timer.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2004 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/timer.h>
#include <sys/systm.h>
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/policy.h>
#include <sys/port.h>
#include <sys/port_kernel.h>
#include <sys/contract/process_impl.h>
static kmem_cache_t *clock_timer_cache;
static clock_backend_t *clock_backend[CLOCK_MAX];
static int timer_port_callback(void *, int *, pid_t, int, void *);
static void timer_close_port(void *, int, pid_t, int);
#define CLOCK_BACKEND(clk) \
((clk) < CLOCK_MAX && (clk) >= 0 ? clock_backend[(clk)] : NULL)
/*
* Tunable to increase the maximum number of POSIX timers per-process. This
* may _only_ be tuned in /etc/system or by patching the kernel binary; it
* _cannot_ be tuned on a running system.
*/
int timer_max = _TIMER_MAX;
/*
* timer_lock() locks the specified interval timer. It doesn't look at the
* ITLK_REMOVE bit; it's up to callers to look at this if they need to
* care. p_lock must be held on entry; it may be dropped and reaquired,
* but timer_lock() will always return with p_lock held.
*
* Note that timer_create() doesn't call timer_lock(); it creates timers
* with the ITLK_LOCKED bit explictly set.
*/
static void
timer_lock(proc_t *p, itimer_t *it)
{
ASSERT(MUTEX_HELD(&p->p_lock));
while (it->it_lock & ITLK_LOCKED) {
it->it_blockers++;
cv_wait(&it->it_cv, &p->p_lock);
it->it_blockers--;
}
it->it_lock |= ITLK_LOCKED;
}
/*
* timer_unlock() unlocks the specified interval timer, waking up any
* waiters. p_lock must be held on entry; it will not be dropped by
* timer_unlock().
*/
static void
timer_unlock(proc_t *p, itimer_t *it)
{
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(it->it_lock & ITLK_LOCKED);
it->it_lock &= ~ITLK_LOCKED;
cv_signal(&it->it_cv);
}
/*
* timer_delete_locked() takes a proc pointer, timer ID and locked interval
* timer, and deletes the specified timer. It must be called with p_lock
* held, and cannot be called on a timer which already has ITLK_REMOVE set;
* the caller must check this. timer_delete_locked() will set the ITLK_REMOVE
* bit and will iteratively unlock and lock the interval timer until all
* blockers have seen the ITLK_REMOVE and cleared out. It will then zero
* out the specified entry in the p_itimer array, and call into the clock
* backend to complete the deletion.
*
* This function will always return with p_lock held.
*/
static void
timer_delete_locked(proc_t *p, timer_t tid, itimer_t *it)
{
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(!(it->it_lock & ITLK_REMOVE));
ASSERT(it->it_lock & ITLK_LOCKED);
it->it_lock |= ITLK_REMOVE;
/*
* If there are threads waiting to lock this timer, we'll unlock
* the timer, and block on the cv. Threads blocking our removal will
* have the opportunity to run; when they see the ITLK_REMOVE flag
* set, they will immediately unlock the timer.
*/
while (it->it_blockers) {
timer_unlock(p, it);
cv_wait(&it->it_cv, &p->p_lock);
timer_lock(p, it);
}
ASSERT(p->p_itimer[tid] == it);
p->p_itimer[tid] = NULL;
/*
* No one is blocked on this timer, and no one will be (we've set
* p_itimer[tid] to be NULL; no one can find it). Now we call into
* the clock backend to delete the timer; it is up to the backend to
* guarantee that timer_fire() has completed (and will never again
* be called) for this timer.
