots_krecv_start:");
RPCLOG(4, "svc_cots_krecv_start clone_xprt = %p:\n",
(void *)clone_xprt);
RSSTAT_INCR(stats, rscalls);
if (mp->b_datap->db_type != M_DATA) {
RPCLOG(16, "svc_cots_krecv bad db_type %d\n",
mp->b_datap->db_type);
goto bad;
}
xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
"xdr_callmsg_start:");
RPCLOG0(4, "xdr_callmsg_start:\n");
if (!xdr_callmsg(xdrs, msg)) {
TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
"xdr_callmsg_end:(%S)", "bad");
RPCLOG0(1, "svc_cots_krecv xdr_callmsg failure\n");
RSSTAT_INCR(stats, rsxdrcall);
goto bad;
}
TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
"xdr_callmsg_end:(%S)", "good");
clone_xprt->xp_xid = msg->rm_xid;
cd->cd_req_mp = mp;
TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END,
"svc_cots_krecv_end:(%S)", "good");
RPCLOG0(4, "svc_cots_krecv_end:good\n");
return (TRUE);
bad:
if (mp)
freemsg(mp);
RSSTAT_INCR(stats, rsbadcalls);
TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KRECV_END,
"svc_cots_krecv_end:(%S)", "bad");
return (FALSE);
}
/*
* Send rpc reply.
*/
static bool_t
svc_cots_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
{
/* LINTED pointer alignment */
cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
XDR *xdrs = &(clone_xprt->xp_xdrout);
int retval = FALSE;
mblk_t *mp;
xdrproc_t xdr_results;
caddr_t xdr_location;
bool_t has_args;
TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KSEND_START,
"svc_cots_ksend_start:");
/*
* If there is a result procedure specified in the reply message,
* it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
* We need to make sure it won't be processed twice, so we null
* it for xdr_replymsg here.
*/
has_args = FALSE;
if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
has_args = TRUE;
xdr_location = msg->acpted_rply.ar_results.where;
msg->acpted_rply.ar_results.proc = xdr_void;
msg->acpted_rply.ar_results.where = NULL;
}
}
mp = cd->cd_mp;
if (mp) {
/*
* The program above pre-allocated an mblk and put
* the data in place.
*/
cd->cd_mp = (mblk_t *)NULL;
if (!(xdr_replymsg_body(xdrs, msg) &&
(!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
xdr_results, xdr_location)))) {
RPCLOG0(1, "svc_cots_ksend: "
"xdr_replymsg_body/SVCAUTH_WRAP failed\n");
freemsg(mp);
goto out;
}
} else {
int len;
int mpsize;
/*
* Leave space for protocol headers.
*/
len = MSG_OFFSET + clone_xprt->xp_msg_size;
/*
* Allocate an initial mblk for the response data.
*/
while (!(mp = allocb(len, BPRI_LO))) {
RPCLOG0(16, "svc_cots_ksend: allocb failed failed\n");
if (strwaitbuf(len, BPRI_LO)) {
TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END,
"svc_cots_ksend_end:(%S)", "strwaitbuf");
RPCLOG0(1,
"svc_cots_ksend: strwaitbuf failed\n");
goto out;
}
}
/*
* Initialize the XDR decode stream. Additional mblks
* will be allocated if necessary. They will be TIDU
* sized.
*/
xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size);
mpsize = MBLKSIZE(mp);
ASSERT(mpsize >= len);
ASSERT(mp->b_rptr == mp->b_datap->db_base);
/*
* If the size of mblk is not appreciably larger than what we
* asked, then resize the mblk to exactly len bytes. Reason for
* this: suppose len is 1600 bytes, the tidu is 1460 bytes
* (from TCP over ethernet), and the arguments to RPC require
* 2800 bytes. Ideally we want the protocol to render two
* ~1400 byte segments over the wire. If allocb() gives us a 2k
* mblk, and we allocate a second mblk for the rest, the
* protocol module may generate 3 segments over the wire:
* 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and
* 892 for the 3rd. If we "waste" 448 bytes in the first mblk,
* the XDR encoding will generate two ~1400 byte mblks, and the
* protocol module is more likely to produce properly sized
* segments.
*/
if ((mpsize >> 1) <= len) {
mp->b_rptr += (mpsize - len);
}
/*
* Adjust b_rptr to reserve space for the non-data protocol
* headers that any downstream modules might like to add, and
* for the record marking header.
