sunpci.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/sunndi.h>
#include <sys/ddifm_impl.h>
#include <sys/fm/util.h>
#include <sys/fm/protocol.h>
#include <sys/fm/io/pci.h>
#include <sys/fm/io/ddi.h>
#include <sys/pci.h>
#include <sys/pci_impl.h>
#include <sys/epm.h>
int
pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle)
{
caddr_t cfgaddr;
ddi_device_acc_attr_t attr;
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
/* Check for fault management capabilities */
if (DDI_FM_ACC_ERR_CAP(ddi_fm_capable(dip)))
attr.devacc_attr_access = DDI_FLAGERR_ACC;
return (ddi_regs_map_setup(dip, 0, &cfgaddr, 0, 0, &attr, handle));
}
void
pci_config_teardown(ddi_acc_handle_t *handle)
{
ddi_regs_map_free(handle);
}
/*
* pci_ereport_setup, pci_ereport_teardown, pci_ereport_post:
* Interfaces to be used by ereport capable PCI device drivers to setup,
* teardown, and post generic PCI error reports. This is to guarantee a
* consistant error report model for all PCI devices. Please see
* PSARC/2004/391.
*/
typedef struct pci_erpt {
caddr_t pci_cfg_addr; /* Config space address */
ddi_acc_handle_t pci_cfg_hdl; /* Config space access handle */
} pci_erpt_t;
pci_fm_err_t pci_err_tbl[] = {
PCI_DET_PERR, PCI_STAT_PERROR, NULL,
PCI_MDPE, PCI_STAT_S_PERROR, PCI_TARG_MDPE,
PCI_SIG_SERR, PCI_STAT_S_SYSERR, NULL,
PCI_MA, PCI_STAT_R_MAST_AB, PCI_TARG_MA,
PCI_REC_TA, PCI_STAT_R_TARG_AB, PCI_TARG_REC_TA,
PCI_SIG_TA, PCI_STAT_S_TARG_AB, NULL,
NULL, NULL,
};
pci_fm_err_t pci_bdg_err_tbl[] = {
PCI_DET_PERR, PCI_STAT_PERROR, NULL,
PCI_MDPE, PCI_STAT_S_PERROR, NULL,
PCI_REC_SERR, PCI_STAT_S_SYSERR, NULL,
PCI_MA, PCI_STAT_R_MAST_AB, NULL,
PCI_REC_TA, PCI_STAT_R_TARG_AB, NULL,
PCI_SIG_TA, PCI_STAT_S_TARG_AB, NULL,
NULL, NULL,
};
void
pci_ereport_setup(dev_info_t *dip)
{
struct dev_info *devi = DEVI(dip);
struct i_ddi_fmhdl *fmhdl = devi->devi_fmhdl;
pci_erpt_t *erpt_p;
ddi_acc_hdl_t *hp;
if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP);
return;
}
ASSERT(fmhdl);
ASSERT(fmhdl->fh_bus_specific == NULL);
if ((erpt_p = kmem_zalloc(sizeof (pci_erpt_t), KM_SLEEP)) == NULL)
return;
if (pci_config_setup(dip, &erpt_p->pci_cfg_hdl) == DDI_SUCCESS) {
hp = impl_acc_hdl_get(erpt_p->pci_cfg_hdl);
erpt_p->pci_cfg_addr = (caddr_t)hp->ah_addr;
fmhdl->fh_bus_specific = (void *)erpt_p;
}
}
void
pci_ereport_teardown(dev_info_t *dip)
{
struct i_ddi_fmhdl *fmhdl = DEVI(dip)->devi_fmhdl;
pci_erpt_t *erpt_p;
if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_SLEEP);
}
ASSERT(fmhdl);
erpt_p = (pci_erpt_t *)fmhdl->fh_bus_specific;
if (erpt_p == NULL)
return;
pci_config_teardown(&erpt_p->pci_cfg_hdl);
kmem_free(erpt_p, sizeof (pci_erpt_t));
fmhdl->fh_bus_specific = NULL;
}
void
pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status)
{
struct i_ddi_fmhdl *fmhdl;
pci_erpt_t *erpt_p;
char buf[FM_MAX_CLASS];
uint16_t cfg_comm = 0xffff;
uint16_t cfg_stat = 0xffff;
int i;
fmhdl = DEVI(dip)->devi_fmhdl;
if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
return;
}
ASSERT(fmhdl);
derr->fme_ena = derr->fme_ena ? derr->fme_ena : fm_ena_generate(0,
FM_ENA_FMT1);
erpt_p = (pci_erpt_t *)fmhdl->fh_bus_specific;
if (erpt_p == NULL) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
return;
}
if ((cfg_stat = ddi_get16(erpt_p->pci_cfg_hdl,
(uint16_t *)(erpt_p->pci_cfg_addr + PCI_CONF_STAT))) == 0xffff) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
PCI_ERROR_SUBCLASS, PCI_NR);
ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, 0, NULL);
goto done;
}
if ((cfg_comm = ddi_get16(erpt_p->pci_cfg_hdl,
(uint16_t *)(erpt_p->pci_cfg_addr + PCI_CONF_COMM))) == 0xffff) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
PCI_ERROR_SUBCLASS, PCI_NR);
ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, 0, NULL);
goto done;
}
if (derr->fme_flag == DDI_FM_ERR_UNEXPECTED) {
for (i = 0; pci_err_tbl[i].err_class != NULL; i++) {
if (cfg_stat & pci_err_tbl[i].reg_bit) {
/*
* Generate an ereport for this error bit.
*/
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
PCI_ERROR_SUBCLASS,
pci_err_tbl[i].err_class);
ddi_fm_ereport_post(dip, buf, derr->fme_ena,
DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
PCI_CONFIG_STATUS, DATA_TYPE_UINT16,
cfg_stat, PCI_CONFIG_COMMAND,
DATA_TYPE_UINT16, cfg_comm, NULL);
/*
* Generate a corresponding ereport on behalf
* of the target (the parent dip) of the
* transaction.
*/
if (pci_err_tbl[i].terr_class != NULL &&
DDI_FM_EREPORT_CAP(ddi_fm_capable(
(dev_info_t *)DEVI(dip)->devi_parent))) {
(void) snprintf(buf, FM_MAX_CLASS,
"%s.%s", PCI_ERROR_SUBCLASS,
pci_err_tbl[i].terr_class);
ddi_fm_ereport_post((dev_info_t *)
DEVI(dip)->devi_parent, buf,
derr->fme_ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, 0,
NULL);
}
}
}
}
/*
* Clear error bits
*/
ddi_put16(erpt_p->pci_cfg_hdl,
(uint16_t *)(erpt_p->pci_cfg_addr + PCI_CONF_STAT),
(uint16_t)cfg_stat);
done:
if (status != NULL)
*status = cfg_stat;
}
/*
* Generic pci-pci bridge error report function
*/
void
pci_bdg_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *status)
{
struct i_ddi_fmhdl *fmhdl;
pci_erpt_t *erpt_p;
char buf[FM_MAX_CLASS];
uint16_t bdg_ctrl = 0xffff;
uint16_t cfg_sec_stat = 0xffff;
int i;
if (!DDI_FM_EREPORT_CAP(ddi_fm_capable(dip))) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
return;
}
fmhdl = DEVI(dip)->devi_fmhdl;
ASSERT(fmhdl);
derr->fme_ena = derr->fme_ena ? derr->fme_ena : fm_ena_generate(0,