*/
mutex_exit(&p->p_lock);
it->it_backend->clk_timer_delete(it);
if (it->it_portev) {
mutex_enter(&it->it_mutex);
if (it->it_portev) {
/* dissociate timer from the event port */
(void) port_dissociate_ksource(it->it_portfd,
PORT_SOURCE_TIMER, (port_source_t *)it->it_portsrc);
port_free_event((port_kevent_t *)it->it_portev);
it->it_portev = NULL;
it->it_flags &= ~IT_PORT;
it->it_pending = 0;
}
mutex_exit(&it->it_mutex);
}
mutex_enter(&p->p_lock);
/*
* We need to be careful freeing the sigqueue for this timer;
* if a signal is pending, the sigqueue needs to be freed
* synchronously in siginfofree(). The need to free the sigqueue
* in siginfofree() is indicated by setting sq_func to NULL.
*/
if (it->it_pending > 0) {
it->it_sigq->sq_func = NULL;
} else {
kmem_free(it->it_sigq, sizeof (sigqueue_t));
}
ASSERT(it->it_blockers == 0);
kmem_cache_free(clock_timer_cache, it);
}
/*
* timer_grab() and its companion routine, timer_release(), are wrappers
* around timer_lock()/_unlock() which allow the timer_*(3R) routines to
* (a) share error handling code and (b) not grab p_lock themselves. Routines
* which are called with p_lock held (e.g. timer_lwpbind(), timer_lwpexit())
* must call timer_lock()/_unlock() explictly.
*
* timer_grab() takes a proc and a timer ID, and returns a pointer to a
* locked interval timer. p_lock must _not_ be held on entry; timer_grab()
* may acquire p_lock, but will always return with p_lock dropped.
*
* If timer_grab() fails, it will return NULL. timer_grab() will fail if
* one or more of the following is true:
*
* (a) The specified timer ID is out of range.
*
* (b) The specified timer ID does not correspond to a timer ID returned
* from timer_create(3R).
*
* (c) The specified timer ID is currently being removed.
*
*/
static itimer_t *
timer_grab(proc_t *p, timer_t tid)
{
itimer_t **itp, *it;
if (tid >= timer_max || tid < 0)
return (NULL);
mutex_enter(&p->p_lock);
if ((itp = p->p_itimer) == NULL || (it = itp[tid]) == NULL) {
mutex_exit(&p->p_lock);
return (NULL);
}
timer_lock(p, it);
if (it->it_lock & ITLK_REMOVE) {
/*
* Someone is removing this timer; it will soon be invalid.
*/
timer_unlock(p, it);
mutex_exit(&p->p_lock);
return (NULL);
}
mutex_exit(&p->p_lock);
return (it);
}
/*
* timer_release() releases a timer acquired with timer_grab(). p_lock
* should not be held on entry; timer_release() will acquire p_lock but
* will drop it before returning.
*/
static void
timer_release(proc_t *p, itimer_t *it)
{
mutex_enter(&p->p_lock);
timer_unlock(p, it);
mutex_exit(&p->p_lock);
}
/*
* timer_delete_grabbed() deletes a timer acquired with timer_grab().
* p_lock should not be held on entry; timer_delete_grabbed() will acquire
* p_lock, but will drop it before returning.
