sunpci.c revision 2df1fe9ca32bb227b9158c67f5c00b54c20b10fd
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/sunndi.h>
#include <sys/sysmacros.h>
#include <sys/pci.h>
#include <sys/pcie.h>
#include <sys/pci_impl.h>
#include <sys/epm.h>
int
pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle)
{
caddr_t cfgaddr;
ddi_device_acc_attr_t attr;
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
/* Check for fault management capabilities */
if (DDI_FM_ACC_ERR_CAP(ddi_fm_capable(dip))) {
attr.devacc_attr_version = DDI_DEVICE_ATTR_V1;
attr.devacc_attr_access = DDI_FLAGERR_ACC;
}
return (ddi_regs_map_setup(dip, 0, &cfgaddr, 0, 0, &attr, handle));
}
void
pci_config_teardown(ddi_acc_handle_t *handle)
{
ddi_regs_map_free(handle);
}
uint8_t
pci_config_get8(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get8(handle, (uint8_t *)cfgaddr));
}
uint16_t
pci_config_get16(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get16(handle, (uint16_t *)cfgaddr));
}
uint32_t
pci_config_get32(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get32(handle, (uint32_t *)cfgaddr));
}
uint64_t
pci_config_get64(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get64(handle, (uint64_t *)cfgaddr));
}
void
pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put8(handle, (uint8_t *)cfgaddr, value);
}
void
pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put16(handle, (uint16_t *)cfgaddr, value);
}
void
pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put32(handle, (uint32_t *)cfgaddr, value);
}
void
pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put64(handle, (uint64_t *)cfgaddr, value);
}
/*
* We need to separate the old interfaces from the new ones and leave them
* in here for a while. Previous versions of the OS defined the new interfaces
* to the old interfaces. This way we can fix things up so that we can
* eventually remove these interfaces.
* e.g. A 3rd party module/driver using pci_config_get8 and built against S10
* or earlier will actually have a reference to pci_config_getb in the binary.
*/
#ifdef _ILP32
uint8_t
pci_config_getb(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get8(handle, (uint8_t *)cfgaddr));
}
uint16_t
pci_config_getw(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get16(handle, (uint16_t *)cfgaddr));
}
uint32_t
pci_config_getl(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get32(handle, (uint32_t *)cfgaddr));
}
uint64_t
pci_config_getll(ddi_acc_handle_t handle, off_t offset)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
return (ddi_get64(handle, (uint64_t *)cfgaddr));
}
void
pci_config_putb(ddi_acc_handle_t handle, off_t offset, uint8_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put8(handle, (uint8_t *)cfgaddr, value);
}
void
pci_config_putw(ddi_acc_handle_t handle, off_t offset, uint16_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put16(handle, (uint16_t *)cfgaddr, value);
}
void
pci_config_putl(ddi_acc_handle_t handle, off_t offset, uint32_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put32(handle, (uint32_t *)cfgaddr, value);
}
void
pci_config_putll(ddi_acc_handle_t handle, off_t offset, uint64_t value)
{
caddr_t cfgaddr;
ddi_acc_hdl_t *hp;
hp = impl_acc_hdl_get(handle);
cfgaddr = hp->ah_addr + offset;
ddi_put64(handle, (uint64_t *)cfgaddr, value);
}
#endif /* _ILP32 */
/*ARGSUSED*/
int
pci_report_pmcap(dev_info_t *dip, int cap, void *arg)
{
return (DDI_SUCCESS);
}
/*
* Note about saving and restoring config space.
* PCI devices have only upto 256 bytes of config space while PCI Express
* devices can have upto 4k config space. In case of PCI Express device,
* we save all 4k config space and restore it even if it doesn't make use
* of all 4k. But some devices don't respond to reads to non-existent
* registers within the config space. To avoid any panics, we use ddi_peek
* to do the reads. A bit mask is used to indicate which words of the
* config space are accessible. While restoring the config space, only those
* readable words are restored. We do all this in 32 bit size words.
