modctl.c revision a7aa4df776b2ef44358da774101a0a3039d69100
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* modctl system call for loadable module support.
*/
#include <sys/param.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <sys/exec.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/time.h>
#include <sys/reboot.h>
#include <sys/fs/ufs_fsdir.h>
#include <sys/kmem.h>
#include <sys/sysconf.h>
#include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ndi_impldefs.h>
#include <sys/ddi_impldefs.h>
#include <sys/ddi_implfuncs.h>
#include <sys/bootconf.h>
#include <sys/dc_ki.h>
#include <sys/cladm.h>
#include <sys/dtrace.h>
#include <sys/kdi.h>
#include <sys/devpolicy.h>
#include <sys/modctl.h>
#include <sys/kobj.h>
#include <sys/devops.h>
#include <sys/autoconf.h>
#include <sys/hwconf.h>
#include <sys/callb.h>
#include <sys/debug.h>
#include <sys/cpuvar.h>
#include <sys/sysmacros.h>
#include <sys/sysevent.h>
#include <sys/sysevent_impl.h>
#include <sys/instance.h>
#include <sys/modhash.h>
#include <sys/modhash_impl.h>
#include <sys/dacf_impl.h>
#include <sys/vfs.h>
#include <sys/pathname.h>
#include <sys/console.h>
#include <sys/policy.h>
#include <ipp/ipp_impl.h>
#include <sys/fs/dv_node.h>
#include <sys/strsubr.h>
static int mod_circdep(struct modctl *);
static int modinfo(modid_t, struct modinfo *);
static void mod_uninstall_all(void);
static int mod_getinfo(struct modctl *, struct modinfo *);
static struct modctl *allocate_modp(char *, char *);
static int mod_load(struct modctl *, int);
static void mod_unload(struct modctl *);
static int modinstall(struct modctl *);
static int moduninstall(struct modctl *);
static struct modctl *mod_hold_by_name_common(struct modctl *, char *);
static struct modctl *mod_hold_by_id(modid_t);
static struct modctl *mod_hold_next_by_id(modid_t);
static struct modctl *mod_hold_loaded_mod(struct modctl *, char *, int *);
static struct modctl *mod_hold_installed_mod(char *, int, int *);
static void mod_release(struct modctl *);
static void mod_make_requisite(struct modctl *, struct modctl *);
static int mod_install_requisites(struct modctl *);
static void check_esc_sequences(char *, char *);
static struct modctl *mod_hold_by_name_requisite(struct modctl *, char *);
/*
* module loading thread control structure. Calls to kobj_load_module()() are
* handled off to a separate thead using this structure.
*/
struct loadmt {
ksema_t sema;
struct modctl *mp;
int usepath;
kthread_t *owner;
int retval;
};
static void modload_thread(struct loadmt *);
kcondvar_t mod_cv;
kcondvar_t mod_uninstall_cv; /* Communication between swapper */
/* and the uninstall daemon. */
kmutex_t mod_lock; /* protects &modules insert linkage, */
/* mod_busy, mod_want, and mod_ref. */
/* blocking operations while holding */
/* mod_lock should be avoided */
kmutex_t mod_uninstall_lock; /* protects mod_uninstall_cv */
kthread_id_t mod_aul_thread;
int modunload_wait;
kmutex_t modunload_wait_mutex;
kcondvar_t modunload_wait_cv;
int modunload_active_count;
int modunload_disable_count;
int isminiroot; /* set if running as miniroot */
int modrootloaded; /* set after root driver and fs are loaded */
int moddebug = 0x0; /* debug flags for module writers */
int swaploaded; /* set after swap driver and fs are loaded */
int bop_io_quiesced = 0; /* set when BOP I/O can no longer be used */
int last_module_id;
clock_t mod_uninstall_interval = 0;
int ddi_modclose_unload = 1; /* 0 -> just decrement reference */
struct devnames *devnamesp;
struct devnames orphanlist;
krwlock_t devinfo_tree_lock; /* obsolete, to be removed */
#define MAJBINDFILE "/etc/name_to_major"
#define SYSBINDFILE "/etc/name_to_sysnum"
static char majbind[] = MAJBINDFILE;
static char sysbind[] = SYSBINDFILE;
static uint_t mod_autounload_key; /* for module autounload detection */
extern int obpdebug;
extern int make_mbind(char *, int, char *, struct bind **);
#define DEBUGGER_PRESENT ((boothowto & RB_DEBUG) || (obpdebug != 0))
static int minorperm_loaded = 0;
void
mod_setup(void)
{
struct sysent *callp;
int callnum, exectype;
int num_devs;
int i;
/*
* Initialize the list of loaded driver dev_ops.
* XXX - This must be done before reading the system file so that
* forceloads of drivers will work.
*/
num_devs = read_binding_file(majbind, mb_hashtab, make_mbind);
/*
* Since read_binding_file is common code, it doesn't enforce that all
* of the binding file entries have major numbers <= MAXMAJ32. Thus,
* ensure that we don't allocate some massive amount of space due to a
* bad entry. We can't have major numbers bigger than MAXMAJ32
* until file system support for larger major numbers exists.
*/
/*
* Leave space for expansion, but not more than L_MAXMAJ32
*/
devcnt = MIN(num_devs + 30, L_MAXMAJ32);
devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP);
for (i = 0; i < devcnt; i++)
devopsp[i] = &mod_nodev_ops;
init_devnamesp(devcnt);
/*
* Sync up with the work that the stand-alone linker has already done.
*/
(void) kobj_sync();
if (boothowto & RB_DEBUG)
kdi_dvec_modavail();
make_aliases(mb_hashtab);
/*
* Initialize streams device implementation structures.
*/
devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP);
/*
* If the cl_bootstrap module is present,
* we should be configured as a cluster. Loading this module
* will set "cluster_bootflags" to non-zero.
*/
(void) modload("misc", "cl_bootstrap");
(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
init_syscallnames(NSYSCALL);
/*
* Start up dynamic autoconfiguration framework (dacf).
*/
mod_hash_init();
dacf_init();
/*
* Start up IP policy framework (ipp).
*/
ipp_init();
/*
* Allocate loadable native system call locks.
*/
for (callnum = 0, callp = sysent; callnum < NSYSCALL;
callnum++, callp++) {
if (LOADABLE_SYSCALL(callp)) {
if (mod_getsysname(callnum) != NULL) {
callp->sy_lock =
kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
} else {
callp->sy_flags &= ~SE_LOADABLE;
callp->sy_callc = nosys;
}
#ifdef DEBUG
} else {
/*
* Do some sanity checks on the sysent table
*/
switch (callp->sy_flags & SE_RVAL_MASK) {
case SE_32RVAL1:
/* only r_val1 returned */
case SE_32RVAL1 | SE_32RVAL2:
/* r_val1 and r_val2 returned */
case SE_64RVAL:
/* 64-bit rval returned */
break;
default:
cmn_err(CE_WARN, "sysent[%d]: bad flags %x",
callnum, callp->sy_flags);
}
#endif
}
}
#ifdef _SYSCALL32_IMPL
/*
* Allocate loadable system call locks for 32-bit compat syscalls
*/
for (callnum = 0, callp = sysent32; callnum < NSYSCALL;
callnum++, callp++) {
if (LOADABLE_SYSCALL(callp)) {
if (mod_getsysname(callnum) != NULL) {
callp->sy_lock =
kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
} else {
callp->sy_flags &= ~SE_LOADABLE;
callp->sy_callc = nosys;
}
#ifdef DEBUG
} else {
/*
* Do some sanity checks on the sysent table
*/
switch (callp->sy_flags & SE_RVAL_MASK) {
case SE_32RVAL1:
/* only r_val1 returned */
case SE_32RVAL1 | SE_32RVAL2:
/* r_val1 and r_val2 returned */
case SE_64RVAL:
/* 64-bit rval returned */
break;
default:
cmn_err(CE_WARN, "sysent32[%d]: bad flags %x",
callnum, callp->sy_flags);
goto skip;
}
/*
* Cross-check the native and compatibility tables.
*/
if (callp->sy_callc == nosys ||
sysent[callnum].sy_callc == nosys)
continue;
/*
* If only one or the other slot is loadable, then
* there's an error -- they should match!
*/
if ((callp->sy_callc == loadable_syscall) ^
(sysent[callnum].sy_callc == loadable_syscall)) {
cmn_err(CE_WARN, "sysent[%d] loadable?",
callnum);
}
/*
* This is more of a heuristic test -- if the
* system call returns two values in the 32-bit
* world, it should probably return two 32-bit
* values in the 64-bit world too.
*/
if (((callp->sy_flags & SE_32RVAL2) == 0) ^
((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) {
cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!",
callnum);
}
skip:;
#endif /* DEBUG */
}
}
#endif /* _SYSCALL32_IMPL */
/*
* Allocate loadable exec locks. (Assumes all execs are loadable)
*/
for (exectype = 0; exectype < nexectype; exectype++) {
execsw[exectype].exec_lock =
kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL);
}
read_class_file();
/* init thread specific structure for mod_uninstall_all */
tsd_create(&mod_autounload_key, NULL);
}
static int
modctl_modload(int use_path, char *filename, int *rvp)
{
struct modctl *modp;
int retval = 0;
char *filenamep;
int modid;
filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) {
retval = EFAULT;
goto out;
}
filenamep[MOD_MAXPATH - 1] = 0;
modp = mod_hold_installed_mod(filenamep, use_path, &retval);
if (modp == NULL)
goto out;
modp->mod_loadflags |= MOD_NOAUTOUNLOAD;
modid = modp->mod_id;
mod_release_mod(modp);
CPU_STATS_ADDQ(CPU, sys, modload, 1);
if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0)
retval = EFAULT;
out:
kmem_free(filenamep, MOD_MAXPATH);
return (retval);
}
static int
modctl_modunload(modid_t id)
{
int rval = 0;
if (id == 0) {
#ifdef DEBUG
/*
* Turn on mod_uninstall_daemon
*/
if (mod_uninstall_interval == 0) {
mod_uninstall_interval = 60;
modreap();
return (rval);
}
#endif
mod_uninstall_all();
} else {
rval = modunload(id);
}
return (rval);
}
static int
modctl_modinfo(modid_t id, struct modinfo *umodi)
{
int retval;
struct modinfo modi;
#if defined(_SYSCALL32_IMPL)
int nobase;
struct modinfo32 modi32;
#endif
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0)
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
bzero(&modi, sizeof (modi));
if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0)
return (EFAULT);
modi.mi_info = modi32.mi_info;
modi.mi_id = modi32.mi_id;
modi.mi_nextid = modi32.mi_nextid;
nobase = modi.mi_info & MI_INFO_NOBASE;
}
#endif
/*
* This flag is -only- for the kernels use.
*/
modi.mi_info &= ~MI_INFO_LINKAGE;
retval = modinfo(id, &modi);
if (retval)
return (retval);
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0)
retval = EFAULT;
#ifdef _SYSCALL32_IMPL
} else {
int i;
if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX)
return (EOVERFLOW);
modi32.mi_info = modi.mi_info;
modi32.mi_state = modi.mi_state;
modi32.mi_id = modi.mi_id;
modi32.mi_nextid = modi.mi_nextid;
modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base;
modi32.mi_size = modi.mi_size;
modi32.mi_rev = modi.mi_rev;
modi32.mi_loadcnt = modi.mi_loadcnt;
bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name));
for (i = 0; i < MODMAXLINK32; i++) {
modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0;
bcopy(modi.mi_msinfo[i].msi_linkinfo,
modi32.mi_msinfo[i].msi_linkinfo,
sizeof (modi32.mi_msinfo[0].msi_linkinfo));
}
if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0)
retval = EFAULT;
#endif
}
return (retval);
}
/*
* Return the last major number in the range of permissible major numbers.