*/
static void
timer_delete_grabbed(proc_t *p, timer_t tid, itimer_t *it)
{
mutex_enter(&p->p_lock);
timer_delete_locked(p, tid, it);
mutex_exit(&p->p_lock);
}
void
clock_timer_init()
{
clock_timer_cache = kmem_cache_create("timer_cache",
sizeof (itimer_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
clock_add_backend(clockid_t clock, clock_backend_t *backend)
{
ASSERT(clock >= 0 && clock < CLOCK_MAX);
ASSERT(clock_backend[clock] == NULL);
clock_backend[clock] = backend;
}
int
clock_settime(clockid_t clock, timespec_t *tp)
{
timespec_t t;
clock_backend_t *backend;
int error;
if ((backend = CLOCK_BACKEND(clock)) == NULL)
return (set_errno(EINVAL));
if (secpolicy_settime(CRED()) != 0)
return (set_errno(EPERM));
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(tp, &t, sizeof (timespec_t)) != 0)
return (set_errno(EFAULT));
} else {
timespec32_t t32;
if (copyin(tp, &t32, sizeof (timespec32_t)) != 0)
return (set_errno(EFAULT));
TIMESPEC32_TO_TIMESPEC(&t, &t32);
}
if (itimerspecfix(&t))
return (set_errno(EINVAL));
error = backend->clk_clock_settime(&t);
if (error)
return (set_errno(error));
return (0);
}
int
clock_gettime(clockid_t clock, timespec_t *tp)
{
timespec_t t;
clock_backend_t *backend;
int error;
if ((backend = CLOCK_BACKEND(clock)) == NULL)
return (set_errno(EINVAL));
error = backend->clk_clock_gettime(&t);
if (error)
return (set_errno(error));
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&t, tp, sizeof (timespec_t)) != 0)
return (set_errno(EFAULT));
} else {
timespec32_t t32;
if (TIMESPEC_OVERFLOW(&t))
return (set_errno(EOVERFLOW));
TIMESPEC_TO_TIMESPEC32(&t32, &t);
if (copyout(&t32, tp, sizeof (timespec32_t)) != 0)
return (set_errno(EFAULT));
}
return (0);
}
int
clock_getres(clockid_t clock, timespec_t *tp)
{
timespec_t t;
clock_backend_t *backend;
int error;
/*
* Strangely, the standard defines clock_getres() with a NULL tp
* to do nothing (regardless of the validity of the specified
* clock_id). Go figure.
*/
if (tp == NULL)
return (0);
if ((backend = CLOCK_BACKEND(clock)) == NULL)
return (set_errno(EINVAL));
error = backend->clk_clock_getres(&t);
if (error)
return (set_errno(error));
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&t, tp, sizeof (timespec_t)) != 0)
return (set_errno(EFAULT));
} else {
timespec32_t t32;
if (TIMESPEC_OVERFLOW(&t))
return (set_errno(EOVERFLOW));
TIMESPEC_TO_TIMESPEC32(&t32, &t);
if (copyout(&t32, tp, sizeof (timespec32_t)) != 0)
return (set_errno(EFAULT));
}
return (0);
}
void
timer_signal(sigqueue_t *sigq)
{
itimer_t *it = (itimer_t *)sigq->sq_backptr;
/*
* There are some conditions during a fork or an exit when we can
* call siginfofree() without p_lock held. To prevent a race
* between timer_signal() and timer_fire() with regard to it_pending,
* we therefore acquire it_mutex in both paths.
*/
mutex_enter(&it->it_mutex);
ASSERT(it->it_pending > 0);
it->it_overrun = it->it_pending - 1;
it->it_pending = 0;
mutex_exit(&it->it_mutex);
}
/*
* This routine is called from the clock backend.
*/
void
timer_fire(itimer_t *it)
{
proc_t *p;
int proc_lock_held;
if (it->it_flags & IT_SIGNAL) {
/*
* See the comment in timer_signal() for why it is not
* sufficient to only grab p_lock here. Because p_lock can be
* held on entry to timer_signal(), the lock ordering is
* necessarily p_lock before it_mutex.
*/
p = it->it_proc;
proc_lock_held = 1;
mutex_enter(&p->p_lock);
} else {
/*
* IT_PORT:
* If a timer was ever programmed to send events to a port,
* the IT_PORT flag will remain set until:
* a) the timer is deleted (see timer_delete_locked()) or
* b) the port is being closed (see timer_close_port()).
* Both cases are synchronized with the it_mutex.
* We don't need to use the p_lock because it is only
* required in the IT_SIGNAL case.
* If IT_PORT was set and the port is being closed then
* the timer notification is set to NONE. In such a case
* the timer itself and the it_pending counter remain active
* until the application deletes the counter or the process
* exits.