FM_ENA_FMT1);
erpt_p = (pci_erpt_t *)fmhdl->fh_bus_specific;
if (erpt_p == NULL) {
i_ddi_drv_ereport_post(dip, DVR_EFMCAP, NULL, DDI_NOSLEEP);
return;
}
if ((cfg_sec_stat = ddi_get16(erpt_p->pci_cfg_hdl,
(uint16_t *)(erpt_p->pci_cfg_addr + PCI_BCNF_SEC_STATUS)))
== 0xffff) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS,
PCI_NR);
ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, 0, NULL);
goto done;
}
if ((bdg_ctrl = ddi_get16(erpt_p->pci_cfg_hdl,
(uint16_t *)(erpt_p->pci_cfg_addr + PCI_BCNF_BCNTRL))) == 0xffff) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", PCI_ERROR_SUBCLASS,
PCI_NR);
ddi_fm_ereport_post(dip, buf, derr->fme_ena, DDI_NOSLEEP,
FM_VERSION, DATA_TYPE_UINT8, 0, NULL);
goto done;
}
if (derr->fme_flag == DDI_FM_ERR_UNEXPECTED) {
if (bdg_ctrl & PCI_BCNF_BCNTRL_DTO_STAT) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s",
PCI_ERROR_SUBCLASS, PCI_DTO);
ddi_fm_ereport_post(dip, buf, derr->fme_ena,
DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
PCI_SEC_CONFIG_STATUS, DATA_TYPE_UINT16,
cfg_sec_stat, PCI_BCNTRL, DATA_TYPE_UINT16,
bdg_ctrl, NULL);
}
for (i = 0; pci_bdg_err_tbl[i].err_class != NULL; i++) {
if (cfg_sec_stat & pci_bdg_err_tbl[i].reg_bit) {
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s-%s",
PCI_ERROR_SUBCLASS, PCI_SEC_ERROR_SUBCLASS,
pci_bdg_err_tbl[i].err_class);
ddi_fm_ereport_post(dip, buf, derr->fme_ena,
DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, 0,
PCI_SEC_CONFIG_STATUS, DATA_TYPE_UINT16,
cfg_sec_stat, PCI_BCNTRL, DATA_TYPE_UINT16,
bdg_ctrl, NULL);
}
}
}
/*
* Clear error bits
*/
ddi_put16(erpt_p->pci_cfg_hdl, (uint16_t *)
(erpt_p->pci_cfg_addr + PCI_BCNF_SEC_STATUS),
(uint16_t)cfg_sec_stat);
ddi_put16(erpt_p->pci_cfg_hdl, (uint16_t *)
(erpt_p->pci_cfg_addr + PCI_BCNF_BCNTRL),
(uint16_t)bdg_ctrl);
done:
if (status != NULL)
*status = cfg_sec_stat;
}
/*
* Generic pci-pci bridge error analysis function
*/
int
pci_bdg_check_status(dev_info_t *dip, ddi_fm_error_t *derr,
uint16_t pci_cfg_stat, uint16_t pci_cfg_sec_stat)
{
int ret;
int fatal = 0;
int nonfatal = 0;
int unknown = 0;
if (derr->fme_flag == DDI_FM_ERR_POKE) {
/*
* special case for pokes - we only consider master abort
* and target abort as nonfatal. Sserr with no master abort is
* fatal, but master/target abort can come in on separate
* instance, so return unknown and parent will determine if
* nonfatal (if another child returned nonfatal - ie master
* or target abort) or fatal otherwise
*/
if (pci_cfg_sec_stat & (PCI_STAT_R_TARG_AB |
PCI_STAT_R_MAST_AB))
nonfatal++;
if (pci_cfg_stat & PCI_STAT_S_SYSERR)
unknown++;
} else if (derr->fme_flag == DDI_FM_ERR_UNEXPECTED) {
/*
* Only sserr on primary bus is considered fatal.
