rpcib.c revision e11c3f44f531fdff80941ce57c065d2ae861cefc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2007, The Ohio State University. All rights reserved.
*
* Portions of this source code is developed by the team members of
* The Ohio State University's Network-Based Computing Laboratory (NBCL),
* headed by Professor Dhabaleswar K. (DK) Panda.
*
* Acknowledgements to contributions from developors:
* Ranjit Noronha: noronha@cse.ohio-state.edu
* Lei Chai : chail@cse.ohio-state.edu
* Weikuan Yu : yuw@cse.ohio-state.edu
*
*/
/*
* The rpcib plugin. Implements the interface for RDMATF's
* interaction with IBTF.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/pathname.h>
#include <sys/kstat.h>
#include <sys/t_lock.h>
#include <sys/ddi.h>
#include <sys/cmn_err.h>
#include <sys/time.h>
#include <sys/isa_defs.h>
#include <sys/callb.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/sdt.h>
#include <sys/ib/ibtl/ibti.h>
#include <rpc/rpc.h>
#include <rpc/ib.h>
#include <sys/modctl.h>
#include <sys/kstr.h>
#include <sys/sockio.h>
#include <sys/vnode.h>
#include <sys/tiuser.h>
#include <net/if.h>
#include <net/if_types.h>
#include <sys/cred.h>
#include <rpc/rpc_rdma.h>
#include <nfs/nfs.h>
#include <sys/atomic.h>
#define NFS_RDMA_PORT 2050
/*
* Convenience structure used by rpcib_get_ib_addresses()
*/
typedef struct rpcib_ipaddrs {
void *ri_list; /* pointer to list of addresses */
uint_t ri_count; /* number of addresses in list */
uint_t ri_size; /* size of ri_list in bytes */
} rpcib_ipaddrs_t;
/*
* Prototype declarations for driver ops
*/
static int rpcib_attach(dev_info_t *, ddi_attach_cmd_t);
static int rpcib_getinfo(dev_info_t *, ddi_info_cmd_t,
void *, void **);
static int rpcib_detach(dev_info_t *, ddi_detach_cmd_t);
static boolean_t rpcib_rdma_capable_interface(struct lifreq *);
static int rpcib_do_ip_ioctl(int, int, void *);
static boolean_t rpcib_get_ib_addresses(rpcib_ipaddrs_t *, rpcib_ipaddrs_t *);
static int rpcib_cache_kstat_update(kstat_t *, int);
static void rib_force_cleanup(void *);
struct {
kstat_named_t cache_limit;
kstat_named_t cache_allocation;
kstat_named_t cache_hits;
kstat_named_t cache_misses;
kstat_named_t cache_misses_above_the_limit;
} rpcib_kstat = {
{"cache_limit", KSTAT_DATA_UINT64 },
{"cache_allocation", KSTAT_DATA_UINT64 },
{"cache_hits", KSTAT_DATA_UINT64 },
{"cache_misses", KSTAT_DATA_UINT64 },
{"cache_misses_above_the_limit", KSTAT_DATA_UINT64 },
};
/* rpcib cb_ops */
static struct cb_ops rpcib_cbops = {
nulldev, /* open */
nulldev, /* close */
nodev, /* strategy */
nodev, /* print */
nodev, /* dump */
nodev, /* read */
nodev, /* write */
nodev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* prop_op */
NULL, /* stream */
D_MP, /* cb_flag */
CB_REV, /* rev */
nodev, /* int (*cb_aread)() */
nodev /* int (*cb_awrite)() */
};
/*
* Device options
*/
static struct dev_ops rpcib_ops = {
DEVO_REV, /* devo_rev, */
0, /* refcnt */
rpcib_getinfo, /* info */
nulldev, /* identify */
nulldev, /* probe */
rpcib_attach, /* attach */
rpcib_detach, /* detach */
nodev, /* reset */
&rpcib_cbops, /* driver ops - devctl interfaces */
NULL, /* bus operations */
NULL, /* power */
ddi_quiesce_not_needed, /* quiesce */
};
/*
* Module linkage information.
*/
static struct modldrv rib_modldrv = {
&mod_driverops, /* Driver module */
"RPCIB plugin driver", /* Driver name and version */
&rpcib_ops, /* Driver ops */
};
static struct modlinkage rib_modlinkage = {
MODREV_1,
(void *)&rib_modldrv,
NULL
};
typedef struct rib_lrc_entry {
struct rib_lrc_entry *forw;
struct rib_lrc_entry *back;
char *lrc_buf;
uint32_t lrc_len;
void *avl_node;
bool_t registered;
struct mrc lrc_mhandle;
bool_t lrc_on_freed_list;
} rib_lrc_entry_t;
typedef struct cache_struct {
rib_lrc_entry_t r;
uint32_t len;
uint32_t elements;
kmutex_t node_lock;
avl_node_t avl_link;
} cache_avl_struct_t;
static uint64_t rib_total_buffers = 0;
uint64_t cache_limit = 100 * 1024 * 1024;
static volatile uint64_t cache_allocation = 0;
static uint64_t cache_watermark = 80 * 1024 * 1024;
static uint64_t cache_hits = 0;
static uint64_t cache_misses = 0;
static uint64_t cache_cold_misses = 0;
static uint64_t cache_hot_misses = 0;
static uint64_t cache_misses_above_the_limit = 0;
static bool_t stats_enabled = FALSE;
static uint64_t max_unsignaled_rws = 5;
/*
* rib_stat: private data pointer used when registering
* with the IBTF. It is returned to the consumer
* in all callbacks.
*/
static rpcib_state_t *rib_stat = NULL;
#define RNR_RETRIES IBT_RNR_RETRY_1
#define MAX_PORTS 2
int preposted_rbufs = RDMA_BUFS_GRANT;
int send_threshold = 1;
/*
* State of the plugin.
* ACCEPT = accepting new connections and requests.
* NO_ACCEPT = not accepting new connection and requests.
* This should eventually move to rpcib_state_t structure, since this
* will tell in which state the plugin is for a particular type of service
* like NFS, NLM or v4 Callback deamon. The plugin might be in accept
* state for one and in no_accept state for the other.
*/
int plugin_state;
kmutex_t plugin_state_lock;
ldi_ident_t rpcib_li;
/*
* RPCIB RDMATF operations
*/
#if defined(MEASURE_POOL_DEPTH)
static void rib_posted_rbufs(uint32_t x) { return; }
#endif
static rdma_stat rib_reachable(int addr_type, struct netbuf *, void **handle);
static rdma_stat rib_disconnect(CONN *conn);
static void rib_listen(struct rdma_svc_data *rd);
static void rib_listen_stop(struct rdma_svc_data *rd);
static rdma_stat rib_registermem(CONN *conn, caddr_t adsp, caddr_t buf,
uint_t buflen, struct mrc *buf_handle);
static rdma_stat rib_deregistermem(CONN *conn, caddr_t buf,
struct mrc buf_handle);
static rdma_stat rib_registermem_via_hca(rib_hca_t *hca, caddr_t adsp,
caddr_t buf, uint_t buflen, struct mrc *buf_handle);
static rdma_stat rib_deregistermem_via_hca(rib_hca_t *hca, caddr_t buf,
struct mrc buf_handle);
static rdma_stat rib_registermemsync(CONN *conn, caddr_t adsp, caddr_t buf,
uint_t buflen, struct mrc *buf_handle, RIB_SYNCMEM_HANDLE *sync_handle,
void *lrc);
static rdma_stat rib_deregistermemsync(CONN *conn, caddr_t buf,
struct mrc buf_handle, RIB_SYNCMEM_HANDLE sync_handle, void *);
static rdma_stat rib_syncmem(CONN *conn, RIB_SYNCMEM_HANDLE shandle,
caddr_t buf, int len, int cpu);
static rdma_stat rib_reg_buf_alloc(CONN *conn, rdma_buf_t *rdbuf);
static void rib_reg_buf_free(CONN *conn, rdma_buf_t *rdbuf);
static void *rib_rbuf_alloc(CONN *, rdma_buf_t *);
static void rib_rbuf_free(CONN *conn, int ptype, void *buf);
static rdma_stat rib_send(CONN *conn, struct clist *cl, uint32_t msgid);
static rdma_stat rib_send_resp(CONN *conn, struct clist *cl, uint32_t msgid);
static rdma_stat rib_post_resp(CONN *conn, struct clist *cl, uint32_t msgid);
static rdma_stat rib_post_resp_remove(CONN *conn, uint32_t msgid);
static rdma_stat rib_post_recv(CONN *conn, struct clist *cl);
static rdma_stat rib_recv(CONN *conn, struct clist **clp, uint32_t msgid);
static rdma_stat rib_read(CONN *conn, struct clist *cl, int wait);
static rdma_stat rib_write(CONN *conn, struct clist *cl, int wait);
static rdma_stat rib_ping_srv(int addr_type, struct netbuf *, rib_hca_t **);
static rdma_stat rib_conn_get(struct netbuf *, int addr_type, void *, CONN **);
static rdma_stat rib_conn_release(CONN *conn);
static rdma_stat rib_getinfo(rdma_info_t *info);
static rib_lrc_entry_t *rib_get_cache_buf(CONN *conn, uint32_t len);
static void rib_free_cache_buf(CONN *conn, rib_lrc_entry_t *buf);
static void rib_destroy_cache(rib_hca_t *hca);
static void rib_server_side_cache_reclaim(void *argp);
static int avl_compare(const void *t1, const void *t2);
static void rib_stop_services(rib_hca_t *);
static void rib_close_channels(rib_conn_list_t *);
/*
* RPCIB addressing operations
*/
/*
* RDMA operations the RPCIB module exports
*/
static rdmaops_t rib_ops = {
rib_reachable,
rib_conn_get,
rib_conn_release,
rib_listen,
rib_listen_stop,
rib_registermem,
rib_deregistermem,
rib_registermemsync,
rib_deregistermemsync,
rib_syncmem,
rib_reg_buf_alloc,
rib_reg_buf_free,
rib_send,
rib_send_resp,
rib_post_resp,
rib_post_resp_remove,
rib_post_recv,
rib_recv,
rib_read,
rib_write,
rib_getinfo,
};
/*
* RDMATF RPCIB plugin details
*/
static rdma_mod_t rib_mod = {
"ibtf", /* api name */
RDMATF_VERS_1,
0,
&rib_ops, /* rdma op vector for ibtf */
};
static rdma_stat open_hcas(rpcib_state_t *);
static rdma_stat rib_qp_init(rib_qp_t *, int);
static void rib_svc_scq_handler(ibt_cq_hdl_t, void *);
static void rib_clnt_scq_handler(ibt_cq_hdl_t, void *);
static void rib_clnt_rcq_handler(ibt_cq_hdl_t, void *);
static void rib_svc_rcq_handler(ibt_cq_hdl_t, void *);
static rib_bufpool_t *rib_rbufpool_create(rib_hca_t *hca, int ptype, int num);
static rdma_stat rib_reg_mem(rib_hca_t *, caddr_t adsp, caddr_t, uint_t,
ibt_mr_flags_t, ibt_mr_hdl_t *, ibt_mr_desc_t *);
static rdma_stat rib_reg_mem_user(rib_hca_t *, caddr_t, uint_t, ibt_mr_flags_t,
ibt_mr_hdl_t *, ibt_mr_desc_t *, caddr_t);
static rdma_stat rib_conn_to_srv(rib_hca_t *, rib_qp_t *, ibt_path_info_t *,
ibt_ip_addr_t *, ibt_ip_addr_t *);
static rdma_stat rib_clnt_create_chan(rib_hca_t *, struct netbuf *,
rib_qp_t **);
static rdma_stat rib_svc_create_chan(rib_hca_t *, caddr_t, uint8_t,
rib_qp_t **);
static rdma_stat rib_sendwait(rib_qp_t *, struct send_wid *);
static struct send_wid *rib_init_sendwait(uint32_t, int, rib_qp_t *);
static int rib_free_sendwait(struct send_wid *);
static struct rdma_done_list *rdma_done_add(rib_qp_t *qp, uint32_t xid);
static void rdma_done_rm(rib_qp_t *qp, struct rdma_done_list *rd);
static void rdma_done_rem_list(rib_qp_t *);
static void rdma_done_notify(rib_qp_t *qp, uint32_t xid);
static void rib_async_handler(void *,
ibt_hca_hdl_t, ibt_async_code_t, ibt_async_event_t *);
static rdma_stat rib_rem_rep(rib_qp_t *, struct reply *);
static struct svc_recv *rib_init_svc_recv(rib_qp_t *, ibt_wr_ds_t *);
static int rib_free_svc_recv(struct svc_recv *);
static struct recv_wid *rib_create_wid(rib_qp_t *, ibt_wr_ds_t *, uint32_t);
static void rib_free_wid(struct recv_wid *);
static rdma_stat rib_disconnect_channel(CONN *, rib_conn_list_t *);
static void rib_detach_hca(rib_hca_t *);
static rdma_stat rib_chk_srv_ibaddr(struct netbuf *, int,
ibt_path_info_t *, ibt_ip_addr_t *, ibt_ip_addr_t *);
/*
* Registration with IBTF as a consumer
*/
static struct ibt_clnt_modinfo_s rib_modinfo = {
IBTI_V2,
IBT_GENERIC,
rib_async_handler, /* async event handler */
NULL, /* Memory Region Handler */
"nfs/ib"
};
/*
* Global strucuture
*/
typedef struct rpcib_s {
dev_info_t *rpcib_dip;
kmutex_t rpcib_mutex;
} rpcib_t;
rpcib_t rpcib;
/*
* /etc/system controlled variable to control
* debugging in rpcib kernel module.
* Set it to values greater that 1 to control
* the amount of debugging messages required.
*/
int rib_debug = 0;
int
_init(void)
{
int error;
error = mod_install((struct modlinkage *)&rib_modlinkage);
if (error != 0) {
/*
* Could not load module
*/
return (error);
}
mutex_init(&plugin_state_lock, NULL, MUTEX_DRIVER, NULL);
return (0);
}
int
_fini()
{
int status;
if ((status = rdma_unregister_mod(&rib_mod)) != RDMA_SUCCESS) {
return (EBUSY);
}
/*
* Remove module
*/
if ((status = mod_remove(&rib_modlinkage)) != 0) {
(void) rdma_register_mod(&rib_mod);
return (status);
}
mutex_destroy(&plugin_state_lock);
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&rib_modlinkage, modinfop));
}
/*
* rpcib_getinfo()
* Given the device number, return the devinfo pointer or the
* instance number.
* Note: always succeed DDI_INFO_DEVT2INSTANCE, even before attach.
*/
/*ARGSUSED*/
static int
rpcib_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
{
int ret = DDI_SUCCESS;
switch (cmd) {
case DDI_INFO_DEVT2DEVINFO:
if (rpcib.rpcib_dip != NULL)
*result = rpcib.rpcib_dip;
else {
*result = NULL;
ret = DDI_FAILURE;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*result = NULL;
break;
default:
ret = DDI_FAILURE;
}
return (ret);
}
static int
rpcib_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
ibt_status_t ibt_status;
rdma_stat r_status;
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
mutex_init(&rpcib.rpcib_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_enter(&rpcib.rpcib_mutex);
if (rpcib.rpcib_dip != NULL) {
mutex_exit(&rpcib.rpcib_mutex);
return (DDI_FAILURE);
}
rpcib.rpcib_dip = dip;
mutex_exit(&rpcib.rpcib_mutex);
/*
* Create the "rpcib" minor-node.
*/
if (ddi_create_minor_node(dip,
"rpcib", S_IFCHR, 0, DDI_PSEUDO, 0) != DDI_SUCCESS) {
/* Error message, no cmn_err as they print on console */
return (DDI_FAILURE);
}
if (rib_stat == NULL) {
rib_stat = kmem_zalloc(sizeof (*rib_stat), KM_SLEEP);
mutex_init(&rib_stat->open_hca_lock, NULL, MUTEX_DRIVER, NULL);
}
rib_stat->hca_count = ibt_get_hca_list(&rib_stat->hca_guids);
if (rib_stat->hca_count < 1) {
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
ibt_status = ibt_attach(&rib_modinfo, dip,
(void *)rib_stat, &rib_stat->ibt_clnt_hdl);
if (ibt_status != IBT_SUCCESS) {
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
mutex_enter(&rib_stat->open_hca_lock);
if (open_hcas(rib_stat) != RDMA_SUCCESS) {
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
(void) ibt_detach(rib_stat->ibt_clnt_hdl);
mutex_exit(&rib_stat->open_hca_lock);
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
mutex_exit(&rib_stat->open_hca_lock);
/*
* Register with rdmatf
*/
rib_mod.rdma_count = rib_stat->hca_count;
r_status = rdma_register_mod(&rib_mod);
if (r_status != RDMA_SUCCESS && r_status != RDMA_REG_EXIST) {
rib_detach_hca(rib_stat->hca);
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
(void) ibt_detach(rib_stat->ibt_clnt_hdl);
mutex_destroy(&rib_stat->open_hca_lock);
kmem_free(rib_stat, sizeof (*rib_stat));
rib_stat = NULL;
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*ARGSUSED*/
static int
rpcib_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
default:
return (DDI_FAILURE);
}
/*
* Detach the hca and free resources
*/
mutex_enter(&plugin_state_lock);
plugin_state = NO_ACCEPT;
mutex_exit(&plugin_state_lock);
rib_detach_hca(rib_stat->hca);
ibt_free_hca_list(rib_stat->hca_guids, rib_stat->hca_count);
(void) ibt_detach(rib_stat->ibt_clnt_hdl);
mutex_enter(&rpcib.rpcib_mutex);
rpcib.rpcib_dip = NULL;
mutex_exit(&rpcib.rpcib_mutex);
mutex_destroy(&rpcib.rpcib_mutex);
return (DDI_SUCCESS);
}
static void rib_rbufpool_free(rib_hca_t *, int);
static void rib_rbufpool_deregister(rib_hca_t *, int);
static void rib_rbufpool_destroy(rib_hca_t *hca, int ptype);
static struct reply *rib_addreplylist(rib_qp_t *, uint32_t);
static rdma_stat rib_rem_replylist(rib_qp_t *);
static int rib_remreply(rib_qp_t *, struct reply *);
static rdma_stat rib_add_connlist(CONN *, rib_conn_list_t *);
static rdma_stat rib_rm_conn(CONN *, rib_conn_list_t *);
/*
* One CQ pair per HCA
*/
static rdma_stat
rib_create_cq(rib_hca_t *hca, uint32_t cq_size, ibt_cq_handler_t cq_handler,
rib_cq_t **cqp, rpcib_state_t *ribstat)
{
rib_cq_t *cq;
ibt_cq_attr_t cq_attr;
uint32_t real_size;
ibt_status_t status;
rdma_stat error = RDMA_SUCCESS;
cq = kmem_zalloc(sizeof (rib_cq_t), KM_SLEEP);
cq->rib_hca = hca;
cq_attr.cq_size = cq_size;
cq_attr.cq_flags = IBT_CQ_NO_FLAGS;
status = ibt_alloc_cq(hca->hca_hdl, &cq_attr, &cq->rib_cq_hdl,
&real_size);
if (status != IBT_SUCCESS) {
cmn_err(CE_WARN, "rib_create_cq: ibt_alloc_cq() failed,"
" status=%d", status);
error = RDMA_FAILED;
goto fail;
}
ibt_set_cq_handler(cq->rib_cq_hdl, cq_handler, ribstat);
/*
* Enable CQ callbacks. CQ Callbacks are single shot
* (e.g. you have to call ibt_enable_cq_notify()
* after each callback to get another one).
