kmem.c revision f4b3ec61df05330d25f55a36b975b4d7519fdeb1
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Kernel memory allocator, as described in the following two papers:
*
* Jeff Bonwick,
* The Slab Allocator: An Object-Caching Kernel Memory Allocator.
* Proceedings of the Summer 1994 Usenix Conference.
* Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
*
* Jeff Bonwick and Jonathan Adams,
* Magazines and vmem: Extending the Slab Allocator to Many CPUs and
* Arbitrary Resources.
* Proceedings of the 2001 Usenix Conference.
* Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
*/
#include <sys/kmem_impl.h>
#include <sys/vmem_impl.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/vm.h>
#include <sys/proc.h>
#include <sys/tuneable.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/mutex.h>
#include <sys/bitmap.h>
#include <sys/atomic.h>
#include <sys/kobj.h>
#include <sys/disp.h>
#include <vm/seg_kmem.h>
#include <sys/log.h>
#include <sys/callb.h>
#include <sys/taskq.h>
#include <sys/modctl.h>
#include <sys/reboot.h>
#include <sys/id32.h>
#include <sys/zone.h>
#include <sys/netstack.h>
extern void streams_msg_init(void);
extern int segkp_fromheap;
extern void segkp_cache_free(void);
struct kmem_cache_kstat {
kstat_named_t kmc_buf_size;
kstat_named_t kmc_align;
kstat_named_t kmc_chunk_size;
kstat_named_t kmc_slab_size;
kstat_named_t kmc_alloc;
kstat_named_t kmc_alloc_fail;
kstat_named_t kmc_free;
kstat_named_t kmc_depot_alloc;
kstat_named_t kmc_depot_free;
kstat_named_t kmc_depot_contention;
kstat_named_t kmc_slab_alloc;
kstat_named_t kmc_slab_free;
kstat_named_t kmc_buf_constructed;
kstat_named_t kmc_buf_avail;
kstat_named_t kmc_buf_inuse;
kstat_named_t kmc_buf_total;
kstat_named_t kmc_buf_max;
kstat_named_t kmc_slab_create;
kstat_named_t kmc_slab_destroy;
kstat_named_t kmc_vmem_source;
kstat_named_t kmc_hash_size;
kstat_named_t kmc_hash_lookup_depth;
kstat_named_t kmc_hash_rescale;
kstat_named_t kmc_full_magazines;
kstat_named_t kmc_empty_magazines;
kstat_named_t kmc_magazine_size;
} kmem_cache_kstat = {
{ "buf_size", KSTAT_DATA_UINT64 },
{ "align", KSTAT_DATA_UINT64 },
{ "chunk_size", KSTAT_DATA_UINT64 },
{ "slab_size", KSTAT_DATA_UINT64 },
{ "alloc", KSTAT_DATA_UINT64 },
{ "alloc_fail", KSTAT_DATA_UINT64 },
{ "free", KSTAT_DATA_UINT64 },
{ "depot_alloc", KSTAT_DATA_UINT64 },
{ "depot_free", KSTAT_DATA_UINT64 },
{ "depot_contention", KSTAT_DATA_UINT64 },
{ "slab_alloc", KSTAT_DATA_UINT64 },
{ "slab_free", KSTAT_DATA_UINT64 },
{ "buf_constructed", KSTAT_DATA_UINT64 },
{ "buf_avail", KSTAT_DATA_UINT64 },
{ "buf_inuse", KSTAT_DATA_UINT64 },
{ "buf_total", KSTAT_DATA_UINT64 },
{ "buf_max", KSTAT_DATA_UINT64 },
{ "slab_create", KSTAT_DATA_UINT64 },
{ "slab_destroy", KSTAT_DATA_UINT64 },
{ "vmem_source", KSTAT_DATA_UINT64 },
{ "hash_size", KSTAT_DATA_UINT64 },
{ "hash_lookup_depth", KSTAT_DATA_UINT64 },
{ "hash_rescale", KSTAT_DATA_UINT64 },
{ "full_magazines", KSTAT_DATA_UINT64 },
{ "empty_magazines", KSTAT_DATA_UINT64 },
{ "magazine_size", KSTAT_DATA_UINT64 },
};
static kmutex_t kmem_cache_kstat_lock;
/*
* The default set of caches to back kmem_alloc().
* These sizes should be reevaluated periodically.
*
* We want allocations that are multiples of the coherency granularity
* (64 bytes) to be satisfied from a cache which is a multiple of 64
* bytes, so that it will be 64-byte aligned. For all multiples of 64,
* the next kmem_cache_size greater than or equal to it must be a
* multiple of 64.
*/
static const int kmem_alloc_sizes[] = {
1 * 8,
2 * 8,
3 * 8,
4 * 8, 5 * 8, 6 * 8, 7 * 8,
4 * 16, 5 * 16, 6 * 16, 7 * 16,
4 * 32, 5 * 32, 6 * 32, 7 * 32,
4 * 64, 5 * 64, 6 * 64, 7 * 64,
4 * 128, 5 * 128, 6 * 128, 7 * 128,
P2ALIGN(8192 / 7, 64),
P2ALIGN(8192 / 6, 64),
P2ALIGN(8192 / 5, 64),
P2ALIGN(8192 / 4, 64),
P2ALIGN(8192 / 3, 64),
P2ALIGN(8192 / 2, 64),
P2ALIGN(8192 / 1, 64),
4096 * 3,
8192 * 2,
8192 * 3,
8192 * 4,
};
#define KMEM_MAXBUF 32768
static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT];
static kmem_magtype_t kmem_magtype[] = {
{ 1, 8, 3200, 65536 },
{ 3, 16, 256, 32768 },
{ 7, 32, 64, 16384 },
{ 15, 64, 0, 8192 },
{ 31, 64, 0, 4096 },
{ 47, 64, 0, 2048 },
{ 63, 64, 0, 1024 },
{ 95, 64, 0, 512 },
{ 143, 64, 0, 0 },
};
static uint32_t kmem_reaping;
static uint32_t kmem_reaping_idspace;
/*
* kmem tunables
*/
clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */
int kmem_depot_contention = 3; /* max failed tryenters per real interval */
pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */
int kmem_panic = 1; /* whether to panic on error */
int kmem_logging = 1; /* kmem_log_enter() override */
uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */
size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */
size_t kmem_content_log_size; /* content log size [2% of memory] */
size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */
size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */
size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */
size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */
size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */
int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */
size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */
size_t kmem_minfirewall; /* hardware-enforced redzone threshold */
#ifdef DEBUG
int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS;
#else
int kmem_flags = 0;
#endif
int kmem_ready;
static kmem_cache_t *kmem_slab_cache;
static kmem_cache_t *kmem_bufctl_cache;
static kmem_cache_t *kmem_bufctl_audit_cache;
static kmutex_t kmem_cache_lock; /* inter-cache linkage only */
kmem_cache_t kmem_null_cache;
static taskq_t *kmem_taskq;
static kmutex_t kmem_flags_lock;
static vmem_t *kmem_metadata_arena;
static vmem_t *kmem_msb_arena; /* arena for metadata caches */
static vmem_t *kmem_cache_arena;
static vmem_t *kmem_hash_arena;
static vmem_t *kmem_log_arena;
static vmem_t *kmem_oversize_arena;
static vmem_t *kmem_va_arena;
static vmem_t *kmem_default_arena;
static vmem_t *kmem_firewall_va_arena;
static vmem_t *kmem_firewall_arena;
kmem_log_header_t *kmem_transaction_log;
kmem_log_header_t *kmem_content_log;
kmem_log_header_t *kmem_failure_log;
kmem_log_header_t *kmem_slab_log;
static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */
#define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \
if ((count) > 0) { \
pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \
pc_t *_e; \
/* memmove() the old entries down one notch */ \
for (_e = &_s[(count) - 1]; _e > _s; _e--) \
*_e = *(_e - 1); \
*_s = (uintptr_t)(caller); \
}
#define KMERR_MODIFIED 0 /* buffer modified while on freelist */
#define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */
#define KMERR_DUPFREE 2 /* freed a buffer twice */
#define KMERR_BADADDR 3 /* freed a bad (unallocated) address */
#define KMERR_BADBUFTAG 4 /* buftag corrupted */
#define KMERR_BADBUFCTL 5 /* bufctl corrupted */
#define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
#define KMERR_BADSIZE 7 /* alloc size != free size */
#define KMERR_BADBASE 8 /* buffer base address wrong */
struct {
hrtime_t kmp_timestamp; /* timestamp of panic */
int kmp_error; /* type of kmem error */
void *kmp_buffer; /* buffer that induced panic */
void *kmp_realbuf; /* real start address for buffer */
kmem_cache_t *kmp_cache; /* buffer's cache according to client */
kmem_cache_t *kmp_realcache; /* actual cache containing buffer */
kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */
kmem_bufctl_t *kmp_bufctl; /* bufctl */
} kmem_panic_info;
static void
copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
{
uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
uint64_t *buf = buf_arg;
while (buf < bufend)
*buf++ = pattern;
}
static void *
verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
{
uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
uint64_t *buf;
for (buf = buf_arg; buf < bufend; buf++)
if (*buf != pattern)
return (buf);
return (NULL);
}
static void *
verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
{
uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
uint64_t *buf;
for (buf = buf_arg; buf < bufend; buf++) {
if (*buf != old) {
copy_pattern(old, buf_arg,
(char *)buf - (char *)buf_arg);
return (buf);
}
*buf = new;
}
return (NULL);
}
static void
kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
{
kmem_cache_t *cp;
mutex_enter(&kmem_cache_lock);
for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache;
cp = cp->cache_next)
if (tq != NULL)
(void) taskq_dispatch(tq, (task_func_t *)func, cp,
tqflag);
else
func(cp);
mutex_exit(&kmem_cache_lock);
}
static void
kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag)
{
kmem_cache_t *cp;
mutex_enter(&kmem_cache_lock);
for (cp = kmem_null_cache.cache_next; cp != &kmem_null_cache;
cp = cp->cache_next) {
if (!(cp->cache_cflags & KMC_IDENTIFIER))
continue;
if (tq != NULL)
(void) taskq_dispatch(tq, (task_func_t *)func, cp,
tqflag);
else
func(cp);
}
mutex_exit(&kmem_cache_lock);
}
/*
* Debugging support. Given a buffer address, find its slab.