* In all other conditions, the bridge has been able to notify
* the initiator of the error condition, so let the initiator
* (be it the host for PIO or the leaf device for DMA) handle it
*/
if (pci_cfg_stat & PCI_STAT_S_SYSERR)
fatal++;
if (pci_cfg_stat & (PCI_STAT_PERROR |
PCI_STAT_R_MAST_AB | PCI_STAT_S_PERROR |
PCI_STAT_R_TARG_AB | PCI_STAT_S_TARG_AB))
nonfatal++;
if (pci_cfg_sec_stat & (PCI_STAT_R_TARG_AB |
PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB | PCI_STAT_S_PERROR |
PCI_STAT_PERROR | PCI_STAT_S_TARG_AB))
nonfatal++;
}
/*
* now check children below the bridge
*/
ret = ndi_fm_handler_dispatch(dip, NULL, derr);
if (ret == DDI_FM_FATAL)
fatal++;
else if (ret == DDI_FM_NONFATAL)
nonfatal++;
else if (ret == DDI_FM_UNKNOWN)
unknown++;
return (fatal ? DDI_FM_FATAL : (nonfatal ? DDI_FM_NONFATAL :
(unknown ? DDI_FM_UNKNOWN : DDI_FM_OK)));
}
#ifdef _LP64
uint8_t
pci_config_get8(ddi_acc_handle_t handle, off_t offset)
#else /* _ILP32 */
uint8_t
pci_config_getb(ddi_acc_handle_t handle, off_t offset)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get8(handle, (uint8_t *)cfgaddr));
}
#ifdef _LP64
uint16_t
pci_config_get16(ddi_acc_handle_t handle, off_t offset)
#else /* _ILP32 */
uint16_t
pci_config_getw(ddi_acc_handle_t handle, off_t offset)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get16(handle, (uint16_t *)cfgaddr));
}
#ifdef _LP64
uint32_t
pci_config_get32(ddi_acc_handle_t handle, off_t offset)
#else /* _ILP32 */
uint32_t
pci_config_getl(ddi_acc_handle_t handle, off_t offset)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get32(handle, (uint32_t *)cfgaddr));
}
#ifdef _LP64
uint64_t
pci_config_get64(ddi_acc_handle_t handle, off_t offset)
#else /* _ILP32 */
uint64_t
pci_config_getll(ddi_acc_handle_t handle, off_t offset)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get64(handle, (uint64_t *)cfgaddr));
}
#ifdef _LP64
void
pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value)
#else /* _ILP32 */
void
pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put8(handle, (uint8_t *)cfgaddr, value);
}
#ifdef _LP64
void
pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value)
#else /* _ILP32 */
void
pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put16(handle, (uint16_t *)cfgaddr, value);
}
#ifdef _LP64
void
pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value)
#else /* _ILP32 */
void
pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put32(handle, (uint32_t *)cfgaddr, value);
}
#ifdef _LP64
void
pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value)
#else /* _ILP32 */
void
pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value)
#endif
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put64(handle, (uint64_t *)cfgaddr, value);
}
/*ARGSUSED*/
int
pci_report_pmcap(dev_info_t *dip, int cap, void *arg)
{
return (DDI_SUCCESS);
}
/*
* Note about saving and restoring config space.
* PCI devices have only upto 256 bytes of config space while PCI Express
* devices can have upto 4k config space. In case of PCI Express device,
* we save all 4k config space and restore it even if it doesn't make use
* of all 4k. But some devices don't respond to reads to non-existent
* registers within the config space. To avoid any panics, we use ddi_peek
* to do the reads. A bit mask is used to indicate which words of the
* config space are accessible. While restoring the config space, only those
* readable words are restored. We do all this in 32 bit size words.
*/
#define INDEX_SHIFT 3
#define BITMASK 0x7
static uint32_t pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp);
static void pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t elements);
static uint32_t pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t nwords);
static uint32_t pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t notused);
static uint32_t pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t notused);
static uint32_t pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t notused);
static void pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t nwords);
static uint32_t cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace);
static void pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf,
uint16_t pmcap_offset);
/*
* Table below specifies the number of registers to be saved for each PCI
* capability. pci_generic_save saves the number of words specified in the
* table. Any special considerations will be taken care by the capability
* specific save function e.g. use pci_msi_save to save registers associated
* with MSI capability. PCI_UNKNOWN_SIZE indicates that number of registers
* to be saved is variable and will be determined by the specific save function.