*/
status = ibt_enable_cq_notify(cq->rib_cq_hdl, IBT_NEXT_COMPLETION);
if (status != IBT_SUCCESS) {
cmn_err(CE_WARN, "rib_create_cq: "
"enable_cq_notify failed, status %d", status);
error = RDMA_FAILED;
goto fail;
}
*cqp = cq;
return (error);
fail:
if (cq->rib_cq_hdl)
(void) ibt_free_cq(cq->rib_cq_hdl);
if (cq)
kmem_free(cq, sizeof (rib_cq_t));
return (error);
}
static rdma_stat
open_hcas(rpcib_state_t *ribstat)
{
rib_hca_t *hca;
ibt_status_t ibt_status;
rdma_stat status;
ibt_hca_portinfo_t *pinfop;
ibt_pd_flags_t pd_flags = IBT_PD_NO_FLAGS;
uint_t size, cq_size;
int i;
kstat_t *ksp;
cache_avl_struct_t example_avl_node;
char rssc_name[32];
ASSERT(MUTEX_HELD(&ribstat->open_hca_lock));
if (ribstat->hcas == NULL)
ribstat->hcas = kmem_zalloc(ribstat->hca_count *
sizeof (rib_hca_t), KM_SLEEP);
/*
* Open a hca and setup for RDMA
*/
for (i = 0; i < ribstat->hca_count; i++) {
ibt_status = ibt_open_hca(ribstat->ibt_clnt_hdl,
ribstat->hca_guids[i],
&ribstat->hcas[i].hca_hdl);
if (ibt_status != IBT_SUCCESS) {
continue;
}
ribstat->hcas[i].hca_guid = ribstat->hca_guids[i];
hca = &(ribstat->hcas[i]);
hca->ibt_clnt_hdl = ribstat->ibt_clnt_hdl;
hca->state = HCA_INITED;
/*
* query HCA info
*/
ibt_status = ibt_query_hca(hca->hca_hdl, &hca->hca_attrs);
if (ibt_status != IBT_SUCCESS) {
goto fail1;
}
/*
* One PD (Protection Domain) per HCA.
* A qp is allowed to access a memory region
* only when it's in the same PD as that of
* the memory region.
*/
ibt_status = ibt_alloc_pd(hca->hca_hdl, pd_flags, &hca->pd_hdl);
if (ibt_status != IBT_SUCCESS) {
goto fail1;
}
/*
* query HCA ports
*/
ibt_status = ibt_query_hca_ports(hca->hca_hdl,
0, &pinfop, &hca->hca_nports, &size);
if (ibt_status != IBT_SUCCESS) {
goto fail2;
}
hca->hca_ports = pinfop;
hca->hca_pinfosz = size;
pinfop = NULL;
cq_size = DEF_CQ_SIZE; /* default cq size */
/*
* Create 2 pairs of cq's (1 pair for client
* and the other pair for server) on this hca.
* If number of qp's gets too large, then several
* cq's will be needed.
*/
status = rib_create_cq(hca, cq_size, rib_svc_rcq_handler,
&hca->svc_rcq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
status = rib_create_cq(hca, cq_size, rib_svc_scq_handler,
&hca->svc_scq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
status = rib_create_cq(hca, cq_size, rib_clnt_rcq_handler,
&hca->clnt_rcq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
status = rib_create_cq(hca, cq_size, rib_clnt_scq_handler,
&hca->clnt_scq, ribstat);
if (status != RDMA_SUCCESS) {
goto fail3;
}
/*
* Create buffer pools.
* Note rib_rbuf_create also allocates memory windows.
*/
hca->recv_pool = rib_rbufpool_create(hca,
RECV_BUFFER, MAX_BUFS);
if (hca->recv_pool == NULL) {
goto fail3;
}
hca->send_pool = rib_rbufpool_create(hca,
SEND_BUFFER, MAX_BUFS);
if (hca->send_pool == NULL) {
rib_rbufpool_destroy(hca, RECV_BUFFER);
goto fail3;
}
if (hca->server_side_cache == NULL) {
(void) sprintf(rssc_name,
"rib_server_side_cache_%04d", i);
hca->server_side_cache = kmem_cache_create(
rssc_name,
sizeof (cache_avl_struct_t), 0,
NULL,
NULL,
rib_server_side_cache_reclaim,
hca, NULL, 0);
}
avl_create(&hca->avl_tree,
avl_compare,
sizeof (cache_avl_struct_t),
(uint_t)(uintptr_t)&example_avl_node.avl_link-
(uint_t)(uintptr_t)&example_avl_node);
rw_init(&hca->avl_rw_lock,
NULL, RW_DRIVER, hca->iblock);
mutex_init(&hca->cache_allocation,
NULL, MUTEX_DRIVER, NULL);
hca->avl_init = TRUE;
/* Create kstats for the cache */
ASSERT(INGLOBALZONE(curproc));
if (!stats_enabled) {
ksp = kstat_create_zone("unix", 0, "rpcib_cache", "rpc",
KSTAT_TYPE_NAMED,
sizeof (rpcib_kstat) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE,
GLOBAL_ZONEID);
if (ksp) {
ksp->ks_data = (void *) &rpcib_kstat;
ksp->ks_update = rpcib_cache_kstat_update;
kstat_install(ksp);
stats_enabled = TRUE;
}
}
if (NULL == hca->reg_cache_clean_up) {
hca->reg_cache_clean_up = ddi_taskq_create(NULL,
"REG_CACHE_CLEANUP", 1, TASKQ_DEFAULTPRI, 0);
}
/*
* Initialize the registered service list and
* the lock
*/
hca->service_list = NULL;
rw_init(&hca->service_list_lock, NULL, RW_DRIVER, hca->iblock);
mutex_init(&hca->cb_lock, NULL, MUTEX_DRIVER, hca->iblock);
cv_init(&hca->cb_cv, NULL, CV_DRIVER, NULL);
rw_init(&hca->cl_conn_list.conn_lock, NULL, RW_DRIVER,
hca->iblock);
rw_init(&hca->srv_conn_list.conn_lock, NULL, RW_DRIVER,
hca->iblock);
rw_init(&hca->state_lock, NULL, RW_DRIVER, hca->iblock);
mutex_init(&hca->inuse_lock, NULL, MUTEX_DRIVER, hca->iblock);
hca->inuse = TRUE;
/*
* XXX One hca only. Add multi-hca functionality if needed
* later.
*/
ribstat->hca = hca;
ribstat->nhca_inited++;
ibt_free_portinfo(hca->hca_ports, hca->hca_pinfosz);
break;
fail3:
ibt_free_portinfo(hca->hca_ports, hca->hca_pinfosz);
fail2:
(void) ibt_free_pd(hca->hca_hdl, hca->pd_hdl);
fail1:
(void) ibt_close_hca(hca->hca_hdl);
}
if (ribstat->hca != NULL)
return (RDMA_SUCCESS);
else
return (RDMA_FAILED);
}
/*
* Callback routines
*/
/*
* SCQ handlers
*/
/* ARGSUSED */
static void
rib_clnt_scq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
ibt_status_t ibt_status;
ibt_wc_t wc;
int i;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
/*
* Got a send completion
*/
if (wc.wc_id != NULL) { /* XXX can it be otherwise ???? */
struct send_wid *wd = (struct send_wid *)(uintptr_t)wc.wc_id;
CONN *conn = qptoc(wd->qp);
mutex_enter(&wd->sendwait_lock);
switch (wc.wc_status) {
case IBT_WC_SUCCESS:
wd->status = RDMA_SUCCESS;
break;
case IBT_WC_WR_FLUSHED_ERR:
wd->status = RDMA_FAILED;
break;
default:
/*
* RC Send Q Error Code Local state Remote State
* ==================== =========== ============
* IBT_WC_BAD_RESPONSE_ERR ERROR None
* IBT_WC_LOCAL_LEN_ERR ERROR None
* IBT_WC_LOCAL_CHAN_OP_ERR ERROR None
* IBT_WC_LOCAL_PROTECT_ERR ERROR None
* IBT_WC_MEM_WIN_BIND_ERR ERROR None
* IBT_WC_REMOTE_INVALID_REQ_ERR ERROR ERROR
* IBT_WC_REMOTE_ACCESS_ERR ERROR ERROR
* IBT_WC_REMOTE_OP_ERR ERROR ERROR
* IBT_WC_RNR_NAK_TIMEOUT_ERR ERROR None
* IBT_WC_TRANS_TIMEOUT_ERR ERROR None
* IBT_WC_WR_FLUSHED_ERR None None
*/
/*
* Channel in error state. Set connection to
* ERROR and cleanup will happen either from
* conn_release or from rib_conn_get
*/
wd->status = RDMA_FAILED;
mutex_enter(&conn->c_lock);
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
break;
}
if (wd->cv_sig == 1) {
/*
* Notify poster
*/
cv_signal(&wd->wait_cv);
mutex_exit(&wd->sendwait_lock);
} else {
/*
* Poster not waiting for notification.
* Free the send buffers and send_wid
*/
for (i = 0; i < wd->nsbufs; i++) {
rib_rbuf_free(qptoc(wd->qp), SEND_BUFFER,
(void *)(uintptr_t)wd->sbufaddr[i]);
}
mutex_exit(&wd->sendwait_lock);
(void) rib_free_sendwait(wd);
}
}
}
}
/* ARGSUSED */
static void
rib_svc_scq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
ibt_status_t ibt_status;
ibt_wc_t wc;
int i;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
/*
* Got a send completion
*/
if (wc.wc_id != NULL) { /* XXX NULL possible ???? */
struct send_wid *wd =
(struct send_wid *)(uintptr_t)wc.wc_id;
mutex_enter(&wd->sendwait_lock);
if (wd->cv_sig == 1) {
/*
* Update completion status and notify poster
*/
if (wc.wc_status == IBT_WC_SUCCESS)
wd->status = RDMA_SUCCESS;
else
wd->status = RDMA_FAILED;
cv_signal(&wd->wait_cv);
mutex_exit(&wd->sendwait_lock);
} else {
/*
* Poster not waiting for notification.
* Free the send buffers and send_wid
*/
for (i = 0; i < wd->nsbufs; i++) {
rib_rbuf_free(qptoc(wd->qp),
SEND_BUFFER,
(void *)(uintptr_t)wd->sbufaddr[i]);
}
mutex_exit(&wd->sendwait_lock);
(void) rib_free_sendwait(wd);
}
}
}
}
/*
* RCQ handler
*/
/* ARGSUSED */
static void
rib_clnt_rcq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
rib_qp_t *qp;
ibt_status_t ibt_status;
ibt_wc_t wc;
struct recv_wid *rwid;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
rwid = (struct recv_wid *)(uintptr_t)wc.wc_id;
qp = rwid->qp;
if (wc.wc_status == IBT_WC_SUCCESS) {
XDR inxdrs, *xdrs;
uint_t xid, vers, op, find_xid = 0;
struct reply *r;
CONN *conn = qptoc(qp);
uint32_t rdma_credit = 0;
xdrs = &inxdrs;
xdrmem_create(xdrs, (caddr_t)(uintptr_t)rwid->addr,
wc.wc_bytes_xfer, XDR_DECODE);
/*
* Treat xid as opaque (xid is the first entity
* in the rpc rdma message).
*/
xid = *(uint32_t *)(uintptr_t)rwid->addr;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(xdrs, sizeof (uint32_t));
(void) xdr_u_int(xdrs, &vers);
(void) xdr_u_int(xdrs, &rdma_credit);
(void) xdr_u_int(xdrs, &op);
XDR_DESTROY(xdrs);
if (vers != RPCRDMA_VERS) {
/*
* Invalid RPC/RDMA version. Cannot
* interoperate. Set connection to
* ERROR state and bail out.
*/
mutex_enter(&conn->c_lock);
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
rib_free_wid(rwid);
continue;
}
mutex_enter(&qp->replylist_lock);
for (r = qp->replylist; r != NULL; r = r->next) {
if (r->xid == xid) {
find_xid = 1;
switch (op) {
case RDMA_MSG:
case RDMA_NOMSG:
case RDMA_MSGP:
r->status = RDMA_SUCCESS;
r->vaddr_cq = rwid->addr;
r->bytes_xfer =
wc.wc_bytes_xfer;
cv_signal(&r->wait_cv);
break;
default:
rib_rbuf_free(qptoc(qp),
RECV_BUFFER,
(void *)(uintptr_t)
rwid->addr);
break;
}
break;
}
}
mutex_exit(&qp->replylist_lock);
if (find_xid == 0) {
/* RPC caller not waiting for reply */
DTRACE_PROBE1(rpcib__i__nomatchxid1,
int, xid);
rib_rbuf_free(qptoc(qp), RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
}
} else if (wc.wc_status == IBT_WC_WR_FLUSHED_ERR) {
CONN *conn = qptoc(qp);
/*
* Connection being flushed. Just free
* the posted buffer
*/
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
} else {
CONN *conn = qptoc(qp);
/*
* RC Recv Q Error Code Local state Remote State
* ==================== =========== ============
* IBT_WC_LOCAL_ACCESS_ERR ERROR ERROR when NAK recvd
* IBT_WC_LOCAL_LEN_ERR ERROR ERROR when NAK recvd
* IBT_WC_LOCAL_PROTECT_ERR ERROR ERROR when NAK recvd
* IBT_WC_LOCAL_CHAN_OP_ERR ERROR ERROR when NAK recvd
* IBT_WC_REMOTE_INVALID_REQ_ERR ERROR ERROR when NAK recvd
* IBT_WC_WR_FLUSHED_ERR None None
*/
/*
* Channel in error state. Set connection
* in ERROR state.
*/
mutex_enter(&conn->c_lock);
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)rwid->addr);
}
rib_free_wid(rwid);
}
}
/* Server side */
/* ARGSUSED */
static void
rib_svc_rcq_handler(ibt_cq_hdl_t cq_hdl, void *arg)
{
rdma_recv_data_t *rdp;
rib_qp_t *qp;
ibt_status_t ibt_status;
ibt_wc_t wc;
struct svc_recv *s_recvp;
CONN *conn;
mblk_t *mp;
/*
* Re-enable cq notify here to avoid missing any
* completion queue notification.
*/
(void) ibt_enable_cq_notify(cq_hdl, IBT_NEXT_COMPLETION);
ibt_status = IBT_SUCCESS;
while (ibt_status != IBT_CQ_EMPTY) {
bzero(&wc, sizeof (wc));
ibt_status = ibt_poll_cq(cq_hdl, &wc, 1, NULL);
if (ibt_status != IBT_SUCCESS)
return;
s_recvp = (struct svc_recv *)(uintptr_t)wc.wc_id;
qp = s_recvp->qp;
conn = qptoc(qp);
mutex_enter(&qp->posted_rbufs_lock);
qp->n_posted_rbufs--;
#if defined(MEASURE_POOL_DEPTH)
rib_posted_rbufs(preposted_rbufs - qp->n_posted_rbufs);
#endif
if (qp->n_posted_rbufs == 0)
cv_signal(&qp->posted_rbufs_cv);
mutex_exit(&qp->posted_rbufs_lock);
if (wc.wc_status == IBT_WC_SUCCESS) {
XDR inxdrs, *xdrs;
uint_t xid, vers, op;
uint32_t rdma_credit;
xdrs = &inxdrs;
/* s_recvp->vaddr stores data */
xdrmem_create(xdrs, (caddr_t)(uintptr_t)s_recvp->vaddr,
wc.wc_bytes_xfer, XDR_DECODE);
/*
* Treat xid as opaque (xid is the first entity
* in the rpc rdma message).
*/
xid = *(uint32_t *)(uintptr_t)s_recvp->vaddr;
/* Skip xid and set the xdr position accordingly. */
XDR_SETPOS(xdrs, sizeof (uint32_t));
if (!xdr_u_int(xdrs, &vers) ||
!xdr_u_int(xdrs, &rdma_credit) ||
!xdr_u_int(xdrs, &op)) {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
XDR_DESTROY(xdrs);
(void) rib_free_svc_recv(s_recvp);
continue;
}
XDR_DESTROY(xdrs);
if (vers != RPCRDMA_VERS) {
/*
* Invalid RPC/RDMA version.
* Drop rpc rdma message.
*/
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
(void) rib_free_svc_recv(s_recvp);
continue;
}
/*
* Is this for RDMA_DONE?
*/
if (op == RDMA_DONE) {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
/*
* Wake up the thread waiting on
* a RDMA_DONE for xid
*/
mutex_enter(&qp->rdlist_lock);
rdma_done_notify(qp, xid);
mutex_exit(&qp->rdlist_lock);
(void) rib_free_svc_recv(s_recvp);
continue;
}
mutex_enter(&plugin_state_lock);
if (plugin_state == ACCEPT) {
while ((mp = allocb(sizeof (*rdp), BPRI_LO))
== NULL)
(void) strwaitbuf(
sizeof (*rdp), BPRI_LO);
/*
* Plugin is in accept state, hence the master
* transport queue for this is still accepting
* requests. Hence we can call svc_queuereq to
* queue this recieved msg.
*/
rdp = (rdma_recv_data_t *)mp->b_rptr;
rdp->conn = conn;
rdp->rpcmsg.addr =
(caddr_t)(uintptr_t)s_recvp->vaddr;
rdp->rpcmsg.type = RECV_BUFFER;
rdp->rpcmsg.len = wc.wc_bytes_xfer;
rdp->status = wc.wc_status;
mutex_enter(&conn->c_lock);
conn->c_ref++;
mutex_exit(&conn->c_lock);
mp->b_wptr += sizeof (*rdp);
svc_queuereq((queue_t *)rib_stat->q, mp);
mutex_exit(&plugin_state_lock);
} else {
/*
* The master transport for this is going
* away and the queue is not accepting anymore
* requests for krpc, so don't do anything, just
* free the msg.