*/
mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
ASSERT(mp->b_wptr == mp->b_rptr);
msg->rm_xid = clone_xprt->xp_xid;
TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
"xdr_replymsg_start:");
if (!(xdr_replymsg(xdrs, msg) &&
(!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
xdr_results, xdr_location)))) {
TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
"xdr_replymsg_end:(%S)", "bad");
freemsg(mp);
RPCLOG0(1, "svc_cots_ksend: xdr_replymsg/SVCAUTH_WRAP "
"failed\n");
goto out;
}
TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
"xdr_replymsg_end:(%S)", "good");
}
put(clone_xprt->xp_wq, mp);
retval = TRUE;
out:
/*
* This is completely disgusting. If public is set it is
* a pointer to a structure whose first field is the address
* of the function to free that structure and any related
* stuff. (see rrokfree in nfs_xdr.c).
*/
if (xdrs->x_public) {
/* LINTED pointer alignment */
(**((int (**)())xdrs->x_public))(xdrs->x_public);
}
TRACE_1(TR_FAC_KRPC, TR_SVC_COTS_KSEND_END,
"svc_cots_ksend_end:(%S)", "done");
return (retval);
}
/*
* Deserialize arguments.
*/
static bool_t
svc_cots_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
caddr_t args_ptr)
{
return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
xdr_args, args_ptr));
}
static bool_t
svc_cots_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
caddr_t args_ptr)
{
cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
mblk_t *mp;
bool_t retval;
/*
* It is important to call the XDR routine before
* freeing the request mblk. Structures in the
* XDR data may point into the mblk and require that
* the memory be intact during the free routine.
*/
if (args_ptr) {
/* LINTED pointer alignment */
XDR *xdrs = &clone_xprt->xp_xdrin;
xdrs->x_op = XDR_FREE;
retval = (*xdr_args)(xdrs, args_ptr);
} else
retval = TRUE;
if ((mp = cd->cd_req_mp) != NULL) {
cd->cd_req_mp = (mblk_t *)0;
freemsg(mp);
}
return (retval);
}
static int32_t *
svc_cots_kgetres(SVCXPRT *clone_xprt, int size)
{
/* LINTED pointer alignment */
cots_data_t *cd = (cots_data_t *)clone_xprt->xp_p2buf;
XDR *xdrs = &clone_xprt->xp_xdrout;
mblk_t *mp;
int32_t *buf;
struct rpc_msg rply;
int len;
int mpsize;
/*
* Leave space for protocol headers.
*/
len = MSG_OFFSET + clone_xprt->xp_msg_size;
/*
* Allocate an initial mblk for the response data.
*/
while ((mp = allocb(len, BPRI_LO)) == NULL) {
if (strwaitbuf(len, BPRI_LO))
return (FALSE);
}
/*
* Initialize the XDR decode stream. Additional mblks
* will be allocated if necessary. They will be TIDU
* sized.
*/
xdrmblk_init(xdrs, mp, XDR_ENCODE, clone_xprt->xp_msg_size);
mpsize = MBLKSIZE(mp);
ASSERT(mpsize >= len);
ASSERT(mp->b_rptr == mp->b_datap->db_base);
/*
* If the size of mblk is not appreciably larger than what we
* asked, then resize the mblk to exactly len bytes. Reason for
* this: suppose len is 1600 bytes, the tidu is 1460 bytes
* (from TCP over ethernet), and the arguments to RPC require
* 2800 bytes. Ideally we want the protocol to render two
* ~1400 byte segments over the wire. If allocb() gives us a 2k
* mblk, and we allocate a second mblk for the rest, the
* protocol module may generate 3 segments over the wire:
* 1460 bytes for the first, 448 (2048 - 1600) for the 2nd, and
* 892 for the 3rd. If we "waste" 448 bytes in the first mblk,
* the XDR encoding will generate two ~1400 byte mblks, and the
* protocol module is more likely to produce properly sized
* segments.
*/
if ((mpsize >> 1) <= len) {
mp->b_rptr += (mpsize - len);
}
/*
* Adjust b_rptr to reserve space for the non-data protocol
* headers that any downstream modules might like to add, and
* for the record marking header.
*/
mp->b_rptr += (MSG_OFFSET + RM_HDR_SIZE);
XDR_SETPOS(xdrs, (uint_t)(mp->b_rptr - mp->b_datap->db_base));
ASSERT(mp->b_wptr == mp->b_rptr);
/*
* Assume a successful RPC since most of them are.