*/
/*ARGSUSED*/
static int
modctl_modreserve(modid_t id, int *data)
{
if (copyout(&devcnt, data, sizeof (devcnt)) != 0)
return (EFAULT);
return (0);
}
static int
modctl_add_major(int *data)
{
struct modconfig mc;
int i, rv;
struct aliases alias;
struct aliases *ap;
char name[MAXMODCONFNAME];
char cname[MAXMODCONFNAME];
char *drvname;
bzero(&mc, sizeof (struct modconfig));
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(data, &mc, sizeof (struct modconfig)) != 0)
return (EFAULT);
}
#ifdef _SYSCALL32_IMPL
else {
struct modconfig32 modc32;
if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0)
return (EFAULT);
else {
bcopy(modc32.drvname, mc.drvname,
sizeof (modc32.drvname));
bcopy(modc32.drvclass, mc.drvclass,
sizeof (modc32.drvclass));
mc.major = modc32.major;
mc.num_aliases = modc32.num_aliases;
mc.ap = (struct aliases *)(uintptr_t)modc32.ap;
}
}
#endif
/*
* If the driver is already in the mb_hashtab, and the name given
* doesn't match that driver's name, fail. Otherwise, pass, since
* we may be adding aliases.
*/
if ((drvname = mod_major_to_name(mc.major)) != NULL &&
strcmp(drvname, mc.drvname) != 0)
return (EINVAL);
/*
* Add each supplied driver alias to mb_hashtab
*/
ap = mc.ap;
for (i = 0; i < mc.num_aliases; i++) {
bzero(&alias, sizeof (struct aliases));
if (get_udatamodel() == DATAMODEL_NATIVE) {
if (copyin(ap, &alias, sizeof (struct aliases)) != 0)
return (EFAULT);
if (alias.a_len > MAXMODCONFNAME)
return (EINVAL);
if (copyin(alias.a_name, name, alias.a_len) != 0)
return (EFAULT);
if (name[alias.a_len - 1] != '\0')
return (EINVAL);
}
#ifdef _SYSCALL32_IMPL
else {
struct aliases32 al32;
bzero(&al32, sizeof (struct aliases32));
if (copyin(ap, &al32, sizeof (struct aliases32)) != 0)
return (EFAULT);
if (al32.a_len > MAXMODCONFNAME)
return (EINVAL);
if (copyin((void *)(uintptr_t)al32.a_name,
name, al32.a_len) != 0)
return (EFAULT);
if (name[al32.a_len - 1] != '\0')
return (EINVAL);
alias.a_next = (void *)(uintptr_t)al32.a_next;
}
#endif
check_esc_sequences(name, cname);
(void) make_mbind(cname, mc.major, NULL, mb_hashtab);
ap = alias.a_next;
}
/*
* Try to establish an mbinding for mc.drvname, and add it to devnames.
* Add class if any after establishing the major number
*/
(void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab);
rv = make_devname(mc.drvname, mc.major);
if (rv == 0) {
if (mc.drvclass[0] != '\0')
add_class(mc.drvname, mc.drvclass);
(void) i_ddi_load_drvconf(mc.major);
i_ddi_bind_devs();
i_ddi_di_cache_invalidate(KM_SLEEP);
}
return (rv);
}
static int
modctl_rem_major(major_t major)
{
struct devnames *dnp;
if (major >= devcnt)
return (EINVAL);
/* mark devnames as removed */
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
if (dnp->dn_name == NULL ||
(dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) {
UNLOCK_DEV_OPS(&dnp->dn_lock);
return (EINVAL);
}
dnp->dn_flags |= DN_DRIVER_REMOVED;
pm_driver_removed(major);
UNLOCK_DEV_OPS(&dnp->dn_lock);
(void) i_ddi_unload_drvconf(major);
i_ddi_unbind_devs(major);
i_ddi_di_cache_invalidate(KM_SLEEP);
return (0);
}
static struct vfs *
path_to_vfs(char *name)
{
vnode_t *vp;
struct vfs *vfsp;
if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp))
return (NULL);
vfsp = vp->v_vfsp;
VN_RELE(vp);
return (vfsp);
}
static int
new_vfs_in_modpath()
{
static int n_modpath = 0;
static char *modpath_copy;
static struct pathvfs {
char *path;
struct vfs *vfsp;
} *pathvfs;
int i, new_vfs = 0;
char *tmp, *tmp1;
struct vfs *vfsp;
if (n_modpath != 0) {
for (i = 0; i < n_modpath; i++) {
vfsp = path_to_vfs(pathvfs[i].path);
if (vfsp != pathvfs[i].vfsp) {
pathvfs[i].vfsp = vfsp;
if (vfsp)
new_vfs = 1;
}
}
return (new_vfs);
}
/*
* First call, initialize the pathvfs structure
*/
modpath_copy = i_ddi_strdup(default_path, KM_SLEEP);
tmp = modpath_copy;
n_modpath = 1;
tmp1 = strchr(tmp, ' ');
while (tmp1) {
*tmp1 = '\0';
n_modpath++;
tmp = tmp1 + 1;
tmp1 = strchr(tmp, ' ');
}
pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP);
tmp = modpath_copy;
for (i = 0; i < n_modpath; i++) {
pathvfs[i].path = tmp;
vfsp = path_to_vfs(tmp);
pathvfs[i].vfsp = vfsp;
tmp += strlen(tmp) + 1;
}
return (1); /* always reread driver.conf the first time */
}
static int modctl_load_drvconf(major_t major)
{
int ret;
if (major != (major_t)-1) {
ret = i_ddi_load_drvconf(major);
if (ret == 0)
i_ddi_bind_devs();
return (ret);
}
/*
* We are invoked to rescan new driver.conf files. It is
* only necessary if a new file system was mounted in the
* module_path. Because rescanning driver.conf files can
* take some time on older platforms (sun4m), the following
* code skips unnecessary driver.conf rescans to optimize
* boot performance.
*/
if (new_vfs_in_modpath()) {
(void) i_ddi_load_drvconf((major_t)-1);
/*
* If we are still initializing io subsystem,
* load drivers with ddi-forceattach property
*/
if (!i_ddi_io_initialized())
i_ddi_forceattach_drivers();
}
return (0);
}
static int
modctl_unload_drvconf(major_t major)
{
int ret;
if (major >= devcnt)
return (EINVAL);
ret = i_ddi_unload_drvconf(major);
if (ret != 0)
return (ret);
(void) i_ddi_unbind_devs(major);
return (0);
}
static void
check_esc_sequences(char *str, char *cstr)
{
int i;
size_t len;
char *p;
len = strlen(str);
for (i = 0; i < len; i++, str++, cstr++) {
if (*str != '\\') {
*cstr = *str;
} else {
p = str + 1;
/*
* we only handle octal escape sequences for SPACE
*/
if (*p++ == '0' && *p++ == '4' && *p == '0') {
*cstr = ' ';
str += 3;
} else {
*cstr = *str;
}
}
}
*cstr = 0;
}
static int
modctl_getmodpathlen(int *data)
{
int len;
len = strlen(default_path);
if (copyout(&len, data, sizeof (len)) != 0)
return (EFAULT);
return (0);
}
static int
modctl_getmodpath(char *data)
{
if (copyout(default_path, data, strlen(default_path) + 1) != 0)
return (EFAULT);
return (0);
}
static int
modctl_read_sysbinding_file(void)
{
(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
return (0);
}
static int
modctl_getmaj(char *uname, uint_t ulen, int *umajorp)
{
char name[256];
int retval;
major_t major;
if ((retval = copyinstr(uname, name,
(ulen < 256) ? ulen : 256, 0)) != 0)
return (retval);
if ((major = mod_name_to_major(name)) == (major_t)-1)
return (ENODEV);
if (copyout(&major, umajorp, sizeof (major_t)) != 0)
return (EFAULT);
return (0);
}
static int
modctl_getname(char *uname, uint_t ulen, int *umajorp)
{
char *name;
major_t major;
if (copyin(umajorp, &major, sizeof (major)) != 0)
return (EFAULT);
if ((name = mod_major_to_name(major)) == NULL)
return (ENODEV);
if ((strlen(name) + 1) > ulen)
return (ENOSPC);
return (copyoutstr(name, uname, ulen, NULL));
}
static int
modctl_devt2instance(dev_t dev, int *uinstancep)
{
int instance;
if ((instance = dev_to_instance(dev)) == -1)
return (EINVAL);
return (copyout(&instance, uinstancep, sizeof (int)));
}
/*
* Return the sizeof of the device id.
*/
static int
modctl_sizeof_devid(dev_t dev, uint_t *len)
{
uint_t sz;
ddi_devid_t devid;
/* get device id */
if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
return (EINVAL);
sz = ddi_devid_sizeof(devid);
ddi_devid_free(devid);
/* copyout device id size */
if (copyout(&sz, len, sizeof (sz)) != 0)
return (EFAULT);
return (0);
}
/*
* Return a copy of the device id.
*/
static int
modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid)
{
uint_t sz;
ddi_devid_t devid;
int err = 0;
/* get device id */
if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
return (EINVAL);
sz = ddi_devid_sizeof(devid);
/* Error if device id is larger than space allocated */
if (sz > len) {
ddi_devid_free(devid);
return (ENOSPC);
}
/* copy out device id */
if (copyout(devid, udevid, sz) != 0)
err = EFAULT;
ddi_devid_free(devid);
return (err);
}
/*
* return the /devices paths associated with the specified devid and
* minor name.
*/
/*ARGSUSED*/
static int
modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag,
size_t *ulensp, char *upaths)
{
ddi_devid_t devid = NULL;
int devid_len;
char *minor_name = NULL;
dev_info_t *dip = NULL;
struct ddi_minor_data *dmdp;
char *path = NULL;
int ulens;
int lens;
int len;
dev_t *devlist = NULL;
int ndevs;
int i;
int ret = 0;
/*
* If upaths is NULL then we are only computing the amount of space
* needed to hold the paths and returning the value in *ulensp. If we
* are copying out paths then we get the amount of space allocated by
* the caller. If the actual space needed for paths is larger, or
* things are changing out from under us, then we return EAGAIN.
*/
if (upaths) {
if (ulensp == NULL)
return (EINVAL);
if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
return (EFAULT);
}
/*
* copyin enough of the devid to determine the length then
* reallocate and copy in the entire devid.
*/
devid_len = ddi_devid_sizeof(NULL);
devid = kmem_alloc(devid_len, KM_SLEEP);
if (copyin(udevid, devid, devid_len)) {
ret = EFAULT;
goto out;
}
len = devid_len;
devid_len = ddi_devid_sizeof(devid);
kmem_free(devid, len);
devid = kmem_alloc(devid_len, KM_SLEEP);
if (copyin(udevid, devid, devid_len)) {
ret = EFAULT;
goto out;
}
/* copyin the minor name if specified. */
minor_name = uminor_name;
if ((minor_name != DEVID_MINOR_NAME_ALL) &&
(minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
(minor_name != DEVID_MINOR_NAME_ALL_BLK)) {
minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) {
ret = EFAULT;
goto out;
}
}
/*
* Use existing function to resolve the devid into a devlist.
*
* NOTE: there is a loss of spectype information in the current
* ddi_lyr_devid_to_devlist implementation. We work around this by not
* passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor
* node forms in the loop processing the devlist below. It would be
* best if at some point the use of this interface here was replaced
* with a path oriented call.
*/
if (ddi_lyr_devid_to_devlist(devid,
(minor_name == DEVID_MINOR_NAME_ALL) ?