*/
mutex_exit(&plugin_state_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
}
} else {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)s_recvp->vaddr);
}
(void) rib_free_svc_recv(s_recvp);
}
}
/*
* Handles DR event of IBT_HCA_DETACH_EVENT.
*/
/* ARGSUSED */
static void
rib_async_handler(void *clnt_private, ibt_hca_hdl_t hca_hdl,
ibt_async_code_t code, ibt_async_event_t *event)
{
switch (code) {
case IBT_HCA_ATTACH_EVENT:
/* ignore */
break;
case IBT_HCA_DETACH_EVENT:
{
ASSERT(rib_stat->hca->hca_hdl == hca_hdl);
rib_detach_hca(rib_stat->hca);
#ifdef DEBUG
cmn_err(CE_NOTE, "rib_async_handler(): HCA being detached!\n");
#endif
break;
}
#ifdef DEBUG
case IBT_EVENT_PATH_MIGRATED:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_EVENT_PATH_MIGRATED\n");
break;
case IBT_EVENT_SQD:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_EVENT_SQD\n");
break;
case IBT_EVENT_COM_EST:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_EVENT_COM_EST\n");
break;
case IBT_ERROR_CATASTROPHIC_CHAN:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_CATASTROPHIC_CHAN\n");
break;
case IBT_ERROR_INVALID_REQUEST_CHAN:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_INVALID_REQUEST_CHAN\n");
break;
case IBT_ERROR_ACCESS_VIOLATION_CHAN:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_ACCESS_VIOLATION_CHAN\n");
break;
case IBT_ERROR_PATH_MIGRATE_REQ:
cmn_err(CE_NOTE, "rib_async_handler(): "
"IBT_ERROR_PATH_MIGRATE_REQ\n");
break;
case IBT_ERROR_CQ:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ERROR_CQ\n");
break;
case IBT_ERROR_PORT_DOWN:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ERROR_PORT_DOWN\n");
break;
case IBT_EVENT_PORT_UP:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_EVENT_PORT_UP\n");
break;
case IBT_ASYNC_OPAQUE1:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE1\n");
break;
case IBT_ASYNC_OPAQUE2:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE2\n");
break;
case IBT_ASYNC_OPAQUE3:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE3\n");
break;
case IBT_ASYNC_OPAQUE4:
cmn_err(CE_NOTE, "rib_async_handler(): IBT_ASYNC_OPAQUE4\n");
break;
#endif
default:
break;
}
}
/*
* Client's reachable function.
*/
static rdma_stat
rib_reachable(int addr_type, struct netbuf *raddr, void **handle)
{
rib_hca_t *hca;
rdma_stat status;
/*
* First check if a hca is still attached
*/
*handle = NULL;
rw_enter(&rib_stat->hca->state_lock, RW_READER);
if (rib_stat->hca->state != HCA_INITED) {
rw_exit(&rib_stat->hca->state_lock);
return (RDMA_FAILED);
}
status = rib_ping_srv(addr_type, raddr, &hca);
rw_exit(&rib_stat->hca->state_lock);
if (status == RDMA_SUCCESS) {
*handle = (void *)hca;
return (RDMA_SUCCESS);
} else {
*handle = NULL;
DTRACE_PROBE(rpcib__i__pingfailed);
return (RDMA_FAILED);
}
}
/* Client side qp creation */
static rdma_stat
rib_clnt_create_chan(rib_hca_t *hca, struct netbuf *raddr, rib_qp_t **qp)
{
rib_qp_t *kqp = NULL;
CONN *conn;
rdma_clnt_cred_ctrl_t *cc_info;
ASSERT(qp != NULL);
*qp = NULL;
kqp = kmem_zalloc(sizeof (rib_qp_t), KM_SLEEP);
conn = qptoc(kqp);
kqp->hca = hca;
kqp->rdmaconn.c_rdmamod = &rib_mod;
kqp->rdmaconn.c_private = (caddr_t)kqp;
kqp->mode = RIB_CLIENT;
kqp->chan_flags = IBT_BLOCKING;
conn->c_raddr.buf = kmem_alloc(raddr->len, KM_SLEEP);
bcopy(raddr->buf, conn->c_raddr.buf, raddr->len);
conn->c_raddr.len = conn->c_raddr.maxlen = raddr->len;
/*
* Initialize
*/
cv_init(&kqp->cb_conn_cv, NULL, CV_DEFAULT, NULL);
cv_init(&kqp->posted_rbufs_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->posted_rbufs_lock, NULL, MUTEX_DRIVER, hca->iblock);
mutex_init(&kqp->replylist_lock, NULL, MUTEX_DRIVER, hca->iblock);
mutex_init(&kqp->rdlist_lock, NULL, MUTEX_DEFAULT, hca->iblock);
mutex_init(&kqp->cb_lock, NULL, MUTEX_DRIVER, hca->iblock);
cv_init(&kqp->rdmaconn.c_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->rdmaconn.c_lock, NULL, MUTEX_DRIVER, hca->iblock);
/*
* Initialize the client credit control
* portion of the rdmaconn struct.
*/
kqp->rdmaconn.c_cc_type = RDMA_CC_CLNT;
cc_info = &kqp->rdmaconn.rdma_conn_cred_ctrl_u.c_clnt_cc;
cc_info->clnt_cc_granted_ops = 0;
cc_info->clnt_cc_in_flight_ops = 0;
cv_init(&cc_info->clnt_cc_cv, NULL, CV_DEFAULT, NULL);
*qp = kqp;
return (RDMA_SUCCESS);
}
/* Server side qp creation */
static rdma_stat
rib_svc_create_chan(rib_hca_t *hca, caddr_t q, uint8_t port, rib_qp_t **qp)
{
rib_qp_t *kqp = NULL;
ibt_chan_sizes_t chan_sizes;
ibt_rc_chan_alloc_args_t qp_attr;
ibt_status_t ibt_status;
rdma_srv_cred_ctrl_t *cc_info;
*qp = NULL;
kqp = kmem_zalloc(sizeof (rib_qp_t), KM_SLEEP);
kqp->hca = hca;
kqp->port_num = port;
kqp->rdmaconn.c_rdmamod = &rib_mod;
kqp->rdmaconn.c_private = (caddr_t)kqp;
/*
* Create the qp handle
*/
bzero(&qp_attr, sizeof (ibt_rc_chan_alloc_args_t));
qp_attr.rc_scq = hca->svc_scq->rib_cq_hdl;
qp_attr.rc_rcq = hca->svc_rcq->rib_cq_hdl;
qp_attr.rc_pd = hca->pd_hdl;
qp_attr.rc_hca_port_num = port;
qp_attr.rc_sizes.cs_sq_sgl = DSEG_MAX;
qp_attr.rc_sizes.cs_rq_sgl = RQ_DSEG_MAX;
qp_attr.rc_sizes.cs_sq = DEF_SQ_SIZE;
qp_attr.rc_sizes.cs_rq = DEF_RQ_SIZE;
qp_attr.rc_clone_chan = NULL;
qp_attr.rc_control = IBT_CEP_RDMA_RD | IBT_CEP_RDMA_WR;
qp_attr.rc_flags = IBT_WR_SIGNALED;
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_DETACHED) {
ibt_status = ibt_alloc_rc_channel(hca->hca_hdl,
IBT_ACHAN_NO_FLAGS, &qp_attr, &kqp->qp_hdl,
&chan_sizes);
} else {
rw_exit(&hca->state_lock);
goto fail;
}
rw_exit(&hca->state_lock);
if (ibt_status != IBT_SUCCESS) {
DTRACE_PROBE1(rpcib__i_svccreatechanfail,
int, ibt_status);
goto fail;
}
kqp->mode = RIB_SERVER;
kqp->chan_flags = IBT_BLOCKING;
kqp->q = q; /* server ONLY */
cv_init(&kqp->cb_conn_cv, NULL, CV_DEFAULT, NULL);
cv_init(&kqp->posted_rbufs_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->replylist_lock, NULL, MUTEX_DEFAULT, hca->iblock);
mutex_init(&kqp->posted_rbufs_lock, NULL, MUTEX_DRIVER, hca->iblock);
mutex_init(&kqp->rdlist_lock, NULL, MUTEX_DEFAULT, hca->iblock);
mutex_init(&kqp->cb_lock, NULL, MUTEX_DRIVER, hca->iblock);
cv_init(&kqp->rdmaconn.c_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&kqp->rdmaconn.c_lock, NULL, MUTEX_DRIVER, hca->iblock);
/*
* Set the private data area to qp to be used in callbacks
*/
ibt_set_chan_private(kqp->qp_hdl, (void *)kqp);
kqp->rdmaconn.c_state = C_CONNECTED;
/*
* Initialize the server credit control
* portion of the rdmaconn struct.
*/
kqp->rdmaconn.c_cc_type = RDMA_CC_SRV;
cc_info = &kqp->rdmaconn.rdma_conn_cred_ctrl_u.c_srv_cc;
cc_info->srv_cc_buffers_granted = preposted_rbufs;
cc_info->srv_cc_cur_buffers_used = 0;
cc_info->srv_cc_posted = preposted_rbufs;
*qp = kqp;
return (RDMA_SUCCESS);
fail:
if (kqp)
kmem_free(kqp, sizeof (rib_qp_t));
return (RDMA_FAILED);
}
/* ARGSUSED */
ibt_cm_status_t
rib_clnt_cm_handler(void *clnt_hdl, ibt_cm_event_t *event,
ibt_cm_return_args_t *ret_args, void *priv_data,
ibt_priv_data_len_t len)
{
rpcib_state_t *ribstat;
rib_hca_t *hca;
ribstat = (rpcib_state_t *)clnt_hdl;
hca = (rib_hca_t *)ribstat->hca;
switch (event->cm_type) {
/* got a connection close event */
case IBT_CM_EVENT_CONN_CLOSED:
{
CONN *conn;
rib_qp_t *qp;
/* check reason why connection was closed */
switch (event->cm_event.closed) {
case IBT_CM_CLOSED_DREP_RCVD:
case IBT_CM_CLOSED_DREQ_TIMEOUT:
case IBT_CM_CLOSED_DUP:
case IBT_CM_CLOSED_ABORT:
case IBT_CM_CLOSED_ALREADY:
/*
* These cases indicate the local end initiated
* the closing of the channel. Nothing to do here.
*/
break;
default:
/*
* Reason for CONN_CLOSED event must be one of
* IBT_CM_CLOSED_DREQ_RCVD or IBT_CM_CLOSED_REJ_RCVD
* or IBT_CM_CLOSED_STALE. These indicate cases were
* the remote end is closing the channel. In these
* cases free the channel and transition to error
* state
*/
qp = ibt_get_chan_private(event->cm_channel);
conn = qptoc(qp);
mutex_enter(&conn->c_lock);
if (conn->c_state == C_DISCONN_PEND) {
mutex_exit(&conn->c_lock);
break;
}
conn->c_state = C_ERROR_CONN;
/*
* Free the rc_channel. Channel has already
* transitioned to ERROR state and WRs have been
* FLUSHED_ERR already.
*/
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
/*
* Free the conn if c_ref is down to 0 already
*/
if (conn->c_ref == 0) {
/*
* Remove from list and free conn
*/
conn->c_state = C_DISCONN_PEND;
mutex_exit(&conn->c_lock);
(void) rib_disconnect_channel(conn,
&hca->cl_conn_list);
} else {
mutex_exit(&conn->c_lock);
}
#ifdef DEBUG
if (rib_debug)
cmn_err(CE_NOTE, "rib_clnt_cm_handler: "
"(CONN_CLOSED) channel disconnected");
#endif
break;
}
break;
}
default:
break;
}
return (IBT_CM_ACCEPT);
}
/* Check server ib address */
rdma_stat
rib_chk_srv_ibaddr(struct netbuf *raddr,
int addr_type, ibt_path_info_t *path, ibt_ip_addr_t *s_ip,
ibt_ip_addr_t *d_ip)
{
struct sockaddr_in *sin4;
struct sockaddr_in6 *sin6;
ibt_status_t ibt_status;
ibt_ip_path_attr_t ipattr;
uint8_t npaths = 0;
ibt_path_ip_src_t srcip;
ASSERT(raddr->buf != NULL);
(void) bzero(path, sizeof (ibt_path_info_t));
switch (addr_type) {
case AF_INET:
sin4 = (struct sockaddr_in *)raddr->buf;
d_ip->family = AF_INET;
d_ip->un.ip4addr = sin4->sin_addr.s_addr;
break;
case AF_INET6:
sin6 = (struct sockaddr_in6 *)raddr->buf;
d_ip->family = AF_INET6;
d_ip->un.ip6addr = sin6->sin6_addr;
break;
default:
return (RDMA_INVAL);
}
bzero(&ipattr, sizeof (ibt_ip_path_attr_t));
bzero(&srcip, sizeof (ibt_path_ip_src_t));
ipattr.ipa_dst_ip = d_ip;
ipattr.ipa_hca_guid = rib_stat->hca->hca_guid;
ipattr.ipa_ndst = 1;
ipattr.ipa_max_paths = 1;
npaths = 0;
ibt_status = ibt_get_ip_paths(rib_stat->ibt_clnt_hdl,
IBT_PATH_NO_FLAGS,
&ipattr,
path,
&npaths,
&srcip);
if (ibt_status != IBT_SUCCESS ||
npaths < 1 ||
path->pi_hca_guid != rib_stat->hca->hca_guid) {
bzero(s_ip, sizeof (ibt_path_ip_src_t));
return (RDMA_FAILED);
}
if (srcip.ip_primary.family == AF_INET) {
s_ip->family = AF_INET;
s_ip->un.ip4addr = srcip.ip_primary.un.ip4addr;
} else {
s_ip->family = AF_INET6;
s_ip->un.ip6addr = srcip.ip_primary.un.ip6addr;
}
return (RDMA_SUCCESS);
}
/*
* Connect to the server.
*/
rdma_stat
rib_conn_to_srv(rib_hca_t *hca, rib_qp_t *qp, ibt_path_info_t *path,
ibt_ip_addr_t *s_ip, ibt_ip_addr_t *d_ip)
{
ibt_chan_open_args_t chan_args; /* channel args */
ibt_chan_sizes_t chan_sizes;
ibt_rc_chan_alloc_args_t qp_attr;
ibt_status_t ibt_status;
ibt_rc_returns_t ret_args; /* conn reject info */
int refresh = REFRESH_ATTEMPTS; /* refresh if IBT_CM_CONN_STALE */
ibt_ip_cm_info_t ipcm_info;
uint8_t cmp_ip_pvt[IBT_IP_HDR_PRIV_DATA_SZ];
(void) bzero(&chan_args, sizeof (chan_args));
(void) bzero(&qp_attr, sizeof (ibt_rc_chan_alloc_args_t));
(void) bzero(&ipcm_info, sizeof (ibt_ip_cm_info_t));
switch (ipcm_info.src_addr.family = s_ip->family) {
case AF_INET:
ipcm_info.src_addr.un.ip4addr = s_ip->un.ip4addr;
break;
case AF_INET6:
ipcm_info.src_addr.un.ip6addr = s_ip->un.ip6addr;
break;
}
switch (ipcm_info.dst_addr.family = d_ip->family) {
case AF_INET:
ipcm_info.dst_addr.un.ip4addr = d_ip->un.ip4addr;
break;
case AF_INET6:
ipcm_info.dst_addr.un.ip6addr = d_ip->un.ip6addr;
break;
}
ipcm_info.src_port = NFS_RDMA_PORT;
ibt_status = ibt_format_ip_private_data(&ipcm_info,
IBT_IP_HDR_PRIV_DATA_SZ, cmp_ip_pvt);
if (ibt_status != IBT_SUCCESS) {
cmn_err(CE_WARN, "ibt_format_ip_private_data failed\n");
return (-1);
}
qp_attr.rc_hca_port_num = path->pi_prim_cep_path.cep_hca_port_num;
/* Alloc a RC channel */
qp_attr.rc_scq = hca->clnt_scq->rib_cq_hdl;
qp_attr.rc_rcq = hca->clnt_rcq->rib_cq_hdl;
qp_attr.rc_pd = hca->pd_hdl;
qp_attr.rc_sizes.cs_sq_sgl = DSEG_MAX;
qp_attr.rc_sizes.cs_rq_sgl = RQ_DSEG_MAX;
qp_attr.rc_sizes.cs_sq = DEF_SQ_SIZE;
qp_attr.rc_sizes.cs_rq = DEF_RQ_SIZE;
qp_attr.rc_clone_chan = NULL;
qp_attr.rc_control = IBT_CEP_RDMA_RD | IBT_CEP_RDMA_WR;
qp_attr.rc_flags = IBT_WR_SIGNALED;
path->pi_sid = ibt_get_ip_sid(IPPROTO_TCP, NFS_RDMA_PORT);
chan_args.oc_path = path;
chan_args.oc_cm_handler = rib_clnt_cm_handler;
chan_args.oc_cm_clnt_private = (void *)rib_stat;
chan_args.oc_rdma_ra_out = 4;
chan_args.oc_rdma_ra_in = 4;
chan_args.oc_path_retry_cnt = 2;
chan_args.oc_path_rnr_retry_cnt = RNR_RETRIES;
chan_args.oc_priv_data = cmp_ip_pvt;
chan_args.oc_priv_data_len = IBT_IP_HDR_PRIV_DATA_SZ;
refresh:
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_DETACHED) {
ibt_status = ibt_alloc_rc_channel(hca->hca_hdl,
IBT_ACHAN_NO_FLAGS,
&qp_attr, &qp->qp_hdl,
&chan_sizes);
} else {
rw_exit(&hca->state_lock);
return (RDMA_FAILED);
}
rw_exit(&hca->state_lock);
if (ibt_status != IBT_SUCCESS) {
DTRACE_PROBE1(rpcib__i_conntosrv,
int, ibt_status);
return (RDMA_FAILED);
}
/* Connect to the Server */
(void) bzero(&ret_args, sizeof (ret_args));
mutex_enter(&qp->cb_lock);
ibt_status = ibt_open_rc_channel(qp->qp_hdl, IBT_OCHAN_NO_FLAGS,
IBT_BLOCKING, &chan_args, &ret_args);
if (ibt_status != IBT_SUCCESS) {
DTRACE_PROBE2(rpcib__i_openrctosrv,
int, ibt_status, int, ret_args.rc_status);
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
mutex_exit(&qp->cb_lock);
if (refresh-- && ibt_status == IBT_CM_FAILURE &&
ret_args.rc_status == IBT_CM_CONN_STALE) {
/*
* Got IBT_CM_CONN_STALE probably because of stale
* data on the passive end of a channel that existed
* prior to reboot. Retry establishing a channel
* REFRESH_ATTEMPTS times, during which time the
* stale conditions on the server might clear up.