* Currently we save/restore all the registers associated with the capability
* including read only registers. Regsiters are saved and restored in 32 bit
* size words.
*/
static pci_cap_entry_t pci_cap_table[] = {
{PCI_CAP_ID_PM, PCI_PMCAP_NDWORDS, pci_generic_save},
{PCI_CAP_ID_AGP, PCI_AGP_NDWORDS, pci_generic_save},
{PCI_CAP_ID_SLOT_ID, PCI_SLOTID_NDWORDS, pci_generic_save},
{PCI_CAP_ID_MSI_X, PCI_MSIX_NDWORDS, pci_generic_save},
{PCI_CAP_ID_MSI, PCI_CAP_SZUNKNOWN, pci_msi_save},
{PCI_CAP_ID_PCIX, PCI_CAP_SZUNKNOWN, pci_pcix_save},
{PCI_CAP_ID_PCI_E, PCI_CAP_SZUNKNOWN, pci_pcie_save},
/*
* {PCI_CAP_ID_cPCI_CRC, 0, NULL},
* {PCI_CAP_ID_VPD, 0, NULL},
* {PCI_CAP_ID_cPCI_HS, 0, NULL},
* {PCI_CAP_ID_PCI_HOTPLUG, 0, NULL},
* {PCI_CAP_ID_AGP_8X, 0, NULL},
* {PCI_CAP_ID_SECURE_DEV, 0, NULL},
*/
{PCI_CAP_NEXT_PTR_NULL, 0, NULL}
};
/*
* Save the configuration registers for cdip as a property
* so that it persists after detach/uninitchild.
*/
int
pci_save_config_regs(dev_info_t *dip)
{
ddi_acc_handle_t confhdl;
pci_config_header_state_t *chsp;
pci_cap_save_desc_t *pci_cap_descp;
int ret;
uint32_t i, ncaps, nwords;
uint32_t *regbuf, *p;
uint8_t *maskbuf;
size_t maskbufsz, regbufsz, capbufsz;
ddi_acc_hdl_t *hp;
off_t offset = 0;
uint8_t cap_ptr, cap_id;
int pcie = 0;
if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't get config handle",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
/*
* Determine if it is a pci express device. If it is, save entire
* 4k config space treating it as a array of 32 bit integers.
* If it is not, do it in a usual PCI way.
*/
cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR);
/*
* Walk the capabilities searching for pci express capability
*/
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) {
cap_id = pci_config_get8(confhdl,
cap_ptr + PCI_CAP_ID);
if (cap_id == PCI_CAP_ID_PCI_E) {
pcie = 1;
break;
}
cap_ptr = pci_config_get8(confhdl,
cap_ptr + PCI_CAP_NEXT_PTR);
}
if (pcie) {
/* PCI express device. Can have data in all 4k space */
regbuf = (uint32_t *)kmem_zalloc((size_t)PCIE_CONF_HDR_SIZE,
KM_SLEEP);
p = regbuf;
/*
* Allocate space for mask.