DEVID_MINOR_NAME_ALL_CHR : minor_name,
&ndevs, &devlist) != DDI_SUCCESS) {
ret = EINVAL;
goto out;
}
/*
* loop over the devlist, converting each devt to a path and doing
* a copyout of the path and computation of the amount of space
* needed to hold all the paths
*/
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
for (i = 0, lens = 0; i < ndevs; i++) {
/* find the dip associated with the dev_t */
if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL)
continue;
/* loop over all the minor nodes, skipping ones we don't want */
for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
if ((dmdp->ddm_dev != devlist[i]) ||
(dmdp->type != DDM_MINOR))
continue;
if ((minor_name != DEVID_MINOR_NAME_ALL) &&
(minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
(minor_name != DEVID_MINOR_NAME_ALL_BLK) &&
strcmp(minor_name, dmdp->ddm_name))
continue;
else {
if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
(dmdp->ddm_spec_type != S_IFCHR))
continue;
if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
(dmdp->ddm_spec_type != S_IFBLK))
continue;
}
/* XXX need ddi_pathname_minor(dmdp, path); interface */
if (ddi_dev_pathname(dmdp->ddm_dev, dmdp->ddm_spec_type,
path) != DDI_SUCCESS) {
ret = EAGAIN;
goto out;
}
len = strlen(path) + 1;
*(path + len) = '\0'; /* set double termination */
lens += len;
/* copyout the path with double terminations */
if (upaths) {
if (lens > ulens) {
ret = EAGAIN;
goto out;
}
if (copyout(path, upaths, len + 1)) {
ret = EFAULT;
goto out;
}
upaths += len;
}
}
ddi_release_devi(dip);
dip = NULL;
}
lens++; /* add one for double termination */
/* copy out the amount of space needed to hold the paths */
if (ulensp && copyout(&lens, ulensp, sizeof (lens))) {
ret = EFAULT;
goto out;
}
ret = 0;
out: if (dip)
ddi_release_devi(dip);
if (path)
kmem_free(path, MAXPATHLEN);
if (devlist)
ddi_lyr_free_devlist(devlist, ndevs);
if (minor_name &&
(minor_name != DEVID_MINOR_NAME_ALL) &&
(minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
(minor_name != DEVID_MINOR_NAME_ALL_BLK))
kmem_free(minor_name, MAXPATHLEN);
if (devid)
kmem_free(devid, devid_len);
return (ret);
}
/*
* Return the size of the minor name.
*/
static int
modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len)
{
uint_t sz;
char *name;
/* get the minor name */
if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
return (EINVAL);
sz = strlen(name) + 1;
kmem_free(name, sz);
/* copy out the size of the minor name */
if (copyout(&sz, len, sizeof (sz)) != 0)
return (EFAULT);
return (0);
}
/*
* Return the minor name.
*/
static int
modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname)
{
uint_t sz;
char *name;
int err = 0;
/* get the minor name */
if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
return (EINVAL);
sz = strlen(name) + 1;
/* Error if the minor name is larger than the space allocated */
if (sz > len) {
kmem_free(name, sz);
return (ENOSPC);
}
/* copy out the minor name */
if (copyout(name, uname, sz) != 0)
err = EFAULT;
kmem_free(name, sz);
return (err);
}
/*
* Return the size of the devfspath name.
*/
static int
modctl_devfspath_len(dev_t dev, int spectype, uint_t *len)
{
uint_t sz;
char *name;
/* get the path name */
name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
kmem_free(name, MAXPATHLEN);
return (EINVAL);
}
sz = strlen(name) + 1;
kmem_free(name, MAXPATHLEN);
/* copy out the size of the path name */
if (copyout(&sz, len, sizeof (sz)) != 0)
return (EFAULT);
return (0);
}
/*
* Return the devfspath name.
*/
static int
modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname)
{
uint_t sz;
char *name;
int err = 0;
/* get the path name */
name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
kmem_free(name, MAXPATHLEN);
return (EINVAL);
}
sz = strlen(name) + 1;
/* Error if the path name is larger than the space allocated */
if (sz > len) {
kmem_free(name, MAXPATHLEN);
return (ENOSPC);
}
/* copy out the path name */
if (copyout(name, uname, sz) != 0)
err = EFAULT;
kmem_free(name, MAXPATHLEN);
return (err);
}
static int
modctl_get_fbname(char *path)
{
extern dev_t fbdev;
char *pathname = NULL;
int rval = 0;
/* make sure fbdev is set before we plunge in */
if (fbdev == NODEV)
return (ENODEV);
pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
if ((rval = ddi_dev_pathname(fbdev, S_IFCHR,
pathname)) == DDI_SUCCESS) {
if (copyout(pathname, path, strlen(pathname)+1) != 0) {
rval = EFAULT;
}
}
kmem_free(pathname, MAXPATHLEN);
return (rval);
}
/*
* modctl_reread_dacf()
* Reread the dacf rules database from the named binding file.
* If NULL is specified, pass along the NULL, it means 'use the default'.
*/
static int
modctl_reread_dacf(char *path)
{
int rval = 0;
char *filename, *filenamep;
filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
if (path == NULL) {
filenamep = NULL;
} else {
if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) {
rval = EFAULT;
goto out;
}
filenamep = filename;
filenamep[MAXPATHLEN - 1] = '\0';
}
rval = read_dacf_binding_file(filenamep);
out:
kmem_free(filename, MAXPATHLEN);
return (rval);
}
/*ARGSUSED*/
static int
modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4,
uint_t flag)
{
int error = 0;
char *filenamep;
switch (subcmd) {
case MODEVENTS_FLUSH:
/* flush all currently queued events */
log_sysevent_flushq(subcmd, flag);
break;
case MODEVENTS_SET_DOOR_UPCALL_FILENAME:
/*
* bind door_upcall to filename
* this should only be done once per invocation
* of the event daemon.
*/
filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) {
error = EFAULT;
} else {
error = log_sysevent_filename(filenamep);
}
kmem_free(filenamep, MOD_MAXPATH);
break;
case MODEVENTS_GETDATA:
error = log_sysevent_copyout_data((sysevent_id_t *)a2,
(size_t)a3, (caddr_t)a4);
break;
case MODEVENTS_FREEDATA:
error = log_sysevent_free_data((sysevent_id_t *)a2);
break;
case MODEVENTS_POST_EVENT:
error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3,
(sysevent_id_t *)a4);
break;
case MODEVENTS_REGISTER_EVENT:
error = log_sysevent_register((char *)a2, (char *)a3,
(se_pubsub_t *)a4);
break;
default:
error = EINVAL;
}
return (error);
}
static void
free_mperm(mperm_t *mp)
{
int len;
if (mp->mp_minorname) {
len = strlen(mp->mp_minorname) + 1;
kmem_free(mp->mp_minorname, len);
}
kmem_free(mp, sizeof (mperm_t));
}
#define MP_NO_DRV_ERR \
"/etc/minor_perm: no driver for %s\n"
#define MP_EMPTY_MINOR \
"/etc/minor_perm: empty minor name for driver %s\n"
#define MP_NO_MINOR \
"/etc/minor_perm: no minor matching %s for driver %s\n"
/*
* Remove mperm entry with matching minorname
*/
static void
rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
{
mperm_t **mp_head;
mperm_t *freemp = NULL;
struct devnames *dnp = &devnamesp[major];
mperm_t **wildmp;
ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
LOCK_DEV_OPS(&dnp->dn_lock);
if (strcmp(mp->mp_minorname, "*") == 0) {
wildmp = ((is_clone == 0) ?
&dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
if (*wildmp)
freemp = *wildmp;
*wildmp = NULL;
} else {
mp_head = &dnp->dn_mperm;
while (*mp_head) {
if (strcmp((*mp_head)->mp_minorname,
mp->mp_minorname) != 0) {
mp_head = &(*mp_head)->mp_next;
continue;
}
/* remove the entry */
freemp = *mp_head;
*mp_head = freemp->mp_next;
break;
}
}
if (freemp) {
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
drvname, freemp->mp_minorname,
freemp->mp_mode & 0777,
freemp->mp_uid, freemp->mp_gid);
}
free_mperm(freemp);
} else {
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT, MP_NO_MINOR,
drvname, mp->mp_minorname);
}
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
/*
* Add minor perm entry
*/
static void
add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
{
mperm_t **mp_head;
mperm_t *freemp = NULL;
struct devnames *dnp = &devnamesp[major];
mperm_t **wildmp;
ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
/*
* Note that update_drv replace semantics require
* replacing matching entries with the new permissions.
*/
LOCK_DEV_OPS(&dnp->dn_lock);
if (strcmp(mp->mp_minorname, "*") == 0) {
wildmp = ((is_clone == 0) ?
&dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
if (*wildmp)
freemp = *wildmp;
*wildmp = mp;
} else {
mperm_t *p, *v = NULL;
for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) {
if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) {
if (v == NULL)
dnp->dn_mperm = mp;
else
v->mp_next = mp;
mp->mp_next = p->mp_next;
freemp = p;
goto replaced;
}
}
if (p == NULL) {
mp_head = &dnp->dn_mperm;
if (*mp_head == NULL) {
*mp_head = mp;
} else {
mp->mp_next = *mp_head;
*mp_head = mp;
}
}
}
replaced:
if (freemp) {
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
drvname, freemp->mp_minorname,
freemp->mp_mode & 0777,
freemp->mp_uid, freemp->mp_gid);
}
free_mperm(freemp);
}
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT, "> %s %s 0%o %d %d\n",
drvname, mp->mp_minorname, mp->mp_mode & 0777,
mp->mp_uid, mp->mp_gid);
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
static int
process_minorperm(int cmd, nvlist_t *nvl)
{
char *minor;
major_t major;
mperm_t *mp;
nvpair_t *nvp;
char *name;
int is_clone;
major_t minmaj;
ASSERT(cmd == MODLOADMINORPERM ||
cmd == MODADDMINORPERM || cmd == MODREMMINORPERM);
nvp = NULL;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
name = nvpair_name(nvp);
is_clone = 0;
(void) nvpair_value_string(nvp, &minor);
major = ddi_name_to_major(name);
if (major != (major_t)-1) {
mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
if (minor == NULL || strlen(minor) == 0) {
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT, MP_EMPTY_MINOR, name);
}
minor = "*";
}
/*
* The minor name of a node using the clone
* driver must be the driver name. To avoid
* multiple searches, we map entries in the form
* clone:<driver> to <driver>:*. This also allows us
* to filter out some of the litter in /etc/minor_perm.
* Minor perm alias entries where the name is not
* the driver kept on the clone list itself.
* This all seems very fragile as a driver could
* be introduced with an existing alias name.
*/
if (strcmp(name, "clone") == 0) {
minmaj = ddi_name_to_major(minor);
if (minmaj != (major_t)-1) {
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT,
"mapping %s:%s to %s:*\n",
name, minor, minor);
}
major = minmaj;
name = minor;
minor = "*";
is_clone = 1;
}
}
if (mp) {
mp->mp_minorname =
i_ddi_strdup(minor, KM_SLEEP);
}
} else {
mp = NULL;
if (moddebug & MODDEBUG_MINORPERM) {
cmn_err(CE_CONT, MP_NO_DRV_ERR, name);
}
}
/* mode */
nvp = nvlist_next_nvpair(nvl, nvp);
ASSERT(strcmp(nvpair_name(nvp), "mode") == 0);
if (mp)
(void) nvpair_value_int32(nvp, (int *)&mp->mp_mode);
/* uid */
nvp = nvlist_next_nvpair(nvl, nvp);
ASSERT(strcmp(nvpair_name(nvp), "uid") == 0);
if (mp)
(void) nvpair_value_int32(nvp, &mp->mp_uid);
/* gid */
nvp = nvlist_next_nvpair(nvl, nvp);
ASSERT(strcmp(nvpair_name(nvp), "gid") == 0);
if (mp) {
(void) nvpair_value_int32(nvp, &mp->mp_gid);
if (cmd == MODREMMINORPERM) {
rem_minorperm(major, name, mp, is_clone);
free_mperm(mp);
} else {
add_minorperm(major, name, mp, is_clone);
}
}
}
if (cmd == MODLOADMINORPERM)
minorperm_loaded = 1;
/*
* Reset permissions of cached dv_nodes
*/
(void) devfs_reset_perm(DV_RESET_PERM);
return (0);
}
static int
modctl_minorperm(int cmd, char *usrbuf, size_t buflen)
{
int error;
nvlist_t *nvl;
char *buf = kmem_alloc(buflen, KM_SLEEP);
if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) {
kmem_free(buf, buflen);
return (error);
}
error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP);
kmem_free(buf, buflen);
if (error)
return (error);
error = process_minorperm(cmd, nvl);
nvlist_free(nvl);
return (error);
}
struct walk_args {
char *wa_drvname;
list_t wa_pathlist;
};
struct path_elem {
char *pe_dir;
char *pe_nodename;
list_node_t pe_node;
int pe_dirlen;
};
/*ARGSUSED*/
static int
modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg)
{
struct walk_args *wargs = (struct walk_args *)arg;
struct path_elem *pe;
char *nodename;
if (strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0)
return (INST_WALK_CONTINUE);
pe = kmem_zalloc(sizeof (*pe), KM_SLEEP);
pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP);
pe->pe_dirlen = strlen(pe->pe_dir) + 1;
ASSERT(strrchr(pe->pe_dir, '/') != NULL);
nodename = strrchr(pe->pe_dir, '/');
*nodename++ = 0;
pe->pe_nodename = nodename;
list_insert_tail(&wargs->wa_pathlist, pe);
return (INST_WALK_CONTINUE);
}
static int
modctl_remdrv_cleanup(const char *u_drvname)
{
struct walk_args *wargs;
struct path_elem *pe;
char *drvname;
int err, rval = 0;
drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP);
if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) {
kmem_free(drvname, MAXMODCONFNAME);
return (err);
}
/*
* First go through the instance database. For each
* instance of a device bound to the driver being
* removed, remove any underlying devfs attribute nodes.