*/
goto refresh;
}
return (RDMA_FAILED);
}
mutex_exit(&qp->cb_lock);
/*
* Set the private data area to qp to be used in callbacks
*/
ibt_set_chan_private(qp->qp_hdl, (void *)qp);
return (RDMA_SUCCESS);
}
rdma_stat
rib_ping_srv(int addr_type, struct netbuf *raddr, rib_hca_t **hca)
{
uint_t i;
ibt_path_info_t path;
ibt_status_t ibt_status;
uint8_t num_paths_p;
ibt_ip_path_attr_t ipattr;
ibt_ip_addr_t dstip;
ibt_path_ip_src_t srcip;
rpcib_ipaddrs_t addrs4;
rpcib_ipaddrs_t addrs6;
struct sockaddr_in *sinp;
struct sockaddr_in6 *sin6p;
rdma_stat retval = RDMA_SUCCESS;
*hca = NULL;
ASSERT(raddr->buf != NULL);
bzero(&path, sizeof (ibt_path_info_t));
bzero(&ipattr, sizeof (ibt_ip_path_attr_t));
bzero(&srcip, sizeof (ibt_path_ip_src_t));
if (!rpcib_get_ib_addresses(&addrs4, &addrs6) ||
(addrs4.ri_count == 0 && addrs6.ri_count == 0)) {
retval = RDMA_FAILED;
goto done;
}
/* Prep the destination address */
switch (addr_type) {
case AF_INET:
sinp = (struct sockaddr_in *)raddr->buf;
dstip.family = AF_INET;
dstip.un.ip4addr = sinp->sin_addr.s_addr;
sinp = addrs4.ri_list;
for (i = 0; i < addrs4.ri_count; i++) {
num_paths_p = 0;
ipattr.ipa_dst_ip = &dstip;
ipattr.ipa_hca_guid = rib_stat->hca->hca_guid;
ipattr.ipa_ndst = 1;
ipattr.ipa_max_paths = 1;
ipattr.ipa_src_ip.family = dstip.family;
ipattr.ipa_src_ip.un.ip4addr = sinp[i].sin_addr.s_addr;
ibt_status = ibt_get_ip_paths(rib_stat->ibt_clnt_hdl,
IBT_PATH_NO_FLAGS, &ipattr, &path, &num_paths_p,
&srcip);
if (ibt_status == IBT_SUCCESS &&
num_paths_p != 0 &&
path.pi_hca_guid == rib_stat->hca->hca_guid) {
*hca = rib_stat->hca;
goto done;
}
}
retval = RDMA_FAILED;
break;
case AF_INET6:
sin6p = (struct sockaddr_in6 *)raddr->buf;
dstip.family = AF_INET6;
dstip.un.ip6addr = sin6p->sin6_addr;
sin6p = addrs6.ri_list;
for (i = 0; i < addrs6.ri_count; i++) {
num_paths_p = 0;
ipattr.ipa_dst_ip = &dstip;
ipattr.ipa_hca_guid = rib_stat->hca->hca_guid;
ipattr.ipa_ndst = 1;
ipattr.ipa_max_paths = 1;
ipattr.ipa_src_ip.family = dstip.family;
ipattr.ipa_src_ip.un.ip6addr = sin6p[i].sin6_addr;
ibt_status = ibt_get_ip_paths(rib_stat->ibt_clnt_hdl,
IBT_PATH_NO_FLAGS, &ipattr, &path, &num_paths_p,
&srcip);
if (ibt_status == IBT_SUCCESS &&
num_paths_p != 0 &&
path.pi_hca_guid == rib_stat->hca->hca_guid) {
*hca = rib_stat->hca;
goto done;
}
}
retval = RDMA_FAILED;
break;
default:
retval = RDMA_INVAL;
break;
}
done:
if (addrs4.ri_size > 0)
kmem_free(addrs4.ri_list, addrs4.ri_size);
if (addrs6.ri_size > 0)
kmem_free(addrs6.ri_list, addrs6.ri_size);
return (retval);
}
/*
* Close channel, remove from connection list and
* free up resources allocated for that channel.
*/
rdma_stat
rib_disconnect_channel(CONN *conn, rib_conn_list_t *conn_list)
{
rib_qp_t *qp = ctoqp(conn);
rib_hca_t *hca;
/*
* c_ref == 0 and connection is in C_DISCONN_PEND
*/
hca = qp->hca;
if (conn_list != NULL)
(void) rib_rm_conn(conn, conn_list);
if (qp->qp_hdl != NULL) {
/*
* If the channel has not been establised,
* ibt_flush_channel is called to flush outstanding WRs
* on the Qs. Otherwise, ibt_close_rc_channel() is
* called. The channel is then freed.
*/
if (conn_list != NULL)
(void) ibt_close_rc_channel(qp->qp_hdl,
IBT_BLOCKING, NULL, 0, NULL, NULL, 0);
else
(void) ibt_flush_channel(qp->qp_hdl);
mutex_enter(&qp->posted_rbufs_lock);
while (qp->n_posted_rbufs)
cv_wait(&qp->posted_rbufs_cv, &qp->posted_rbufs_lock);
mutex_exit(&qp->posted_rbufs_lock);
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
}
ASSERT(qp->rdlist == NULL);
if (qp->replylist != NULL) {
(void) rib_rem_replylist(qp);
}
cv_destroy(&qp->cb_conn_cv);
cv_destroy(&qp->posted_rbufs_cv);
mutex_destroy(&qp->cb_lock);
mutex_destroy(&qp->replylist_lock);
mutex_destroy(&qp->posted_rbufs_lock);
mutex_destroy(&qp->rdlist_lock);
cv_destroy(&conn->c_cv);
mutex_destroy(&conn->c_lock);
if (conn->c_raddr.buf != NULL) {
kmem_free(conn->c_raddr.buf, conn->c_raddr.len);
}
if (conn->c_laddr.buf != NULL) {
kmem_free(conn->c_laddr.buf, conn->c_laddr.len);
}
/*
* Credit control cleanup.
*/
if (qp->rdmaconn.c_cc_type == RDMA_CC_CLNT) {
rdma_clnt_cred_ctrl_t *cc_info;
cc_info = &qp->rdmaconn.rdma_conn_cred_ctrl_u.c_clnt_cc;
cv_destroy(&cc_info->clnt_cc_cv);
}
kmem_free(qp, sizeof (rib_qp_t));
/*
* If HCA has been DETACHED and the srv/clnt_conn_list is NULL,
* then the hca is no longer being used.
*/
if (conn_list != NULL) {
rw_enter(&hca->state_lock, RW_READER);
if (hca->state == HCA_DETACHED) {
rw_enter(&hca->srv_conn_list.conn_lock, RW_READER);
if (hca->srv_conn_list.conn_hd == NULL) {
rw_enter(&hca->cl_conn_list.conn_lock,
RW_READER);
if (hca->cl_conn_list.conn_hd == NULL) {
mutex_enter(&hca->inuse_lock);
hca->inuse = FALSE;
cv_signal(&hca->cb_cv);
mutex_exit(&hca->inuse_lock);
}
rw_exit(&hca->cl_conn_list.conn_lock);
}
rw_exit(&hca->srv_conn_list.conn_lock);
}
rw_exit(&hca->state_lock);
}
return (RDMA_SUCCESS);
}
/*
* Wait for send completion notification. Only on receiving a
* notification be it a successful or error completion, free the
* send_wid.
*/
static rdma_stat
rib_sendwait(rib_qp_t *qp, struct send_wid *wd)
{
clock_t timout, cv_wait_ret;
rdma_stat error = RDMA_SUCCESS;
int i;
/*
* Wait for send to complete
*/
ASSERT(wd != NULL);
mutex_enter(&wd->sendwait_lock);
if (wd->status == (uint_t)SEND_WAIT) {
timout = drv_usectohz(SEND_WAIT_TIME * 1000000) +
ddi_get_lbolt();
if (qp->mode == RIB_SERVER) {
while ((cv_wait_ret = cv_timedwait(&wd->wait_cv,
&wd->sendwait_lock, timout)) > 0 &&
wd->status == (uint_t)SEND_WAIT)
;
switch (cv_wait_ret) {
case -1: /* timeout */
DTRACE_PROBE(rpcib__i__srvsendwait__timeout);
wd->cv_sig = 0; /* no signal needed */
error = RDMA_TIMEDOUT;
break;
default: /* got send completion */
break;
}
} else {
while ((cv_wait_ret = cv_timedwait_sig(&wd->wait_cv,
&wd->sendwait_lock, timout)) > 0 &&
wd->status == (uint_t)SEND_WAIT)
;
switch (cv_wait_ret) {
case -1: /* timeout */
DTRACE_PROBE(rpcib__i__clntsendwait__timeout);
wd->cv_sig = 0; /* no signal needed */
error = RDMA_TIMEDOUT;
break;
case 0: /* interrupted */
DTRACE_PROBE(rpcib__i__clntsendwait__intr);
wd->cv_sig = 0; /* no signal needed */
error = RDMA_INTR;
break;
default: /* got send completion */
break;
}
}
}
if (wd->status != (uint_t)SEND_WAIT) {
/* got send completion */
if (wd->status != RDMA_SUCCESS) {
error = wd->status;
if (wd->status != RDMA_CONNLOST)
error = RDMA_FAILED;
}
for (i = 0; i < wd->nsbufs; i++) {
rib_rbuf_free(qptoc(qp), SEND_BUFFER,
(void *)(uintptr_t)wd->sbufaddr[i]);
}
mutex_exit(&wd->sendwait_lock);
(void) rib_free_sendwait(wd);
} else {
mutex_exit(&wd->sendwait_lock);
}
return (error);
}
static struct send_wid *
rib_init_sendwait(uint32_t xid, int cv_sig, rib_qp_t *qp)
{
struct send_wid *wd;
wd = kmem_zalloc(sizeof (struct send_wid), KM_SLEEP);
wd->xid = xid;
wd->cv_sig = cv_sig;
wd->qp = qp;
cv_init(&wd->wait_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&wd->sendwait_lock, NULL, MUTEX_DRIVER, NULL);
wd->status = (uint_t)SEND_WAIT;
return (wd);
}
static int
rib_free_sendwait(struct send_wid *wdesc)
{
cv_destroy(&wdesc->wait_cv);
mutex_destroy(&wdesc->sendwait_lock);
kmem_free(wdesc, sizeof (*wdesc));
return (0);
}
static rdma_stat
rib_rem_rep(rib_qp_t *qp, struct reply *rep)
{
mutex_enter(&qp->replylist_lock);
if (rep != NULL) {
(void) rib_remreply(qp, rep);
mutex_exit(&qp->replylist_lock);
return (RDMA_SUCCESS);
}
mutex_exit(&qp->replylist_lock);
return (RDMA_FAILED);
}
/*
* Send buffers are freed here only in case of error in posting
* on QP. If the post succeeded, the send buffers are freed upon
* send completion in rib_sendwait() or in the scq_handler.
*/
rdma_stat
rib_send_and_wait(CONN *conn, struct clist *cl, uint32_t msgid,
int send_sig, int cv_sig, caddr_t *swid)
{
struct send_wid *wdesc;
struct clist *clp;
ibt_status_t ibt_status = IBT_SUCCESS;
rdma_stat ret = RDMA_SUCCESS;
ibt_send_wr_t tx_wr;
int i, nds;
ibt_wr_ds_t sgl[DSEG_MAX];
uint_t total_msg_size;
rib_qp_t *qp;
qp = ctoqp(conn);
ASSERT(cl != NULL);
bzero(&tx_wr, sizeof (ibt_send_wr_t));
nds = 0;
total_msg_size = 0;
clp = cl;
while (clp != NULL) {
if (nds >= DSEG_MAX) {
DTRACE_PROBE(rpcib__i__sendandwait_dsegmax_exceeded);
return (RDMA_FAILED);
}
sgl[nds].ds_va = clp->w.c_saddr;
sgl[nds].ds_key = clp->c_smemhandle.mrc_lmr; /* lkey */
sgl[nds].ds_len = clp->c_len;
total_msg_size += clp->c_len;
clp = clp->c_next;
nds++;
}
if (send_sig) {
/* Set SEND_SIGNAL flag. */
tx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
wdesc = rib_init_sendwait(msgid, cv_sig, qp);
*swid = (caddr_t)wdesc;
} else {
tx_wr.wr_flags = IBT_WR_NO_FLAGS;
wdesc = rib_init_sendwait(msgid, 0, qp);
*swid = (caddr_t)wdesc;
}
wdesc->nsbufs = nds;
for (i = 0; i < nds; i++) {
wdesc->sbufaddr[i] = sgl[i].ds_va;
}
tx_wr.wr_id = (ibt_wrid_t)(uintptr_t)wdesc;
tx_wr.wr_opcode = IBT_WRC_SEND;
tx_wr.wr_trans = IBT_RC_SRV;
tx_wr.wr_nds = nds;
tx_wr.wr_sgl = sgl;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_send(qp->qp_hdl, &tx_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
for (i = 0; i < nds; i++) {
rib_rbuf_free(conn, SEND_BUFFER,
(void *)(uintptr_t)wdesc->sbufaddr[i]);
}
(void) rib_free_sendwait(wdesc);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
if (send_sig) {
if (cv_sig) {
/*
* cv_wait for send to complete.
* We can fail due to a timeout or signal or
* unsuccessful send.
*/
ret = rib_sendwait(qp, wdesc);
return (ret);
}
}
return (RDMA_SUCCESS);
}
rdma_stat
rib_send(CONN *conn, struct clist *cl, uint32_t msgid)
{
rdma_stat ret;
caddr_t wd;
/* send-wait & cv_signal */
ret = rib_send_and_wait(conn, cl, msgid, 1, 1, &wd);
return (ret);
}
/*
* Server interface (svc_rdma_ksend).
* Send RPC reply and wait for RDMA_DONE.
*/
rdma_stat
rib_send_resp(CONN *conn, struct clist *cl, uint32_t msgid)
{
rdma_stat ret = RDMA_SUCCESS;
struct rdma_done_list *rd;
clock_t timout, cv_wait_ret;
caddr_t *wid = NULL;
rib_qp_t *qp = ctoqp(conn);
mutex_enter(&qp->rdlist_lock);
rd = rdma_done_add(qp, msgid);
/* No cv_signal (whether send-wait or no-send-wait) */
ret = rib_send_and_wait(conn, cl, msgid, 1, 0, wid);
if (ret != RDMA_SUCCESS) {
rdma_done_rm(qp, rd);
} else {
/*
* Wait for RDMA_DONE from remote end
*/
timout =
drv_usectohz(REPLY_WAIT_TIME * 1000000) + ddi_get_lbolt();
cv_wait_ret = cv_timedwait(&rd->rdma_done_cv,
&qp->rdlist_lock,
timout);
rdma_done_rm(qp, rd);
if (cv_wait_ret < 0) {
ret = RDMA_TIMEDOUT;
}
}
mutex_exit(&qp->rdlist_lock);
return (ret);
}
static struct recv_wid *
rib_create_wid(rib_qp_t *qp, ibt_wr_ds_t *sgl, uint32_t msgid)
{
struct recv_wid *rwid;
rwid = kmem_zalloc(sizeof (struct recv_wid), KM_SLEEP);
rwid->xid = msgid;
rwid->addr = sgl->ds_va;
rwid->qp = qp;
return (rwid);
}
static void
rib_free_wid(struct recv_wid *rwid)
{
kmem_free(rwid, sizeof (struct recv_wid));
}
rdma_stat
rib_clnt_post(CONN* conn, struct clist *cl, uint32_t msgid)
{
rib_qp_t *qp = ctoqp(conn);
struct clist *clp = cl;
struct reply *rep;
struct recv_wid *rwid;
int nds;
ibt_wr_ds_t sgl[DSEG_MAX];
ibt_recv_wr_t recv_wr;
rdma_stat ret;
ibt_status_t ibt_status;
/*
* rdma_clnt_postrecv uses RECV_BUFFER.
*/
nds = 0;
while (cl != NULL) {
if (nds >= DSEG_MAX) {
ret = RDMA_FAILED;
goto done;
}
sgl[nds].ds_va = cl->w.c_saddr;
sgl[nds].ds_key = cl->c_smemhandle.mrc_lmr; /* lkey */
sgl[nds].ds_len = cl->c_len;
cl = cl->c_next;
nds++;
}
if (nds != 1) {
ret = RDMA_FAILED;
goto done;
}
bzero(&recv_wr, sizeof (ibt_recv_wr_t));
recv_wr.wr_nds = nds;
recv_wr.wr_sgl = sgl;
rwid = rib_create_wid(qp, &sgl[0], msgid);
if (rwid) {
recv_wr.wr_id = (ibt_wrid_t)(uintptr_t)rwid;
} else {
ret = RDMA_NORESOURCE;
goto done;
}
rep = rib_addreplylist(qp, msgid);
if (!rep) {
rib_free_wid(rwid);
ret = RDMA_NORESOURCE;
goto done;
}
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_recv(qp->qp_hdl, &recv_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_free_wid(rwid);
(void) rib_rem_rep(qp, rep);
ret = RDMA_CONNLOST;
goto done;
}
mutex_exit(&conn->c_lock);
return (RDMA_SUCCESS);
done:
while (clp != NULL) {
rib_rbuf_free(conn, RECV_BUFFER,
(void *)(uintptr_t)clp->w.c_saddr3);
clp = clp->c_next;
}
return (ret);
}
rdma_stat
rib_svc_post(CONN* conn, struct clist *cl)
{
rib_qp_t *qp = ctoqp(conn);
struct svc_recv *s_recvp;
int nds;
ibt_wr_ds_t sgl[DSEG_MAX];
ibt_recv_wr_t recv_wr;
ibt_status_t ibt_status;
nds = 0;
while (cl != NULL) {
if (nds >= DSEG_MAX) {
return (RDMA_FAILED);
}
sgl[nds].ds_va = cl->w.c_saddr;
sgl[nds].ds_key = cl->c_smemhandle.mrc_lmr; /* lkey */
sgl[nds].ds_len = cl->c_len;
cl = cl->c_next;
nds++;
}
if (nds != 1) {
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)sgl[0].ds_va);
return (RDMA_FAILED);
}
bzero(&recv_wr, sizeof (ibt_recv_wr_t));
recv_wr.wr_nds = nds;
recv_wr.wr_sgl = sgl;
s_recvp = rib_init_svc_recv(qp, &sgl[0]);
/* Use s_recvp's addr as wr id */
recv_wr.wr_id = (ibt_wrid_t)(uintptr_t)s_recvp;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_recv(qp->qp_hdl, &recv_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)sgl[0].ds_va);
(void) rib_free_svc_recv(s_recvp);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
return (RDMA_SUCCESS);
}
/* Client */
rdma_stat
rib_post_resp(CONN* conn, struct clist *cl, uint32_t msgid)
{
return (rib_clnt_post(conn, cl, msgid));
}
/* Client */
rdma_stat
rib_post_resp_remove(CONN* conn, uint32_t msgid)
{
rib_qp_t *qp = ctoqp(conn);
struct reply *rep;
mutex_enter(&qp->replylist_lock);
for (rep = qp->replylist; rep != NULL; rep = rep->next) {
if (rep->xid == msgid) {
if (rep->vaddr_cq) {
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)rep->vaddr_cq);
}
(void) rib_remreply(qp, rep);
break;
}
}
mutex_exit(&qp->replylist_lock);
return (RDMA_SUCCESS);
}
/* Server */
rdma_stat
rib_post_recv(CONN *conn, struct clist *cl)
{
rib_qp_t *qp = ctoqp(conn);
if (rib_svc_post(conn, cl) == RDMA_SUCCESS) {
mutex_enter(&qp->posted_rbufs_lock);
qp->n_posted_rbufs++;
mutex_exit(&qp->posted_rbufs_lock);
return (RDMA_SUCCESS);
}
return (RDMA_FAILED);
}
/*
* Client side only interface to "recv" the rpc reply buf
* posted earlier by rib_post_resp(conn, cl, msgid).