*/
static kmem_slab_t *
kmem_findslab(kmem_cache_t *cp, void *buf)
{
kmem_slab_t *sp;
mutex_enter(&cp->cache_lock);
for (sp = cp->cache_nullslab.slab_next;
sp != &cp->cache_nullslab; sp = sp->slab_next) {
if (KMEM_SLAB_MEMBER(sp, buf)) {
mutex_exit(&cp->cache_lock);
return (sp);
}
}
mutex_exit(&cp->cache_lock);
return (NULL);
}
static void
kmem_error(int error, kmem_cache_t *cparg, void *bufarg)
{
kmem_buftag_t *btp = NULL;
kmem_bufctl_t *bcp = NULL;
kmem_cache_t *cp = cparg;
kmem_slab_t *sp;
uint64_t *off;
void *buf = bufarg;
kmem_logging = 0; /* stop logging when a bad thing happens */
kmem_panic_info.kmp_timestamp = gethrtime();
sp = kmem_findslab(cp, buf);
if (sp == NULL) {
for (cp = kmem_null_cache.cache_prev; cp != &kmem_null_cache;
cp = cp->cache_prev) {
if ((sp = kmem_findslab(cp, buf)) != NULL)
break;
}
}
if (sp == NULL) {
cp = NULL;
error = KMERR_BADADDR;
} else {
if (cp != cparg)
error = KMERR_BADCACHE;
else
buf = (char *)bufarg - ((uintptr_t)bufarg -
(uintptr_t)sp->slab_base) % cp->cache_chunksize;
if (buf != bufarg)
error = KMERR_BADBASE;
if (cp->cache_flags & KMF_BUFTAG)
btp = KMEM_BUFTAG(cp, buf);
if (cp->cache_flags & KMF_HASH) {
mutex_enter(&cp->cache_lock);
for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
if (bcp->bc_addr == buf)
break;
mutex_exit(&cp->cache_lock);
if (bcp == NULL && btp != NULL)
bcp = btp->bt_bufctl;
if (kmem_findslab(cp->cache_bufctl_cache, bcp) ==
NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) ||
bcp->bc_addr != buf) {
error = KMERR_BADBUFCTL;
bcp = NULL;
}
}
}
kmem_panic_info.kmp_error = error;
kmem_panic_info.kmp_buffer = bufarg;
kmem_panic_info.kmp_realbuf = buf;
kmem_panic_info.kmp_cache = cparg;
kmem_panic_info.kmp_realcache = cp;
kmem_panic_info.kmp_slab = sp;
kmem_panic_info.kmp_bufctl = bcp;
printf("kernel memory allocator: ");
switch (error) {
case KMERR_MODIFIED:
printf("buffer modified after being freed\n");
off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
if (off == NULL) /* shouldn't happen */
off = buf;
printf("modification occurred at offset 0x%lx "
"(0x%llx replaced by 0x%llx)\n",
(uintptr_t)off - (uintptr_t)buf,
(longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off);
break;
case KMERR_REDZONE:
printf("redzone violation: write past end of buffer\n");
break;
case KMERR_BADADDR:
printf("invalid free: buffer not in cache\n");
break;
case KMERR_DUPFREE:
printf("duplicate free: buffer freed twice\n");
break;
case KMERR_BADBUFTAG:
printf("boundary tag corrupted\n");
printf("bcp ^ bxstat = %lx, should be %lx\n",
(intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
KMEM_BUFTAG_FREE);
break;
case KMERR_BADBUFCTL:
printf("bufctl corrupted\n");
break;
case KMERR_BADCACHE:
printf("buffer freed to wrong cache\n");
printf("buffer was allocated from %s,\n", cp->cache_name);
printf("caller attempting free to %s.\n", cparg->cache_name);
break;
case KMERR_BADSIZE:
printf("bad free: free size (%u) != alloc size (%u)\n",
KMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
KMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
break;
case KMERR_BADBASE:
printf("bad free: free address (%p) != alloc address (%p)\n",
bufarg, buf);
break;
}
printf("buffer=%p bufctl=%p cache: %s\n",
bufarg, (void *)bcp, cparg->cache_name);
if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) &&
error != KMERR_BADBUFCTL) {
int d;
timestruc_t ts;
kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp;
hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts);
printf("previous transaction on buffer %p:\n", buf);
printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
(void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
(void *)sp, cp->cache_name);
for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) {
ulong_t off;
char *sym = kobj_getsymname(bcap->bc_stack[d], &off);
printf("%s+%lx\n", sym ? sym : "?", off);
}
}
if (kmem_panic > 0)
panic("kernel heap corruption detected");
if (kmem_panic == 0)
debug_enter(NULL);
kmem_logging = 1; /* resume logging */
}
static kmem_log_header_t *
kmem_log_init(size_t logsize)
{
kmem_log_header_t *lhp;
int nchunks = 4 * max_ncpus;
size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus];
int i;
/*
* Make sure that lhp->lh_cpu[] is nicely aligned
* to prevent false sharing of cache lines.
*/
lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN);
lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
NULL, NULL, VM_SLEEP);
bzero(lhp, lhsize);
mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL);
lhp->lh_nchunks = nchunks;
lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE);
lhp->lh_base = vmem_alloc(kmem_log_arena,
lhp->lh_chunksize * nchunks, VM_SLEEP);
lhp->lh_free = vmem_alloc(kmem_log_arena,
nchunks * sizeof (int), VM_SLEEP);
bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
for (i = 0; i < max_ncpus; i++) {
kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL);
clhp->clh_chunk = i;
}
for (i = max_ncpus; i < nchunks; i++)
lhp->lh_free[i] = i;
lhp->lh_head = max_ncpus;
lhp->lh_tail = 0;
return (lhp);
}
static void *
kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size)
{
void *logspace;
kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[CPU->cpu_seqid];
if (lhp == NULL || kmem_logging == 0 || panicstr)
return (NULL);
mutex_enter(&clhp->clh_lock);
clhp->clh_hits++;
if (size > clhp->clh_avail) {
mutex_enter(&lhp->lh_lock);
lhp->lh_hits++;
lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
clhp->clh_current = lhp->lh_base +
clhp->clh_chunk * lhp->lh_chunksize;
clhp->clh_avail = lhp->lh_chunksize;
if (size > lhp->lh_chunksize)
size = lhp->lh_chunksize;
mutex_exit(&lhp->lh_lock);
}
logspace = clhp->clh_current;
clhp->clh_current += size;
clhp->clh_avail -= size;
bcopy(data, logspace, size);
mutex_exit(&clhp->clh_lock);
return (logspace);
}
#define KMEM_AUDIT(lp, cp, bcp) \
{ \
kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \
_bcp->bc_timestamp = gethrtime(); \
_bcp->bc_thread = curthread; \
_bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \
_bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \
}
static void
kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp,
kmem_slab_t *sp, void *addr)
{
kmem_bufctl_audit_t bca;
bzero(&bca, sizeof (kmem_bufctl_audit_t));
bca.bc_addr = addr;
bca.bc_slab = sp;
bca.bc_cache = cp;
KMEM_AUDIT(lp, cp, &bca);
}
/*
* Create a new slab for cache cp.