* mask size is 128 bytes (4096 / 4 / 8 )
*/
maskbufsz = (size_t)((PCIE_CONF_HDR_SIZE/ sizeof (uint32_t)) >>
INDEX_SHIFT);
maskbuf = (uint8_t *)kmem_zalloc(maskbufsz, KM_SLEEP);
hp = impl_acc_hdl_get(confhdl);
for (i = 0; i < (PCIE_CONF_HDR_SIZE / sizeof (uint32_t)); i++) {
if (ddi_peek32(dip, (int32_t *)(hp->ah_addr + offset),
(int32_t *)p) == DDI_SUCCESS) {
/* it is readable register. set the bit */
maskbuf[i >> INDEX_SHIFT] |=
(uint8_t)(1 << (i & BITMASK));
}
p++;
offset += sizeof (uint32_t);
}
if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_MASK, (uchar_t *)maskbuf,
maskbufsz)) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "couldn't create %s property while"
"saving config space for %s@%d\n",
SAVED_CONFIG_REGS_MASK, ddi_driver_name(dip),
ddi_get_instance(dip));
} else if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE,
dip, SAVED_CONFIG_REGS, (uchar_t *)regbuf,
(size_t)PCIE_CONF_HDR_SIZE)) != DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_MASK);
cmn_err(CE_WARN, "%s%d can't update prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS);
}
kmem_free(maskbuf, (size_t)maskbufsz);
kmem_free(regbuf, (size_t)PCIE_CONF_HDR_SIZE);
} else {
regbuf = (uint32_t *)kmem_zalloc((size_t)PCI_CONF_HDR_SIZE,
KM_SLEEP);
chsp = (pci_config_header_state_t *)regbuf;
chsp->chs_command = pci_config_get16(confhdl, PCI_CONF_COMM);
chsp->chs_header_type = pci_config_get8(confhdl,
PCI_CONF_HEADER);
if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE)
chsp->chs_bridge_control =
pci_config_get16(confhdl, PCI_BCNF_BCNTRL);
chsp->chs_cache_line_size = pci_config_get8(confhdl,
PCI_CONF_CACHE_LINESZ);
chsp->chs_latency_timer = pci_config_get8(confhdl,
PCI_CONF_LATENCY_TIMER);
if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE) {
chsp->chs_sec_latency_timer =
pci_config_get8(confhdl, PCI_BCNF_LATENCY_TIMER);
}
chsp->chs_base0 = pci_config_get32(confhdl, PCI_CONF_BASE0);
chsp->chs_base1 = pci_config_get32(confhdl, PCI_CONF_BASE1);
chsp->chs_base2 = pci_config_get32(confhdl, PCI_CONF_BASE2);
chsp->chs_base3 = pci_config_get32(confhdl, PCI_CONF_BASE3);
chsp->chs_base4 = pci_config_get32(confhdl, PCI_CONF_BASE4);
chsp->chs_base5 = pci_config_get32(confhdl, PCI_CONF_BASE5);
/*
* Allocate maximum space required for capability descriptions.
* The maximum number of capabilties saved is the number of
* capabilities listed in the pci_cap_table.
*/
ncaps = (sizeof (pci_cap_table) / sizeof (pci_cap_entry_t));
capbufsz = ncaps * sizeof (pci_cap_save_desc_t);
pci_cap_descp = (pci_cap_save_desc_t *)kmem_zalloc(
capbufsz, KM_SLEEP);
p = (uint32_t *)((caddr_t)regbuf +
sizeof (pci_config_header_state_t));
nwords = pci_save_caps(confhdl, p, pci_cap_descp, &ncaps);
regbufsz = sizeof (pci_config_header_state_t) +
nwords * sizeof (uint32_t);
if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS, (uchar_t *)regbuf, regbufsz)) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't update prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS);
} else if (ncaps) {
ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_CAPINFO, (uchar_t *)pci_cap_descp,
ncaps * sizeof (pci_cap_save_desc_t));
if (ret != DDI_PROP_SUCCESS)
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS);
}
kmem_free(regbuf, (size_t)PCI_CONF_HDR_SIZE);
kmem_free(pci_cap_descp, capbufsz);
}
pci_config_teardown(&confhdl);
if (ret != DDI_PROP_SUCCESS)
return (DDI_FAILURE);
return (DDI_SUCCESS);
}
/*
* Saves registers associated with PCI capabilities.
* Returns number of 32 bit words saved.
* Number of capabilities saved is returned in ncapsp.