*/
rdma_stat
rib_recv(CONN *conn, struct clist **clp, uint32_t msgid)
{
struct reply *rep = NULL;
clock_t timout, cv_wait_ret;
rdma_stat ret = RDMA_SUCCESS;
rib_qp_t *qp = ctoqp(conn);
/*
* Find the reply structure for this msgid
*/
mutex_enter(&qp->replylist_lock);
for (rep = qp->replylist; rep != NULL; rep = rep->next) {
if (rep->xid == msgid)
break;
}
if (rep != NULL) {
/*
* If message not yet received, wait.
*/
if (rep->status == (uint_t)REPLY_WAIT) {
timout = ddi_get_lbolt() +
drv_usectohz(REPLY_WAIT_TIME * 1000000);
while ((cv_wait_ret = cv_timedwait_sig(&rep->wait_cv,
&qp->replylist_lock, timout)) > 0 &&
rep->status == (uint_t)REPLY_WAIT)
;
switch (cv_wait_ret) {
case -1: /* timeout */
ret = RDMA_TIMEDOUT;
break;
case 0:
ret = RDMA_INTR;
break;
default:
break;
}
}
if (rep->status == RDMA_SUCCESS) {
struct clist *cl = NULL;
/*
* Got message successfully
*/
clist_add(&cl, 0, rep->bytes_xfer, NULL,
(caddr_t)(uintptr_t)rep->vaddr_cq, NULL, NULL);
*clp = cl;
} else {
if (rep->status != (uint_t)REPLY_WAIT) {
/*
* Got error in reply message. Free
* recv buffer here.
*/
ret = rep->status;
rib_rbuf_free(conn, RECV_BUFFER,
(caddr_t)(uintptr_t)rep->vaddr_cq);
}
}
(void) rib_remreply(qp, rep);
} else {
/*
* No matching reply structure found for given msgid on the
* reply wait list.
*/
ret = RDMA_INVAL;
DTRACE_PROBE(rpcib__i__nomatchxid2);
}
/*
* Done.
*/
mutex_exit(&qp->replylist_lock);
return (ret);
}
/*
* RDMA write a buffer to the remote address.
*/
rdma_stat
rib_write(CONN *conn, struct clist *cl, int wait)
{
ibt_send_wr_t tx_wr;
int cv_sig;
int i;
ibt_wr_ds_t sgl[DSEG_MAX];
struct send_wid *wdesc;
ibt_status_t ibt_status;
rdma_stat ret = RDMA_SUCCESS;
rib_qp_t *qp = ctoqp(conn);
uint64_t n_writes = 0;
bool_t force_wait = FALSE;
if (cl == NULL) {
return (RDMA_FAILED);
}
while ((cl != NULL)) {
if (cl->c_len > 0) {
bzero(&tx_wr, sizeof (ibt_send_wr_t));
tx_wr.wr.rc.rcwr.rdma.rdma_raddr = cl->u.c_daddr;
tx_wr.wr.rc.rcwr.rdma.rdma_rkey =
cl->c_dmemhandle.mrc_rmr; /* rkey */
sgl[0].ds_va = cl->w.c_saddr;
sgl[0].ds_key = cl->c_smemhandle.mrc_lmr; /* lkey */
sgl[0].ds_len = cl->c_len;
if (wait) {
tx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
cv_sig = 1;
} else {
if (n_writes > max_unsignaled_rws) {
n_writes = 0;
force_wait = TRUE;
tx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
cv_sig = 1;
} else {
tx_wr.wr_flags = IBT_WR_NO_FLAGS;
cv_sig = 0;
}
}
wdesc = rib_init_sendwait(0, cv_sig, qp);
tx_wr.wr_id = (ibt_wrid_t)(uintptr_t)wdesc;
tx_wr.wr_opcode = IBT_WRC_RDMAW;
tx_wr.wr_trans = IBT_RC_SRV;
tx_wr.wr_nds = 1;
tx_wr.wr_sgl = sgl;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status =
ibt_post_send(qp->qp_hdl, &tx_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
(void) rib_free_sendwait(wdesc);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
/*
* Wait for send to complete
*/
if (wait || force_wait) {
force_wait = FALSE;
ret = rib_sendwait(qp, wdesc);
if (ret != 0) {
return (ret);
}
} else {
mutex_enter(&wdesc->sendwait_lock);
for (i = 0; i < wdesc->nsbufs; i++) {
rib_rbuf_free(qptoc(qp), SEND_BUFFER,
(void *)(uintptr_t)
wdesc->sbufaddr[i]);
}
mutex_exit(&wdesc->sendwait_lock);
(void) rib_free_sendwait(wdesc);
}
n_writes ++;
}
cl = cl->c_next;
}
return (RDMA_SUCCESS);
}
/*
* RDMA Read a buffer from the remote address.
*/
rdma_stat
rib_read(CONN *conn, struct clist *cl, int wait)
{
ibt_send_wr_t rx_wr;
int cv_sig;
int i;
ibt_wr_ds_t sgl;
struct send_wid *wdesc;
ibt_status_t ibt_status = IBT_SUCCESS;
rdma_stat ret = RDMA_SUCCESS;
rib_qp_t *qp = ctoqp(conn);
if (cl == NULL) {
return (RDMA_FAILED);
}
while (cl != NULL) {
bzero(&rx_wr, sizeof (ibt_send_wr_t));
/*
* Remote address is at the head chunk item in list.
*/
rx_wr.wr.rc.rcwr.rdma.rdma_raddr = cl->w.c_saddr;
rx_wr.wr.rc.rcwr.rdma.rdma_rkey = cl->c_smemhandle.mrc_rmr;
sgl.ds_va = cl->u.c_daddr;
sgl.ds_key = cl->c_dmemhandle.mrc_lmr; /* lkey */
sgl.ds_len = cl->c_len;
if (wait) {
rx_wr.wr_flags = IBT_WR_SEND_SIGNAL;
cv_sig = 1;
} else {
rx_wr.wr_flags = IBT_WR_NO_FLAGS;
cv_sig = 0;
}
wdesc = rib_init_sendwait(0, cv_sig, qp);
rx_wr.wr_id = (ibt_wrid_t)(uintptr_t)wdesc;
rx_wr.wr_opcode = IBT_WRC_RDMAR;
rx_wr.wr_trans = IBT_RC_SRV;
rx_wr.wr_nds = 1;
rx_wr.wr_sgl = &sgl;
mutex_enter(&conn->c_lock);
if (conn->c_state == C_CONNECTED) {
ibt_status = ibt_post_send(qp->qp_hdl, &rx_wr, 1, NULL);
}
if (conn->c_state != C_CONNECTED ||
ibt_status != IBT_SUCCESS) {
if (conn->c_state != C_DISCONN_PEND)
conn->c_state = C_ERROR_CONN;
mutex_exit(&conn->c_lock);
(void) rib_free_sendwait(wdesc);
return (RDMA_CONNLOST);
}
mutex_exit(&conn->c_lock);
/*
* Wait for send to complete if this is the
* last item in the list.
*/
if (wait && cl->c_next == NULL) {
ret = rib_sendwait(qp, wdesc);
if (ret != 0) {
return (ret);
}
} else {
mutex_enter(&wdesc->sendwait_lock);
for (i = 0; i < wdesc->nsbufs; i++) {
rib_rbuf_free(qptoc(qp), SEND_BUFFER,
(void *)(uintptr_t)wdesc->sbufaddr[i]);
}
mutex_exit(&wdesc->sendwait_lock);
(void) rib_free_sendwait(wdesc);
}
cl = cl->c_next;
}
return (RDMA_SUCCESS);
}
/*
* rib_srv_cm_handler()
* Connection Manager callback to handle RC connection requests.
*/
/* ARGSUSED */
static ibt_cm_status_t
rib_srv_cm_handler(void *any, ibt_cm_event_t *event,
ibt_cm_return_args_t *ret_args, void *priv_data,
ibt_priv_data_len_t len)
{
queue_t *q;
rib_qp_t *qp;
rpcib_state_t *ribstat;
rib_hca_t *hca;
rdma_stat status = RDMA_SUCCESS;
int i;
struct clist cl;
rdma_buf_t rdbuf = {0};
void *buf = NULL;
CONN *conn;
ibt_ip_cm_info_t ipinfo;
struct sockaddr_in *s;
struct sockaddr_in6 *s6;
int sin_size = sizeof (struct sockaddr_in);
int in_size = sizeof (struct in_addr);
int sin6_size = sizeof (struct sockaddr_in6);
ASSERT(any != NULL);
ASSERT(event != NULL);
ribstat = (rpcib_state_t *)any;
hca = (rib_hca_t *)ribstat->hca;
ASSERT(hca != NULL);
/* got a connection request */
switch (event->cm_type) {
case IBT_CM_EVENT_REQ_RCV:
/*
* If the plugin is in the NO_ACCEPT state, bail out.
*/
mutex_enter(&plugin_state_lock);
if (plugin_state == NO_ACCEPT) {
mutex_exit(&plugin_state_lock);
return (IBT_CM_REJECT);
}
mutex_exit(&plugin_state_lock);
/*
* Need to send a MRA MAD to CM so that it does not
* timeout on us.
*/
(void) ibt_cm_delay(IBT_CM_DELAY_REQ, event->cm_session_id,
event->cm_event.req.req_timeout * 8, NULL, 0);
mutex_enter(&rib_stat->open_hca_lock);
q = rib_stat->q;
mutex_exit(&rib_stat->open_hca_lock);
status = rib_svc_create_chan(hca, (caddr_t)q,
event->cm_event.req.req_prim_hca_port, &qp);
if (status) {
return (IBT_CM_REJECT);
}
ret_args->cm_ret.rep.cm_channel = qp->qp_hdl;
ret_args->cm_ret.rep.cm_rdma_ra_out = 4;
ret_args->cm_ret.rep.cm_rdma_ra_in = 4;
ret_args->cm_ret.rep.cm_rnr_retry_cnt = RNR_RETRIES;
/*
* Pre-posts RECV buffers
*/
conn = qptoc(qp);
for (i = 0; i < preposted_rbufs; i++) {
bzero(&rdbuf, sizeof (rdbuf));
rdbuf.type = RECV_BUFFER;
buf = rib_rbuf_alloc(conn, &rdbuf);
if (buf == NULL) {
(void) rib_disconnect_channel(conn, NULL);
return (IBT_CM_REJECT);
}
bzero(&cl, sizeof (cl));
cl.w.c_saddr3 = (caddr_t)rdbuf.addr;
cl.c_len = rdbuf.len;
cl.c_smemhandle.mrc_lmr =
rdbuf.handle.mrc_lmr; /* lkey */
cl.c_next = NULL;
status = rib_post_recv(conn, &cl);
if (status != RDMA_SUCCESS) {
(void) rib_disconnect_channel(conn, NULL);
return (IBT_CM_REJECT);
}
}
(void) rib_add_connlist(conn, &hca->srv_conn_list);
/*
* Get the address translation
*/
rw_enter(&hca->state_lock, RW_READER);
if (hca->state == HCA_DETACHED) {
rw_exit(&hca->state_lock);
return (IBT_CM_REJECT);
}
rw_exit(&hca->state_lock);
bzero(&ipinfo, sizeof (ibt_ip_cm_info_t));
if (ibt_get_ip_data(event->cm_priv_data_len,
event->cm_priv_data,
&ipinfo) != IBT_SUCCESS) {
return (IBT_CM_REJECT);
}
switch (ipinfo.src_addr.family) {
case AF_INET:
conn->c_raddr.maxlen =
conn->c_raddr.len = sin_size;
conn->c_raddr.buf = kmem_zalloc(sin_size, KM_SLEEP);
s = (struct sockaddr_in *)conn->c_raddr.buf;
s->sin_family = AF_INET;
bcopy((void *)&ipinfo.src_addr.un.ip4addr,
&s->sin_addr, in_size);
break;
case AF_INET6:
conn->c_raddr.maxlen =
conn->c_raddr.len = sin6_size;
conn->c_raddr.buf = kmem_zalloc(sin6_size, KM_SLEEP);
s6 = (struct sockaddr_in6 *)conn->c_raddr.buf;
s6->sin6_family = AF_INET6;
bcopy((void *)&ipinfo.src_addr.un.ip6addr,
&s6->sin6_addr,
sizeof (struct in6_addr));
break;
default:
return (IBT_CM_REJECT);
}
break;
case IBT_CM_EVENT_CONN_CLOSED:
{
CONN *conn;
rib_qp_t *qp;
switch (event->cm_event.closed) {
case IBT_CM_CLOSED_DREP_RCVD:
case IBT_CM_CLOSED_DREQ_TIMEOUT:
case IBT_CM_CLOSED_DUP:
case IBT_CM_CLOSED_ABORT:
case IBT_CM_CLOSED_ALREADY:
/*
* These cases indicate the local end initiated
* the closing of the channel. Nothing to do here.
*/
break;
default:
/*
* Reason for CONN_CLOSED event must be one of
* IBT_CM_CLOSED_DREQ_RCVD or IBT_CM_CLOSED_REJ_RCVD
* or IBT_CM_CLOSED_STALE. These indicate cases were
* the remote end is closing the channel. In these
* cases free the channel and transition to error
* state
*/
qp = ibt_get_chan_private(event->cm_channel);
conn = qptoc(qp);
mutex_enter(&conn->c_lock);
if (conn->c_state == C_DISCONN_PEND) {
mutex_exit(&conn->c_lock);
break;
}
conn->c_state = C_ERROR_CONN;
/*
* Free the rc_channel. Channel has already
* transitioned to ERROR state and WRs have been
* FLUSHED_ERR already.
*/
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
/*
* Free the conn if c_ref goes down to 0
*/
if (conn->c_ref == 0) {
/*
* Remove from list and free conn
*/
conn->c_state = C_DISCONN_PEND;
mutex_exit(&conn->c_lock);
(void) rib_disconnect_channel(conn,
&hca->srv_conn_list);
} else {
mutex_exit(&conn->c_lock);
}
DTRACE_PROBE(rpcib__i__srvcm_chandisconnect);
break;
}
break;
}
case IBT_CM_EVENT_CONN_EST:
/*
* RTU received, hence connection established.
*/
if (rib_debug > 1)
cmn_err(CE_NOTE, "rib_srv_cm_handler: "
"(CONN_EST) channel established");
break;
default:
if (rib_debug > 2) {
/* Let CM handle the following events. */
if (event->cm_type == IBT_CM_EVENT_REP_RCV) {
cmn_err(CE_NOTE, "rib_srv_cm_handler: "
"server recv'ed IBT_CM_EVENT_REP_RCV\n");
} else if (event->cm_type == IBT_CM_EVENT_LAP_RCV) {
cmn_err(CE_NOTE, "rib_srv_cm_handler: "
"server recv'ed IBT_CM_EVENT_LAP_RCV\n");
} else if (event->cm_type == IBT_CM_EVENT_MRA_RCV) {
cmn_err(CE_NOTE, "rib_srv_cm_handler: "
"server recv'ed IBT_CM_EVENT_MRA_RCV\n");
} else if (event->cm_type == IBT_CM_EVENT_APR_RCV) {
cmn_err(CE_NOTE, "rib_srv_cm_handler: "
"server recv'ed IBT_CM_EVENT_APR_RCV\n");
} else if (event->cm_type == IBT_CM_EVENT_FAILURE) {
cmn_err(CE_NOTE, "rib_srv_cm_handler: "
"server recv'ed IBT_CM_EVENT_FAILURE\n");
}
}
return (IBT_CM_DEFAULT);
}
/* accept all other CM messages (i.e. let the CM handle them) */
return (IBT_CM_ACCEPT);
}
static rdma_stat
rib_register_service(rib_hca_t *hca, int service_type)
{
ibt_srv_desc_t sdesc;
ibt_hca_portinfo_t *port_infop;
ib_svc_id_t srv_id;
ibt_srv_hdl_t srv_hdl;
uint_t port_size;
uint_t pki, i, num_ports, nbinds;
ibt_status_t ibt_status;
rib_service_t *new_service;
ib_pkey_t pkey;
/*
* Query all ports for the given HCA
*/
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_DETACHED) {
ibt_status = ibt_query_hca_ports(hca->hca_hdl, 0, &port_infop,
&num_ports, &port_size);
rw_exit(&hca->state_lock);
} else {
rw_exit(&hca->state_lock);
return (RDMA_FAILED);
}
if (ibt_status != IBT_SUCCESS) {
return (RDMA_FAILED);
}
DTRACE_PROBE1(rpcib__i__regservice_numports,
int, num_ports);
for (i = 0; i < num_ports; i++) {
if (port_infop[i].p_linkstate != IBT_PORT_ACTIVE) {
DTRACE_PROBE1(rpcib__i__regservice__portinactive,
int, i+1);
} else if (port_infop[i].p_linkstate == IBT_PORT_ACTIVE) {
DTRACE_PROBE1(rpcib__i__regservice__portactive,
int, i+1);
}
}
/*
* Get all the IP addresses on this system to register the
* given "service type" on all DNS recognized IP addrs.