*
* This is a two-step process. First we go through
* the instance data itself, constructing a list of
* the nodes discovered. The second step is then
* to find and remove any devfs attribute nodes
* for the instances discovered in the first step.
* The two-step process avoids any difficulties
* which could arise by holding the instance data
* lock with simultaneous devfs operations.
*/
wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
wargs->wa_drvname = drvname;
list_create(&wargs->wa_pathlist,
sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
pe = list_next(&wargs->wa_pathlist, pe)) {
err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
(const char *)pe->pe_nodename);
if (rval == 0)
rval = err;
}
while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
list_remove(&wargs->wa_pathlist, pe);
kmem_free(pe->pe_dir, pe->pe_dirlen);
kmem_free(pe, sizeof (*pe));
}
kmem_free(wargs, sizeof (*wargs));
/*
* Pseudo nodes aren't recorded in the instance database
* so any such nodes need to be handled separately.
*/
err = devfs_remdrv_cleanup("pseudo", (const char *)drvname);
if (rval == 0)
rval = err;
kmem_free(drvname, MAXMODCONFNAME);
return (rval);
}
static int
modctl_allocpriv(const char *name)
{
char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP);
int error;
if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) {
kmem_free(pstr, PRIVNAME_MAX);
return (error);
}
error = priv_getbyname(pstr, PRIV_ALLOC);
if (error < 0)
error = -error;
else
error = 0;
kmem_free(pstr, PRIVNAME_MAX);
return (error);
}
/*ARGSUSED5*/
int
modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4,
uintptr_t a5)
{
int error = EINVAL;
dev_t dev;
if (secpolicy_modctl(CRED(), cmd) != 0)
return (set_errno(EPERM));
switch (cmd) {
case MODLOAD: /* load a module */
error = modctl_modload((int)a1, (char *)a2, (int *)a3);
break;
case MODUNLOAD: /* unload a module */
error = modctl_modunload((modid_t)a1);
break;
case MODINFO: /* get module status */
error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2);
break;
case MODRESERVED: /* get last major number in range */
error = modctl_modreserve((modid_t)a1, (int *)a2);
break;
case MODSETMINIROOT: /* we are running in miniroot */
isminiroot = 1;
error = 0;
break;
case MODADDMAJBIND: /* read major binding file */
error = modctl_add_major((int *)a2);
break;
case MODGETPATHLEN: /* get modpath length */
error = modctl_getmodpathlen((int *)a2);
break;
case MODGETPATH: /* get modpath */
error = modctl_getmodpath((char *)a2);
break;
case MODREADSYSBIND: /* read system call binding file */
error = modctl_read_sysbinding_file();
break;
case MODGETMAJBIND: /* get major number for named device */
error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3);
break;
case MODGETNAME: /* get name of device given major number */
error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3);
break;
case MODDEVT2INSTANCE:
if (get_udatamodel() == DATAMODEL_NATIVE) {
dev = (dev_t)a1;
}
#ifdef _SYSCALL32_IMPL
else {
dev = expldev(a1);
}
#endif
error = modctl_devt2instance(dev, (int *)a2);
break;
case MODSIZEOF_DEVID: /* sizeof device id of device given dev_t */
if (get_udatamodel() == DATAMODEL_NATIVE) {
dev = (dev_t)a1;
}
#ifdef _SYSCALL32_IMPL
else {
dev = expldev(a1);
}
#endif
error = modctl_sizeof_devid(dev, (uint_t *)a2);
break;
case MODGETDEVID: /* get device id of device given dev_t */
if (get_udatamodel() == DATAMODEL_NATIVE) {
dev = (dev_t)a1;
}
#ifdef _SYSCALL32_IMPL
else {
dev = expldev(a1);
}
#endif
error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3);
break;
case MODSIZEOF_MINORNAME: /* sizeof minor nm of dev_t/spectype */
if (get_udatamodel() == DATAMODEL_NATIVE) {
error = modctl_sizeof_minorname((dev_t)a1, (int)a2,
(uint_t *)a3);
}
#ifdef _SYSCALL32_IMPL
else {
error = modctl_sizeof_minorname(expldev(a1), (int)a2,
(uint_t *)a3);
}
#endif
break;
case MODGETMINORNAME: /* get minor name of dev_t and spec type */
if (get_udatamodel() == DATAMODEL_NATIVE) {
error = modctl_get_minorname((dev_t)a1, (int)a2,
(uint_t)a3, (char *)a4);
}
#ifdef _SYSCALL32_IMPL
else {
error = modctl_get_minorname(expldev(a1), (int)a2,
(uint_t)a3, (char *)a4);
}
#endif
break;
case MODGETDEVFSPATH_LEN: /* sizeof path nm of dev_t/spectype */
if (get_udatamodel() == DATAMODEL_NATIVE) {
error = modctl_devfspath_len((dev_t)a1, (int)a2,
(uint_t *)a3);
}
#ifdef _SYSCALL32_IMPL
else {
error = modctl_devfspath_len(expldev(a1), (int)a2,
(uint_t *)a3);
}
#endif
break;
case MODGETDEVFSPATH: /* get path name of dev_t and spec type */
if (get_udatamodel() == DATAMODEL_NATIVE) {
error = modctl_devfspath((dev_t)a1, (int)a2,
(uint_t)a3, (char *)a4);
}
#ifdef _SYSCALL32_IMPL
else {
error = modctl_devfspath(expldev(a1), (int)a2,
(uint_t)a3, (char *)a4);
}
#endif
break;
case MODEVENTS:
error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5);
break;
case MODGETFBNAME: /* get the framebuffer name */
error = modctl_get_fbname((char *)a1);
break;
case MODREREADDACF: /* reread dacf rule database from given file */
error = modctl_reread_dacf((char *)a1);
break;
case MODLOADDRVCONF: /* load driver.conf file for major */
error = modctl_load_drvconf((major_t)a1);
break;
case MODUNLOADDRVCONF: /* unload driver.conf file for major */
error = modctl_unload_drvconf((major_t)a1);
break;
case MODREMMAJBIND: /* remove a major binding */
error = modctl_rem_major((major_t)a1);
break;
case MODDEVID2PATHS: /* get paths given devid */
error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2,
(uint_t)a3, (size_t *)a4, (char *)a5);
break;
case MODSETDEVPOLICY: /* establish device policy */
error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3);
break;
case MODGETDEVPOLICY: /* get device policy */
error = devpolicy_get((int *)a1, (size_t)a2,
(devplcysys_t *)a3);
break;
case MODALLOCPRIV:
error = modctl_allocpriv((const char *)a1);
break;
case MODGETDEVPOLICYBYNAME:
error = devpolicy_getbyname((size_t)a1,
(devplcysys_t *)a2, (char *)a3);
break;
case MODLOADMINORPERM:
case MODADDMINORPERM:
case MODREMMINORPERM:
error = modctl_minorperm(cmd, (char *)a1, (size_t)a2);
break;
case MODREMDRVCLEANUP:
error = modctl_remdrv_cleanup((const char *)a1);
break;
default:
error = EINVAL;
break;
}
return (error ? set_errno(error) : 0);
}
/*
* Calls to kobj_load_module()() are handled off to this routine in a
* separate thread.
*/
static void
modload_thread(struct loadmt *ltp)
{
/* load the module and signal the creator of this thread */
kmutex_t cpr_lk;
callb_cpr_t cpr_i;
mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload");
/* borrow the devi lock from thread which invoked us */
pm_borrow_lock(ltp->owner);
ltp->retval = kobj_load_module(ltp->mp, ltp->usepath);
pm_return_lock();
sema_v(&ltp->sema);
mutex_enter(&cpr_lk);
CALLB_CPR_EXIT(&cpr_i);
mutex_destroy(&cpr_lk);
thread_exit();
}
/*
* load a module, adding a reference if caller specifies rmodp. If rmodp
* is specified then an errno is returned, otherwise a module index is
* returned (-1 on error).
*/
static int
modrload(char *subdir, char *filename, struct modctl **rmodp)
{
struct modctl *modp;
size_t size;
char *fullname;
int retval = EINVAL;
int id = -1;
if (rmodp)
*rmodp = NULL; /* avoid garbage */
if (subdir != NULL) {
/*
* refuse / in filename to prevent "../" escapes.
*/
if (strchr(filename, '/') != NULL)
return (rmodp ? retval : id);
/*
* allocate enough space for <subdir>/<filename><NULL>
*/
size = strlen(subdir) + strlen(filename) + 2;
fullname = kmem_zalloc(size, KM_SLEEP);
(void) sprintf(fullname, "%s/%s", subdir, filename);
} else {
fullname = filename;
}
modp = mod_hold_installed_mod(fullname, 1, &retval);
if (modp != NULL) {
id = modp->mod_id;
if (rmodp) {
/* add mod_ref and return *rmodp */
mutex_enter(&mod_lock);
modp->mod_ref++;
mutex_exit(&mod_lock);
*rmodp = modp;
}
mod_release_mod(modp);
CPU_STATS_ADDQ(CPU, sys, modload, 1);
}
done: if (subdir != NULL)
kmem_free(fullname, size);
return (rmodp ? retval : id);
}
/*
* This is the primary kernel interface to load a module. It loads and
* installs the named module. It does not hold mod_ref of the module, so
* a module unload attempt can occur at any time - it is up to the
* _fini/mod_remove implementation to determine if unload will succeed.
*/
int
modload(char *subdir, char *filename)
{
return (modrload(subdir, filename, NULL));
}
/*
* Load a module.
*/
int
modloadonly(char *subdir, char *filename)
{
struct modctl *modp;
char *fullname;
size_t size;
int id, retval;
if (subdir != NULL) {
/*
* allocate enough space for <subdir>/<filename><NULL>
*/
size = strlen(subdir) + strlen(filename) + 2;
fullname = kmem_zalloc(size, KM_SLEEP);
(void) sprintf(fullname, "%s/%s", subdir, filename);
} else {
fullname = filename;
}
modp = mod_hold_loaded_mod(NULL, fullname, &retval);
if (modp) {
id = modp->mod_id;
mod_release_mod(modp);
}
if (subdir != NULL)
kmem_free(fullname, size);
if (retval == 0)
return (id);
return (-1);
}
/*
* Try to uninstall and unload a module, removing a reference if caller
* specifies rmodp.
*/
static int
modunrload(modid_t id, struct modctl **rmodp, int unload)
{
struct modctl *modp;
int retval;
if (rmodp)
*rmodp = NULL; /* avoid garbage */
if ((modp = mod_hold_by_id((modid_t)id)) == NULL)
return (EINVAL);
if (rmodp) {
mutex_enter(&mod_lock);
modp->mod_ref--;
mutex_exit(&mod_lock);
*rmodp = modp;
}
if (unload) {
retval = moduninstall(modp);
if (retval == 0) {
mod_unload(modp);
CPU_STATS_ADDQ(CPU, sys, modunload, 1);
} else if (retval == EALREADY)
retval = 0; /* already unloaded, not an error */
} else
retval = 0;
mod_release_mod(modp);
return (retval);
}
/*
* Uninstall and unload a module.