*/
static kmem_slab_t *
kmem_slab_create(kmem_cache_t *cp, int kmflag)
{
size_t slabsize = cp->cache_slabsize;
size_t chunksize = cp->cache_chunksize;
int cache_flags = cp->cache_flags;
size_t color, chunks;
char *buf, *slab;
kmem_slab_t *sp;
kmem_bufctl_t *bcp;
vmem_t *vmp = cp->cache_arena;
color = cp->cache_color + cp->cache_align;
if (color > cp->cache_maxcolor)
color = cp->cache_mincolor;
cp->cache_color = color;
slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS);
if (slab == NULL)
goto vmem_alloc_failure;
ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
if (!(cp->cache_cflags & KMC_NOTOUCH))
copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize);
if (cache_flags & KMF_HASH) {
if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL)
goto slab_alloc_failure;
chunks = (slabsize - color) / chunksize;
} else {
sp = KMEM_SLAB(cp, slab);
chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize;
}
sp->slab_cache = cp;
sp->slab_head = NULL;
sp->slab_refcnt = 0;
sp->slab_base = buf = slab + color;
sp->slab_chunks = chunks;
ASSERT(chunks > 0);
while (chunks-- != 0) {
if (cache_flags & KMF_HASH) {
bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag);
if (bcp == NULL)
goto bufctl_alloc_failure;
if (cache_flags & KMF_AUDIT) {
kmem_bufctl_audit_t *bcap =
(kmem_bufctl_audit_t *)bcp;
bzero(bcap, sizeof (kmem_bufctl_audit_t));
bcap->bc_cache = cp;
}
bcp->bc_addr = buf;
bcp->bc_slab = sp;
} else {
bcp = KMEM_BUFCTL(cp, buf);
}
if (cache_flags & KMF_BUFTAG) {
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
btp->bt_redzone = KMEM_REDZONE_PATTERN;
btp->bt_bufctl = bcp;
btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
if (cache_flags & KMF_DEADBEEF) {
copy_pattern(KMEM_FREE_PATTERN, buf,
cp->cache_verify);
}
}
bcp->bc_next = sp->slab_head;
sp->slab_head = bcp;
buf += chunksize;
}
kmem_log_event(kmem_slab_log, cp, sp, slab);
return (sp);
bufctl_alloc_failure:
while ((bcp = sp->slab_head) != NULL) {
sp->slab_head = bcp->bc_next;
kmem_cache_free(cp->cache_bufctl_cache, bcp);
}
kmem_cache_free(kmem_slab_cache, sp);
slab_alloc_failure:
vmem_free(vmp, slab, slabsize);
vmem_alloc_failure:
kmem_log_event(kmem_failure_log, cp, NULL, NULL);
atomic_add_64(&cp->cache_alloc_fail, 1);
return (NULL);
}
/*
* Destroy a slab.
*/
static void
kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp)
{
vmem_t *vmp = cp->cache_arena;
void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
if (cp->cache_flags & KMF_HASH) {
kmem_bufctl_t *bcp;
while ((bcp = sp->slab_head) != NULL) {
sp->slab_head = bcp->bc_next;
kmem_cache_free(cp->cache_bufctl_cache, bcp);
}
kmem_cache_free(kmem_slab_cache, sp);
}
vmem_free(vmp, slab, cp->cache_slabsize);
}
/*
* Allocate a raw (unconstructed) buffer from cp's slab layer.
*/
static void *
kmem_slab_alloc(kmem_cache_t *cp, int kmflag)
{
kmem_bufctl_t *bcp, **hash_bucket;
kmem_slab_t *sp;
void *buf;
mutex_enter(&cp->cache_lock);
cp->cache_slab_alloc++;
sp = cp->cache_freelist;
ASSERT(sp->slab_cache == cp);
if (sp->slab_head == NULL) {
/*
* The freelist is empty. Create a new slab.
*/
mutex_exit(&cp->cache_lock);
if ((sp = kmem_slab_create(cp, kmflag)) == NULL)
return (NULL);
mutex_enter(&cp->cache_lock);
cp->cache_slab_create++;
if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
cp->cache_bufmax = cp->cache_buftotal;
sp->slab_next = cp->cache_freelist;
sp->slab_prev = cp->cache_freelist->slab_prev;
sp->slab_next->slab_prev = sp;
sp->slab_prev->slab_next = sp;
cp->cache_freelist = sp;
}
sp->slab_refcnt++;
ASSERT(sp->slab_refcnt <= sp->slab_chunks);
/*
* If we're taking the last buffer in the slab,
* remove the slab from the cache's freelist.
*/
bcp = sp->slab_head;
if ((sp->slab_head = bcp->bc_next) == NULL) {
cp->cache_freelist = sp->slab_next;
ASSERT(sp->slab_refcnt == sp->slab_chunks);
}
if (cp->cache_flags & KMF_HASH) {
/*
* Add buffer to allocated-address hash table.
*/
buf = bcp->bc_addr;
hash_bucket = KMEM_HASH(cp, buf);
bcp->bc_next = *hash_bucket;
*hash_bucket = bcp;
if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
KMEM_AUDIT(kmem_transaction_log, cp, bcp);
}
} else {
buf = KMEM_BUF(cp, bcp);
}
ASSERT(KMEM_SLAB_MEMBER(sp, buf));
mutex_exit(&cp->cache_lock);
return (buf);
}
/*
* Free a raw (unconstructed) buffer to cp's slab layer.
*/
static void
kmem_slab_free(kmem_cache_t *cp, void *buf)
{
kmem_slab_t *sp;
kmem_bufctl_t *bcp, **prev_bcpp;
ASSERT(buf != NULL);
mutex_enter(&cp->cache_lock);
cp->cache_slab_free++;
if (cp->cache_flags & KMF_HASH) {
/*
* Look up buffer in allocated-address hash table.
*/
prev_bcpp = KMEM_HASH(cp, buf);
while ((bcp = *prev_bcpp) != NULL) {
if (bcp->bc_addr == buf) {
*prev_bcpp = bcp->bc_next;
sp = bcp->bc_slab;
break;
}
cp->cache_lookup_depth++;
prev_bcpp = &bcp->bc_next;
}
} else {
bcp = KMEM_BUFCTL(cp, buf);
sp = KMEM_SLAB(cp, buf);
}
if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) {
mutex_exit(&cp->cache_lock);
kmem_error(KMERR_BADADDR, cp, buf);
return;
}
if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) {
if (cp->cache_flags & KMF_CONTENTS)
((kmem_bufctl_audit_t *)bcp)->bc_contents =
kmem_log_enter(kmem_content_log, buf,
cp->cache_contents);
KMEM_AUDIT(kmem_transaction_log, cp, bcp);
}
/*
* If this slab isn't currently on the freelist, put it there.
*/
if (sp->slab_head == NULL) {
ASSERT(sp->slab_refcnt == sp->slab_chunks);
ASSERT(cp->cache_freelist != sp);
sp->slab_next->slab_prev = sp->slab_prev;
sp->slab_prev->slab_next = sp->slab_next;
sp->slab_next = cp->cache_freelist;
sp->slab_prev = cp->cache_freelist->slab_prev;
sp->slab_next->slab_prev = sp;
sp->slab_prev->slab_next = sp;
cp->cache_freelist = sp;
}
bcp->bc_next = sp->slab_head;
sp->slab_head = bcp;
ASSERT(sp->slab_refcnt >= 1);
if (--sp->slab_refcnt == 0) {
/*
* There are no outstanding allocations from this slab,
* so we can reclaim the memory.
*/
sp->slab_next->slab_prev = sp->slab_prev;
sp->slab_prev->slab_next = sp->slab_next;
if (sp == cp->cache_freelist)
cp->cache_freelist = sp->slab_next;
cp->cache_slab_destroy++;
cp->cache_buftotal -= sp->slab_chunks;
mutex_exit(&cp->cache_lock);
kmem_slab_destroy(cp, sp);
return;
}
mutex_exit(&cp->cache_lock);
}
static int
kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct,
caddr_t caller)
{
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
uint32_t mtbf;
if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
kmem_error(KMERR_BADBUFTAG, cp, buf);
return (-1);
}
btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC;
if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
kmem_error(KMERR_BADBUFCTL, cp, buf);
return (-1);
}
if (cp->cache_flags & KMF_DEADBEEF) {
if (!construct && (cp->cache_flags & KMF_LITE)) {
if (*(uint64_t *)buf != KMEM_FREE_PATTERN) {
kmem_error(KMERR_MODIFIED, cp, buf);
return (-1);
}
if (cp->cache_constructor != NULL)
*(uint64_t *)buf = btp->bt_redzone;
else
*(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN;
} else {
construct = 1;
if (verify_and_copy_pattern(KMEM_FREE_PATTERN,
KMEM_UNINITIALIZED_PATTERN, buf,
cp->cache_verify)) {
kmem_error(KMERR_MODIFIED, cp, buf);
return (-1);
}
}
}
btp->bt_redzone = KMEM_REDZONE_PATTERN;
if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 &&
gethrtime() % mtbf == 0 &&
(kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) {
kmem_log_event(kmem_failure_log, cp, NULL, NULL);
if (!construct && cp->cache_destructor != NULL)
cp->cache_destructor(buf, cp->cache_private);
} else {
mtbf = 0;
}
if (mtbf || (construct && cp->cache_constructor != NULL &&
cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) {
atomic_add_64(&cp->cache_alloc_fail, 1);
btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
if (cp->cache_flags & KMF_DEADBEEF)
copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
kmem_slab_free(cp, buf);
return (-1);
}
if (cp->cache_flags & KMF_AUDIT) {
KMEM_AUDIT(kmem_transaction_log, cp, bcp);
}
if ((cp->cache_flags & KMF_LITE) &&
!(cp->cache_cflags & KMC_KMEM_ALLOC)) {
KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
}
return (0);
}
static int
kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller)
{
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl;
kmem_slab_t *sp;
if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) {
if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) {
kmem_error(KMERR_DUPFREE, cp, buf);
return (-1);
}
sp = kmem_findslab(cp, buf);
if (sp == NULL || sp->slab_cache != cp)
kmem_error(KMERR_BADADDR, cp, buf);
else
kmem_error(KMERR_REDZONE, cp, buf);
return (-1);
}
btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE;
if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) {
kmem_error(KMERR_BADBUFCTL, cp, buf);
return (-1);
}
if (btp->bt_redzone != KMEM_REDZONE_PATTERN) {
kmem_error(KMERR_REDZONE, cp, buf);
return (-1);
}
if (cp->cache_flags & KMF_AUDIT) {
if (cp->cache_flags & KMF_CONTENTS)
bcp->bc_contents = kmem_log_enter(kmem_content_log,
buf, cp->cache_contents);
KMEM_AUDIT(kmem_transaction_log, cp, bcp);
}
if ((cp->cache_flags & KMF_LITE) &&
!(cp->cache_cflags & KMC_KMEM_ALLOC)) {
KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller);
}
if (cp->cache_flags & KMF_DEADBEEF) {
if (cp->cache_flags & KMF_LITE)
btp->bt_redzone = *(uint64_t *)buf;
else if (cp->cache_destructor != NULL)
cp->cache_destructor(buf, cp->cache_private);
copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify);
}
return (0);
}
/*
* Free each object in magazine mp to cp's slab layer, and free mp itself.