* Each service type such as NFS will have all the systems
* IP addresses as its different names. For now the only
* type of service we support in RPCIB is NFS.
*/
rw_enter(&hca->service_list_lock, RW_WRITER);
/*
* Start registering and binding service to active
* on active ports on this HCA.
*/
nbinds = 0;
new_service = NULL;
/*
* We use IP addresses as the service names for
* service registration. Register each of them
* with CM to obtain a svc_id and svc_hdl. We do not
* register the service with machine's loopback address.
*/
(void) bzero(&srv_id, sizeof (ib_svc_id_t));
(void) bzero(&srv_hdl, sizeof (ibt_srv_hdl_t));
(void) bzero(&sdesc, sizeof (ibt_srv_desc_t));
sdesc.sd_handler = rib_srv_cm_handler;
sdesc.sd_flags = 0;
ibt_status = ibt_register_service(hca->ibt_clnt_hdl,
&sdesc, ibt_get_ip_sid(IPPROTO_TCP, NFS_RDMA_PORT),
1, &srv_hdl, &srv_id);
for (i = 0; i < num_ports; i++) {
if (port_infop[i].p_linkstate != IBT_PORT_ACTIVE)
continue;
for (pki = 0; pki < port_infop[i].p_pkey_tbl_sz; pki++) {
pkey = port_infop[i].p_pkey_tbl[pki];
if ((pkey & IBSRM_HB) &&
(pkey != IB_PKEY_INVALID_FULL)) {
/*
* Allocate and prepare a service entry
*/
new_service =
kmem_zalloc(1 * sizeof (rib_service_t),
KM_SLEEP);
new_service->srv_type = service_type;
new_service->srv_hdl = srv_hdl;
new_service->srv_next = NULL;
ibt_status = ibt_bind_service(srv_hdl,
port_infop[i].p_sgid_tbl[0],
NULL, rib_stat, NULL);
DTRACE_PROBE1(rpcib__i__regservice__bindres,
int, ibt_status);
if (ibt_status != IBT_SUCCESS) {
kmem_free(new_service,
sizeof (rib_service_t));
new_service = NULL;
continue;
}
/*
* Add to the service list for this HCA
*/
new_service->srv_next = hca->service_list;
hca->service_list = new_service;
new_service = NULL;
nbinds++;
}
}
}
rw_exit(&hca->service_list_lock);
ibt_free_portinfo(port_infop, port_size);
if (nbinds == 0) {
return (RDMA_FAILED);
} else {
/*
* Put this plugin into accept state, since atleast
* one registration was successful.
*/
mutex_enter(&plugin_state_lock);
plugin_state = ACCEPT;
mutex_exit(&plugin_state_lock);
return (RDMA_SUCCESS);
}
}
void
rib_listen(struct rdma_svc_data *rd)
{
rdma_stat status = RDMA_SUCCESS;
rd->active = 0;
rd->err_code = RDMA_FAILED;
/*
* First check if a hca is still attached
*/
rw_enter(&rib_stat->hca->state_lock, RW_READER);
if (rib_stat->hca->state != HCA_INITED) {
rw_exit(&rib_stat->hca->state_lock);
return;
}
rw_exit(&rib_stat->hca->state_lock);
rib_stat->q = &rd->q;
/*
* Right now the only service type is NFS. Hence force feed this
* value. Ideally to communicate the service type it should be
* passed down in rdma_svc_data.
*/
rib_stat->service_type = NFS;
status = rib_register_service(rib_stat->hca, NFS);
if (status != RDMA_SUCCESS) {
rd->err_code = status;
return;
}
/*
* Service active on an HCA, check rd->err_code for more
* explainable errors.
*/
rd->active = 1;
rd->err_code = status;
}
/* XXXX */
/* ARGSUSED */
static void
rib_listen_stop(struct rdma_svc_data *svcdata)
{
rib_hca_t *hca;
/*
* KRPC called the RDMATF to stop the listeners, this means
* stop sending incomming or recieved requests to KRPC master
* transport handle for RDMA-IB. This is also means that the
* master transport handle, responsible for us, is going away.
*/
mutex_enter(&plugin_state_lock);
plugin_state = NO_ACCEPT;
if (svcdata != NULL)
svcdata->active = 0;
mutex_exit(&plugin_state_lock);
/*
* First check if a hca is still attached
*/
hca = rib_stat->hca;
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_INITED) {
rw_exit(&hca->state_lock);
return;
}
rib_close_channels(&hca->srv_conn_list);
rib_stop_services(hca);
rw_exit(&hca->state_lock);
}
/*
* Traverse the HCA's service list to unbind and deregister services.
* Instead of unbinding the service for a service handle by
* calling ibt_unbind_service() for each port/pkey, we unbind
* all the services for the service handle by making only one
* call to ibt_unbind_all_services(). Then, we deregister the
* service for the service handle.
*
* When traversing the entries in service_list, we compare the
* srv_hdl of the current entry with that of the next. If they
* are different or if the next entry is NULL, the current entry
* marks the last binding of the service handle. In this case,
* call ibt_unbind_all_services() and deregister the service for
* the service handle. If they are the same, the current and the
* next entries are bound to the same service handle. In this
* case, move on to the next entry.
*/
static void
rib_stop_services(rib_hca_t *hca)
{
rib_service_t *srv_list, *to_remove;
/*
* unbind and deregister the services for this service type.
* Right now there is only one service type. In future it will
* be passed down to this function.
*/
rw_enter(&hca->service_list_lock, RW_WRITER);
srv_list = hca->service_list;
while (srv_list != NULL) {
to_remove = srv_list;
srv_list = to_remove->srv_next;
if (srv_list == NULL || bcmp(to_remove->srv_hdl,
srv_list->srv_hdl, sizeof (ibt_srv_hdl_t))) {
(void) ibt_unbind_all_services(to_remove->srv_hdl);
(void) ibt_deregister_service(hca->ibt_clnt_hdl,
to_remove->srv_hdl);
}
kmem_free(to_remove, sizeof (rib_service_t));
}
hca->service_list = NULL;
rw_exit(&hca->service_list_lock);
}
static struct svc_recv *
rib_init_svc_recv(rib_qp_t *qp, ibt_wr_ds_t *sgl)
{
struct svc_recv *recvp;
recvp = kmem_zalloc(sizeof (struct svc_recv), KM_SLEEP);
recvp->vaddr = sgl->ds_va;
recvp->qp = qp;
recvp->bytes_xfer = 0;
return (recvp);
}
static int
rib_free_svc_recv(struct svc_recv *recvp)
{
kmem_free(recvp, sizeof (*recvp));
return (0);
}
static struct reply *
rib_addreplylist(rib_qp_t *qp, uint32_t msgid)
{
struct reply *rep;
rep = kmem_zalloc(sizeof (struct reply), KM_NOSLEEP);
if (rep == NULL) {
DTRACE_PROBE(rpcib__i__addrreply__nomem);
return (NULL);
}
rep->xid = msgid;
rep->vaddr_cq = NULL;
rep->bytes_xfer = 0;
rep->status = (uint_t)REPLY_WAIT;
rep->prev = NULL;
cv_init(&rep->wait_cv, NULL, CV_DEFAULT, NULL);
mutex_enter(&qp->replylist_lock);
if (qp->replylist) {
rep->next = qp->replylist;
qp->replylist->prev = rep;
}
qp->rep_list_size++;
DTRACE_PROBE1(rpcib__i__addrreply__listsize,
int, qp->rep_list_size);
qp->replylist = rep;
mutex_exit(&qp->replylist_lock);
return (rep);
}
static rdma_stat
rib_rem_replylist(rib_qp_t *qp)
{
struct reply *r, *n;
mutex_enter(&qp->replylist_lock);
for (r = qp->replylist; r != NULL; r = n) {
n = r->next;
(void) rib_remreply(qp, r);
}
mutex_exit(&qp->replylist_lock);
return (RDMA_SUCCESS);
}
static int
rib_remreply(rib_qp_t *qp, struct reply *rep)
{
ASSERT(MUTEX_HELD(&qp->replylist_lock));
if (rep->prev) {
rep->prev->next = rep->next;
}
if (rep->next) {
rep->next->prev = rep->prev;
}
if (qp->replylist == rep)
qp->replylist = rep->next;
cv_destroy(&rep->wait_cv);
qp->rep_list_size--;
DTRACE_PROBE1(rpcib__i__remreply__listsize,
int, qp->rep_list_size);
kmem_free(rep, sizeof (*rep));
return (0);
}
rdma_stat
rib_registermem(CONN *conn, caddr_t adsp, caddr_t buf, uint_t buflen,
struct mrc *buf_handle)
{
ibt_mr_hdl_t mr_hdl = NULL; /* memory region handle */
ibt_mr_desc_t mr_desc; /* vaddr, lkey, rkey */
rdma_stat status;
rib_hca_t *hca = (ctoqp(conn))->hca;
/*
* Note: ALL buffer pools use the same memory type RDMARW.
*/
status = rib_reg_mem(hca, adsp, buf, buflen, 0, &mr_hdl, &mr_desc);
if (status == RDMA_SUCCESS) {
buf_handle->mrc_linfo = (uintptr_t)mr_hdl;
buf_handle->mrc_lmr = (uint32_t)mr_desc.md_lkey;
buf_handle->mrc_rmr = (uint32_t)mr_desc.md_rkey;
} else {
buf_handle->mrc_linfo = NULL;
buf_handle->mrc_lmr = 0;
buf_handle->mrc_rmr = 0;
}
return (status);
}
static rdma_stat
rib_reg_mem(rib_hca_t *hca, caddr_t adsp, caddr_t buf, uint_t size,
ibt_mr_flags_t spec,
ibt_mr_hdl_t *mr_hdlp, ibt_mr_desc_t *mr_descp)
{
ibt_mr_attr_t mem_attr;
ibt_status_t ibt_status;
mem_attr.mr_vaddr = (uintptr_t)buf;
mem_attr.mr_len = (ib_msglen_t)size;
mem_attr.mr_as = (struct as *)(caddr_t)adsp;
mem_attr.mr_flags = IBT_MR_SLEEP | IBT_MR_ENABLE_LOCAL_WRITE |
IBT_MR_ENABLE_REMOTE_READ | IBT_MR_ENABLE_REMOTE_WRITE |
IBT_MR_ENABLE_WINDOW_BIND | spec;
rw_enter(&hca->state_lock, RW_READER);
if (hca->state == HCA_INITED) {
ibt_status = ibt_register_mr(hca->hca_hdl, hca->pd_hdl,
&mem_attr, mr_hdlp, mr_descp);
rw_exit(&hca->state_lock);
} else {
rw_exit(&hca->state_lock);
return (RDMA_FAILED);
}
if (ibt_status != IBT_SUCCESS) {
return (RDMA_FAILED);
}
return (RDMA_SUCCESS);
}
rdma_stat
rib_registermemsync(CONN *conn, caddr_t adsp, caddr_t buf, uint_t buflen,
struct mrc *buf_handle, RIB_SYNCMEM_HANDLE *sync_handle, void *lrc)
{
ibt_mr_hdl_t mr_hdl = NULL; /* memory region handle */
rib_lrc_entry_t *l;
ibt_mr_desc_t mr_desc; /* vaddr, lkey, rkey */
rdma_stat status;
rib_hca_t *hca = (ctoqp(conn))->hca;
/*
* Non-coherent memory registration.
*/
l = (rib_lrc_entry_t *)lrc;
if (l) {
if (l->registered) {
buf_handle->mrc_linfo =
(uintptr_t)l->lrc_mhandle.mrc_linfo;
buf_handle->mrc_lmr =
(uint32_t)l->lrc_mhandle.mrc_lmr;
buf_handle->mrc_rmr =
(uint32_t)l->lrc_mhandle.mrc_rmr;
*sync_handle = (RIB_SYNCMEM_HANDLE)
(uintptr_t)l->lrc_mhandle.mrc_linfo;
return (RDMA_SUCCESS);
} else {
/* Always register the whole buffer */
buf = (caddr_t)l->lrc_buf;
buflen = l->lrc_len;
}
}
status = rib_reg_mem(hca, adsp, buf, buflen, 0, &mr_hdl, &mr_desc);
if (status == RDMA_SUCCESS) {
if (l) {
l->lrc_mhandle.mrc_linfo = (uintptr_t)mr_hdl;
l->lrc_mhandle.mrc_lmr = (uint32_t)mr_desc.md_lkey;
l->lrc_mhandle.mrc_rmr = (uint32_t)mr_desc.md_rkey;
l->registered = TRUE;
}
buf_handle->mrc_linfo = (uintptr_t)mr_hdl;
buf_handle->mrc_lmr = (uint32_t)mr_desc.md_lkey;
buf_handle->mrc_rmr = (uint32_t)mr_desc.md_rkey;
*sync_handle = (RIB_SYNCMEM_HANDLE)mr_hdl;
} else {
buf_handle->mrc_linfo = NULL;
buf_handle->mrc_lmr = 0;
buf_handle->mrc_rmr = 0;
}
return (status);
}
/* ARGSUSED */
rdma_stat
rib_deregistermem(CONN *conn, caddr_t buf, struct mrc buf_handle)
{
rib_hca_t *hca = (ctoqp(conn))->hca;
/*
* Allow memory deregistration even if HCA is
* getting detached. Need all outstanding
* memory registrations to be deregistered
* before HCA_DETACH_EVENT can be accepted.
*/
(void) ibt_deregister_mr(hca->hca_hdl,
(ibt_mr_hdl_t)(uintptr_t)buf_handle.mrc_linfo);
return (RDMA_SUCCESS);
}
/* ARGSUSED */
rdma_stat
rib_deregistermemsync(CONN *conn, caddr_t buf, struct mrc buf_handle,
RIB_SYNCMEM_HANDLE sync_handle, void *lrc)
{
rib_lrc_entry_t *l;
l = (rib_lrc_entry_t *)lrc;
if (l)
if (l->registered)
return (RDMA_SUCCESS);
(void) rib_deregistermem(conn, buf, buf_handle);
return (RDMA_SUCCESS);
}
/* ARGSUSED */
rdma_stat
rib_syncmem(CONN *conn, RIB_SYNCMEM_HANDLE shandle, caddr_t buf,
int len, int cpu)
{
ibt_status_t status;
rib_hca_t *hca = (ctoqp(conn))->hca;
ibt_mr_sync_t mr_segment;
mr_segment.ms_handle = (ibt_mr_hdl_t)shandle;
mr_segment.ms_vaddr = (ib_vaddr_t)(uintptr_t)buf;
mr_segment.ms_len = (ib_memlen_t)len;
if (cpu) {
/* make incoming data visible to memory */
mr_segment.ms_flags = IBT_SYNC_WRITE;
} else {
/* make memory changes visible to IO */
mr_segment.ms_flags = IBT_SYNC_READ;
}
rw_enter(&hca->state_lock, RW_READER);
if (hca->state == HCA_INITED) {
status = ibt_sync_mr(hca->hca_hdl, &mr_segment, 1);
rw_exit(&hca->state_lock);
} else {
rw_exit(&hca->state_lock);
return (RDMA_FAILED);
}
if (status == IBT_SUCCESS)
return (RDMA_SUCCESS);
else {
return (RDMA_FAILED);
}
}
/*
* XXXX ????
*/
static rdma_stat
rib_getinfo(rdma_info_t *info)
{
/*
* XXXX Hack!
*/
info->addrlen = 16;
info->mts = 1000000;
info->mtu = 1000000;
return (RDMA_SUCCESS);
}
rib_bufpool_t *
rib_rbufpool_create(rib_hca_t *hca, int ptype, int num)
{
rib_bufpool_t *rbp = NULL;
bufpool_t *bp = NULL;
caddr_t buf;
ibt_mr_attr_t mem_attr;
ibt_status_t ibt_status;
int i, j;
rbp = (rib_bufpool_t *)kmem_zalloc(sizeof (rib_bufpool_t), KM_SLEEP);
bp = (bufpool_t *)kmem_zalloc(sizeof (bufpool_t) +
num * sizeof (void *), KM_SLEEP);
mutex_init(&bp->buflock, NULL, MUTEX_DRIVER, hca->iblock);
bp->numelems = num;
switch (ptype) {
case SEND_BUFFER:
mem_attr.mr_flags = IBT_MR_SLEEP | IBT_MR_ENABLE_LOCAL_WRITE;
bp->rsize = RPC_MSG_SZ;
break;
case RECV_BUFFER:
mem_attr.mr_flags = IBT_MR_SLEEP | IBT_MR_ENABLE_LOCAL_WRITE;
bp->rsize = RPC_BUF_SIZE;
break;
default:
goto fail;
}
/*
* Register the pool.
*/
bp->bufsize = num * bp->rsize;
bp->buf = kmem_zalloc(bp->bufsize, KM_SLEEP);
rbp->mr_hdl = (ibt_mr_hdl_t *)kmem_zalloc(num *
sizeof (ibt_mr_hdl_t), KM_SLEEP);
rbp->mr_desc = (ibt_mr_desc_t *)kmem_zalloc(num *
sizeof (ibt_mr_desc_t), KM_SLEEP);
rw_enter(&hca->state_lock, RW_READER);
if (hca->state != HCA_INITED) {
rw_exit(&hca->state_lock);
goto fail;
}
for (i = 0, buf = bp->buf; i < num; i++, buf += bp->rsize) {
bzero(&rbp->mr_desc[i], sizeof (ibt_mr_desc_t));
mem_attr.mr_vaddr = (uintptr_t)buf;
mem_attr.mr_len = (ib_msglen_t)bp->rsize;
mem_attr.mr_as = NULL;
ibt_status = ibt_register_mr(hca->hca_hdl,
hca->pd_hdl, &mem_attr,
&rbp->mr_hdl[i],
&rbp->mr_desc[i]);
if (ibt_status != IBT_SUCCESS) {
for (j = 0; j < i; j++) {
(void) ibt_deregister_mr(hca->hca_hdl,
rbp->mr_hdl[j]);
}
rw_exit(&hca->state_lock);
goto fail;
}
}
rw_exit(&hca->state_lock);
buf = (caddr_t)bp->buf;
for (i = 0; i < num; i++, buf += bp->rsize) {
bp->buflist[i] = (void *)buf;
}
bp->buffree = num - 1; /* no. of free buffers */
rbp->bpool = bp;
return (rbp);
fail:
if (bp) {
if (bp->buf)
kmem_free(bp->buf, bp->bufsize);
kmem_free(bp, sizeof (bufpool_t) + num*sizeof (void *));
}
if (rbp) {
if (rbp->mr_hdl)
kmem_free(rbp->mr_hdl, num*sizeof (ibt_mr_hdl_t));
if (rbp->mr_desc)
kmem_free(rbp->mr_desc, num*sizeof (ibt_mr_desc_t));
kmem_free(rbp, sizeof (rib_bufpool_t));
}
return (NULL);
}
static void
rib_rbufpool_deregister(rib_hca_t *hca, int ptype)
{
int i;
rib_bufpool_t *rbp = NULL;
bufpool_t *bp;
/*
* Obtain pool address based on type of pool
*/
switch (ptype) {
case SEND_BUFFER:
rbp = hca->send_pool;
break;
case RECV_BUFFER:
rbp = hca->recv_pool;
break;
default:
return;
}
if (rbp == NULL)
return;
bp = rbp->bpool;
/*
* Deregister the pool memory and free it.