*/
rply.rm_xid = clone_xprt->xp_xid;
rply.rm_direction = REPLY;
rply.rm_reply.rp_stat = MSG_ACCEPTED;
rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
rply.acpted_rply.ar_stat = SUCCESS;
if (!xdr_replymsg_hdr(xdrs, &rply)) {
freeb(mp);
return (NULL);
}
buf = XDR_INLINE(xdrs, size);
if (buf == NULL) {
ASSERT(cd->cd_mp == NULL);
freemsg(mp);
} else {
cd->cd_mp = mp;
}
return (buf);
}
static void
svc_cots_kfreeres(SVCXPRT *clone_xprt)
{
cots_data_t *cd;
mblk_t *mp;
cd = (cots_data_t *)clone_xprt->xp_p2buf;
if ((mp = cd->cd_mp) != NULL) {
cd->cd_mp = (mblk_t *)NULL;
freemsg(mp);
}
}
/*
* the dup cacheing routines below provide a cache of non-failure
* transaction id's. rpc service routines can use this to detect
* retransmissions and re-send a non-failure response.
*/
/*
* MAXDUPREQS is the number of cached items. It should be adjusted
* to the service load so that there is likely to be a response entry
* when the first retransmission comes in.
*/
#define MAXDUPREQS 1024
/*
* This should be appropriately scaled to MAXDUPREQS.
*/
#define DRHASHSZ 257
#if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
#define XIDHASH(xid) ((xid) & (DRHASHSZ - 1))
#else
#define XIDHASH(xid) ((xid) % DRHASHSZ)
#endif
#define DRHASH(dr) XIDHASH((dr)->dr_xid)
#define REQTOXID(req) ((req)->rq_xprt->xp_xid)
static int cotsndupreqs = 0;
int cotsmaxdupreqs = MAXDUPREQS;
static kmutex_t cotsdupreq_lock;
static struct dupreq *cotsdrhashtbl[DRHASHSZ];
static int cotsdrhashstat[DRHASHSZ];
static void unhash(struct dupreq *);
/*
* cotsdrmru points to the head of a circular linked list in lru order.
* cotsdrmru->dr_next == drlru
*/
struct dupreq *cotsdrmru;
/*
* PSARC 2003/523 Contract Private Interface
* svc_cots_kdup
* Changes must be reviewed by Solaris File Sharing
* Changes must be communicated to contract-2003-523@sun.com
*
* svc_cots_kdup searches the request cache and returns 0 if the
* request is not found in the cache. If it is found, then it
* returns the state of the request (in progress or done) and
* the status or attributes that were part of the original reply.
*
* If DUP_DONE (there is a duplicate) svc_cots_kdup copies over the
* value of the response. In that case, also return in *dupcachedp
* whether the response free routine is cached in the dupreq - in which case
* the caller should not be freeing it, because it will be done later
* in the svc_cots_kdup code when the dupreq is reused.
*/
static int
svc_cots_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
bool_t *dupcachedp)
{
struct rpc_cots_server *stats = CLONE2STATS(req->rq_xprt);
struct dupreq *dr;
uint32_t xid;
uint32_t drhash;
int status;
xid = REQTOXID(req);
mutex_enter(&cotsdupreq_lock);
RSSTAT_INCR(stats, rsdupchecks);
/*
* Check to see whether an entry already exists in the cache.
*/
dr = cotsdrhashtbl[XIDHASH(xid)];
while (dr != NULL) {
if (dr->dr_xid == xid &&
dr->dr_proc == req->rq_proc &&
dr->dr_prog == req->rq_prog &&
dr->dr_vers == req->rq_vers &&
dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
bcmp((caddr_t)dr->dr_addr.buf,
(caddr_t)req->rq_xprt->xp_rtaddr.buf,
dr->dr_addr.len) == 0) {
status = dr->dr_status;
if (status == DUP_DONE) {
bcopy(dr->dr_resp.buf, res, size);
if (dupcachedp != NULL)
*dupcachedp = (dr->dr_resfree != NULL);
TRACE_0(TR_FAC_KRPC, TR_SVC_COTS_KDUP_DONE,
"svc_cots_kdup: DUP_DONE");
} else {
dr->dr_status = DUP_INPROGRESS;
*drpp = dr;
TRACE_0(TR_FAC_KRPC,
TR_SVC_COTS_KDUP_INPROGRESS,
"svc_cots_kdup: DUP_INPROGRESS");
}
RSSTAT_INCR(stats, rsdupreqs);
mutex_exit(&cotsdupreq_lock);
return (status);
}
dr = dr->dr_chain;
}
/*
* There wasn't an entry, either allocate a new one or recycle
* an old one.