*/
static void
kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds)
{
int round;
ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread));
for (round = 0; round < nrounds; round++) {
void *buf = mp->mag_round[round];
if (cp->cache_flags & KMF_DEADBEEF) {
if (verify_pattern(KMEM_FREE_PATTERN, buf,
cp->cache_verify) != NULL) {
kmem_error(KMERR_MODIFIED, cp, buf);
continue;
}
if ((cp->cache_flags & KMF_LITE) &&
cp->cache_destructor != NULL) {
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
*(uint64_t *)buf = btp->bt_redzone;
cp->cache_destructor(buf, cp->cache_private);
*(uint64_t *)buf = KMEM_FREE_PATTERN;
}
} else if (cp->cache_destructor != NULL) {
cp->cache_destructor(buf, cp->cache_private);
}
kmem_slab_free(cp, buf);
}
ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
kmem_cache_free(cp->cache_magtype->mt_cache, mp);
}
/*
* Allocate a magazine from the depot.
*/
static kmem_magazine_t *
kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp)
{
kmem_magazine_t *mp;
/*
* If we can't get the depot lock without contention,
* update our contention count. We use the depot
* contention rate to determine whether we need to
* increase the magazine size for better scalability.
*/
if (!mutex_tryenter(&cp->cache_depot_lock)) {
mutex_enter(&cp->cache_depot_lock);
cp->cache_depot_contention++;
}
if ((mp = mlp->ml_list) != NULL) {
ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
mlp->ml_list = mp->mag_next;
if (--mlp->ml_total < mlp->ml_min)
mlp->ml_min = mlp->ml_total;
mlp->ml_alloc++;
}
mutex_exit(&cp->cache_depot_lock);
return (mp);
}
/*
* Free a magazine to the depot.
*/
static void
kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp)
{
mutex_enter(&cp->cache_depot_lock);
ASSERT(KMEM_MAGAZINE_VALID(cp, mp));
mp->mag_next = mlp->ml_list;
mlp->ml_list = mp;
mlp->ml_total++;
mutex_exit(&cp->cache_depot_lock);
}
/*
* Update the working set statistics for cp's depot.
*/
static void
kmem_depot_ws_update(kmem_cache_t *cp)
{
mutex_enter(&cp->cache_depot_lock);
cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
cp->cache_full.ml_min = cp->cache_full.ml_total;
cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
cp->cache_empty.ml_min = cp->cache_empty.ml_total;
mutex_exit(&cp->cache_depot_lock);
}
/*
* Reap all magazines that have fallen out of the depot's working set.
*/
static void
kmem_depot_ws_reap(kmem_cache_t *cp)
{
long reap;
kmem_magazine_t *mp;
ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread));
reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL)
kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL)
kmem_magazine_destroy(cp, mp, 0);
}
static void
kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds)
{
ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
(ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
ASSERT(ccp->cc_magsize > 0);
ccp->cc_ploaded = ccp->cc_loaded;
ccp->cc_prounds = ccp->cc_rounds;
ccp->cc_loaded = mp;
ccp->cc_rounds = rounds;
}
/*
* Allocate a constructed object from cache cp.
*/
void *
kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
{
kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
kmem_magazine_t *fmp;
void *buf;
mutex_enter(&ccp->cc_lock);
for (;;) {
/*
* If there's an object available in the current CPU's
* loaded magazine, just take it and return.
*/
if (ccp->cc_rounds > 0) {
buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
ccp->cc_alloc++;
mutex_exit(&ccp->cc_lock);
if ((ccp->cc_flags & KMF_BUFTAG) &&
kmem_cache_alloc_debug(cp, buf, kmflag, 0,
caller()) == -1) {
if (kmflag & KM_NOSLEEP)
return (NULL);
mutex_enter(&ccp->cc_lock);
continue;
}
return (buf);
}
/*
* The loaded magazine is empty. If the previously loaded
* magazine was full, exchange them and try again.
*/
if (ccp->cc_prounds > 0) {
kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
continue;
}
/*
* If the magazine layer is disabled, break out now.
*/
if (ccp->cc_magsize == 0)
break;
/*
* Try to get a full magazine from the depot.
*/
fmp = kmem_depot_alloc(cp, &cp->cache_full);
if (fmp != NULL) {
if (ccp->cc_ploaded != NULL)
kmem_depot_free(cp, &cp->cache_empty,
ccp->cc_ploaded);
kmem_cpu_reload(ccp, fmp, ccp->cc_magsize);
continue;
}
/*
* There are no full magazines in the depot,
* so fall through to the slab layer.
*/
break;
}
mutex_exit(&ccp->cc_lock);
/*
* We couldn't allocate a constructed object from the magazine layer,
* so get a raw buffer from the slab layer and apply its constructor.
*/
buf = kmem_slab_alloc(cp, kmflag);
if (buf == NULL)
return (NULL);
if (cp->cache_flags & KMF_BUFTAG) {
/*
* Make kmem_cache_alloc_debug() apply the constructor for us.
*/
if (kmem_cache_alloc_debug(cp, buf, kmflag, 1,
caller()) == -1) {
if (kmflag & KM_NOSLEEP)
return (NULL);
/*
* kmem_cache_alloc_debug() detected corruption
* but didn't panic (kmem_panic <= 0). Try again.
*/
return (kmem_cache_alloc(cp, kmflag));
}
return (buf);
}
if (cp->cache_constructor != NULL &&
cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) {
atomic_add_64(&cp->cache_alloc_fail, 1);
kmem_slab_free(cp, buf);
return (NULL);
}
return (buf);
}
/*
* Free a constructed object to cache cp.
*/
void
kmem_cache_free(kmem_cache_t *cp, void *buf)
{
kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp);
kmem_magazine_t *emp;
kmem_magtype_t *mtp;
if (ccp->cc_flags & KMF_BUFTAG)
if (kmem_cache_free_debug(cp, buf, caller()) == -1)
return;
mutex_enter(&ccp->cc_lock);
for (;;) {
/*
* If there's a slot available in the current CPU's
* loaded magazine, just put the object there and return.
*/
if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
ccp->cc_free++;
mutex_exit(&ccp->cc_lock);
return;
}
/*
* The loaded magazine is full. If the previously loaded
* magazine was empty, exchange them and try again.
*/
if (ccp->cc_prounds == 0) {
kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
continue;
}
/*
* If the magazine layer is disabled, break out now.
*/
if (ccp->cc_magsize == 0)
break;
/*
* Try to get an empty magazine from the depot.
*/
emp = kmem_depot_alloc(cp, &cp->cache_empty);
if (emp != NULL) {
if (ccp->cc_ploaded != NULL)
kmem_depot_free(cp, &cp->cache_full,
ccp->cc_ploaded);
kmem_cpu_reload(ccp, emp, 0);
continue;
}
/*
* There are no empty magazines in the depot,
* so try to allocate a new one. We must drop all locks
* across kmem_cache_alloc() because lower layers may
* attempt to allocate from this cache.
*/
mtp = cp->cache_magtype;
mutex_exit(&ccp->cc_lock);
emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP);
mutex_enter(&ccp->cc_lock);
if (emp != NULL) {
/*
* We successfully allocated an empty magazine.