*/
static uint32_t
pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp)
{
return (cap_walk_and_save(confhdl, regbuf, cap_descp, ncapsp, 0));
}
static uint32_t
cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace)
{
pci_cap_entry_t *pci_cap_entp;
uint16_t cap_id, offset;
uint32_t words_saved = 0, nwords = 0;
uint16_t cap_ptr = PCI_CAP_NEXT_PTR_NULL;
*ncapsp = 0;
if (!xspace)
cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR);
/*
* Walk the capabilities
*/
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) {
cap_id = CAP_ID(confhdl, cap_ptr, xspace);
/* Search for this cap id in our table */
if (!xspace)
pci_cap_entp = pci_cap_table;
while (pci_cap_entp->cap_id != PCI_CAP_NEXT_PTR_NULL &&
pci_cap_entp->cap_id != cap_id)
pci_cap_entp++;
offset = cap_ptr;
cap_ptr = NEXT_CAP(confhdl, cap_ptr, xspace);
/*
* If this cap id is not found in the table, there is nothing
* to save.
*/
if (pci_cap_entp->cap_id == PCI_CAP_NEXT_PTR_NULL)
continue;
if (pci_cap_entp->cap_save_func) {
if ((nwords = pci_cap_entp->cap_save_func(confhdl,
offset, regbuf, pci_cap_entp->cap_ndwords))) {
cap_descp->cap_nregs = nwords;
cap_descp->cap_offset = offset;
cap_descp->cap_id = cap_id;
regbuf += nwords;
cap_descp++;
words_saved += nwords;
(*ncapsp)++;
}
}
}
return (words_saved);
}
static void
pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t nwords)
{
int i;
for (i = 0; i < nwords; i++) {
*regbuf = pci_config_get32(confhdl, cap_ptr);
regbuf++;
cap_ptr += 4;
}
}
static uint32_t
pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t nwords)
{
pci_fill_buf(confhdl, cap_ptr, regbuf, nwords);
return (nwords);
}
/*ARGSUSED*/
static uint32_t
pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t notused)
{
uint32_t nwords = PCI_MSI_MIN_WORDS;
uint16_t msi_ctrl;
/* Figure out how many registers to be saved */
msi_ctrl = pci_config_get16(confhdl, cap_ptr + PCI_MSI_CTRL);
/* If 64 bit address capable add one word */
if (msi_ctrl & PCI_MSI_64BIT_MASK)
nwords++;
/* If per vector masking capable, add two more words */
if (msi_ctrl & PCI_MSI_PVM_MASK)
nwords += 2;
pci_fill_buf(confhdl, cap_ptr, regbuf, nwords);
return (nwords);
}
/*ARGSUSED*/
static uint32_t
pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t notused)
{
uint32_t nwords = PCI_PCIX_MIN_WORDS;
uint16_t pcix_command;
/* Figure out how many registers to be saved */
pcix_command = pci_config_get16(confhdl, cap_ptr + PCI_PCIX_COMMAND);
/* If it is version 1 or version 2, add 4 words */
if (((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_1) ||
((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_2))
nwords += 4;
pci_fill_buf(confhdl, cap_ptr, regbuf, nwords);
return (nwords);
}
/*ARGSUSED*/
static uint32_t
pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t notused)
{
return (0);
}
static void
pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf,
uint16_t pmcap_offset)
{
uint16_t pmcsr;
uint16_t pmcsr_offset = pmcap_offset + PCI_PMCSR;
uint32_t *saved_pmcsrp = (uint32_t *)((caddr_t)regbuf + PCI_PMCSR);
/*
* Copy the power state bits from the PMCSR to our saved copy.
* This is to make sure that we don't change the D state when
* we restore config space of the device.
*/
pmcsr = pci_config_get16(confhdl, pmcsr_offset);
(*saved_pmcsrp) &= ~PCI_PMCSR_STATE_MASK;
(*saved_pmcsrp) |= (pmcsr & PCI_PMCSR_STATE_MASK);
}
static void
pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t elements)
{
int i, j;
uint16_t offset;
for (i = 0; i < (elements / sizeof (pci_cap_save_desc_t)); i++) {
offset = cap_descp->cap_offset;
if (cap_descp->cap_id == PCI_CAP_ID_PM)
pci_pmcap_check(confhdl, regbuf, offset);
for (j = 0; j < cap_descp->cap_nregs; j++) {
pci_config_put32(confhdl, offset, *regbuf);
regbuf++;
offset += 4;
}
cap_descp++;
}
}
/*
* Restore config_regs from a single devinfo node.