*/
#define INDEX_SHIFT 3
#define BITMASK 0x7
static uint32_t pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp);
static void pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t elements);
static uint32_t pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t nwords);
static uint32_t pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t notused);
static uint32_t pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t notused);
static uint32_t pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t notused);
static void pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t nwords);
static uint32_t cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace);
static void pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf,
uint16_t pmcap_offset);
/*
* Table below specifies the number of registers to be saved for each PCI
* capability. pci_generic_save saves the number of words specified in the
* table. Any special considerations will be taken care by the capability
* specific save function e.g. use pci_msi_save to save registers associated
* with MSI capability. PCI_UNKNOWN_SIZE indicates that number of registers
* to be saved is variable and will be determined by the specific save function.
* Currently we save/restore all the registers associated with the capability
* including read only registers. Regsiters are saved and restored in 32 bit
* size words.
*/
static pci_cap_entry_t pci_cap_table[] = {
{PCI_CAP_ID_PM, PCI_PMCAP_NDWORDS, pci_generic_save},
{PCI_CAP_ID_AGP, PCI_AGP_NDWORDS, pci_generic_save},
{PCI_CAP_ID_SLOT_ID, PCI_SLOTID_NDWORDS, pci_generic_save},
{PCI_CAP_ID_MSI_X, PCI_MSIX_NDWORDS, pci_generic_save},
{PCI_CAP_ID_MSI, PCI_CAP_SZUNKNOWN, pci_msi_save},
{PCI_CAP_ID_PCIX, PCI_CAP_SZUNKNOWN, pci_pcix_save},
{PCI_CAP_ID_PCI_E, PCI_CAP_SZUNKNOWN, pci_pcie_save},
/*
* {PCI_CAP_ID_cPCI_CRC, 0, NULL},
* {PCI_CAP_ID_VPD, 0, NULL},
* {PCI_CAP_ID_cPCI_HS, 0, NULL},
* {PCI_CAP_ID_PCI_HOTPLUG, 0, NULL},
* {PCI_CAP_ID_AGP_8X, 0, NULL},
* {PCI_CAP_ID_SECURE_DEV, 0, NULL},
*/
{PCI_CAP_NEXT_PTR_NULL, 0, NULL}
};
/*
* Save the configuration registers for cdip as a property
* so that it persists after detach/uninitchild.
*/
int
pci_save_config_regs(dev_info_t *dip)
{
ddi_acc_handle_t confhdl;
pci_config_header_state_t *chsp;
pci_cap_save_desc_t *pci_cap_descp;
int ret;
uint32_t i, ncaps, nwords;
uint32_t *regbuf, *p;
uint8_t *maskbuf;
size_t maskbufsz, regbufsz, capbufsz;
ddi_acc_hdl_t *hp;
off_t offset = 0;
uint8_t cap_ptr, cap_id;
int pcie = 0;
PMD(PMD_SX, ("pci_save_config_regs %s:%d\n", ddi_driver_name(dip),
ddi_get_instance(dip)))
if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't get config handle",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
/*
* Determine if it is a pci express device. If it is, save entire
* 4k config space treating it as a array of 32 bit integers.
* If it is not, do it in a usual PCI way.
*/
cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR);
/*
* Walk the capabilities searching for pci express capability
*/
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) {
cap_id = pci_config_get8(confhdl,
cap_ptr + PCI_CAP_ID);
if (cap_id == PCI_CAP_ID_PCI_E) {
pcie = 1;
break;
}
cap_ptr = pci_config_get8(confhdl,
cap_ptr + PCI_CAP_NEXT_PTR);
}
if (pcie) {
/* PCI express device. Can have data in all 4k space */
regbuf = (uint32_t *)kmem_zalloc((size_t)PCIE_CONF_HDR_SIZE,
KM_SLEEP);
p = regbuf;
/*
* Allocate space for mask.