* However, we had to drop ccp->cc_lock to do it,
* so the cache's magazine size may have changed.
* If so, free the magazine and try again.
*/
if (ccp->cc_magsize != mtp->mt_magsize) {
mutex_exit(&ccp->cc_lock);
kmem_cache_free(mtp->mt_cache, emp);
mutex_enter(&ccp->cc_lock);
continue;
}
/*
* We got a magazine of the right size. Add it to
* the depot and try the whole dance again.
*/
kmem_depot_free(cp, &cp->cache_empty, emp);
continue;
}
/*
* We couldn't allocate an empty magazine,
* so fall through to the slab layer.
*/
break;
}
mutex_exit(&ccp->cc_lock);
/*
* We couldn't free our constructed object to the magazine layer,
* so apply its destructor and free it to the slab layer.
* Note that if KMF_DEADBEEF is in effect and KMF_LITE is not,
* kmem_cache_free_debug() will have already applied the destructor.
*/
if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF &&
cp->cache_destructor != NULL) {
if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
*(uint64_t *)buf = btp->bt_redzone;
cp->cache_destructor(buf, cp->cache_private);
*(uint64_t *)buf = KMEM_FREE_PATTERN;
} else {
cp->cache_destructor(buf, cp->cache_private);
}
}
kmem_slab_free(cp, buf);
}
void *
kmem_zalloc(size_t size, int kmflag)
{
size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
void *buf;
if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
kmem_cache_t *cp = kmem_alloc_table[index];
buf = kmem_cache_alloc(cp, kmflag);
if (buf != NULL) {
if (cp->cache_flags & KMF_BUFTAG) {
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
if (cp->cache_flags & KMF_LITE) {
KMEM_BUFTAG_LITE_ENTER(btp,
kmem_lite_count, caller());
}
}
bzero(buf, size);
}
} else {
buf = kmem_alloc(size, kmflag);
if (buf != NULL)
bzero(buf, size);
}
return (buf);
}
void *
kmem_alloc(size_t size, int kmflag)
{
size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
void *buf;
if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
kmem_cache_t *cp = kmem_alloc_table[index];
buf = kmem_cache_alloc(cp, kmflag);
if ((cp->cache_flags & KMF_BUFTAG) && buf != NULL) {
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE;
((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size);
if (cp->cache_flags & KMF_LITE) {
KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
caller());
}
}
return (buf);
}
if (size == 0)
return (NULL);
buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS);
if (buf == NULL)
kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size);
return (buf);
}
void
kmem_free(void *buf, size_t size)
{
size_t index = (size - 1) >> KMEM_ALIGN_SHIFT;
if (index < KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) {
kmem_cache_t *cp = kmem_alloc_table[index];
if (cp->cache_flags & KMF_BUFTAG) {
kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf);
uint32_t *ip = (uint32_t *)btp;
if (ip[1] != KMEM_SIZE_ENCODE(size)) {
if (*(uint64_t *)buf == KMEM_FREE_PATTERN) {
kmem_error(KMERR_DUPFREE, cp, buf);
return;
}
if (KMEM_SIZE_VALID(ip[1])) {
ip[0] = KMEM_SIZE_ENCODE(size);
kmem_error(KMERR_BADSIZE, cp, buf);
} else {
kmem_error(KMERR_REDZONE, cp, buf);
}
return;
}
if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) {
kmem_error(KMERR_REDZONE, cp, buf);
return;
}
btp->bt_redzone = KMEM_REDZONE_PATTERN;
if (cp->cache_flags & KMF_LITE) {
KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count,
caller());
}
}
kmem_cache_free(cp, buf);
} else {
if (buf == NULL && size == 0)
return;
vmem_free(kmem_oversize_arena, buf, size);
}
}
void *
kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
{
size_t realsize = size + vmp->vm_quantum;
void *addr;
/*
* Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
* vm_quantum will cause integer wraparound. Check for this, and
* blow off the firewall page in this case. Note that such a
* giant allocation (the entire kernel address space) can never
* be satisfied, so it will either fail immediately (VM_NOSLEEP)
* or sleep forever (VM_SLEEP). Thus, there is no need for a
* corresponding check in kmem_firewall_va_free().
*/
if (realsize < size)
realsize = size;
/*
* While boot still owns resource management, make sure that this
* redzone virtual address allocation is properly accounted for in
* OBPs "virtual-memory" "available" lists because we're
* effectively claiming them for a red zone. If we don't do this,
* the available lists become too fragmented and too large for the
* current boot/kernel memory list interface.
*/
addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT);
if (addr != NULL && kvseg.s_base == NULL && realsize != size)
(void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum);
return (addr);
}
void
kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
{
ASSERT((kvseg.s_base == NULL ?
va_to_pfn((char *)addr + size) :
hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID);
vmem_free(vmp, addr, size + vmp->vm_quantum);
}
/*
* Try to allocate at least `size' bytes of memory without sleeping or
* panicking. Return actual allocated size in `asize'. If allocation failed,
* try final allocation with sleep or panic allowed.
*/
void *
kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag)
{
void *p;
*asize = P2ROUNDUP(size, KMEM_ALIGN);
do {
p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC);
if (p != NULL)
return (p);
*asize += KMEM_ALIGN;
} while (*asize <= PAGESIZE);
*asize = P2ROUNDUP(size, KMEM_ALIGN);
return (kmem_alloc(*asize, kmflag));
}
/*
* Reclaim all unused memory from a cache.
*/
static void
kmem_cache_reap(kmem_cache_t *cp)
{
/*
* Ask the cache's owner to free some memory if possible.
* The idea is to handle things like the inode cache, which
* typically sits on a bunch of memory that it doesn't truly
* *need*. Reclaim policy is entirely up to the owner; this
* callback is just an advisory plea for help.
*/
if (cp->cache_reclaim != NULL)
cp->cache_reclaim(cp->cache_private);
kmem_depot_ws_reap(cp);
}
static void
kmem_reap_timeout(void *flag_arg)
{
uint32_t *flag = (uint32_t *)flag_arg;
ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
*flag = 0;
}
static void
kmem_reap_done(void *flag)
{
(void) timeout(kmem_reap_timeout, flag, kmem_reap_interval);
}
static void
kmem_reap_start(void *flag)
{
ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace);
if (flag == &kmem_reaping) {
kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
/*
* if we have segkp under heap, reap segkp cache.
*/
if (segkp_fromheap)
segkp_cache_free();
}
else
kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP);
/*
* We use taskq_dispatch() to schedule a timeout to clear
* the flag so that kmem_reap() becomes self-throttling:
* we won't reap again until the current reap completes *and*
* at least kmem_reap_interval ticks have elapsed.
*/
if (!taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP))
kmem_reap_done(flag);
}
static void
kmem_reap_common(void *flag_arg)
{
uint32_t *flag = (uint32_t *)flag_arg;
if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL ||
cas32(flag, 0, 1) != 0)
return;
/*
* It may not be kosher to do memory allocation when a reap is called
* is called (for example, if vmem_populate() is in the call chain).
* So we start the reap going with a TQ_NOALLOC dispatch. If the
* dispatch fails, we reset the flag, and the next reap will try again.
*/
if (!taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC))
*flag = 0;
}
/*
* Reclaim all unused memory from all caches. Called from the VM system
* when memory gets tight.
*/
void
kmem_reap(void)
{
kmem_reap_common(&kmem_reaping);
}
/*
* Reclaim all unused memory from identifier arenas, called when a vmem
* arena not back by memory is exhausted. Since reaping memory-backed caches
* cannot help with identifier exhaustion, we avoid both a large amount of
* work and unwanted side-effects from reclaim callbacks.
*/
void
kmem_reap_idspace(void)
{
kmem_reap_common(&kmem_reaping_idspace);
}
/*
* Purge all magazines from a cache and set its magazine limit to zero.
* All calls are serialized by the kmem_taskq lock, except for the final
* call from kmem_cache_destroy().
*/
static void
kmem_cache_magazine_purge(kmem_cache_t *cp)
{
kmem_cpu_cache_t *ccp;
kmem_magazine_t *mp, *pmp;
int rounds, prounds, cpu_seqid;
ASSERT(cp->cache_next == NULL || taskq_member(kmem_taskq, curthread));
ASSERT(MUTEX_NOT_HELD(&cp->cache_lock));
for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
ccp = &cp->cache_cpu[cpu_seqid];
mutex_enter(&ccp->cc_lock);
mp = ccp->cc_loaded;
pmp = ccp->cc_ploaded;
rounds = ccp->cc_rounds;
prounds = ccp->cc_prounds;
ccp->cc_loaded = NULL;
ccp->cc_ploaded = NULL;
ccp->cc_rounds = -1;
ccp->cc_prounds = -1;
ccp->cc_magsize = 0;
mutex_exit(&ccp->cc_lock);
if (mp)
kmem_magazine_destroy(cp, mp, rounds);
if (pmp)
kmem_magazine_destroy(cp, pmp, prounds);
}
/*
* Updating the working set statistics twice in a row has the
* effect of setting the working set size to zero, so everything
* is eligible for reaping.