*/
proc_lock_held = 0;
}
mutex_enter(&it->it_mutex);
if (it->it_pending > 0) {
if (it->it_pending < INT_MAX)
it->it_pending++;
mutex_exit(&it->it_mutex);
} else {
if (it->it_flags & IT_PORT) {
it->it_pending = 1;
(void) port_send_event((port_kevent_t *)it->it_portev);
mutex_exit(&it->it_mutex);
} else if (it->it_flags & IT_SIGNAL) {
it->it_pending = 1;
mutex_exit(&it->it_mutex);
sigaddqa(p, NULL, it->it_sigq);
} else {
mutex_exit(&it->it_mutex);
}
}
if (proc_lock_held)
mutex_exit(&p->p_lock);
}
int
timer_create(clockid_t clock, struct sigevent *evp, timer_t *tid)
{
struct sigevent ev;
proc_t *p = curproc;
clock_backend_t *backend;
itimer_t *it, **itp;
sigqueue_t *sigq;
cred_t *cr = CRED();
int error = 0;
timer_t i;
port_notify_t tim_pnevp;
port_kevent_t *pkevp = NULL;
if ((backend = CLOCK_BACKEND(clock)) == NULL)
return (set_errno(EINVAL));
if (evp != NULL) {
/*
* short copyin() for binary compatibility
* fetch oldsigevent to determine how much to copy in.
*/
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(evp, &ev, sizeof (struct oldsigevent)))
return (set_errno(EFAULT));
if (ev.sigev_notify == SIGEV_PORT) {
if (copyin(ev.sigev_value.sival_ptr, &tim_pnevp,
sizeof (port_notify_t)))
return (set_errno(EFAULT));
}
#ifdef _SYSCALL32_IMPL
} else {
struct sigevent32 ev32;
port_notify32_t tim_pnevp32;
if (copyin(evp, &ev32, sizeof (struct oldsigevent32)))
return (set_errno(EFAULT));
ev.sigev_notify = ev32.sigev_notify;
ev.sigev_signo = ev32.sigev_signo;
/*
* See comment in sigqueue32() on handling of 32-bit
* sigvals in a 64-bit kernel.
*/
ev.sigev_value.sival_int = ev32.sigev_value.sival_int;
if (ev.sigev_notify == SIGEV_PORT) {
if (copyin((void *)(uintptr_t)
ev32.sigev_value.sival_ptr,
(void *)&tim_pnevp32,
sizeof (port_notify32_t)))
return (set_errno(EFAULT));
tim_pnevp.portnfy_port =
tim_pnevp32.portnfy_port;
tim_pnevp.portnfy_user =
(void *)(uintptr_t)tim_pnevp32.portnfy_user;
}
#endif
}
switch (ev.sigev_notify) {
case SIGEV_NONE:
break;
case SIGEV_SIGNAL:
if (ev.sigev_signo < 1 || ev.sigev_signo >= NSIG)
return (set_errno(EINVAL));
break;
case SIGEV_PORT:
break;
default:
return (set_errno(EINVAL));
}
} else {
/*
* Use the clock's default sigevent (this is a structure copy).
*/
ev = backend->clk_default;
}
/*
* We'll allocate our timer and sigqueue now, before we grab p_lock.
* If we can't find an empty slot, we'll free them before returning.
*/
it = kmem_cache_alloc(clock_timer_cache, KM_SLEEP);
bzero(it, sizeof (itimer_t));
mutex_init(&it->it_mutex, NULL, MUTEX_DEFAULT, NULL);
sigq = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
mutex_enter(&p->p_lock);
/*
* If this is this process' first timer, we need to attempt to allocate
* an array of timerstr_t pointers. We drop p_lock to perform the
* allocation; if we return to discover that p_itimer is non-NULL,
* we will free our allocation and drive on.
*/
if ((itp = p->p_itimer) == NULL) {
mutex_exit(&p->p_lock);
itp = kmem_zalloc(timer_max * sizeof (itimer_t *), KM_SLEEP);
mutex_enter(&p->p_lock);
if (p->p_itimer == NULL)
p->p_itimer = itp;
else {
kmem_free(itp, timer_max * sizeof (itimer_t *));
itp = p->p_itimer;
}
}
for (i = 0; i < timer_max && itp[i] != NULL; i++)
continue;
if (i == timer_max) {
/*
* We couldn't find a slot. Drop p_lock, free the preallocated
* timer and sigqueue, and return an error.