* mask size is 128 bytes (4096 / 4 / 8 )
*/
maskbufsz = (size_t)((PCIE_CONF_HDR_SIZE/ sizeof (uint32_t)) >>
INDEX_SHIFT);
maskbuf = (uint8_t *)kmem_zalloc(maskbufsz, KM_SLEEP);
hp = impl_acc_hdl_get(confhdl);
for (i = 0; i < (PCIE_CONF_HDR_SIZE / sizeof (uint32_t)); i++) {
if (ddi_peek32(dip, (int32_t *)(hp->ah_addr + offset),
(int32_t *)p) == DDI_SUCCESS) {
/* it is readable register. set the bit */
maskbuf[i >> INDEX_SHIFT] |=
(uint8_t)(1 << (i & BITMASK));
}
p++;
offset += sizeof (uint32_t);
}
if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_MASK, (uchar_t *)maskbuf,
maskbufsz)) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "couldn't create %s property while"
"saving config space for %s@%d\n",
SAVED_CONFIG_REGS_MASK, ddi_driver_name(dip),
ddi_get_instance(dip));
} else if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE,
dip, SAVED_CONFIG_REGS, (uchar_t *)regbuf,
(size_t)PCIE_CONF_HDR_SIZE)) != DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_MASK);
cmn_err(CE_WARN, "%s%d can't update prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS);
}
kmem_free(maskbuf, (size_t)maskbufsz);
kmem_free(regbuf, (size_t)PCIE_CONF_HDR_SIZE);
} else {
regbuf = (uint32_t *)kmem_zalloc((size_t)PCI_CONF_HDR_SIZE,
KM_SLEEP);
chsp = (pci_config_header_state_t *)regbuf;
chsp->chs_command = pci_config_get16(confhdl, PCI_CONF_COMM);
chsp->chs_header_type = pci_config_get8(confhdl,
PCI_CONF_HEADER);
if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE)
chsp->chs_bridge_control =
pci_config_get16(confhdl, PCI_BCNF_BCNTRL);
chsp->chs_cache_line_size = pci_config_get8(confhdl,
PCI_CONF_CACHE_LINESZ);
chsp->chs_latency_timer = pci_config_get8(confhdl,
PCI_CONF_LATENCY_TIMER);
if ((chsp->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE) {
chsp->chs_sec_latency_timer =
pci_config_get8(confhdl, PCI_BCNF_LATENCY_TIMER);
}
chsp->chs_base0 = pci_config_get32(confhdl, PCI_CONF_BASE0);
chsp->chs_base1 = pci_config_get32(confhdl, PCI_CONF_BASE1);
chsp->chs_base2 = pci_config_get32(confhdl, PCI_CONF_BASE2);
chsp->chs_base3 = pci_config_get32(confhdl, PCI_CONF_BASE3);
chsp->chs_base4 = pci_config_get32(confhdl, PCI_CONF_BASE4);
chsp->chs_base5 = pci_config_get32(confhdl, PCI_CONF_BASE5);
/*
* Allocate maximum space required for capability descriptions.
* The maximum number of capabilties saved is the number of
* capabilities listed in the pci_cap_table.
*/
ncaps = (sizeof (pci_cap_table) / sizeof (pci_cap_entry_t));
capbufsz = ncaps * sizeof (pci_cap_save_desc_t);
pci_cap_descp = (pci_cap_save_desc_t *)kmem_zalloc(
capbufsz, KM_SLEEP);
p = (uint32_t *)((caddr_t)regbuf +
sizeof (pci_config_header_state_t));
nwords = pci_save_caps(confhdl, p, pci_cap_descp, &ncaps);
regbufsz = sizeof (pci_config_header_state_t) +
nwords * sizeof (uint32_t);
if ((ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS, (uchar_t *)regbuf, regbufsz)) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't update prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS);
} else if (ncaps) {
ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_CAPINFO, (uchar_t *)pci_cap_descp,
ncaps * sizeof (pci_cap_save_desc_t));
if (ret != DDI_PROP_SUCCESS)
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS);
}
kmem_free(regbuf, (size_t)PCI_CONF_HDR_SIZE);
kmem_free(pci_cap_descp, capbufsz);
}
pci_config_teardown(&confhdl);
if (ret != DDI_PROP_SUCCESS)
return (DDI_FAILURE);
return (DDI_SUCCESS);
}
/*
* Saves registers associated with PCI capabilities.