*/
int
modunload(modid_t id)
{
int retval;
/* synchronize with any active modunload_disable() */
modunload_begin();
if (ddi_root_node())
(void) devfs_clean(ddi_root_node(), NULL, 0);
retval = modunrload(id, NULL, 1);
modunload_end();
return (retval);
}
/*
* Return status of a loaded module.
*/
static int
modinfo(modid_t id, struct modinfo *modinfop)
{
struct modctl *modp;
modid_t mid;
int i;
mid = modinfop->mi_id;
if (modinfop->mi_info & MI_INFO_ALL) {
while ((modp = mod_hold_next_by_id(mid++)) != NULL) {
if ((modinfop->mi_info & MI_INFO_CNT) ||
modp->mod_installed)
break;
mod_release_mod(modp);
}
if (modp == NULL)
return (EINVAL);
} else {
modp = mod_hold_by_id(id);
if (modp == NULL)
return (EINVAL);
if (!(modinfop->mi_info & MI_INFO_CNT) &&
(modp->mod_installed == 0)) {
mod_release_mod(modp);
return (EINVAL);
}
}
modinfop->mi_rev = 0;
modinfop->mi_state = 0;
for (i = 0; i < MODMAXLINK; i++) {
modinfop->mi_msinfo[i].msi_p0 = -1;
modinfop->mi_msinfo[i].msi_linkinfo[0] = 0;
}
if (modp->mod_loaded) {
modinfop->mi_state = MI_LOADED;
kobj_getmodinfo(modp->mod_mp, modinfop);
}
if (modp->mod_installed) {
modinfop->mi_state |= MI_INSTALLED;
(void) mod_getinfo(modp, modinfop);
}
modinfop->mi_id = modp->mod_id;
modinfop->mi_loadcnt = modp->mod_loadcnt;
(void) strcpy(modinfop->mi_name, modp->mod_modname);
mod_release_mod(modp);
return (0);
}
static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s";
static char no_err[] = "No error function for weak stub %s";
/*
* used by the stubs themselves to load and hold a module.
* Returns 0 if the module is successfully held;
* the stub needs to call mod_release_stub().
* -1 if the stub should just call the err_fcn.
* Note that this code is stretched out so that we avoid subroutine calls
* and optimize for the most likely case. That is, the case where the
* module is loaded and installed and not held. In that case we just inc
* the mod_ref count and continue.
*/
int
mod_hold_stub(struct mod_stub_info *stub)
{
struct modctl *mp;
struct mod_modinfo *mip;
mip = stub->mods_modinfo;
mutex_enter(&mod_lock);
/* we do mod_hold_by_modctl inline for speed */
mod_check_again:
if ((mp = mip->mp) != NULL) {
if (mp->mod_busy == 0) {
if (mp->mod_installed) {
/* increment the reference count */
mp->mod_ref++;
ASSERT(mp->mod_ref && mp->mod_installed);
mutex_exit(&mod_lock);
return (0);
} else {
mp->mod_busy = 1;
mp->mod_inprogress_thread =
(curthread == NULL ?
(kthread_id_t)-1 : curthread);
}
} else {
/*
* wait one time and then go see if someone
* else has resolved the stub (set mip->mp).
*/
if (mod_hold_by_modctl(mp,
MOD_WAIT_ONCE | MOD_LOCK_HELD))
goto mod_check_again;
/*
* what we have now may have been unloaded!, in
* that case, mip->mp will be NULL, we'll hit this
* module and load again..
*/
cmn_err(CE_PANIC, "mod_hold_stub should have blocked");
}
mutex_exit(&mod_lock);
} else {
/* first time we've hit this module */
mutex_exit(&mod_lock);
mp = mod_hold_by_name(mip->modm_module_name);
mip->mp = mp;
}
/*
* If we are here, it means that the following conditions
* are satisfied.
*
* mip->mp != NULL
* this thread has set the mp->mod_busy = 1
* mp->mod_installed = 0
*
*/
ASSERT(mp != NULL);
ASSERT(mp->mod_busy == 1);
if (mp->mod_installed == 0) {
/* Module not loaded, if weak stub don't load it */
if (stub->mods_flag & MODS_WEAK) {
if (stub->mods_errfcn == NULL) {
mod_release_mod(mp);
cmn_err(CE_PANIC, no_err,
mip->modm_module_name);
}
} else {
/* Not a weak stub so load the module */
if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) {
/*
* If mod_load() was successful
* and modinstall() failed, then
* unload the module.
*/
if (mp->mod_loaded)
mod_unload(mp);
mod_release_mod(mp);
if (stub->mods_errfcn == NULL) {
cmn_err(CE_PANIC, mod_stub_err,
mip->modm_module_name);
} else {
return (-1);
}
}
}
}
/*
* At this point module is held and loaded. Release
* the mod_busy and mod_inprogress_thread before
* returning. We actually call mod_release() here so
* that if another stub wants to access this module,
* it can do so. mod_ref is incremented before mod_release()
* is called to prevent someone else from snatching the
* module from this thread.
*/
mutex_enter(&mod_lock);
mp->mod_ref++;
ASSERT(mp->mod_ref &&
(mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
mod_release(mp);
mutex_exit(&mod_lock);
return (0);
}
void
mod_release_stub(struct mod_stub_info *stub)
{
struct modctl *mp = stub->mods_modinfo->mp;
/* inline mod_release_mod */
mutex_enter(&mod_lock);
ASSERT(mp->mod_ref &&
(mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
mp->mod_ref--;
if (mp->mod_want) {
mp->mod_want = 0;
cv_broadcast(&mod_cv);
}
mutex_exit(&mod_lock);
}
static struct modctl *
mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status)
{
struct modctl *modp;
int retval;
/*
* Hold the module.
*/
modp = mod_hold_by_name_requisite(dep, filename);
if (modp) {
retval = mod_load(modp, 1);
if (retval != 0) {
mod_release_mod(modp);
modp = NULL;
}
*status = retval;
} else {
*status = ENOSPC;
}
/*
* if dep is not NULL, clear the module dependency information.
* This information is set in mod_hold_by_name_common().
*/
if (dep != NULL && dep->mod_requisite_loading != NULL) {
ASSERT(dep->mod_busy);
dep->mod_requisite_loading = NULL;
}
return (modp);
}
/*
* hold, load, and install the named module
*/
static struct modctl *
mod_hold_installed_mod(char *name, int usepath, int *r)
{
struct modctl *modp;
int retval;
/*
* Verify that that module in question actually exists on disk
* before allocation of module structure by mod_hold_by_name.
*/
if (modrootloaded && swaploaded) {
if (!kobj_path_exists(name, usepath)) {
*r = ENOENT;
return (NULL);
}
}
/*
* Hold the module.
*/
modp = mod_hold_by_name(name);
if (modp) {
retval = mod_load(modp, usepath);
if (retval != 0) {
mod_release_mod(modp);
modp = NULL;
*r = retval;
} else {
if ((*r = modinstall(modp)) != 0) {
/*
* We loaded it, but failed to _init() it.
* Be kind to developers -- force it
* out of memory now so that the next
* attempt to use the module will cause
* a reload. See 1093793.
*/
mod_unload(modp);
mod_release_mod(modp);
modp = NULL;
}
}
} else {
*r = ENOSPC;
}
return (modp);
}
static char mod_excl_msg[] =
"module %s(%s) is EXCLUDED and will not be loaded\n";
static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n";
/*
* This routine is needed for dependencies. Users specify dependencies
* by declaring a character array initialized to filenames of dependents.
* So the code that handles dependents deals with filenames (and not
* module names) because that's all it has. We load by filename and once
* we've loaded a file we can get the module name.
* Unfortunately there isn't a single unified filename/modulename namespace.
* C'est la vie.
*
* We allow the name being looked up to be prepended by an optional
* subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs")
*/
struct modctl *
mod_find_by_filename(char *subdir, char *filename)
{
struct modctl *mp;
size_t sublen;
ASSERT(!MUTEX_HELD(&mod_lock));
if (subdir != NULL)
sublen = strlen(subdir);
else
sublen = 0;
mutex_enter(&mod_lock);
mp = &modules;
do {
if (sublen) {
char *mod_filename = mp->mod_filename;
if (strncmp(subdir, mod_filename, sublen) == 0 &&
mod_filename[sublen] == '/' &&
strcmp(filename, &mod_filename[sublen + 1]) == 0) {
mutex_exit(&mod_lock);
return (mp);
}
} else if (strcmp(filename, mp->mod_filename) == 0) {
mutex_exit(&mod_lock);
return (mp);
}
} while ((mp = mp->mod_next) != &modules);
mutex_exit(&mod_lock);
return (NULL);
}
/*
* Check for circular dependencies. This is called from do_dependents()
* in kobj.c. If we are the thread already loading this module, then
* we're trying to load a dependent that we're already loading which
* means the user specified circular dependencies.
*/
static int
mod_circdep(struct modctl *modp)
{
struct modctl *rmod;
ASSERT(MUTEX_HELD(&mod_lock));
/*
* Check the mod_inprogress_thread first.
* mod_inprogress_thread is used in mod_hold_stub()
* directly to improve performance.
*/
if (modp->mod_inprogress_thread == curthread)
return (1);
/*
* Check the module circular dependencies.
*/
for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) {
/*
* Check if there is a module circular dependency.
*/
if (rmod->mod_requisite_loading == modp)
return (1);
}
return (0);
}
static int
mod_getinfo(struct modctl *modp, struct modinfo *modinfop)
{
int (*func)(struct modinfo *);
int retval;
ASSERT(modp->mod_busy);
/* primary modules don't do getinfo */
if (modp->mod_prim)
return (0);
func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info");
if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) {
cmn_err(CE_WARN, "_info() not defined properly in %s",
modp->mod_filename);
/*
* The semantics of mod_info(9F) are that 0 is failure
* and non-zero is success.
*/
retval = 0;
} else
retval = (*func)(modinfop); /* call _info() function */
if (moddebug & MODDEBUG_USERDEBUG)
printf("Returned from _info, retval = %x\n", retval);
return (retval);
}
static void
modadd(struct modctl *mp)
{
ASSERT(MUTEX_HELD(&mod_lock));
mp->mod_id = last_module_id++;
mp->mod_next = &modules;
mp->mod_prev = modules.mod_prev;
modules.mod_prev->mod_next = mp;
modules.mod_prev = mp;
}
/*ARGSUSED*/
static struct modctl *
allocate_modp(char *filename, char *modname)
{
struct modctl *mp;
mp = kobj_zalloc(sizeof (*mp), KM_SLEEP);
mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP);
(void) strcpy(mp->mod_modname, modname);
return (mp);
}
/*
* Get the value of a symbol. This is a wrapper routine that
* calls kobj_getsymvalue(). kobj_getsymvalue() may go away but this
* wrapper will prevent callers from noticing.
*/
uintptr_t
modgetsymvalue(char *name, int kernelonly)
{
return (kobj_getsymvalue(name, kernelonly));
}
/*
* Get the symbol nearest an address. This is a wrapper routine that
* calls kobj_getsymname(). kobj_getsymname() may go away but this
* wrapper will prevent callers from noticing.
*/
char *
modgetsymname(uintptr_t value, ulong_t *offset)
{
return (kobj_getsymname(value, offset));
}
/*
* Lookup a symbol in a specified module. This is a wrapper routine that
* calls kobj_lookup(). kobj_lookup() may go away but this
* wrapper will prevent callers from noticing.
*/
uintptr_t
modlookup(char *modname, char *symname)
{
struct modctl *modp;
uintptr_t val;
if ((modp = mod_hold_by_name(modname)) == NULL)
return (0);
val = kobj_lookup(modp->mod_mp, symname);
mod_release_mod(modp);
return (val);
}
/*
* Ask the user for the name of the system file and the default path
* for modules.