*/
kmem_depot_ws_update(cp);
kmem_depot_ws_update(cp);
kmem_depot_ws_reap(cp);
}
/*
* Enable per-cpu magazines on a cache.
*/
static void
kmem_cache_magazine_enable(kmem_cache_t *cp)
{
int cpu_seqid;
if (cp->cache_flags & KMF_NOMAGAZINE)
return;
for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
mutex_enter(&ccp->cc_lock);
ccp->cc_magsize = cp->cache_magtype->mt_magsize;
mutex_exit(&ccp->cc_lock);
}
}
/*
* Reap (almost) everything right now. See kmem_cache_magazine_purge()
* for explanation of the back-to-back kmem_depot_ws_update() calls.
*/
void
kmem_cache_reap_now(kmem_cache_t *cp)
{
kmem_depot_ws_update(cp);
kmem_depot_ws_update(cp);
(void) taskq_dispatch(kmem_taskq,
(task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP);
taskq_wait(kmem_taskq);
}
/*
* Recompute a cache's magazine size. The trade-off is that larger magazines
* provide a higher transfer rate with the depot, while smaller magazines
* reduce memory consumption. Magazine resizing is an expensive operation;
* it should not be done frequently.
*
* Changes to the magazine size are serialized by the kmem_taskq lock.
*
* Note: at present this only grows the magazine size. It might be useful
* to allow shrinkage too.
*/
static void
kmem_cache_magazine_resize(kmem_cache_t *cp)
{
kmem_magtype_t *mtp = cp->cache_magtype;
ASSERT(taskq_member(kmem_taskq, curthread));
if (cp->cache_chunksize < mtp->mt_maxbuf) {
kmem_cache_magazine_purge(cp);
mutex_enter(&cp->cache_depot_lock);
cp->cache_magtype = ++mtp;
cp->cache_depot_contention_prev =
cp->cache_depot_contention + INT_MAX;
mutex_exit(&cp->cache_depot_lock);
kmem_cache_magazine_enable(cp);
}
}
/*
* Rescale a cache's hash table, so that the table size is roughly the
* cache size. We want the average lookup time to be extremely small.
*/
static void
kmem_hash_rescale(kmem_cache_t *cp)
{
kmem_bufctl_t **old_table, **new_table, *bcp;
size_t old_size, new_size, h;
ASSERT(taskq_member(kmem_taskq, curthread));
new_size = MAX(KMEM_HASH_INITIAL,
1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
old_size = cp->cache_hash_mask + 1;
if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
return;
new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *),
VM_NOSLEEP);
if (new_table == NULL)
return;
bzero(new_table, new_size * sizeof (void *));
mutex_enter(&cp->cache_lock);
old_size = cp->cache_hash_mask + 1;
old_table = cp->cache_hash_table;
cp->cache_hash_mask = new_size - 1;
cp->cache_hash_table = new_table;
cp->cache_rescale++;
for (h = 0; h < old_size; h++) {
bcp = old_table[h];
while (bcp != NULL) {
void *addr = bcp->bc_addr;
kmem_bufctl_t *next_bcp = bcp->bc_next;
kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr);
bcp->bc_next = *hash_bucket;
*hash_bucket = bcp;
bcp = next_bcp;
}
}
mutex_exit(&cp->cache_lock);
vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *));
}
/*
* Perform periodic maintenance on a cache: hash rescaling,
* depot working-set update, and magazine resizing.
*/
static void
kmem_cache_update(kmem_cache_t *cp)
{
int need_hash_rescale = 0;
int need_magazine_resize = 0;
ASSERT(MUTEX_HELD(&kmem_cache_lock));
/*
* If the cache has become much larger or smaller than its hash table,
* fire off a request to rescale the hash table.
*/
mutex_enter(&cp->cache_lock);
if ((cp->cache_flags & KMF_HASH) &&
(cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
(cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
cp->cache_hash_mask > KMEM_HASH_INITIAL)))
need_hash_rescale = 1;
mutex_exit(&cp->cache_lock);
/*
* Update the depot working set statistics.
*/
kmem_depot_ws_update(cp);
/*
* If there's a lot of contention in the depot,
* increase the magazine size.
*/
mutex_enter(&cp->cache_depot_lock);
if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
(int)(cp->cache_depot_contention -
cp->cache_depot_contention_prev) > kmem_depot_contention)
need_magazine_resize = 1;
cp->cache_depot_contention_prev = cp->cache_depot_contention;
mutex_exit(&cp->cache_depot_lock);
if (need_hash_rescale)
(void) taskq_dispatch(kmem_taskq,
(task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP);
if (need_magazine_resize)
(void) taskq_dispatch(kmem_taskq,
(task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP);
}
static void
kmem_update_timeout(void *dummy)
{
static void kmem_update(void *);
(void) timeout(kmem_update, dummy, kmem_reap_interval);
}
static void
kmem_update(void *dummy)
{
kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP);
/*
* We use taskq_dispatch() to reschedule the timeout so that
* kmem_update() becomes self-throttling: it won't schedule
* new tasks until all previous tasks have completed.
*/
if (!taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP))
kmem_update_timeout(NULL);
}
static int
kmem_cache_kstat_update(kstat_t *ksp, int rw)
{
struct kmem_cache_kstat *kmcp = &kmem_cache_kstat;
kmem_cache_t *cp = ksp->ks_private;
kmem_slab_t *sp;
uint64_t cpu_buf_avail;
uint64_t buf_avail = 0;
int cpu_seqid;
ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock));
if (rw == KSTAT_WRITE)
return (EACCES);
mutex_enter(&cp->cache_lock);
kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail;
kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc;
kmcp->kmc_free.value.ui64 = cp->cache_slab_free;
kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc;
kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free;
for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
mutex_enter(&ccp->cc_lock);
cpu_buf_avail = 0;
if (ccp->cc_rounds > 0)
cpu_buf_avail += ccp->cc_rounds;
if (ccp->cc_prounds > 0)
cpu_buf_avail += ccp->cc_prounds;
kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc;
kmcp->kmc_free.value.ui64 += ccp->cc_free;
buf_avail += cpu_buf_avail;
mutex_exit(&ccp->cc_lock);
}
mutex_enter(&cp->cache_depot_lock);
kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc;
kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc;
kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention;
kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total;
kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total;
kmcp->kmc_magazine_size.value.ui64 =
(cp->cache_flags & KMF_NOMAGAZINE) ?
0 : cp->cache_magtype->mt_magsize;
kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc;
kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc;
buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize;
mutex_exit(&cp->cache_depot_lock);
kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize;
kmcp->kmc_align.value.ui64 = cp->cache_align;
kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize;
kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize;
kmcp->kmc_buf_constructed.value.ui64 = buf_avail;
for (sp = cp->cache_freelist; sp != &cp->cache_nullslab;
sp = sp->slab_next)
buf_avail += sp->slab_chunks - sp->slab_refcnt;
kmcp->kmc_buf_avail.value.ui64 = buf_avail;
kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail;
kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal;
kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax;
kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create;
kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy;
kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ?
cp->cache_hash_mask + 1 : 0;
kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth;
kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale;
kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id;
mutex_exit(&cp->cache_lock);
return (0);
}
/*
* Return a named statistic about a particular cache.
* This shouldn't be called very often, so it's currently designed for
* simplicity (leverages existing kstat support) rather than efficiency.
*/
uint64_t
kmem_cache_stat(kmem_cache_t *cp, char *name)
{
int i;
kstat_t *ksp = cp->cache_kstat;
kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat;
uint64_t value = 0;
if (ksp != NULL) {
mutex_enter(&kmem_cache_kstat_lock);
(void) kmem_cache_kstat_update(ksp, KSTAT_READ);
for (i = 0; i < ksp->ks_ndata; i++) {
if (strcmp(knp[i].name, name) == 0) {
value = knp[i].value.ui64;
break;
}
}
mutex_exit(&kmem_cache_kstat_lock);
}
return (value);
}
/*
* Return an estimate of currently available kernel heap memory.
* On 32-bit systems, physical memory may exceed virtual memory,
* we just truncate the result at 1GB.
*/
size_t
kmem_avail(void)
{
spgcnt_t rmem = availrmem - tune.t_minarmem;
spgcnt_t fmem = freemem - minfree;
return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0),
1 << (30 - PAGESHIFT))));
}
/*
* Return the maximum amount of memory that is (in theory) allocatable
* from the heap. This may be used as an estimate only since there
* is no guarentee this space will still be available when an allocation
* request is made, nor that the space may be allocated in one big request
* due to kernel heap fragmentation.
*/
size_t
kmem_maxavail(void)
{
spgcnt_t pmem = availrmem - tune.t_minarmem;
spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE));
return ((size_t)ptob(MAX(MIN(pmem, vmem), 0)));
}
/*
* Indicate whether memory-intensive kmem debugging is enabled.