*/
mutex_exit(&p->p_lock);
kmem_cache_free(clock_timer_cache, it);
kmem_free(sigq, sizeof (sigqueue_t));
return (set_errno(EAGAIN));
}
ASSERT(i < timer_max && itp[i] == NULL);
/*
* If we develop other notification mechanisms, this will need
* to call into (yet another) backend.
*/
sigq->sq_info.si_signo = ev.sigev_signo;
sigq->sq_info.si_value = ev.sigev_value;
sigq->sq_info.si_code = SI_TIMER;
sigq->sq_info.si_pid = p->p_pid;
sigq->sq_info.si_ctid = PRCTID(p);
sigq->sq_info.si_zoneid = getzoneid();
sigq->sq_info.si_uid = crgetruid(cr);
sigq->sq_func = timer_signal;
sigq->sq_next = NULL;
sigq->sq_backptr = it;
it->it_sigq = sigq;
it->it_backend = backend;
it->it_lock = ITLK_LOCKED;
itp[i] = it;
if (ev.sigev_notify == SIGEV_PORT) {
int port;
/*
* This timer is programmed to use event port notification when
* the timer fires:
* - allocate a port event structure and prepare it to be sent
* to the port as soon as the timer fires.
* - when the timer fires :
* - if event structure was already sent to the port then this
* is a timer fire overflow => increment overflow counter.
* - otherwise send pre-allocated event structure to the port.
* - the events field of the port_event_t structure counts the
* number of timer fired events.
* - The event structured is allocated using the
* PORT_ALLOC_CACHED flag.
* This flag indicates that the timer itself will manage and
* free the event structure when required.
*/
it->it_flags |= IT_PORT;
port = tim_pnevp.portnfy_port;
/* associate timer as event source with the port */
error = port_associate_ksource(port, PORT_SOURCE_TIMER,
(port_source_t **)&it->it_portsrc, timer_close_port,
(void *)it, NULL);
if (error) {
itp[i] = NULL; /* clear slot */
mutex_exit(&p->p_lock);
kmem_cache_free(clock_timer_cache, it);
kmem_free(sigq, sizeof (sigqueue_t));
return (set_errno(error));
}
/* allocate an event structure/slot */
error = port_alloc_event(port, PORT_ALLOC_SCACHED,
PORT_SOURCE_TIMER, &pkevp);
if (error) {
(void) port_dissociate_ksource(port, PORT_SOURCE_TIMER,
(port_source_t *)it->it_portsrc);
itp[i] = NULL; /* clear slot */
mutex_exit(&p->p_lock);
kmem_cache_free(clock_timer_cache, it);
kmem_free(sigq, sizeof (sigqueue_t));
return (set_errno(error));
}
/* initialize event data */
port_init_event(pkevp, i, tim_pnevp.portnfy_user,
timer_port_callback, it);
it->it_portev = pkevp;
it->it_portfd = port;
} else {
if (ev.sigev_notify == SIGEV_SIGNAL)
it->it_flags |= IT_SIGNAL;
}
mutex_exit(&p->p_lock);
/*
* Call on the backend to verify the event argument (or return
* EINVAL if this clock type does not support timers).
*/
if ((error = backend->clk_timer_create(it, &ev)) != 0)
goto err;
it->it_lwp = ttolwp(curthread);
it->it_proc = p;
if (copyout(&i, tid, sizeof (timer_t)) != 0) {
error = EFAULT;
goto err;
}
/*
* If we're here, then we have successfully created the timer; we
* just need to release the timer and return.
*/
timer_release(p, it);
return (0);
err:
/*
* If we're here, an error has occurred late in the timer creation
* process. We need to regrab p_lock, and delete the incipient timer.