*/
void
mod_askparams()
{
static char s0[64];
intptr_t fd;
if ((fd = kobj_open(systemfile)) != -1L)
kobj_close(fd);
else
systemfile = NULL;
/*CONSTANTCONDITION*/
while (1) {
printf("Name of system file [%s]: ",
systemfile ? systemfile : "/dev/null");
console_gets(s0, sizeof (s0));
if (s0[0] == '\0')
break;
else if (strcmp(s0, "/dev/null") == 0) {
systemfile = NULL;
break;
} else {
if ((fd = kobj_open(s0)) != -1L) {
kobj_close(fd);
systemfile = s0;
break;
}
}
printf("can't find file %s\n", s0);
}
}
static char loading_msg[] = "loading '%s' id %d\n";
static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n";
/*
* Common code for loading a module (but not installing it).
* Handoff the task of module loading to a seperate thread
* with a large stack if possible, since this code may recurse a few times.
* Return zero if there are no errors or an errno value.
*/
static int
mod_load(struct modctl *mp, int usepath)
{
int retval;
struct modinfo *modinfop = NULL;
struct loadmt lt;
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(mp->mod_busy);
if (mp->mod_loaded)
return (0);
if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 ||
mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) {
if (moddebug & MODDEBUG_LOADMSG) {
printf(mod_excl_msg, mp->mod_filename,
mp->mod_modname);
}
return (ENXIO);
}
if (moddebug & MODDEBUG_LOADMSG2)
printf(loading_msg, mp->mod_filename, mp->mod_id);
if (curthread != &t0) {
lt.mp = mp;
lt.usepath = usepath;
lt.owner = curthread;
sema_init(&lt.sema, 0, NULL, SEMA_DEFAULT, NULL);
/* create thread to hand of call to */
(void) thread_create(NULL, DEFAULTSTKSZ * 2,
modload_thread, &lt, 0, &p0, TS_RUN, maxclsyspri);
/* wait for thread to complete kobj_load_module */
sema_p(&lt.sema);
sema_destroy(&lt.sema);
retval = lt.retval;
} else
retval = kobj_load_module(mp, usepath);
if (mp->mod_mp) {
ASSERT(retval == 0);
mp->mod_loaded = 1;
mp->mod_loadcnt++;
if (moddebug & MODDEBUG_LOADMSG) {
printf(load_msg, mp->mod_filename, mp->mod_id,
(void *)((struct module *)mp->mod_mp)->text,
(void *)((struct module *)mp->mod_mp)->data,
((struct module *)mp->mod_mp)->text_size,
((struct module *)mp->mod_mp)->data_size);
}
/*
* XXX - There should be a better way to get this.
*/
modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP);
modinfop->mi_info = MI_INFO_LINKAGE;
if (mod_getinfo(mp, modinfop) == 0)
mp->mod_linkage = NULL;
else {
mp->mod_linkage = (void *)modinfop->mi_base;
ASSERT(mp->mod_linkage->ml_rev == MODREV_1);
}
/*
* DCS: bootstrapping code. If the driver is loaded
* before root mount, it is assumed that the driver
* may be used before mounting root. In order to
* access mappings of global to local minor no.'s
* during installation/open of the driver, we load
* them into memory here while the BOP_interfaces
* are still up.
*/
if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) {
retval = clboot_modload(mp);
}
kmem_free(modinfop, sizeof (struct modinfo));
(void) mod_sysctl(SYS_SET_MVAR, (void *)mp);
retval = install_stubs_by_name(mp, mp->mod_modname);
/*
* Now that the module is loaded, we need to give DTrace
* a chance to notify its providers. This is done via
* the dtrace_modload function pointer.
*/
if (strcmp(mp->mod_modname, "dtrace") != 0) {
struct modctl *dmp = mod_hold_by_name("dtrace");
if (dmp != NULL && dtrace_modload != NULL)
(*dtrace_modload)(mp);
mod_release_mod(dmp);
}
} else {
/*
* If load failed then we need to release any requisites
* that we had established.
*/
ASSERT(retval);
mod_release_requisites(mp);
if (moddebug & MODDEBUG_ERRMSG)
printf("error loading '%s', error %d\n",
mp->mod_filename, retval);
}
return (retval);
}
static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n";
static void
mod_unload(struct modctl *mp)
{
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(mp->mod_busy);
ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) &&
((mp->mod_prim == 0) && (mp->mod_ref >= 0)));
if (moddebug & MODDEBUG_LOADMSG)
printf(unload_msg, mp->mod_modname,
mp->mod_id, mp->mod_loadcnt);
/*
* If mod_ref is not zero, it means some modules might still refer
* to this module. Then you can't unload this module right now.
* Instead, set 1 to mod_delay_unload to notify the system of
* unloading this module later when it's not required any more.
*/
if (mp->mod_ref > 0) {
mp->mod_delay_unload = 1;
if (moddebug & MODDEBUG_LOADMSG2) {
printf("module %s not unloaded,"
" non-zero reference count (%d)",
mp->mod_modname, mp->mod_ref);
}
return;
}
if (((mp->mod_loaded == 0) || mp->mod_installed) ||
(mp->mod_ref || mp->mod_prim)) {
/*
* A DEBUG kernel would ASSERT panic above, the code is broken
* if we get this warning.
*/
cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d",
mp->mod_filename, mp->mod_installed, mp->mod_loaded,
mp->mod_ref);
return;
}
/* reset stub functions to call the binder again */
reset_stubs(mp);
/*
* mark module as unloaded before the modctl structure is freed.
* This is required not to reuse the modctl structure before
* the module is marked as unloaded.
*/
mp->mod_loaded = 0;
mp->mod_linkage = NULL;
/* free the memory */
kobj_unload_module(mp);
if (mp->mod_delay_unload) {
mp->mod_delay_unload = 0;
if (moddebug & MODDEBUG_LOADMSG2) {
printf("deferred unload of module %s"
" (id %d) successful",
mp->mod_modname, mp->mod_id);
}
}
/* release hold on requisites */
mod_release_requisites(mp);
/*
* Now that the module is gone, we need to give DTrace a chance to
* remove any probes that it may have had in the module. This is
* done via the dtrace_modunload function pointer.
*/
if (strcmp(mp->mod_modname, "dtrace") != 0) {
struct modctl *dmp = mod_hold_by_name("dtrace");
if (dmp != NULL && dtrace_modunload != NULL)
(*dtrace_modunload)(mp);
mod_release_mod(dmp);
}
}
static int
modinstall(struct modctl *mp)
{
int val;
int (*func)(void);
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(mp->mod_busy && mp->mod_loaded);
if (mp->mod_installed)
return (0);
/*
* If mod_delay_unload is on, it means the system chose the deferred
* unload for this module. Then you can't install this module until
* it's unloaded from the system.
*/
if (mp->mod_delay_unload)
return (ENXIO);
if (moddebug & MODDEBUG_LOADMSG)
printf("installing %s, module id %d.\n",
mp->mod_modname, mp->mod_id);
ASSERT(mp->mod_mp != NULL);
if (mod_install_requisites(mp) != 0) {
/*
* Note that we can't call mod_unload(mp) here since
* if modinstall() was called by mod_install_requisites(),
* we won't be able to hold the dependent modules
* (otherwise there would be a deadlock).
*/
return (ENXIO);
}
if (moddebug & MODDEBUG_ERRMSG) {
printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n",
mp->mod_filename, mp->mod_id,
(void *)((struct module *)mp->mod_mp)->text,
(void *)((struct module *)mp->mod_mp)->data,
((struct module *)mp->mod_mp)->text_size,
((struct module *)mp->mod_mp)->data_size);
}
func = (int (*)())kobj_lookup(mp->mod_mp, "_init");
if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
cmn_err(CE_WARN, "_init() not defined properly in %s",
mp->mod_filename);
return (EFAULT);
}
if (moddebug & MODDEBUG_USERDEBUG) {
printf("breakpoint before calling %s:_init()\n",
mp->mod_modname);
if (DEBUGGER_PRESENT)
debug_enter("_init");
}
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(mp->mod_busy && mp->mod_loaded);
val = (*func)(); /* call _init */
if (moddebug & MODDEBUG_USERDEBUG)
printf("Returned from _init, val = %x\n", val);
if (val == 0) {
/*
* Set the MODS_INSTALLED flag to enable this module
* being called now.
*/
install_stubs(mp);
mp->mod_installed = 1;
} else if (moddebug & MODDEBUG_ERRMSG)
printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val);
return (val);
}
int detach_driver_unconfig = 0;
static int
detach_driver(char *name)
{
major_t major;
int error;
/*
* If being called from mod_uninstall_all() then the appropriate
* driver detaches (leaf only) have already been done.
*/
if (mod_in_autounload())
return (0);
major = ddi_name_to_major(name);
if (major == (major_t)-1)
return (0);
error = ndi_devi_unconfig_driver(ddi_root_node(),
NDI_DETACH_DRIVER | detach_driver_unconfig, major);
return (error == NDI_SUCCESS ? 0 : -1);
}
static char finiret_msg[] = "Returned from _fini for %s, status = %x\n";
static int
moduninstall(struct modctl *mp)
{
int status = 0;
int (*func)(void);
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(mp->mod_busy);
/*
* Verify that we need to do something and can uninstall the module.
*
* If we should not uninstall the module or if the module is not in
* the correct state to start an uninstall we return EBUSY to prevent
* us from progressing to mod_unload. If the module has already been
* uninstalled and unloaded we return EALREADY.
*/
if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0)
return (EBUSY);
if ((mp->mod_installed == 0) || (mp->mod_loaded == 0))
return (EALREADY);
/*
* To avoid devinfo / module deadlock we must release this module
* prior to initiating the detach_driver, otherwise the detach_driver
* might deadlock on a devinfo node held by another thread
* coming top down and involving the module we have locked.
*
* When we regrab the module we must reverify that it is OK
* to proceed with the uninstall operation.
*/
mod_release_mod(mp);
status = detach_driver(mp->mod_modname);
(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
/* check detach status and reverify state with lock */
mutex_enter(&mod_lock);
if ((status != 0) || mp->mod_prim || mp->mod_ref) {
mutex_exit(&mod_lock);
return (EBUSY);
}
if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) {
mutex_exit(&mod_lock);
return (EALREADY);
}
mutex_exit(&mod_lock);
if (moddebug & MODDEBUG_LOADMSG2)
printf("uninstalling %s\n", mp->mod_modname);
/*
* lookup _fini, return EBUSY if not defined.
*
* The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in
* detach(9E) - it allows bufctl addresses to be resolved.
*/
func = (int (*)())kobj_lookup(mp->mod_mp, "_fini");
if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) ||
(moddebug & MODDEBUG_FINI_EBUSY))
return (EBUSY);
/* verify that _fini is in this module */
if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
cmn_err(CE_WARN, "_fini() not defined properly in %s",
mp->mod_filename);
return (EFAULT);
}
/* call _fini() */
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed);
status = (*func)();
if (status == 0) {
/* _fini returned success, the module is no longer installed */
if (moddebug & MODDEBUG_LOADMSG)
printf("uninstalled %s\n", mp->mod_modname);
/*
* Even though we only set mod_installed to zero here, a zero
* return value means we are commited to a code path were
* mod_loaded will also end up as zero - we have no other
* way to get the module data and bss back to the pre _init
* state except a reload. To ensure this, after return,
* mod_busy must stay set until mod_loaded is cleared.
*/
mp->mod_installed = 0;
/*
* Clear the MODS_INSTALLED flag not to call functions
* in the module directly from now on.
*/
uninstall_stubs(mp);
} else {
if (moddebug & MODDEBUG_USERDEBUG)
printf(finiret_msg, mp->mod_filename, status);
/*
* By definition _fini is only allowed to return EBUSY or the
* result of mod_remove (EBUSY or EINVAL). In the off chance
* that a driver returns EALREADY we convert this to EINVAL
* since to our caller EALREADY means module was already
* removed.
*/
if (status == EALREADY)
status = EINVAL;
}
return (status);
}
/*
* Uninstall all modules.