* Returns number of 32 bit words saved.
* Number of capabilities saved is returned in ncapsp.
*/
static uint32_t
pci_save_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp)
{
return (cap_walk_and_save(confhdl, regbuf, cap_descp, ncapsp, 0));
}
static uint32_t
cap_walk_and_save(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t *ncapsp, int xspace)
{
pci_cap_entry_t *pci_cap_entp;
uint16_t cap_id, offset;
uint32_t words_saved = 0, nwords = 0;
uint16_t cap_ptr = PCI_CAP_NEXT_PTR_NULL;
*ncapsp = 0;
if (!xspace)
cap_ptr = pci_config_get8(confhdl, PCI_BCNF_CAP_PTR);
/*
* Walk the capabilities
*/
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) {
cap_id = CAP_ID(confhdl, cap_ptr, xspace);
/* Search for this cap id in our table */
if (!xspace)
pci_cap_entp = pci_cap_table;
while (pci_cap_entp->cap_id != PCI_CAP_NEXT_PTR_NULL &&
pci_cap_entp->cap_id != cap_id)
pci_cap_entp++;
offset = cap_ptr;
cap_ptr = NEXT_CAP(confhdl, cap_ptr, xspace);
/*
* If this cap id is not found in the table, there is nothing
* to save.
*/
if (pci_cap_entp->cap_id == PCI_CAP_NEXT_PTR_NULL)
continue;
if (pci_cap_entp->cap_save_func) {
if ((nwords = pci_cap_entp->cap_save_func(confhdl,
offset, regbuf, pci_cap_entp->cap_ndwords))) {
cap_descp->cap_nregs = nwords;
cap_descp->cap_offset = offset;
cap_descp->cap_id = cap_id;
regbuf += nwords;
cap_descp++;
words_saved += nwords;
(*ncapsp)++;
}
}
}
return (words_saved);
}
static void
pci_fill_buf(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
uint32_t *regbuf, uint32_t nwords)
{
int i;
for (i = 0; i < nwords; i++) {
*regbuf = pci_config_get32(confhdl, cap_ptr);
regbuf++;
cap_ptr += 4;
}
}
static uint32_t
pci_generic_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t nwords)
{
pci_fill_buf(confhdl, cap_ptr, regbuf, nwords);
return (nwords);
}
/*ARGSUSED*/
static uint32_t
pci_msi_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t notused)
{
uint32_t nwords = PCI_MSI_MIN_WORDS;
uint16_t msi_ctrl;
/* Figure out how many registers to be saved */
msi_ctrl = pci_config_get16(confhdl, cap_ptr + PCI_MSI_CTRL);
/* If 64 bit address capable add one word */
if (msi_ctrl & PCI_MSI_64BIT_MASK)
nwords++;
/* If per vector masking capable, add two more words */
if (msi_ctrl & PCI_MSI_PVM_MASK)
nwords += 2;
pci_fill_buf(confhdl, cap_ptr, regbuf, nwords);
return (nwords);
}
/*ARGSUSED*/
static uint32_t
pci_pcix_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t notused)
{
uint32_t nwords = PCI_PCIX_MIN_WORDS;
uint16_t pcix_command;
/* Figure out how many registers to be saved */
pcix_command = pci_config_get16(confhdl, cap_ptr + PCI_PCIX_COMMAND);
/* If it is version 1 or version 2, add 4 words */
if (((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_1) ||
((pcix_command & PCI_PCIX_VER_MASK) == PCI_PCIX_VER_2))
nwords += 4;
pci_fill_buf(confhdl, cap_ptr, regbuf, nwords);
return (nwords);
}
/*ARGSUSED*/
static uint32_t
pci_pcie_save(ddi_acc_handle_t confhdl, uint16_t cap_ptr, uint32_t *regbuf,
uint32_t notused)
{
return (0);
}
static void
pci_pmcap_check(ddi_acc_handle_t confhdl, uint32_t *regbuf,
uint16_t pmcap_offset)
{
uint16_t pmcsr;
uint16_t pmcsr_offset = pmcap_offset + PCI_PMCSR;
uint32_t *saved_pmcsrp = (uint32_t *)((caddr_t)regbuf + PCI_PMCSR);
/*
* Copy the power state bits from the PMCSR to our saved copy.