* Since we never unlocked the timer (it was born locked), it's
* impossible for a removal to be pending.
*/
ASSERT(!(it->it_lock & ITLK_REMOVE));
timer_delete_grabbed(p, i, it);
return (set_errno(error));
}
int
timer_gettime(timer_t tid, itimerspec_t *val)
{
proc_t *p = curproc;
itimer_t *it;
itimerspec_t when;
int error;
if ((it = timer_grab(p, tid)) == NULL)
return (set_errno(EINVAL));
error = it->it_backend->clk_timer_gettime(it, &when);
timer_release(p, it);
if (error == 0) {
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&when, val, sizeof (itimerspec_t)))
error = EFAULT;
} else {
if (ITIMERSPEC_OVERFLOW(&when))
error = EOVERFLOW;
else {
itimerspec32_t w32;
ITIMERSPEC_TO_ITIMERSPEC32(&w32, &when)
if (copyout(&w32, val, sizeof (itimerspec32_t)))
error = EFAULT;
}
}
}
return (error ? set_errno(error) : 0);
}
int
timer_settime(timer_t tid, int flags, itimerspec_t *val, itimerspec_t *oval)
{
itimerspec_t when;
timespec_t res;
itimer_t *it;
proc_t *p = curproc;
int error;
if (oval != NULL) {
if ((error = timer_gettime(tid, oval)) != 0)
return (error);
}
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(val, &when, sizeof (itimerspec_t)))
return (set_errno(EFAULT));
} else {
itimerspec32_t w32;
if (copyin(val, &w32, sizeof (itimerspec32_t)))
return (set_errno(EFAULT));
ITIMERSPEC32_TO_ITIMERSPEC(&when, &w32);
}
if (itimerspecfix(&when.it_value) ||
(itimerspecfix(&when.it_interval) &&
timerspecisset(&when.it_value))) {
return (set_errno(EINVAL));
}
if ((it = timer_grab(p, tid)) == NULL)
return (set_errno(EINVAL));
/*
* From the man page:
* Time values that are between two consecutive non-negative
* integer multiples of the resolution of the specified timer
* shall be rounded up to the larger multiple of the resolution.
* We assume that the resolution of any clock is less than one second.
*/
if (it->it_backend->clk_clock_getres(&res) == 0 && res.tv_nsec > 1) {
long rem;
if ((rem = when.it_interval.tv_nsec % res.tv_nsec) != 0) {
when.it_interval.tv_nsec += res.tv_nsec - rem;
timespecfix(&when.it_interval);
}
if ((rem = when.it_value.tv_nsec % res.tv_nsec) != 0) {
when.it_value.tv_nsec += res.tv_nsec - rem;
timespecfix(&when.it_value);
}
}
error = it->it_backend->clk_timer_settime(it, flags, &when);
timer_release(p, it);
return (error ? set_errno(error) : 0);
}
int
timer_delete(timer_t tid)
{
proc_t *p = curproc;
itimer_t *it;
if ((it = timer_grab(p, tid)) == NULL)
return (set_errno(EINVAL));
timer_delete_grabbed(p, tid, it);
return (0);
}
int
timer_getoverrun(timer_t tid)
{
int overrun;
proc_t *p = curproc;
itimer_t *it;
if ((it = timer_grab(p, tid)) == NULL)
return (set_errno(EINVAL));
/*
* The it_overrun field is protected by p_lock; we need to acquire
* it before looking at the value.
*/
mutex_enter(&p->p_lock);
overrun = it->it_overrun;
mutex_exit(&p->p_lock);
timer_release(p, it);
return (overrun);
}
/*
* Entered/exited with p_lock held, but will repeatedly drop and regrab p_lock.