*/
static void
mod_uninstall_all(void)
{
struct modctl *mp;
modid_t modid = 0;
/* synchronize with any active modunload_disable() */
modunload_begin();
/* mark this thread as doing autounloading */
(void) tsd_set(mod_autounload_key, (void *)1);
(void) devfs_clean(ddi_root_node(), NULL, 0);
(void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH);
while ((mp = mod_hold_next_by_id(modid)) != NULL) {
modid = mp->mod_id;
/*
* Skip modules with the MOD_NOAUTOUNLOAD flag set
*/
if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
mod_release_mod(mp);
continue;
}
if (moduninstall(mp) == 0) {
mod_unload(mp);
CPU_STATS_ADDQ(CPU, sys, modunload, 1);
}
mod_release_mod(mp);
}
(void) tsd_set(mod_autounload_key, NULL);
modunload_end();
}
/* wait for unloads that have begun before registering disable */
void
modunload_disable(void)
{
mutex_enter(&modunload_wait_mutex);
while (modunload_active_count) {
modunload_wait++;
cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
modunload_wait--;
}
modunload_disable_count++;
mutex_exit(&modunload_wait_mutex);
}
/* mark end of disable and signal waiters */
void
modunload_enable(void)
{
mutex_enter(&modunload_wait_mutex);
modunload_disable_count--;
if ((modunload_disable_count == 0) && modunload_wait)
cv_broadcast(&modunload_wait_cv);
mutex_exit(&modunload_wait_mutex);
}
/* wait for disables to complete before begining unload */
void
modunload_begin()
{
mutex_enter(&modunload_wait_mutex);
while (modunload_disable_count) {
modunload_wait++;
cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
modunload_wait--;
}
modunload_active_count++;
mutex_exit(&modunload_wait_mutex);
}
/* mark end of unload and signal waiters */
void
modunload_end()
{
mutex_enter(&modunload_wait_mutex);
modunload_active_count--;
if ((modunload_active_count == 0) && modunload_wait)
cv_broadcast(&modunload_wait_cv);
mutex_exit(&modunload_wait_mutex);
}
void
mod_uninstall_daemon(void)
{
callb_cpr_t cprinfo;
clock_t ticks = 0;
mod_aul_thread = curthread;
CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud");
for (;;) {
mutex_enter(&mod_uninstall_lock);
CALLB_CPR_SAFE_BEGIN(&cprinfo);
/*
* In DEBUG kernels, unheld drivers are uninstalled periodically
* every mod_uninstall_interval seconds. Periodic uninstall can
* be disabled by setting mod_uninstall_interval to 0 which is
* the default for a non-DEBUG kernel.
*/
if (mod_uninstall_interval) {
ticks = ddi_get_lbolt() +
drv_usectohz(mod_uninstall_interval * 1000000);
(void) cv_timedwait(&mod_uninstall_cv,
&mod_uninstall_lock, ticks);
} else {
cv_wait(&mod_uninstall_cv, &mod_uninstall_lock);
}
/*
* The whole daemon is safe for CPR except we don't want
* the daemon to run if FREEZE is issued and this daemon
* wakes up from the cv_wait above. In this case, it'll be
* blocked in CALLB_CPR_SAFE_END until THAW is issued.
*
* The reason of calling CALLB_CPR_SAFE_BEGIN twice is that
* mod_uninstall_lock is used to protect cprinfo and
* CALLB_CPR_SAFE_BEGIN assumes that this lock is held when
* called.
*/
CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock);
CALLB_CPR_SAFE_BEGIN(&cprinfo);
mutex_exit(&mod_uninstall_lock);
if ((modunload_disable_count == 0) &&
((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) {
mod_uninstall_all();
}
}
}
/*
* Unload all uninstalled modules.
*/
void
modreap(void)
{
mutex_enter(&mod_uninstall_lock);
cv_broadcast(&mod_uninstall_cv);
mutex_exit(&mod_uninstall_lock);
}
/*
* Hold the specified module. This is the module holding primitive.
*
* If MOD_LOCK_HELD then the caller already holds the mod_lock.
*
* Return values:
* 0 ==> the module is held
* 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs
* to determine how to retry.
*/
int
mod_hold_by_modctl(struct modctl *mp, int f)
{
ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) &&
((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) !=
(MOD_WAIT_ONCE | MOD_WAIT_FOREVER)));
ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) &&
((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) !=
(MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)));
ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock));
if (f & MOD_LOCK_NOT_HELD)
mutex_enter(&mod_lock);
while (mp->mod_busy) {
mp->mod_want = 1;
cv_wait(&mod_cv, &mod_lock);
/*
* Module may be unloaded by daemon.
* Nevertheless, modctl structure is still in linked list
* (i.e., off &modules), not freed!
* Caller is not supposed to assume "mp" is valid, but there
* is no reasonable way to detect this but using
* mp->mod_modinfo->mp == NULL check (follow the back pointer)
* (or similar check depending on calling context)
* DON'T free modctl structure, it will be very very
* problematic.
*/
if (f & MOD_WAIT_ONCE) {
if (f & MOD_LOCK_NOT_HELD)
mutex_exit(&mod_lock);
return (1); /* caller decides how to retry */
}
}
mp->mod_busy = 1;
mp->mod_inprogress_thread =
(curthread == NULL ? (kthread_id_t)-1 : curthread);
if (f & MOD_LOCK_NOT_HELD)
mutex_exit(&mod_lock);
return (0);
}
static struct modctl *
mod_hold_by_name_common(struct modctl *dep, char *filename)
{
char *modname;
struct modctl *mp;
char *curname, *newname;
int found = 0;
mutex_enter(&mod_lock);
if ((modname = strrchr(filename, '/')) == NULL)
modname = filename;
else
modname++;
mp = &modules;
do {
if (strcmp(modname, mp->mod_modname) == 0) {
found = 1;
break;
}
} while ((mp = mp->mod_next) != &modules);
if (found == 0) {
mp = allocate_modp(filename, modname);
modadd(mp);
}
/*
* if dep is not NULL, set the mp in mod_requisite_loading for
* the module circular dependency check. This field is used in
* mod_circdep(), but it's cleard in mod_hold_loaded_mod().
*/
if (dep != NULL) {
ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL);
dep->mod_requisite_loading = mp;
}
/*
* If the module was held, then it must be us who has it held.
*/
if (mod_circdep(mp))
mp = NULL;
else {
(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
/*
* If the name hadn't been set or has changed, allocate
* space and set it. Free space used by previous name.
*
* Do not change the name of primary modules, for primary
* modules the mod_filename was allocated in standalone mode:
* it is illegal to kobj_alloc in standalone mode and kobj_free
* in non-standalone mode.
*/
curname = mp->mod_filename;
if (curname == NULL ||
((mp->mod_prim == 0) &&
(curname != filename) &&
(modname != filename) &&
(strcmp(curname, filename) != 0))) {
newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP);
(void) strcpy(newname, filename);
mp->mod_filename = newname;
if (curname != NULL)
kobj_free(curname, strlen(curname) + 1);
}
}
mutex_exit(&mod_lock);
if (mp && moddebug & MODDEBUG_LOADMSG2)
printf("Holding %s\n", mp->mod_filename);
if (mp == NULL && moddebug & MODDEBUG_LOADMSG2)
printf("circular dependency loading %s\n", filename);
return (mp);
}
static struct modctl *
mod_hold_by_name_requisite(struct modctl *dep, char *filename)
{
return (mod_hold_by_name_common(dep, filename));
}
struct modctl *
mod_hold_by_name(char *filename)
{
return (mod_hold_by_name_common(NULL, filename));
}
static struct modctl *
mod_hold_by_id(modid_t modid)
{
struct modctl *mp;
int found = 0;
mutex_enter(&mod_lock);
mp = &modules;
do {
if (mp->mod_id == modid) {
found = 1;
break;
}
} while ((mp = mp->mod_next) != &modules);
if ((found == 0) || mod_circdep(mp))
mp = NULL;
else
(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
mutex_exit(&mod_lock);
return (mp);
}
static struct modctl *
mod_hold_next_by_id(modid_t modid)
{
struct modctl *mp;
int found = 0;
if (modid < -1)
return (NULL);
mutex_enter(&mod_lock);
mp = &modules;
do {
if (mp->mod_id > modid) {
found = 1;
break;
}
} while ((mp = mp->mod_next) != &modules);
if ((found == 0) || mod_circdep(mp))
mp = NULL;
else
(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
mutex_exit(&mod_lock);
return (mp);
}
static void
mod_release(struct modctl *mp)
{
ASSERT(MUTEX_HELD(&mod_lock));
ASSERT(mp->mod_busy);
mp->mod_busy = 0;
mp->mod_inprogress_thread = NULL;
if (mp->mod_want) {
mp->mod_want = 0;
cv_broadcast(&mod_cv);
}
}
void
mod_release_mod(struct modctl *mp)
{
if (moddebug & MODDEBUG_LOADMSG2)
printf("Releasing %s\n", mp->mod_filename);
mutex_enter(&mod_lock);
mod_release(mp);
mutex_exit(&mod_lock);
}
modid_t
mod_name_to_modid(char *filename)
{
char *modname;
struct modctl *mp;
mutex_enter(&mod_lock);
if ((modname = strrchr(filename, '/')) == NULL)
modname = filename;
else
modname++;
mp = &modules;
do {
if (strcmp(modname, mp->mod_modname) == 0) {
mutex_exit(&mod_lock);
return (mp->mod_id);
}
} while ((mp = mp->mod_next) != &modules);
mutex_exit(&mod_lock);
return (-1);
}
int
mod_remove_by_name(char *name)
{
struct modctl *mp;
int retval;
mp = mod_hold_by_name(name);
if (mp == NULL)
return (EINVAL);
if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
/*
* Do not unload forceloaded modules
*/
mod_release_mod(mp);
return (0);
}
if ((retval = moduninstall(mp)) == 0) {
mod_unload(mp);
CPU_STATS_ADDQ(CPU, sys, modunload, 1);
} else if (retval == EALREADY)
retval = 0; /* already unloaded, not an error */
mod_release_mod(mp);
return (retval);
}
/*
* Record that module "dep" is dependent on module "on_mod."
*/
static void
mod_make_requisite(struct modctl *dependent, struct modctl *on_mod)
{
struct modctl_list **pmlnp; /* previous next pointer */
struct modctl_list *mlp;
struct modctl_list *new;
ASSERT(dependent->mod_busy && on_mod->mod_busy);
mutex_enter(&mod_lock);
/*
* Search dependent's requisite list to see if on_mod is recorded.
* List is ordered by id.
*/
for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp;
mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp)
if (mlp->modl_modp->mod_id >= on_mod->mod_id)
break;
/* Create and insert if not already recorded */
if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) {
new = kobj_zalloc(sizeof (*new), KM_SLEEP);
new->modl_modp = on_mod;
new->modl_next = mlp;
*pmlnp = new;
/*
* Increment the mod_ref count in our new requisite module.
* This is what keeps a module that has other modules
* which are dependent on it from being uninstalled and
* unloaded. "on_mod"'s mod_ref count decremented in
* mod_release_requisites when the "dependent" module
* unload is complete. "on_mod" must be loaded, but may not
* yet be installed.
*/
on_mod->mod_ref++;
ASSERT(on_mod->mod_ref && on_mod->mod_loaded);
}
mutex_exit(&mod_lock);
}
/*
* release the hold associated with mod_make_requisite mod_ref++
* as part of unload.
*/
void
mod_release_requisites(struct modctl *modp)
{
struct modctl_list *modl;
struct modctl_list *next;
struct modctl *req;
struct modctl_list *start = NULL, *mod_garbage;
ASSERT(modp->mod_busy);
ASSERT(!MUTEX_HELD(&mod_lock));
mutex_enter(&mod_lock); /* needed for manipulation of req */
for (modl = modp->mod_requisites; modl; modl = next) {
next = modl->modl_next;
req = modl->modl_modp;
ASSERT(req->mod_ref >= 1 && req->mod_loaded);
req->mod_ref--;
/*
* Check if the module has to be unloaded or not.
*/
if (req->mod_ref == 0 && req->mod_delay_unload) {
struct modctl_list *new;
/*
* Allocate the modclt_list holding the garbage
* module which should be unloaded later.