* This is to make sure that we don't change the D state when
* we restore config space of the device.
*/
pmcsr = pci_config_get16(confhdl, pmcsr_offset);
(*saved_pmcsrp) &= ~PCI_PMCSR_STATE_MASK;
(*saved_pmcsrp) |= (pmcsr & PCI_PMCSR_STATE_MASK);
}
static void
pci_restore_caps(ddi_acc_handle_t confhdl, uint32_t *regbuf,
pci_cap_save_desc_t *cap_descp, uint32_t elements)
{
int i, j;
uint16_t offset;
for (i = 0; i < (elements / sizeof (pci_cap_save_desc_t)); i++) {
offset = cap_descp->cap_offset;
if (cap_descp->cap_id == PCI_CAP_ID_PM)
pci_pmcap_check(confhdl, regbuf, offset);
for (j = 0; j < cap_descp->cap_nregs; j++) {
pci_config_put32(confhdl, offset, *regbuf);
regbuf++;
offset += 4;
}
cap_descp++;
}
}
/*
* Restore config_regs from a single devinfo node.
*/
int
pci_restore_config_regs(dev_info_t *dip)
{
ddi_acc_handle_t confhdl;
pci_config_header_state_t *chs_p;
pci_cap_save_desc_t *cap_descp;
uint32_t elements, i;
uint8_t *maskbuf;
uint32_t *regbuf, *p;
off_t offset = 0;
if (pci_config_setup(dip, &confhdl) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't get config handle",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS_MASK,
(uchar_t **)&maskbuf, &elements) == DDI_PROP_SUCCESS) {
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS,
(uchar_t **)&regbuf, &elements) != DDI_PROP_SUCCESS) {
goto restoreconfig_err;
}
ASSERT(elements == PCIE_CONF_HDR_SIZE);
/* pcie device and has 4k config space saved */
p = regbuf;
for (i = 0; i < PCIE_CONF_HDR_SIZE / sizeof (uint32_t); i++) {
/* If the word is readable then restore it */
if (maskbuf[i >> INDEX_SHIFT] &
(uint8_t)(1 << (i & BITMASK)))
pci_config_put32(confhdl, offset, *p);
p++;
offset += sizeof (uint32_t);
}
ddi_prop_free(regbuf);
ddi_prop_free(maskbuf);
if (ndi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_CONFIG_REGS_MASK) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't remove prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS_MASK);
}
} else {
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, SAVED_CONFIG_REGS,
(uchar_t **)&regbuf, &elements) != DDI_PROP_SUCCESS) {
pci_config_teardown(&confhdl);
return (DDI_FAILURE);
}
chs_p = (pci_config_header_state_t *)regbuf;
pci_config_put16(confhdl, PCI_CONF_COMM,
chs_p->chs_command);
if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE) {
pci_config_put16(confhdl, PCI_BCNF_BCNTRL,
chs_p->chs_bridge_control);
}
pci_config_put8(confhdl, PCI_CONF_CACHE_LINESZ,
chs_p->chs_cache_line_size);
pci_config_put8(confhdl, PCI_CONF_LATENCY_TIMER,
chs_p->chs_latency_timer);
if ((chs_p->chs_header_type & PCI_HEADER_TYPE_M) ==
PCI_HEADER_ONE)
pci_config_put8(confhdl, PCI_BCNF_LATENCY_TIMER,
chs_p->chs_sec_latency_timer);
pci_config_put32(confhdl, PCI_CONF_BASE0, chs_p->chs_base0);