*/
void
timer_lwpexit(void)
{
timer_t i;
proc_t *p = curproc;
klwp_t *lwp = ttolwp(curthread);
itimer_t *it, **itp;
ASSERT(MUTEX_HELD(&p->p_lock));
if ((itp = p->p_itimer) == NULL)
return;
for (i = 0; i < timer_max; i++) {
if ((it = itp[i]) == NULL)
continue;
timer_lock(p, it);
if ((it->it_lock & ITLK_REMOVE) || it->it_lwp != lwp) {
/*
* This timer is either being removed or it isn't
* associated with this lwp.
*/
timer_unlock(p, it);
continue;
}
/*
* The LWP that created this timer is going away. To the user,
* our behavior here is explicitly undefined. We will simply
* null out the it_lwp field; if the LWP was bound to a CPU,
* the cyclic will stay bound to that CPU until the process
* exits.
*/
it->it_lwp = NULL;
timer_unlock(p, it);
}
}
/*
* Called to notify of an LWP binding change. Entered/exited with p_lock
* held, but will repeatedly drop and regrab p_lock.
*/
void
timer_lwpbind()
{
timer_t i;
proc_t *p = curproc;
klwp_t *lwp = ttolwp(curthread);
itimer_t *it, **itp;
ASSERT(MUTEX_HELD(&p->p_lock));
if ((itp = p->p_itimer) == NULL)
return;
for (i = 0; i < timer_max; i++) {
if ((it = itp[i]) == NULL)
continue;
timer_lock(p, it);
if (!(it->it_lock & ITLK_REMOVE) && it->it_lwp == lwp) {
/*
* Drop p_lock and jump into the backend.
*/
mutex_exit(&p->p_lock);
it->it_backend->clk_timer_lwpbind(it);
mutex_enter(&p->p_lock);
}
timer_unlock(p, it);
}
}
/*
* This function should only be called if p_itimer is non-NULL.
*/
void
timer_exit(void)
{
timer_t i;
proc_t *p = curproc;
ASSERT(p->p_itimer != NULL);
for (i = 0; i < timer_max; i++)
(void) timer_delete(i);
kmem_free(p->p_itimer, timer_max * sizeof (itimer_t *));
p->p_itimer = NULL;
}
/*
* timer_port_callback() is a callback function which is associated with the
* timer event and is activated just before the event is delivered to the user.
* The timer uses this function to update/set the overflow counter and
* to reenable the use of the event structure.
*/
/* ARGSUSED */
static int
timer_port_callback(void *arg, int *events, pid_t pid, int flag, void *evp)
{
itimer_t *it = arg;
mutex_enter(&it->it_mutex);
if (curproc != it->it_proc) {
/* can not deliver timer events to another proc */
mutex_exit(&it->it_mutex);
return (EACCES);
}
*events = it->it_pending; /* 1 = 1 event, >1 # of overflows */
it->it_pending = 0; /* reinit overflow counter */
/*
* This function can also be activated when the port is being closed
* and a timer event is already submitted to the port.
* In such a case the event port framework will use the
* close-callback function to notify the events sources.
* The timer close-callback function is timer_close_port() which
* will free all allocated resources (including the allocated
* port event structure).
* For that reason we don't need to check the value of flag here.
*/
mutex_exit(&it->it_mutex);
return (0);
}
/*
* port is being closed ... free all allocated port event structures
* The delivered arg currently correspond to the first timer associated with
* the port and it is not useable in this case.
* We have to scan the list of activated timers in the current proc and
* compare them with the delivered port id.
*/
/* ARGSUSED */
static void
timer_close_port(void *arg, int port, pid_t pid, int lastclose)
{
proc_t *p = curproc;
timer_t tid;
itimer_t *it;
for (tid = 0; tid < timer_max; tid++) {
if ((it = timer_grab(p, tid)) == NULL)
continue;
if (it->it_portev) {
mutex_enter(&it->it_mutex);
if (it->it_portfd == port) {
port_free_event((port_kevent_t *)it->it_portev);
it->it_portev = NULL;
it->it_flags &= ~IT_PORT;
}
mutex_exit(&it->it_mutex);
}
timer_release(p, it);
}
}