*/
if (cotsndupreqs < cotsmaxdupreqs) {
dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
if (dr == NULL) {
mutex_exit(&cotsdupreq_lock);
return (DUP_ERROR);
}
dr->dr_resp.buf = NULL;
dr->dr_resp.maxlen = 0;
dr->dr_addr.buf = NULL;
dr->dr_addr.maxlen = 0;
if (cotsdrmru) {
dr->dr_next = cotsdrmru->dr_next;
cotsdrmru->dr_next = dr;
} else {
dr->dr_next = dr;
}
cotsndupreqs++;
} else {
dr = cotsdrmru->dr_next;
while (dr->dr_status == DUP_INPROGRESS) {
dr = dr->dr_next;
if (dr == cotsdrmru->dr_next) {
cmn_err(CE_WARN, "svc_cots_kdup no slots free");
mutex_exit(&cotsdupreq_lock);
return (DUP_ERROR);
}
}
unhash(dr);
if (dr->dr_resfree) {
(*dr->dr_resfree)(dr->dr_resp.buf);
}
}
dr->dr_resfree = NULL;
cotsdrmru = dr;
dr->dr_xid = REQTOXID(req);
dr->dr_prog = req->rq_prog;
dr->dr_vers = req->rq_vers;
dr->dr_proc = req->rq_proc;
if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
if (dr->dr_addr.buf != NULL)
kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
if (dr->dr_addr.buf == NULL) {
dr->dr_addr.maxlen = 0;
dr->dr_status = DUP_DROP;
mutex_exit(&cotsdupreq_lock);
return (DUP_ERROR);
}
}
dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
if (dr->dr_resp.maxlen < size) {
if (dr->dr_resp.buf != NULL)
kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
dr->dr_resp.maxlen = (unsigned int)size;
dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
if (dr->dr_resp.buf == NULL) {
dr->dr_resp.maxlen = 0;
dr->dr_status = DUP_DROP;
mutex_exit(&cotsdupreq_lock);
return (DUP_ERROR);
}
}
dr->dr_status = DUP_INPROGRESS;
drhash = (uint32_t)DRHASH(dr);
dr->dr_chain = cotsdrhashtbl[drhash];
cotsdrhashtbl[drhash] = dr;
cotsdrhashstat[drhash]++;
mutex_exit(&cotsdupreq_lock);
*drpp = dr;
return (DUP_NEW);
}
/*
* PSARC 2003/523 Contract Private Interface
* svc_cots_kdupdone
* Changes must be reviewed by Solaris File Sharing
* Changes must be communicated to contract-2003-523@sun.com
*
* svc_cots_kdupdone marks the request done (DUP_DONE or DUP_DROP)
* and stores the response.
*/
static void
svc_cots_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
int size, int status)
{
ASSERT(dr->dr_resfree == NULL);
if (status == DUP_DONE) {
bcopy(res, dr->dr_resp.buf, size);
dr->dr_resfree = dis_resfree;
}
dr->dr_status = status;
}
/*
* This routine expects that the mutex, cotsdupreq_lock, is already held.
*/
static void
unhash(struct dupreq *dr)
{
struct dupreq *drt;
struct dupreq *drtprev = NULL;
uint32_t drhash;
ASSERT(MUTEX_HELD(&cotsdupreq_lock));
drhash = (uint32_t)DRHASH(dr);
drt = cotsdrhashtbl[drhash];
while (drt != NULL) {
if (drt == dr) {
cotsdrhashstat[drhash]--;
if (drtprev == NULL) {
cotsdrhashtbl[drhash] = drt->dr_chain;
} else {
drtprev->dr_chain = drt->dr_chain;
}
return;
}
drtprev = drt;
drt = drt->dr_chain;
}
}
void
svc_cots_stats_init(zoneid_t zoneid, struct rpc_cots_server **statsp)
{
*statsp = (struct rpc_cots_server *)rpcstat_zone_init_common(zoneid,
"unix", "rpc_cots_server", (const kstat_named_t *)&cots_rsstat_tmpl,
sizeof (cots_rsstat_tmpl));
}
void
svc_cots_stats_fini(zoneid_t zoneid, struct rpc_cots_server **statsp)
{
rpcstat_zone_fini_common(zoneid, "unix", "rpc_cots_server");
kmem_free(*statsp, sizeof (cots_rsstat_tmpl));
}
void
svc_cots_init(void)
{
/*
* Check to make sure that the cots private data will fit into
* the stack buffer allocated by svc_run. The ASSERT is a safety
* net if the cots_data_t structure ever changes.
*/
/*CONSTANTCONDITION*/
ASSERT(sizeof (cots_data_t) <= SVC_P2LEN);
mutex_init(&cots_kcreate_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&cotsdupreq_lock, NULL, MUTEX_DEFAULT, NULL);
}