pci_config_put32(confhdl, PCI_CONF_BASE1, chs_p->chs_base1);
pci_config_put32(confhdl, PCI_CONF_BASE2, chs_p->chs_base2);
pci_config_put32(confhdl, PCI_CONF_BASE3, chs_p->chs_base3);
pci_config_put32(confhdl, PCI_CONF_BASE4, chs_p->chs_base4);
pci_config_put32(confhdl, PCI_CONF_BASE5, chs_p->chs_base5);
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SAVED_CONFIG_REGS_CAPINFO,
(uchar_t **)&cap_descp, &elements) == DDI_PROP_SUCCESS) {
/*
* PCI capability related regsiters are saved.
* Restore them based on the description.
*/
p = (uint32_t *)((caddr_t)regbuf +
sizeof (pci_config_header_state_t));
pci_restore_caps(confhdl, p, cap_descp, elements);
ddi_prop_free(cap_descp);
}
ddi_prop_free(regbuf);
}
/*
* Make sure registers are flushed
*/
(void) pci_config_get32(confhdl, PCI_CONF_BASE5);
if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't remove prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS);
}
pci_config_teardown(&confhdl);
return (DDI_SUCCESS);
restoreconfig_err:
ddi_prop_free(maskbuf);
if (ndi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_CONFIG_REGS_MASK) !=
DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s%d can't remove prop %s",
ddi_driver_name(dip), ddi_get_instance(dip),
SAVED_CONFIG_REGS_MASK);
}
pci_config_teardown(&confhdl);
return (DDI_FAILURE);
}
/*ARGSUSED*/
static int
pci_lookup_pmcap(dev_info_t *dip, ddi_acc_handle_t conf_hdl,
uint16_t *pmcap_offsetp)
{
uint8_t cap_ptr;
uint8_t cap_id;
uint8_t header_type;
uint16_t status;
header_type = pci_config_get8(conf_hdl, PCI_CONF_HEADER);
header_type &= PCI_HEADER_TYPE_M;
/* we don't deal with bridges, etc here */
if (header_type != PCI_HEADER_ZERO) {
return (DDI_FAILURE);
}
status = pci_config_get16(conf_hdl, PCI_CONF_STAT);
if ((status & PCI_STAT_CAP) == 0) {
return (DDI_FAILURE);
}
cap_ptr = pci_config_get8(conf_hdl, PCI_CONF_CAP_PTR);
/*
* Walk the capabilities searching for a PM entry.
*/
while (cap_ptr != PCI_CAP_NEXT_PTR_NULL) {
cap_id = pci_config_get8(conf_hdl, cap_ptr + PCI_CAP_ID);
if (cap_id == PCI_CAP_ID_PM) {
break;
}
cap_ptr = pci_config_get8(conf_hdl,
cap_ptr + PCI_CAP_NEXT_PTR);
}
if (cap_ptr == PCI_CAP_NEXT_PTR_NULL) {
return (DDI_FAILURE);
}
*pmcap_offsetp = cap_ptr;
return (DDI_SUCCESS);
}
/*
* Do common pci-specific suspend actions:
* - enable wakeup if appropriate for the device
* - put device in lowest D-state that supports wakeup, or D3 if none
* - turn off bus mastering in control register
* For lack of per-dip storage (parent private date is pretty busy)
* we use properties to store the necessary context
* To avoid grotting through pci config space on every suspend,
* we leave the prop in existence after resume, cause we know that
* the detach framework code will dispose of it for us.