*/
int
kmem_debugging(void)
{
return (kmem_flags & (KMF_AUDIT | KMF_REDZONE));
}
kmem_cache_t *
kmem_cache_create(
char *name, /* descriptive name for this cache */
size_t bufsize, /* size of the objects it manages */
size_t align, /* required object alignment */
int (*constructor)(void *, void *, int), /* object constructor */
void (*destructor)(void *, void *), /* object destructor */
void (*reclaim)(void *), /* memory reclaim callback */
void *private, /* pass-thru arg for constr/destr/reclaim */
vmem_t *vmp, /* vmem source for slab allocation */
int cflags) /* cache creation flags */
{
int cpu_seqid;
size_t chunksize;
kmem_cache_t *cp, *cnext, *cprev;
kmem_magtype_t *mtp;
size_t csize = KMEM_CACHE_SIZE(max_ncpus);
#ifdef DEBUG
/*
* Cache names should conform to the rules for valid C identifiers
*/
if (!strident_valid(name)) {
cmn_err(CE_CONT,
"kmem_cache_create: '%s' is an invalid cache name\n"
"cache names must conform to the rules for "
"C identifiers\n", name);
}
#endif /* DEBUG */
if (vmp == NULL)
vmp = kmem_default_arena;
/*
* If this kmem cache has an identifier vmem arena as its source, mark
* it such to allow kmem_reap_idspace().
*/
ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */
if (vmp->vm_cflags & VMC_IDENTIFIER)
cflags |= KMC_IDENTIFIER;
/*
* Get a kmem_cache structure. We arrange that cp->cache_cpu[]
* is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent
* false sharing of per-CPU data.
*/
cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE,
P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP);
bzero(cp, csize);
if (align == 0)
align = KMEM_ALIGN;
/*
* If we're not at least KMEM_ALIGN aligned, we can't use free
* memory to hold bufctl information (because we can't safely
* perform word loads and stores on it).
*/
if (align < KMEM_ALIGN)
cflags |= KMC_NOTOUCH;
if ((align & (align - 1)) != 0 || align > vmp->vm_quantum)
panic("kmem_cache_create: bad alignment %lu", align);
mutex_enter(&kmem_flags_lock);
if (kmem_flags & KMF_RANDOMIZE)
kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) |
KMF_RANDOMIZE;
cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG;
mutex_exit(&kmem_flags_lock);
/*
* Make sure all the various flags are reasonable.
*/
ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH));
if (cp->cache_flags & KMF_LITE) {
if (bufsize >= kmem_lite_minsize &&
align <= kmem_lite_maxalign &&
P2PHASE(bufsize, kmem_lite_maxalign) != 0) {
cp->cache_flags |= KMF_BUFTAG;
cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
} else {
cp->cache_flags &= ~KMF_DEBUG;
}
}
if (cp->cache_flags & KMF_DEADBEEF)
cp->cache_flags |= KMF_REDZONE;
if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT))
cp->cache_flags |= KMF_NOMAGAZINE;
if (cflags & KMC_NODEBUG)
cp->cache_flags &= ~KMF_DEBUG;
if (cflags & KMC_NOTOUCH)
cp->cache_flags &= ~KMF_TOUCH;
if (cflags & KMC_NOHASH)
cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL);
if (cflags & KMC_NOMAGAZINE)
cp->cache_flags |= KMF_NOMAGAZINE;
if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH))
cp->cache_flags |= KMF_REDZONE;
if (!(cp->cache_flags & KMF_AUDIT))
cp->cache_flags &= ~KMF_CONTENTS;
if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall &&
!(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH))
cp->cache_flags |= KMF_FIREWALL;
if (vmp != kmem_default_arena || kmem_firewall_arena == NULL)
cp->cache_flags &= ~KMF_FIREWALL;
if (cp->cache_flags & KMF_FIREWALL) {
cp->cache_flags &= ~KMF_BUFTAG;
cp->cache_flags |= KMF_NOMAGAZINE;
ASSERT(vmp == kmem_default_arena);
vmp = kmem_firewall_arena;
}
/*
* Set cache properties.
*/
(void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN);
strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN);
cp->cache_bufsize = bufsize;
cp->cache_align = align;
cp->cache_constructor = constructor;
cp->cache_destructor = destructor;
cp->cache_reclaim = reclaim;
cp->cache_private = private;
cp->cache_arena = vmp;
cp->cache_cflags = cflags;
/*
* Determine the chunk size.
*/
chunksize = bufsize;
if (align >= KMEM_ALIGN) {
chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN);
cp->cache_bufctl = chunksize - KMEM_ALIGN;
}
if (cp->cache_flags & KMF_BUFTAG) {
cp->cache_bufctl = chunksize;
cp->cache_buftag = chunksize;
if (cp->cache_flags & KMF_LITE)
chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count);
else
chunksize += sizeof (kmem_buftag_t);
}
if (cp->cache_flags & KMF_DEADBEEF) {
cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify);
if (cp->cache_flags & KMF_LITE)
cp->cache_verify = sizeof (uint64_t);
}
cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave);
cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
/*
* Now that we know the chunk size, determine the optimal slab size.
*/
if (vmp == kmem_firewall_arena) {
cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
cp->cache_mincolor = cp->cache_slabsize - chunksize;
cp->cache_maxcolor = cp->cache_mincolor;
cp->cache_flags |= KMF_HASH;
ASSERT(!(cp->cache_flags & KMF_BUFTAG));
} else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) &&
!(cp->cache_flags & KMF_AUDIT) &&
chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) {
cp->cache_slabsize = vmp->vm_quantum;
cp->cache_mincolor = 0;
cp->cache_maxcolor =
(cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize;
ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize);
ASSERT(!(cp->cache_flags & KMF_AUDIT));
} else {
size_t chunks, bestfit, waste, slabsize;
size_t minwaste = LONG_MAX;
for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) {
slabsize = P2ROUNDUP(chunksize * chunks,
vmp->vm_quantum);
chunks = slabsize / chunksize;
waste = (slabsize % chunksize) / chunks;
if (waste < minwaste) {
minwaste = waste;
bestfit = slabsize;
}
}
if (cflags & KMC_QCACHE)
bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max);
cp->cache_slabsize = bestfit;
cp->cache_mincolor = 0;
cp->cache_maxcolor = bestfit % chunksize;
cp->cache_flags |= KMF_HASH;
}
if (cp->cache_flags & KMF_HASH) {
ASSERT(!(cflags & KMC_NOHASH));
cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ?
kmem_bufctl_audit_cache : kmem_bufctl_cache;
}
if (cp->cache_maxcolor >= vmp->vm_quantum)
cp->cache_maxcolor = vmp->vm_quantum - 1;
cp->cache_color = cp->cache_mincolor;
/*
* Initialize the rest of the slab layer.
*/
mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL);
cp->cache_freelist = &cp->cache_nullslab;
cp->cache_nullslab.slab_cache = cp;
cp->cache_nullslab.slab_refcnt = -1;
cp->cache_nullslab.slab_next = &cp->cache_nullslab;
cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
if (cp->cache_flags & KMF_HASH) {
cp->cache_hash_table = vmem_alloc(kmem_hash_arena,
KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP);
bzero(cp->cache_hash_table,
KMEM_HASH_INITIAL * sizeof (void *));
cp->cache_hash_mask = KMEM_HASH_INITIAL - 1;
cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
}
/*
* Initialize the depot.
*/
mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL);
for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
continue;
cp->cache_magtype = mtp;
/*
* Initialize the CPU layer.
*/
for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) {
kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL);
ccp->cc_flags = cp->cache_flags;
ccp->cc_rounds = -1;
ccp->cc_prounds = -1;
}
/*
* Create the cache's kstats.
*/
if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name,
"kmem_cache", KSTAT_TYPE_NAMED,
sizeof (kmem_cache_kstat) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL)) != NULL) {
cp->cache_kstat->ks_data = &kmem_cache_kstat;
cp->cache_kstat->ks_update = kmem_cache_kstat_update;
cp->cache_kstat->ks_private = cp;
cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock;
kstat_install(cp->cache_kstat);
}
/*
* Add the cache to the global list. This makes it visible
* to kmem_update(), so the cache must be ready for business.
*/
mutex_enter(&kmem_cache_lock);
cp->cache_next = cnext = &kmem_null_cache;
cp->cache_prev = cprev = kmem_null_cache.cache_prev;
cnext->cache_prev = cp;
cprev->cache_next = cp;
mutex_exit(&kmem_cache_lock);
if (kmem_ready)
kmem_cache_magazine_enable(cp);
return (cp);
}
void
kmem_cache_destroy(kmem_cache_t *cp)
{
int cpu_seqid;
/*
* Remove the cache from the global cache list so that no one else
* can schedule tasks on its behalf, wait for any pending tasks to
* complete, purge the cache, and then destroy it.