*/
new = kobj_zalloc(sizeof (struct modctl_list),
KM_SLEEP);
new->modl_modp = req;
if (start == NULL)
mod_garbage = start = new;
else {
mod_garbage->modl_next = new;
mod_garbage = new;
}
}
/* free the list as we go */
kobj_free(modl, sizeof (*modl));
}
modp->mod_requisites = NULL;
mutex_exit(&mod_lock);
/*
* Unload the garbage modules.
*/
for (mod_garbage = start; mod_garbage != NULL; /* nothing */) {
struct modctl_list *old = mod_garbage;
struct modctl *mp = mod_garbage->modl_modp;
ASSERT(mp != NULL);
/*
* Hold this module until it's unloaded completely.
*/
(void) mod_hold_by_modctl(mp,
MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
/*
* Check if the module is not unloaded yet and nobody requires
* the module. If it's unloaded already or somebody still
* requires the module, don't unload it now.
*/
if (mp->mod_loaded && mp->mod_ref == 0)
mod_unload(mp);
ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) ||
(mp->mod_ref > 0));
mod_release_mod(mp);
mod_garbage = mod_garbage->modl_next;
kobj_free(old, sizeof (struct modctl_list));
}
}
/*
* Process dependency of the module represented by "dep" on the
* module named by "on."
*
* Called from kobj_do_dependents() to load a module "on" on which
* "dep" depends.
*/
struct modctl *
mod_load_requisite(struct modctl *dep, char *on)
{
struct modctl *on_mod;
int retval;
if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) {
mod_make_requisite(dep, on_mod);
} else if (moddebug & MODDEBUG_ERRMSG) {
printf("error processing %s on which module %s depends\n",
on, dep->mod_modname);
}
return (on_mod);
}
static int
mod_install_requisites(struct modctl *modp)
{
struct modctl_list *modl;
struct modctl *req;
int status = 0;
ASSERT(MUTEX_NOT_HELD(&mod_lock));
ASSERT(modp->mod_busy);
for (modl = modp->mod_requisites; modl; modl = modl->modl_next) {
req = modl->modl_modp;
(void) mod_hold_by_modctl(req,
MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
status = modinstall(req);
mod_release_mod(req);
if (status != 0)
break;
}
return (status);
}
/*
* returns 1 if this thread is doing autounload, 0 otherwise.
* see mod_uninstall_all.
*/
int
mod_in_autounload()
{
return ((int)(uintptr_t)tsd_get(mod_autounload_key));
}
/*
* gmatch adapted from libc, stripping the wchar stuff
*/
#define popchar(p, c) \
c = *p++; \
if (c == 0) \
return (0);
static int
gmatch(const char *s, const char *p)
{
int c, sc;
int ok, lc, notflag;
sc = *s++;
c = *p++;
if (c == 0)
return (sc == c); /* nothing matches nothing */
switch (c) {
case '\\':
/* skip to quoted character */
popchar(p, c)
/*FALLTHRU*/
default:
/* straight comparison */
if (c != sc)
return (0);
/*FALLTHRU*/
case '?':
/* first char matches, move to remainder */
return (sc != '\0' ? gmatch(s, p) : 0);
case '*':
while (*p == '*')
p++;
/* * matches everything */
if (*p == 0)
return (1);
/* undo skip at the beginning & iterate over substrings */
--s;
while (*s) {
if (gmatch(s, p))
return (1);
s++;
}
return (0);
case '[':
/* match any char within [] */
if (sc == 0)
return (0);
ok = lc = notflag = 0;
if (*p == '!') {
notflag = 1;
p++;
}
popchar(p, c)
do {
if (c == '-' && lc && *p != ']') {
/* test sc against range [c1-c2] */
popchar(p, c)
if (c == '\\') {
popchar(p, c)
}
if (notflag) {
/* return 0 on mismatch */
if (lc <= sc && sc <= c)
return (0);
ok++;
} else if (lc <= sc && sc <= c) {
ok++;
}
/* keep going, may get a match next */
} else if (c == '\\') {
/* skip to quoted character */
popchar(p, c)
}
lc = c;
if (notflag) {
if (sc == lc)
return (0);
ok++;
} else if (sc == lc) {
ok++;
}
popchar(p, c)
} while (c != ']');
/* recurse on remainder of string */
return (ok ? gmatch(s, p) : 0);
}
/*NOTREACHED*/
}
/*
* Get default perm for device from /etc/minor_perm. Return 0 if match found.
*
* Pure wild-carded patterns are handled separately so the ordering of
* these patterns doesn't matter. We're still dependent on ordering
* however as the first matching entry is the one returned.
* Not ideal but all existing examples and usage do imply this
* ordering implicitly.
*
* Drivers using the clone driver are always good for some entertainment.
* Clone nodes under pseudo have the form clone@0:<driver>. Some minor
* perm entries have the form clone:<driver>, others use <driver>:*
* Examples are clone:llc1 vs. llc2:*, for example.
*
* Minor perms in the clone:<driver> form are mapped to the drivers's
* mperm list, not the clone driver, as wildcard entries for clone
* reference only. In other words, a clone wildcard will match
* references for clone@0:<driver> but never <driver>@<minor>.
*
* Additional minor perms in the standard form are also supported,
* for mixed usage, ie a node with an entry clone:<driver> could
* provide further entries <driver>:<minor>.
*
* Finally, some uses of clone use an alias as the minor name rather
* than the driver name, with the alias as the minor perm entry.
* This case is handled by attaching the driver to bring its
* minor list into existence, then discover the alias via DDI_ALIAS.
* The clone device's minor perm list can then be searched for
* that alias.
*/
static int
dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp)
{
major_t major;
struct devnames *dnp;
mperm_t *mp;
char *alias = NULL;
dev_info_t *cdevi;
struct ddi_minor_data *dmd;
major = ddi_name_to_major(minor_name);
ASSERT(dip == clone_dip);
ASSERT(major != (major_t)-1);
/*
* Attach the driver named by the minor node, then
* search its first instance's minor list for an
* alias node.
*/
if (ddi_hold_installed_driver(major) == NULL)
return (1);
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
if ((cdevi = dnp->dn_head) != NULL) {
mutex_enter(&DEVI(cdevi)->devi_lock);
for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) {
if (dmd->type == DDM_ALIAS) {
alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP);
break;
}
}
mutex_exit(&DEVI(cdevi)->devi_lock);
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
ddi_rele_driver(major);
if (alias == NULL) {
if (moddebug & MODDEBUG_MINORPERM)
cmn_err(CE_CONT, "dev_minorperm: "
"no alias for %s\n", minor_name);
return (1);
}
major = ddi_driver_major(clone_dip);
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
/*
* Go through the clone driver's mperm list looking
* for a match for the specified alias.
*/
for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
if (strcmp(alias, mp->mp_minorname) == 0) {
break;
}
}
if (mp) {
if (moddebug & MODDEBUG_MP_MATCH) {
cmn_err(CE_CONT,
"minor perm defaults: %s %s 0%o %d %d (aliased)\n",
minor_name, alias, mp->mp_mode,
mp->mp_uid, mp->mp_gid);
}
rmp->mp_uid = mp->mp_uid;
rmp->mp_gid = mp->mp_gid;
rmp->mp_mode = mp->mp_mode;
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
kmem_free(alias, strlen(alias)+1);
return (mp == NULL);
}
int
dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp)
{
major_t major;
char *minor_name;
struct devnames *dnp;
mperm_t *mp;
int is_clone = 0;
if (!minorperm_loaded) {
if (moddebug & MODDEBUG_MINORPERM)
cmn_err(CE_CONT,
"%s: minor perm not yet loaded\n", name);
return (1);
}
minor_name = strchr(name, ':');
if (minor_name == NULL)
return (1);
minor_name++;
/*
* If it's the clone driver, search the driver as named
* by the minor. All clone minor perm entries other than
* alias nodes are actually installed on the real driver's list.
*/
if (dip == clone_dip) {
major = ddi_name_to_major(minor_name);
if (major == (major_t)-1) {
if (moddebug & MODDEBUG_MINORPERM)
cmn_err(CE_CONT, "dev_minorperm: "
"%s: no such driver\n", minor_name);
return (1);
}
is_clone = 1;
} else {
major = ddi_driver_major(dip);
ASSERT(major != (major_t)-1);
}
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
/*
* Go through the driver's mperm list looking for
* a match for the specified minor. If there's
* no matching pattern, use the wild card.
* Defer to the clone wild for clone if specified,
* otherwise fall back to the normal form.
*/
for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
if (gmatch(minor_name, mp->mp_minorname) != 0) {
break;
}
}
if (mp == NULL) {
if (is_clone)
mp = dnp->dn_mperm_clone;
if (mp == NULL)
mp = dnp->dn_mperm_wild;
}
if (mp) {
if (moddebug & MODDEBUG_MP_MATCH) {
cmn_err(CE_CONT,
"minor perm defaults: %s %s 0%o %d %d\n",
name, mp->mp_minorname, mp->mp_mode,
mp->mp_uid, mp->mp_gid);
}
rmp->mp_uid = mp->mp_uid;
rmp->mp_gid = mp->mp_gid;
rmp->mp_mode = mp->mp_mode;
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
/*
* If no match can be found for a clone node,
* search for a possible match for an alias.
* One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm,
* with minor perm entry clone:ptmx.
*/
if (mp == NULL && is_clone) {
return (dev_alias_minorperm(dip, minor_name, rmp));
}
return (mp == NULL);
}
/*
* dynamicaly reference load a dl module/library, returning handle
*/
/*ARGSUSED*/
ddi_modhandle_t
ddi_modopen(const char *modname, int mode, int *errnop)
{
char *subdir;
char *mod;
int subdirlen;
struct modctl *hmodp = NULL;
int retval = EINVAL;
ASSERT(modname && (mode == KRTLD_MODE_FIRST));
if ((modname == NULL) || (mode != KRTLD_MODE_FIRST))
goto out;
/* find optional first '/' in modname */
mod = strchr(modname, '/');
if (mod != strrchr(modname, '/'))
goto out; /* only one '/' is legal */
if (mod) {
/* for subdir string without modification to argument */
mod++;
subdirlen = mod - modname;
subdir = kmem_alloc(subdirlen, KM_SLEEP);
(void) strlcpy(subdir, modname, subdirlen);
} else {
subdirlen = 0;
subdir = "misc";
mod = (char *)modname;
}
/* reference load with errno return value */
retval = modrload(subdir, mod, &hmodp);
if (subdirlen)
kmem_free(subdir, subdirlen);
out: if (errnop)
*errnop = retval;
if (moddebug & MODDEBUG_DDI_MOD)
printf("ddi_modopen %s mode %x: %s %p %d\n",
modname ? modname : "<unknown>", mode,
hmodp ? hmodp->mod_filename : "<unknown>",
(void *)hmodp, retval);
return ((ddi_modhandle_t)hmodp);
}
/* lookup "name" in open dl module/library */
void *
ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop)
{
struct modctl *hmodp = (struct modctl *)h;
void *f;
int retval;
ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1));
if ((hmodp == NULL) || (name == NULL) ||
(hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
f = NULL;
retval = EINVAL;
} else {
f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name);
if (f)
retval = 0;
else
retval = ENOTSUP;
}
if (moddebug & MODDEBUG_DDI_MOD)
printf("ddi_modsym in %s of %s: %d %p\n",
hmodp ? hmodp->mod_modname : "<unknown>",
name ? name : "<unknown>", retval, f);
if (errnop)
*errnop = retval;
return (f);
}
/* dynamic (un)reference unload of an open dl module/library */
int
ddi_modclose(ddi_modhandle_t h)
{
struct modctl *hmodp = (struct modctl *)h;
struct modctl *modp = NULL;
int retval;
ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1));
if ((hmodp == NULL) ||
(hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
retval = EINVAL;
goto out;
}
retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload);
if (retval == EBUSY)
retval = 0; /* EBUSY is not an error */
if (retval == 0) {
ASSERT(hmodp == modp);
if (hmodp != modp)
retval = EINVAL;
}
out: if (moddebug & MODDEBUG_DDI_MOD)
printf("ddi_modclose %s: %d\n",
hmodp ? hmodp->mod_modname : "<unknown>", retval);
return (retval);
}