*/
typedef struct pci_pm_context {
int ppc_flags;
uint16_t ppc_cap_offset; /* offset in config space to pm cap */
uint16_t ppc_pmcsr; /* need this too */
uint16_t ppc_suspend_level;
} pci_pm_context_t;
#define SAVED_PM_CONTEXT "pci-pm-context"
/* values for ppc_flags */
#define PPCF_NOPMCAP 1
/*
* Handle pci-specific suspend processing
* PM CSR and PCI CMD are saved by pci_save_config_regs().
* If device can wake up system via PME, enable it to do so
* Set device power level to lowest that can generate PME, or D3 if none can
* Turn off bus master enable in pci command register
*/
#if defined(__x86)
extern int acpi_ddi_setwake(dev_info_t *dip, int level);
#endif
int
pci_post_suspend(dev_info_t *dip)
{
pci_pm_context_t *p;
uint16_t pmcap, pmcsr, pcicmd;
uint_t length;
int ret;
int fromprop = 1; /* source of memory *p */
ddi_acc_handle_t hdl;
PMD(PMD_SX, ("pci_post_suspend %s:%d\n",
ddi_driver_name(dip), ddi_get_instance(dip)))
if (pci_save_config_regs(dip) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
if (pci_config_setup(dip, &hdl) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SAVED_PM_CONTEXT, (uchar_t **)&p, &length) != DDI_PROP_SUCCESS) {
p = (pci_pm_context_t *)kmem_zalloc(sizeof (*p), KM_SLEEP);
fromprop = 0;
if (pci_lookup_pmcap(dip, hdl,
&p->ppc_cap_offset) != DDI_SUCCESS) {
p->ppc_flags |= PPCF_NOPMCAP;
ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip,
SAVED_PM_CONTEXT, (uchar_t *)p,
sizeof (pci_pm_context_t));
if (ret != DDI_PROP_SUCCESS) {
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip,
SAVED_PM_CONTEXT);
ret = DDI_FAILURE;
} else {
ret = DDI_SUCCESS;
}
kmem_free(p, sizeof (*p));
pci_config_teardown(&hdl);
return (DDI_SUCCESS);
}
/*
* Upon suspend, set the power level to the lowest that can
* wake the system. If none can, then set to lowest.
* XXX later we will need to check policy to see if this
* XXX device has had wakeup disabled
*/
pmcap = pci_config_get16(hdl, p->ppc_cap_offset + PCI_PMCAP);
if ((pmcap & PCI_PMCAP_D3COLD_PME) != 0)
p->ppc_suspend_level =
(PCI_PMCSR_PME_EN | PCI_PMCSR_D3HOT);
else if ((pmcap & (PCI_PMCAP_D3HOT_PME | PCI_PMCAP_D2_PME)) !=
0)
p->ppc_suspend_level = PCI_PMCSR_PME_EN | PCI_PMCSR_D2;
else if ((pmcap & PCI_PMCAP_D1_PME) != 0)
p->ppc_suspend_level = PCI_PMCSR_PME_EN | PCI_PMCSR_D1;
else if ((pmcap & PCI_PMCAP_D0_PME) != 0)
p->ppc_suspend_level = PCI_PMCSR_PME_EN | PCI_PMCSR_D0;
else
p->ppc_suspend_level = PCI_PMCSR_D3HOT;
/*
* we defer updating the property to catch the saved
* register values as well
*/
}
/* If we set this in kmem_zalloc'd memory, we already returned above */
if ((p->ppc_flags & PPCF_NOPMCAP) != 0) {
ddi_prop_free(p);
pci_config_teardown(&hdl);
return (DDI_SUCCESS);
}
/*