*/
for (i = 0; i < bp->numelems; i++) {
(void) ibt_deregister_mr(hca->hca_hdl, rbp->mr_hdl[i]);
}
}
static void
rib_rbufpool_free(rib_hca_t *hca, int ptype)
{
rib_bufpool_t *rbp = NULL;
bufpool_t *bp;
/*
* Obtain pool address based on type of pool
*/
switch (ptype) {
case SEND_BUFFER:
rbp = hca->send_pool;
break;
case RECV_BUFFER:
rbp = hca->recv_pool;
break;
default:
return;
}
if (rbp == NULL)
return;
bp = rbp->bpool;
/*
* Free the pool memory.
*/
if (rbp->mr_hdl)
kmem_free(rbp->mr_hdl, bp->numelems*sizeof (ibt_mr_hdl_t));
if (rbp->mr_desc)
kmem_free(rbp->mr_desc, bp->numelems*sizeof (ibt_mr_desc_t));
if (bp->buf)
kmem_free(bp->buf, bp->bufsize);
mutex_destroy(&bp->buflock);
kmem_free(bp, sizeof (bufpool_t) + bp->numelems*sizeof (void *));
kmem_free(rbp, sizeof (rib_bufpool_t));
}
void
rib_rbufpool_destroy(rib_hca_t *hca, int ptype)
{
/*
* Deregister the pool memory and free it.
*/
rib_rbufpool_deregister(hca, ptype);
rib_rbufpool_free(hca, ptype);
}
/*
* Fetch a buffer from the pool of type specified in rdbuf->type.
*/
static rdma_stat
rib_reg_buf_alloc(CONN *conn, rdma_buf_t *rdbuf)
{
rib_lrc_entry_t *rlep;
if (rdbuf->type == RDMA_LONG_BUFFER) {
rlep = rib_get_cache_buf(conn, rdbuf->len);
rdbuf->rb_private = (caddr_t)rlep;
rdbuf->addr = rlep->lrc_buf;
rdbuf->handle = rlep->lrc_mhandle;
return (RDMA_SUCCESS);
}
rdbuf->addr = rib_rbuf_alloc(conn, rdbuf);
if (rdbuf->addr) {
switch (rdbuf->type) {
case SEND_BUFFER:
rdbuf->len = RPC_MSG_SZ; /* 1K */
break;
case RECV_BUFFER:
rdbuf->len = RPC_BUF_SIZE; /* 2K */
break;
default:
rdbuf->len = 0;
}
return (RDMA_SUCCESS);
} else
return (RDMA_FAILED);
}
#if defined(MEASURE_POOL_DEPTH)
static void rib_recv_bufs(uint32_t x) {
}
static void rib_send_bufs(uint32_t x) {
}
#endif
/*
* Fetch a buffer of specified type.
* Note that rdbuf->handle is mw's rkey.
*/
static void *
rib_rbuf_alloc(CONN *conn, rdma_buf_t *rdbuf)
{
rib_qp_t *qp = ctoqp(conn);
rib_hca_t *hca = qp->hca;
rdma_btype ptype = rdbuf->type;
void *buf;
rib_bufpool_t *rbp = NULL;
bufpool_t *bp;
int i;
/*
* Obtain pool address based on type of pool
*/
switch (ptype) {
case SEND_BUFFER:
rbp = hca->send_pool;
break;
case RECV_BUFFER:
rbp = hca->recv_pool;
break;
default:
return (NULL);
}
if (rbp == NULL)
return (NULL);
bp = rbp->bpool;
mutex_enter(&bp->buflock);
if (bp->buffree < 0) {
mutex_exit(&bp->buflock);
return (NULL);
}
/* XXXX put buf, rdbuf->handle.mrc_rmr, ... in one place. */
buf = bp->buflist[bp->buffree];
rdbuf->addr = buf;
rdbuf->len = bp->rsize;
for (i = bp->numelems - 1; i >= 0; i--) {
if ((ib_vaddr_t)(uintptr_t)buf == rbp->mr_desc[i].md_vaddr) {
rdbuf->handle.mrc_rmr =
(uint32_t)rbp->mr_desc[i].md_rkey;
rdbuf->handle.mrc_linfo =
(uintptr_t)rbp->mr_hdl[i];
rdbuf->handle.mrc_lmr =
(uint32_t)rbp->mr_desc[i].md_lkey;
#if defined(MEASURE_POOL_DEPTH)
if (ptype == SEND_BUFFER)
rib_send_bufs(MAX_BUFS - (bp->buffree+1));
if (ptype == RECV_BUFFER)
rib_recv_bufs(MAX_BUFS - (bp->buffree+1));
#endif
bp->buffree--;
mutex_exit(&bp->buflock);
return (buf);
}
}
mutex_exit(&bp->buflock);
return (NULL);
}
static void
rib_reg_buf_free(CONN *conn, rdma_buf_t *rdbuf)
{
if (rdbuf->type == RDMA_LONG_BUFFER) {
rib_free_cache_buf(conn, (rib_lrc_entry_t *)rdbuf->rb_private);
rdbuf->rb_private = NULL;
return;
}
rib_rbuf_free(conn, rdbuf->type, rdbuf->addr);
}
static void
rib_rbuf_free(CONN *conn, int ptype, void *buf)
{
rib_qp_t *qp = ctoqp(conn);
rib_hca_t *hca = qp->hca;
rib_bufpool_t *rbp = NULL;
bufpool_t *bp;
/*
* Obtain pool address based on type of pool
*/
switch (ptype) {
case SEND_BUFFER:
rbp = hca->send_pool;
break;
case RECV_BUFFER:
rbp = hca->recv_pool;
break;
default:
return;
}
if (rbp == NULL)
return;
bp = rbp->bpool;
mutex_enter(&bp->buflock);
if (++bp->buffree >= bp->numelems) {
/*
* Should never happen
*/
bp->buffree--;
} else {
bp->buflist[bp->buffree] = buf;
}
mutex_exit(&bp->buflock);
}
static rdma_stat
rib_add_connlist(CONN *cn, rib_conn_list_t *connlist)
{
rw_enter(&connlist->conn_lock, RW_WRITER);
if (connlist->conn_hd) {
cn->c_next = connlist->conn_hd;
connlist->conn_hd->c_prev = cn;
}
connlist->conn_hd = cn;
rw_exit(&connlist->conn_lock);
return (RDMA_SUCCESS);
}
static rdma_stat
rib_rm_conn(CONN *cn, rib_conn_list_t *connlist)
{
rw_enter(&connlist->conn_lock, RW_WRITER);
if (cn->c_prev) {
cn->c_prev->c_next = cn->c_next;
}
if (cn->c_next) {
cn->c_next->c_prev = cn->c_prev;
}
if (connlist->conn_hd == cn)
connlist->conn_hd = cn->c_next;
rw_exit(&connlist->conn_lock);
return (RDMA_SUCCESS);
}
/*
* Connection management.
* IBTF does not support recycling of channels. So connections are only
* in four states - C_CONN_PEND, or C_CONNECTED, or C_ERROR_CONN or
* C_DISCONN_PEND state. No C_IDLE state.
* C_CONN_PEND state: Connection establishment in progress to the server.
* C_CONNECTED state: A connection when created is in C_CONNECTED state.
* It has an RC channel associated with it. ibt_post_send/recv are allowed
* only in this state.
* C_ERROR_CONN state: A connection transitions to this state when WRs on the
* channel are completed in error or an IBT_CM_EVENT_CONN_CLOSED event
* happens on the channel or a IBT_HCA_DETACH_EVENT occurs on the HCA.
* C_DISCONN_PEND state: When a connection is in C_ERROR_CONN state and when
* c_ref drops to 0 (this indicates that RPC has no more references to this
* connection), the connection should be destroyed. A connection transitions
* into this state when it is being destroyed.
*/
static rdma_stat
rib_conn_get(struct netbuf *svcaddr, int addr_type, void *handle, CONN **conn)
{
CONN *cn;
int status = RDMA_SUCCESS;
rib_hca_t *hca = (rib_hca_t *)handle;
rib_qp_t *qp;
clock_t cv_stat, timout;
ibt_path_info_t path;
ibt_ip_addr_t s_ip, d_ip;
again:
rw_enter(&hca->cl_conn_list.conn_lock, RW_READER);
cn = hca->cl_conn_list.conn_hd;
while (cn != NULL) {
/*
* First, clear up any connection in the ERROR state
*/
mutex_enter(&cn->c_lock);
if (cn->c_state == C_ERROR_CONN) {
if (cn->c_ref == 0) {
/*
* Remove connection from list and destroy it.
*/
cn->c_state = C_DISCONN_PEND;
mutex_exit(&cn->c_lock);
rw_exit(&hca->cl_conn_list.conn_lock);
(void) rib_disconnect_channel(cn,
&hca->cl_conn_list);
goto again;
}
mutex_exit(&cn->c_lock);
cn = cn->c_next;
continue;
}
if (cn->c_state == C_DISCONN_PEND) {
mutex_exit(&cn->c_lock);
cn = cn->c_next;
continue;
}
if ((cn->c_raddr.len == svcaddr->len) &&
bcmp(svcaddr->buf, cn->c_raddr.buf, svcaddr->len) == 0) {
/*
* Our connection. Give up conn list lock
* as we are done traversing the list.
*/
rw_exit(&hca->cl_conn_list.conn_lock);
if (cn->c_state == C_CONNECTED) {
cn->c_ref++; /* sharing a conn */
mutex_exit(&cn->c_lock);
*conn = cn;
return (status);
}
if (cn->c_state == C_CONN_PEND) {
/*
* Hold a reference to this conn before
* we give up the lock.
*/
cn->c_ref++;
timout = ddi_get_lbolt() +
drv_usectohz(CONN_WAIT_TIME * 1000000);
while ((cv_stat = cv_timedwait_sig(&cn->c_cv,
&cn->c_lock, timout)) > 0 &&
cn->c_state == C_CONN_PEND)
;
if (cv_stat == 0) {
cn->c_ref--;
mutex_exit(&cn->c_lock);
return (RDMA_INTR);
}
if (cv_stat < 0) {
cn->c_ref--;
mutex_exit(&cn->c_lock);
return (RDMA_TIMEDOUT);
}
if (cn->c_state == C_CONNECTED) {
*conn = cn;
mutex_exit(&cn->c_lock);
return (status);
} else {
cn->c_ref--;
mutex_exit(&cn->c_lock);
return (RDMA_TIMEDOUT);
}
}
}
mutex_exit(&cn->c_lock);
cn = cn->c_next;
}
rw_exit(&hca->cl_conn_list.conn_lock);
bzero(&path, sizeof (ibt_path_info_t));
bzero(&s_ip, sizeof (ibt_ip_addr_t));
bzero(&d_ip, sizeof (ibt_ip_addr_t));
status = rib_chk_srv_ibaddr(svcaddr, addr_type, &path, &s_ip, &d_ip);
if (status != RDMA_SUCCESS) {
return (RDMA_FAILED);
}
/*
* Channel to server doesn't exist yet, create one.
*/
if (rib_clnt_create_chan(hca, svcaddr, &qp) != RDMA_SUCCESS) {
return (RDMA_FAILED);
}
cn = qptoc(qp);
cn->c_state = C_CONN_PEND;
cn->c_ref = 1;
/*
* Add to conn list.
* We had given up the READER lock. In the time since then,
* another thread might have created the connection we are
* trying here. But for now, that is quiet alright - there
* might be two connections between a pair of hosts instead
* of one. If we really want to close that window,
* then need to check the list after acquiring the
* WRITER lock.
*/
(void) rib_add_connlist(cn, &hca->cl_conn_list);
status = rib_conn_to_srv(hca, qp, &path, &s_ip, &d_ip);
mutex_enter(&cn->c_lock);
if (status == RDMA_SUCCESS) {
cn->c_state = C_CONNECTED;
*conn = cn;
} else {
cn->c_state = C_ERROR_CONN;
cn->c_ref--;
}
cv_broadcast(&cn->c_cv);
mutex_exit(&cn->c_lock);
return (status);
}
static rdma_stat
rib_conn_release(CONN *conn)
{
rib_qp_t *qp = ctoqp(conn);
mutex_enter(&conn->c_lock);
conn->c_ref--;
/*
* If a conn is C_ERROR_CONN, close the channel.
* If it's CONNECTED, keep it that way.
*/
if (conn->c_ref == 0 && conn->c_state == C_ERROR_CONN) {
conn->c_state = C_DISCONN_PEND;
mutex_exit(&conn->c_lock);
if (qp->mode == RIB_SERVER)
(void) rib_disconnect_channel(conn,
&qp->hca->srv_conn_list);
else
(void) rib_disconnect_channel(conn,
&qp->hca->cl_conn_list);
return (RDMA_SUCCESS);
}
mutex_exit(&conn->c_lock);
return (RDMA_SUCCESS);
}
/*
* Add at front of list
*/
static struct rdma_done_list *
rdma_done_add(rib_qp_t *qp, uint32_t xid)
{
struct rdma_done_list *rd;
ASSERT(MUTEX_HELD(&qp->rdlist_lock));
rd = kmem_alloc(sizeof (*rd), KM_SLEEP);
rd->xid = xid;
cv_init(&rd->rdma_done_cv, NULL, CV_DEFAULT, NULL);
rd->prev = NULL;
rd->next = qp->rdlist;
if (qp->rdlist != NULL)
qp->rdlist->prev = rd;
qp->rdlist = rd;
return (rd);
}
static void
rdma_done_rm(rib_qp_t *qp, struct rdma_done_list *rd)
{
struct rdma_done_list *r;
ASSERT(MUTEX_HELD(&qp->rdlist_lock));
r = rd->next;
if (r != NULL) {
r->prev = rd->prev;
}
r = rd->prev;
if (r != NULL) {
r->next = rd->next;
} else {
qp->rdlist = rd->next;
}
cv_destroy(&rd->rdma_done_cv);
kmem_free(rd, sizeof (*rd));
}
static void
rdma_done_rem_list(rib_qp_t *qp)
{
struct rdma_done_list *r, *n;
mutex_enter(&qp->rdlist_lock);
for (r = qp->rdlist; r != NULL; r = n) {
n = r->next;
rdma_done_rm(qp, r);
}
mutex_exit(&qp->rdlist_lock);
}
static void
rdma_done_notify(rib_qp_t *qp, uint32_t xid)
{
struct rdma_done_list *r = qp->rdlist;
ASSERT(MUTEX_HELD(&qp->rdlist_lock));
while (r) {
if (r->xid == xid) {
cv_signal(&r->rdma_done_cv);
return;
} else {
r = r->next;
}
}
DTRACE_PROBE1(rpcib__i__donenotify__nomatchxid,
int, xid);
}
/*
* Goes through all connections and closes the channel
* This will cause all the WRs on those channels to be
* flushed.
*/
static void
rib_close_channels(rib_conn_list_t *connlist)
{
CONN *conn;
rib_qp_t *qp;
rw_enter(&connlist->conn_lock, RW_READER);
conn = connlist->conn_hd;
while (conn != NULL) {
mutex_enter(&conn->c_lock);
qp = ctoqp(conn);
if (conn->c_state == C_CONNECTED) {
/*
* Live connection in CONNECTED state.
* Call ibt_close_rc_channel in nonblocking mode
* with no callbacks.
*/
conn->c_state = C_ERROR_CONN;
(void) ibt_close_rc_channel(qp->qp_hdl,
IBT_NOCALLBACKS, NULL, 0, NULL, NULL, 0);
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
} else {
if (conn->c_state == C_ERROR_CONN &&
qp->qp_hdl != NULL) {
/*
* Connection in ERROR state but
* channel is not yet freed.
*/
(void) ibt_close_rc_channel(qp->qp_hdl,
IBT_NOCALLBACKS, NULL, 0, NULL,
NULL, 0);
(void) ibt_free_channel(qp->qp_hdl);
qp->qp_hdl = NULL;
}
}
mutex_exit(&conn->c_lock);
conn = conn->c_next;
}
rw_exit(&connlist->conn_lock);
}
/*
* Frees up all connections that are no longer being referenced
*/
static void
rib_purge_connlist(rib_conn_list_t *connlist)
{
CONN *conn;
top:
rw_enter(&connlist->conn_lock, RW_READER);
conn = connlist->conn_hd;
while (conn != NULL) {
mutex_enter(&conn->c_lock);
/*
* At this point connection is either in ERROR
* or DISCONN_PEND state. If in DISCONN_PEND state
* then some other thread is culling that connection.
* If not and if c_ref is 0, then destroy the connection.
*/
if (conn->c_ref == 0 &&
conn->c_state != C_DISCONN_PEND) {
/*
* Cull the connection
*/
conn->c_state = C_DISCONN_PEND;
mutex_exit(&conn->c_lock);
rw_exit(&connlist->conn_lock);
(void) rib_disconnect_channel(conn, connlist);
goto top;
} else {
/*
* conn disconnect already scheduled or will
* happen from conn_release when c_ref drops to 0.