*/
int
pci_restore_config_regs(dev_info_t *dip)
{
ddi_acc_handle_t confhdl;
pci_config_header_state_t *chs_p;
pci_cap_save_desc_t *cap_descp;
uint32_t elements, i;
uint8_t *maskbuf;
uint32_t *regbuf, *p;
off_t offset = 0;
if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't get config handle",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS_MASK,
(uchar_t **)&maskbuf, &elements) == DDI_PROP_SUCCESS) {
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS,
(uchar_t **)&regbuf, &elements) != DDI_PROP_SUCCESS) {
goto restoreconfig_err;
}
ASSERT(elements == PCIE_CONF_HDR_SIZE);
/* pcie device and has 4k config space saved */
p = regbuf;
for (i = 0; i < PCIE_CONF_HDR_SIZE / sizeof (uint32_t); i++) {
/* If the word is readable then restore it */
if (maskbuf[i >> INDEX_SHIFT] &
(uint8_t)(1 << (i & BITMASK)))
pci_config_put32(confhdl, offset, *p);
p++;
offset += sizeof (uint32_t);
}
ddi_prop_free(regbuf);
ddi_prop_free(maskbuf);
if (ndi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_MASK) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't remove prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS_MASK);
}
} else {
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS,
(uchar_t **)&regbuf, &elements) != DDI_PROP_SUCCESS) {
pci_config_teardown(&confhdl);
return (DDI_FAILURE);
}
chs_p = (pci_config_header_state_t *)regbuf;
pci_config_put16(confhdl, PCI_CONF_COMM,
chs_p->chs_command);
if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE) {
pci_config_put16(confhdl, PCI_BCNF_BCNTRL,
chs_p->chs_bridge_control);
}
pci_config_put8(confhdl, PCI_CONF_CACHE_LINESZ,
chs_p->chs_cache_line_size);
pci_config_put8(confhdl, PCI_CONF_LATENCY_TIMER,
chs_p->chs_latency_timer);
if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE)
pci_config_put8(confhdl, PCI_BCNF_LATENCY_TIMER,
chs_p->chs_sec_latency_timer);
pci_config_put32(confhdl, PCI_CONF_BASE0, chs_p->chs_base0);
pci_config_put32(confhdl, PCI_CONF_BASE1, chs_p->chs_base1);
pci_config_put32(confhdl, PCI_CONF_BASE2, chs_p->chs_base2);
pci_config_put32(confhdl, PCI_CONF_BASE3, chs_p->chs_base3);
pci_config_put32(confhdl, PCI_CONF_BASE4, chs_p->chs_base4);
pci_config_put32(confhdl, PCI_CONF_BASE5, chs_p->chs_base5);
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SAVED_CONFIG_REGS_CAPINFO,
(uchar_t **)&cap_descp, &elements) == DDI_PROP_SUCCESS) {
/*
* PCI capability related regsiters are saved.
* Restore them based on the description.
*/
p = (uint32_t *)((caddr_t)regbuf +
sizeof (pci_config_header_state_t));
pci_restore_caps(confhdl, p, cap_descp, elements);
ddi_prop_free(cap_descp);
}
ddi_prop_free(regbuf);
}
/*
* Make sure registers are flushed
*/
(void) pci_config_get32(confhdl, PCI_CONF_BASE5);
if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't remove prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS);
}
pci_config_teardown(&confhdl);
return (DDI_SUCCESS);
restoreconfig_err:
ddi_prop_free(maskbuf);
if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't remove prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS_MASK);
}
pci_config_teardown(&confhdl);
return (DDI_FAILURE);
}