* Turn off (Bus) Master Enable, since acpica will be turning off
* bus master aribitration
*/
pcicmd = pci_config_get16(hdl, PCI_CONF_COMM);
pcicmd &= ~PCI_COMM_ME;
pci_config_put16(hdl, PCI_CONF_COMM, pcicmd);
/*
* set pm csr
*/
pmcsr = pci_config_get16(hdl, p->ppc_cap_offset + PCI_PMCSR);
p->ppc_pmcsr = pmcsr;
pmcsr &= (PCI_PMCSR_STATE_MASK);
pmcsr |= (PCI_PMCSR_PME_STAT | p->ppc_suspend_level);
pci_config_put16(hdl, p->ppc_cap_offset + PCI_PMCSR, pmcsr);
#if defined(__x86)
/*
* Arrange for platform wakeup enabling
*/
if ((p->ppc_suspend_level & PCI_PMCSR_PME_EN) != 0) {
int retval;
retval = acpi_ddi_setwake(dip, 3); /* XXX 3 for now */
if (retval) {
PMD(PMD_SX, ("pci_post_suspend, setwake %s@%s rets "
"%x\n", PM_NAME(dip), PM_ADDR(dip), retval));
}
}
#endif
/*
* Push out saved register values
*/
ret = ndi_prop_update_byte_array(DDI_DEV_T_NONE, dip, SAVED_PM_CONTEXT,
(uchar_t *)p, sizeof (pci_pm_context_t));
if (ret == DDI_PROP_SUCCESS) {
if (fromprop)
ddi_prop_free(p);
else
kmem_free(p, sizeof (*p));
pci_config_teardown(&hdl);
return (DDI_SUCCESS);
}
/* Failed; put things back the way we found them */
(void) pci_restore_config_regs(dip);
if (fromprop)
ddi_prop_free(p);
else
kmem_free(p, sizeof (*p));
(void) ddi_prop_remove(DDI_DEV_T_NONE, dip, SAVED_PM_CONTEXT);
pci_config_teardown(&hdl);
return (DDI_FAILURE);
}
/*
* The inverse of pci_post_suspend; handle pci-specific resume processing
* First, turn device back on, then restore config space.
*/
int
pci_pre_resume(dev_info_t *dip)
{
ddi_acc_handle_t hdl;
pci_pm_context_t *p;
/* E_FUNC_SET_NOT_USED */
uint16_t pmcap, pmcsr;
int flags;
uint_t length;
clock_t drv_usectohz(clock_t microsecs);
#if defined(__x86)
uint16_t suspend_level;
#endif
PMD(PMD_SX, ("pci_pre_resume %s:%d\n", ddi_driver_name(dip),
ddi_get_instance(dip)))
if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
SAVED_PM_CONTEXT, (uchar_t **)&p, &length) != DDI_PROP_SUCCESS) {
return (DDI_FAILURE);
}
flags = p->ppc_flags;
pmcap = p->ppc_cap_offset;
pmcsr = p->ppc_pmcsr;
#if defined(__x86)
suspend_level = p->ppc_suspend_level;
#endif
ddi_prop_free(p);
if ((flags & PPCF_NOPMCAP) != 0) {
return (DDI_SUCCESS);
}
#if defined(__x86)
/*
* Turn platform wake enable back off
*/
if ((suspend_level & PCI_PMCSR_PME_EN) != 0) {
int retval;
retval = acpi_ddi_setwake(dip, 0); /* 0 for now */
if (retval) {
PMD(PMD_SX, ("pci_pre_resume, setwake %s@%s rets "
"%x\n", PM_NAME(dip), PM_ADDR(dip), retval));
}
}
#endif
if (pci_config_setup(dip, &hdl) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
pci_config_put16(hdl, pmcap + PCI_PMCSR, pmcsr);
delay(drv_usectohz(10000)); /* PCI PM spec D3->D0 (10ms) */
pci_config_teardown(&hdl);
(void) pci_restore_config_regs(dip); /* fudges D-state! */
return (DDI_SUCCESS);
}