*/
mutex_exit(&conn->c_lock);
}
conn = conn->c_next;
}
rw_exit(&connlist->conn_lock);
/*
* At this point, only connections with c_ref != 0 are on the list
*/
}
/*
* Cleans and closes up all uses of the HCA
*/
static void
rib_detach_hca(rib_hca_t *hca)
{
/*
* Stop all services on the HCA
* Go through cl_conn_list and close all rc_channels
* Go through svr_conn_list and close all rc_channels
* Free connections whose c_ref has dropped to 0
* Destroy all CQs
* Deregister and released all buffer pool memory after all
* connections are destroyed
* Free the protection domain
* ibt_close_hca()
*/
rw_enter(&hca->state_lock, RW_WRITER);
if (hca->state == HCA_DETACHED) {
rw_exit(&hca->state_lock);
return;
}
hca->state = HCA_DETACHED;
rib_stat->nhca_inited--;
rib_stop_services(hca);
rib_close_channels(&hca->cl_conn_list);
rib_close_channels(&hca->srv_conn_list);
rw_exit(&hca->state_lock);
rib_purge_connlist(&hca->cl_conn_list);
rib_purge_connlist(&hca->srv_conn_list);
(void) ibt_free_cq(hca->clnt_rcq->rib_cq_hdl);
(void) ibt_free_cq(hca->clnt_scq->rib_cq_hdl);
(void) ibt_free_cq(hca->svc_rcq->rib_cq_hdl);
(void) ibt_free_cq(hca->svc_scq->rib_cq_hdl);
kmem_free(hca->clnt_rcq, sizeof (rib_cq_t));
kmem_free(hca->clnt_scq, sizeof (rib_cq_t));
kmem_free(hca->svc_rcq, sizeof (rib_cq_t));
kmem_free(hca->svc_scq, sizeof (rib_cq_t));
rw_enter(&hca->srv_conn_list.conn_lock, RW_READER);
rw_enter(&hca->cl_conn_list.conn_lock, RW_READER);
if (hca->srv_conn_list.conn_hd == NULL &&
hca->cl_conn_list.conn_hd == NULL) {
/*
* conn_lists are NULL, so destroy
* buffers, close hca and be done.
*/
rib_rbufpool_destroy(hca, RECV_BUFFER);
rib_rbufpool_destroy(hca, SEND_BUFFER);
rib_destroy_cache(hca);
(void) ibt_free_pd(hca->hca_hdl, hca->pd_hdl);
(void) ibt_close_hca(hca->hca_hdl);
hca->hca_hdl = NULL;
}
rw_exit(&hca->cl_conn_list.conn_lock);
rw_exit(&hca->srv_conn_list.conn_lock);
if (hca->hca_hdl != NULL) {
mutex_enter(&hca->inuse_lock);
while (hca->inuse)
cv_wait(&hca->cb_cv, &hca->inuse_lock);
mutex_exit(&hca->inuse_lock);
/*
* conn_lists are now NULL, so destroy
* buffers, close hca and be done.
*/
rib_rbufpool_destroy(hca, RECV_BUFFER);
rib_rbufpool_destroy(hca, SEND_BUFFER);
(void) ibt_free_pd(hca->hca_hdl, hca->pd_hdl);
(void) ibt_close_hca(hca->hca_hdl);
hca->hca_hdl = NULL;
}
}
static void
rib_server_side_cache_reclaim(void *argp)
{
cache_avl_struct_t *rcas;
rib_lrc_entry_t *rb;
rib_hca_t *hca = (rib_hca_t *)argp;
rw_enter(&hca->avl_rw_lock, RW_WRITER);
rcas = avl_first(&hca->avl_tree);
if (rcas != NULL)
avl_remove(&hca->avl_tree, rcas);
while (rcas != NULL) {
while (rcas->r.forw != &rcas->r) {
rcas->elements--;
rib_total_buffers --;
rb = rcas->r.forw;
remque(rb);
if (rb->registered)
(void) rib_deregistermem_via_hca(hca,
rb->lrc_buf, rb->lrc_mhandle);
cache_allocation -= rb->lrc_len;
kmem_free(rb->lrc_buf, rb->lrc_len);
kmem_free(rb, sizeof (rib_lrc_entry_t));
}
mutex_destroy(&rcas->node_lock);
kmem_cache_free(hca->server_side_cache, rcas);
rcas = avl_first(&hca->avl_tree);
if (rcas != NULL)
avl_remove(&hca->avl_tree, rcas);
}
rw_exit(&hca->avl_rw_lock);
}
static void
rib_server_side_cache_cleanup(void *argp)
{
cache_avl_struct_t *rcas;
rib_lrc_entry_t *rb;
rib_hca_t *hca = (rib_hca_t *)argp;
rw_enter(&hca->avl_rw_lock, RW_READER);
if (cache_allocation < cache_limit) {
rw_exit(&hca->avl_rw_lock);
return;
}
rw_exit(&hca->avl_rw_lock);
rw_enter(&hca->avl_rw_lock, RW_WRITER);
rcas = avl_last(&hca->avl_tree);
if (rcas != NULL)
avl_remove(&hca->avl_tree, rcas);
while (rcas != NULL) {
while (rcas->r.forw != &rcas->r) {
rcas->elements--;
rib_total_buffers --;
rb = rcas->r.forw;
remque(rb);
if (rb->registered)
(void) rib_deregistermem_via_hca(hca,
rb->lrc_buf, rb->lrc_mhandle);
cache_allocation -= rb->lrc_len;
kmem_free(rb->lrc_buf, rb->lrc_len);
kmem_free(rb, sizeof (rib_lrc_entry_t));
}
mutex_destroy(&rcas->node_lock);
kmem_cache_free(hca->server_side_cache, rcas);
if ((cache_allocation) < cache_limit) {
rw_exit(&hca->avl_rw_lock);
return;
}
rcas = avl_last(&hca->avl_tree);
if (rcas != NULL)
avl_remove(&hca->avl_tree, rcas);
}
rw_exit(&hca->avl_rw_lock);
}
static int
avl_compare(const void *t1, const void *t2)
{
if (((cache_avl_struct_t *)t1)->len == ((cache_avl_struct_t *)t2)->len)
return (0);
if (((cache_avl_struct_t *)t1)->len < ((cache_avl_struct_t *)t2)->len)
return (-1);
return (1);
}
static void
rib_destroy_cache(rib_hca_t *hca)
{
if (hca->reg_cache_clean_up != NULL) {
ddi_taskq_destroy(hca->reg_cache_clean_up);
hca->reg_cache_clean_up = NULL;
}
if (!hca->avl_init) {
kmem_cache_destroy(hca->server_side_cache);
avl_destroy(&hca->avl_tree);
mutex_destroy(&hca->cache_allocation);
rw_destroy(&hca->avl_rw_lock);
}
hca->avl_init = FALSE;
}
static void
rib_force_cleanup(void *hca)
{
if (((rib_hca_t *)hca)->reg_cache_clean_up != NULL)
(void) ddi_taskq_dispatch(
((rib_hca_t *)hca)->reg_cache_clean_up,
rib_server_side_cache_cleanup,
(void *)hca, DDI_NOSLEEP);
}
static rib_lrc_entry_t *
rib_get_cache_buf(CONN *conn, uint32_t len)
{
cache_avl_struct_t cas, *rcas;
rib_hca_t *hca = (ctoqp(conn))->hca;
rib_lrc_entry_t *reply_buf;
avl_index_t where = NULL;
uint64_t c_alloc = 0;
if (!hca->avl_init)
goto error_alloc;
cas.len = len;
rw_enter(&hca->avl_rw_lock, RW_READER);
mutex_enter(&hca->cache_allocation);
c_alloc = cache_allocation;
mutex_exit(&hca->cache_allocation);
if ((rcas = (cache_avl_struct_t *)avl_find(&hca->avl_tree, &cas,
&where)) == NULL) {
/* Am I above the cache limit */
if ((c_alloc + len) >= cache_limit) {
rib_force_cleanup((void *)hca);
rw_exit(&hca->avl_rw_lock);
cache_misses_above_the_limit ++;
/* Allocate and register the buffer directly */
goto error_alloc;
}
rw_exit(&hca->avl_rw_lock);
rw_enter(&hca->avl_rw_lock, RW_WRITER);
/* Recheck to make sure no other thread added the entry in */
if ((rcas = (cache_avl_struct_t *)avl_find(&hca->avl_tree,
&cas, &where)) == NULL) {
/* Allocate an avl tree entry */
rcas = (cache_avl_struct_t *)
kmem_cache_alloc(hca->server_side_cache, KM_SLEEP);
bzero(rcas, sizeof (cache_avl_struct_t));
rcas->elements = 0;
rcas->r.forw = &rcas->r;
rcas->r.back = &rcas->r;
rcas->len = len;
mutex_init(&rcas->node_lock, NULL, MUTEX_DEFAULT, NULL);
avl_insert(&hca->avl_tree, rcas, where);
}
}
mutex_enter(&rcas->node_lock);
if (rcas->r.forw != &rcas->r && rcas->elements > 0) {
rib_total_buffers--;
cache_hits++;
reply_buf = rcas->r.forw;
remque(reply_buf);
rcas->elements--;
mutex_exit(&rcas->node_lock);
rw_exit(&hca->avl_rw_lock);
mutex_enter(&hca->cache_allocation);
cache_allocation -= len;
mutex_exit(&hca->cache_allocation);
} else {
/* Am I above the cache limit */
mutex_exit(&rcas->node_lock);
if ((c_alloc + len) >= cache_limit) {
rib_force_cleanup((void *)hca);
rw_exit(&hca->avl_rw_lock);
cache_misses_above_the_limit ++;
/* Allocate and register the buffer directly */
goto error_alloc;
}
rw_exit(&hca->avl_rw_lock);
cache_misses ++;
/* Allocate a reply_buf entry */
reply_buf = (rib_lrc_entry_t *)
kmem_zalloc(sizeof (rib_lrc_entry_t), KM_SLEEP);
bzero(reply_buf, sizeof (rib_lrc_entry_t));
reply_buf->lrc_buf = kmem_alloc(len, KM_SLEEP);
reply_buf->lrc_len = len;
reply_buf->registered = FALSE;
reply_buf->avl_node = (void *)rcas;
}
return (reply_buf);
error_alloc:
reply_buf = (rib_lrc_entry_t *)
kmem_zalloc(sizeof (rib_lrc_entry_t), KM_SLEEP);
bzero(reply_buf, sizeof (rib_lrc_entry_t));
reply_buf->lrc_buf = kmem_alloc(len, KM_SLEEP);
reply_buf->lrc_len = len;
reply_buf->registered = FALSE;
reply_buf->avl_node = NULL;
return (reply_buf);
}
/*
* Return a pre-registered back to the cache (without
* unregistering the buffer)..
*/
static void
rib_free_cache_buf(CONN *conn, rib_lrc_entry_t *reg_buf)
{
cache_avl_struct_t cas, *rcas;
avl_index_t where = NULL;
rib_hca_t *hca = (ctoqp(conn))->hca;
if (!hca->avl_init)
goto error_free;
cas.len = reg_buf->lrc_len;
rw_enter(&hca->avl_rw_lock, RW_READER);
if ((rcas = (cache_avl_struct_t *)
avl_find(&hca->avl_tree, &cas, &where)) == NULL) {
rw_exit(&hca->avl_rw_lock);
goto error_free;
} else {
rib_total_buffers ++;
cas.len = reg_buf->lrc_len;
mutex_enter(&rcas->node_lock);
insque(reg_buf, &rcas->r);
rcas->elements ++;
mutex_exit(&rcas->node_lock);
rw_exit(&hca->avl_rw_lock);
mutex_enter(&hca->cache_allocation);
cache_allocation += cas.len;
mutex_exit(&hca->cache_allocation);
}
return;
error_free:
if (reg_buf->registered)
(void) rib_deregistermem_via_hca(hca,
reg_buf->lrc_buf, reg_buf->lrc_mhandle);
kmem_free(reg_buf->lrc_buf, reg_buf->lrc_len);
kmem_free(reg_buf, sizeof (rib_lrc_entry_t));
}
static rdma_stat
rib_registermem_via_hca(rib_hca_t *hca, caddr_t adsp, caddr_t buf,
uint_t buflen, struct mrc *buf_handle)
{
ibt_mr_hdl_t mr_hdl = NULL; /* memory region handle */
ibt_mr_desc_t mr_desc; /* vaddr, lkey, rkey */
rdma_stat status;
/*
* Note: ALL buffer pools use the same memory type RDMARW.
*/
status = rib_reg_mem(hca, adsp, buf, buflen, 0, &mr_hdl, &mr_desc);
if (status == RDMA_SUCCESS) {
buf_handle->mrc_linfo = (uint64_t)(uintptr_t)mr_hdl;
buf_handle->mrc_lmr = (uint32_t)mr_desc.md_lkey;
buf_handle->mrc_rmr = (uint32_t)mr_desc.md_rkey;
} else {
buf_handle->mrc_linfo = NULL;
buf_handle->mrc_lmr = 0;
buf_handle->mrc_rmr = 0;
}
return (status);
}
/* ARGSUSED */
static rdma_stat
rib_deregistermemsync_via_hca(rib_hca_t *hca, caddr_t buf,
struct mrc buf_handle, RIB_SYNCMEM_HANDLE sync_handle)
{
(void) rib_deregistermem_via_hca(hca, buf, buf_handle);
return (RDMA_SUCCESS);
}
/* ARGSUSED */
static rdma_stat
rib_deregistermem_via_hca(rib_hca_t *hca, caddr_t buf, struct mrc buf_handle)
{
(void) ibt_deregister_mr(hca->hca_hdl,
(ibt_mr_hdl_t)(uintptr_t)buf_handle.mrc_linfo);
return (RDMA_SUCCESS);
}
/*
* Check if the IP interface named by `lifrp' is RDMA-capable.
*/
static boolean_t
rpcib_rdma_capable_interface(struct lifreq *lifrp)
{
char ifname[LIFNAMSIZ];
char *cp;
if (lifrp->lifr_type == IFT_IB)
return (B_TRUE);
/*
* Strip off the logical interface portion before getting
* intimate with the name.
*/
(void) strlcpy(ifname, lifrp->lifr_name, LIFNAMSIZ);
if ((cp = strchr(ifname, ':')) != NULL)
*cp = '\0';
return (strcmp("lo0", ifname) == 0);
}
static int
rpcib_do_ip_ioctl(int cmd, int len, void *arg)
{
vnode_t *kvp, *vp;
TIUSER *tiptr;
struct strioctl iocb;
k_sigset_t smask;
int err = 0;
if (lookupname("/dev/udp", UIO_SYSSPACE, FOLLOW, NULLVPP, &kvp) == 0) {
if (t_kopen(NULL, kvp->v_rdev, FREAD|FWRITE,
&tiptr, CRED()) == 0) {
vp = tiptr->fp->f_vnode;
} else {
VN_RELE(kvp);
return (EPROTO);
}
} else {
return (EPROTO);
}
iocb.ic_cmd = cmd;
iocb.ic_timout = 0;
iocb.ic_len = len;
iocb.ic_dp = (caddr_t)arg;
sigintr(&smask, 0);
err = kstr_ioctl(vp, I_STR, (intptr_t)&iocb);
sigunintr(&smask);
(void) t_kclose(tiptr, 0);
VN_RELE(kvp);
return (err);
}
/*
* Issue an SIOCGLIFCONF down to IP and return the result in `lifcp'.
* lifcp->lifc_buf is dynamically allocated to be *bufsizep bytes.
*/
static int
rpcib_do_lifconf(struct lifconf *lifcp, uint_t *bufsizep)
{
int err;
struct lifnum lifn;
bzero(&lifn, sizeof (struct lifnum));
lifn.lifn_family = AF_UNSPEC;
err = rpcib_do_ip_ioctl(SIOCGLIFNUM, sizeof (struct lifnum), &lifn);
if (err != 0)
return (err);
/*
* Pad the interface count to account for additional interfaces that
* may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
*/
lifn.lifn_count += 4;
bzero(lifcp, sizeof (struct lifconf));
lifcp->lifc_family = AF_UNSPEC;
lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
err = rpcib_do_ip_ioctl(SIOCGLIFCONF, sizeof (struct lifconf), lifcp);
if (err != 0) {
kmem_free(lifcp->lifc_buf, *bufsizep);
return (err);
}
return (0);
}
static boolean_t
rpcib_get_ib_addresses(rpcib_ipaddrs_t *addrs4, rpcib_ipaddrs_t *addrs6)
{
uint_t i, nifs;
uint_t bufsize;
struct lifconf lifc;
struct lifreq *lifrp;
struct sockaddr_in *sinp;
struct sockaddr_in6 *sin6p;
bzero(addrs4, sizeof (rpcib_ipaddrs_t));
bzero(addrs6, sizeof (rpcib_ipaddrs_t));
if (rpcib_do_lifconf(&lifc, &bufsize) != 0)
return (B_FALSE);
if ((nifs = lifc.lifc_len / sizeof (struct lifreq)) == 0) {
kmem_free(lifc.lifc_buf, bufsize);
return (B_FALSE);
}
/*
* Worst case is that all of the addresses are IB-capable and have
* the same address family, so size our buffers accordingly.
*/
addrs4->ri_size = nifs * sizeof (struct sockaddr_in);
addrs4->ri_list = kmem_zalloc(addrs4->ri_size, KM_SLEEP);
addrs6->ri_size = nifs * sizeof (struct sockaddr_in6);
addrs6->ri_list = kmem_zalloc(addrs6->ri_size, KM_SLEEP);
for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
if (!rpcib_rdma_capable_interface(lifrp))
continue;
if (lifrp->lifr_addr.ss_family == AF_INET) {
sinp = addrs4->ri_list;
bcopy(&lifrp->lifr_addr, &sinp[addrs4->ri_count++],
sizeof (struct sockaddr_in));
} else if (lifrp->lifr_addr.ss_family == AF_INET6) {
sin6p = addrs6->ri_list;
bcopy(&lifrp->lifr_addr, &sin6p[addrs6->ri_count++],
sizeof (struct sockaddr_in6));
}
}
kmem_free(lifc.lifc_buf, bufsize);
return (B_TRUE);
}
/* ARGSUSED */
static int rpcib_cache_kstat_update(kstat_t *ksp, int rw) {
if (KSTAT_WRITE == rw) {
return (EACCES);
}
rpcib_kstat.cache_limit.value.ui64 =
(uint64_t)cache_limit;
rpcib_kstat.cache_allocation.value.ui64 =
(uint64_t)cache_allocation;
rpcib_kstat.cache_hits.value.ui64 =
(uint64_t)cache_hits;
rpcib_kstat.cache_misses.value.ui64 =
(uint64_t)cache_misses;
rpcib_kstat.cache_misses_above_the_limit.value.ui64 =
(uint64_t)cache_misses_above_the_limit;
return (0);
}