*/
mutex_enter(&kmem_cache_lock);
cp->cache_prev->cache_next = cp->cache_next;
cp->cache_next->cache_prev = cp->cache_prev;
cp->cache_prev = cp->cache_next = NULL;
mutex_exit(&kmem_cache_lock);
if (kmem_taskq != NULL)
taskq_wait(kmem_taskq);
kmem_cache_magazine_purge(cp);
mutex_enter(&cp->cache_lock);
if (cp->cache_buftotal != 0)
cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty",
cp->cache_name, (void *)cp);
cp->cache_reclaim = NULL;
/*
* The cache is now dead. There should be no further activity.
* We enforce this by setting land mines in the constructor and
* destructor routines that induce a kernel text fault if invoked.
*/
cp->cache_constructor = (int (*)(void *, void *, int))1;
cp->cache_destructor = (void (*)(void *, void *))2;
mutex_exit(&cp->cache_lock);
kstat_delete(cp->cache_kstat);
if (cp->cache_hash_table != NULL)
vmem_free(kmem_hash_arena, cp->cache_hash_table,
(cp->cache_hash_mask + 1) * sizeof (void *));
for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++)
mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
mutex_destroy(&cp->cache_depot_lock);
mutex_destroy(&cp->cache_lock);
vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus));
}
/*ARGSUSED*/
static int
kmem_cpu_setup(cpu_setup_t what, int id, void *arg)
{
ASSERT(MUTEX_HELD(&cpu_lock));
if (what == CPU_UNCONFIG) {
kmem_cache_applyall(kmem_cache_magazine_purge,
kmem_taskq, TQ_SLEEP);
kmem_cache_applyall(kmem_cache_magazine_enable,
kmem_taskq, TQ_SLEEP);
}
return (0);
}
static void
kmem_cache_init(int pass, int use_large_pages)
{
int i;
size_t size;
kmem_cache_t *cp;
kmem_magtype_t *mtp;
char name[KMEM_CACHE_NAMELEN + 1];
for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) {
mtp = &kmem_magtype[i];
(void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize);
mtp->mt_cache = kmem_cache_create(name,
(mtp->mt_magsize + 1) * sizeof (void *),
mtp->mt_align, NULL, NULL, NULL, NULL,
kmem_msb_arena, KMC_NOHASH);
}
kmem_slab_cache = kmem_cache_create("kmem_slab_cache",
sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL,
kmem_msb_arena, KMC_NOHASH);
kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache",
sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL,
kmem_msb_arena, KMC_NOHASH);
kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache",
sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL,
kmem_msb_arena, KMC_NOHASH);
if (pass == 2) {
kmem_va_arena = vmem_create("kmem_va",
NULL, 0, PAGESIZE,
vmem_alloc, vmem_free, heap_arena,
8 * PAGESIZE, VM_SLEEP);
if (use_large_pages) {
kmem_default_arena = vmem_xcreate("kmem_default",
NULL, 0, PAGESIZE,
segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena,
0, VM_SLEEP);
} else {
kmem_default_arena = vmem_create("kmem_default",
NULL, 0, PAGESIZE,
segkmem_alloc, segkmem_free, kmem_va_arena,
0, VM_SLEEP);
}
} else {
/*
* During the first pass, the kmem_alloc_* caches
* are treated as metadata.
*/
kmem_default_arena = kmem_msb_arena;
}
/*
* Set up the default caches to back kmem_alloc()
*/
size = KMEM_ALIGN;
for (i = 0; i < sizeof (kmem_alloc_sizes) / sizeof (int); i++) {
size_t align = KMEM_ALIGN;
size_t cache_size = kmem_alloc_sizes[i];
/*
* If they allocate a multiple of the coherency granularity,
* they get a coherency-granularity-aligned address.
*/
if (IS_P2ALIGNED(cache_size, 64))
align = 64;
if (IS_P2ALIGNED(cache_size, PAGESIZE))
align = PAGESIZE;
(void) sprintf(name, "kmem_alloc_%lu", cache_size);
cp = kmem_cache_create(name, cache_size, align,
NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC);
while (size <= cache_size) {
kmem_alloc_table[(size - 1) >> KMEM_ALIGN_SHIFT] = cp;
size += KMEM_ALIGN;
}
}
}
void
kmem_init(void)
{
kmem_cache_t *cp;
int old_kmem_flags = kmem_flags;
int use_large_pages = 0;
size_t maxverify, minfirewall;
kstat_init();
/*
* Small-memory systems (< 24 MB) can't handle kmem_flags overhead.
*/
if (physmem < btop(24 << 20) && !(old_kmem_flags & KMF_STICKY))
kmem_flags = 0;
/*
* Don't do firewalled allocations if the heap is less than 1TB
* (i.e. on a 32-bit kernel)
* The resulting VM_NEXTFIT allocations would create too much
* fragmentation in a small heap.
*/
#if defined(_LP64)
maxverify = minfirewall = PAGESIZE / 2;
#else
maxverify = minfirewall = ULONG_MAX;
#endif
/* LINTED */
ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE);
kmem_null_cache.cache_next = &kmem_null_cache;
kmem_null_cache.cache_prev = &kmem_null_cache;
kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE,
vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE,
VM_SLEEP | VMC_NO_QCACHE);
kmem_msb_arena = vmem_create("kmem_msb", NULL, 0,
PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0,
VM_SLEEP);
kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN,
segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN,
segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP);
kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN,
segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
kmem_firewall_va_arena = vmem_create("kmem_firewall_va",
NULL, 0, PAGESIZE,
kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena,
0, VM_SLEEP);
kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE,
segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VM_SLEEP);
/* temporary oversize arena for mod_read_system_file */
kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE,
segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
kmem_null_cache.cache_next = &kmem_null_cache;
kmem_null_cache.cache_prev = &kmem_null_cache;
kmem_reap_interval = 15 * hz;
/*
* Read /etc/system. This is a chicken-and-egg problem because
* kmem_flags may be set in /etc/system, but mod_read_system_file()
* needs to use the allocator. The simplest solution is to create
* all the standard kmem caches, read /etc/system, destroy all the
* caches we just created, and then create them all again in light
* of the (possibly) new kmem_flags and other kmem tunables.
*/
kmem_cache_init(1, 0);
mod_read_system_file(boothowto & RB_ASKNAME);
while ((cp = kmem_null_cache.cache_prev) != &kmem_null_cache)
kmem_cache_destroy(cp);
vmem_destroy(kmem_oversize_arena);
if (old_kmem_flags & KMF_STICKY)
kmem_flags = old_kmem_flags;
if (!(kmem_flags & KMF_AUDIT))
vmem_seg_size = offsetof(vmem_seg_t, vs_thread);
if (kmem_maxverify == 0)
kmem_maxverify = maxverify;
if (kmem_minfirewall == 0)
kmem_minfirewall = minfirewall;
/*
* give segkmem a chance to figure out if we are using large pages
* for the kernel heap
*/
use_large_pages = segkmem_lpsetup();
/*
* To protect against corruption, we keep the actual number of callers
* KMF_LITE records seperate from the tunable. We arbitrarily clamp
* to 16, since the overhead for small buffers quickly gets out of
* hand.
*
* The real limit would depend on the needs of the largest KMC_NOHASH
* cache.
*/
kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16);
kmem_lite_pcs = kmem_lite_count;
/*
* Normally, we firewall oversized allocations when possible, but
* if we are using large pages for kernel memory, and we don't have
* any non-LITE debugging flags set, we want to allocate oversized
* buffers from large pages, and so skip the firewalling.
*/
if (use_large_pages &&
((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) {
kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0,
PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena,
0, VM_SLEEP);
} else {
kmem_oversize_arena = vmem_create("kmem_oversize",
NULL, 0, PAGESIZE,
segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX?
kmem_firewall_va_arena : heap_arena, 0, VM_SLEEP);
}
kmem_cache_init(2, use_large_pages);
if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) {
if (kmem_transaction_log_size == 0)
kmem_transaction_log_size = kmem_maxavail() / 50;
kmem_transaction_log = kmem_log_init(kmem_transaction_log_size);
}
if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) {
if (kmem_content_log_size == 0)
kmem_content_log_size = kmem_maxavail() / 50;
kmem_content_log = kmem_log_init(kmem_content_log_size);
}
kmem_failure_log = kmem_log_init(kmem_failure_log_size);
kmem_slab_log = kmem_log_init(kmem_slab_log_size);
/*
* Initialize STREAMS message caches so allocb() is available.
* This allows us to initialize the logging framework (cmn_err(9F),
* strlog(9F), etc) so we can start recording messages.
*/
streams_msg_init();
/*
* Initialize the ZSD framework in Zones so modules loaded henceforth
* can register their callbacks.
*/
zone_zsd_init();
log_init();
taskq_init();
/*
* Warn about invalid or dangerous values of kmem_flags.
* Always warn about unsupported values.
*/
if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE |
KMF_CONTENTS | KMF_LITE)) != 0) ||
((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE))
cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. "
"See the Solaris Tunable Parameters Reference Manual.",
kmem_flags);
#ifdef DEBUG
if ((kmem_flags & KMF_DEBUG) == 0)
cmn_err(CE_NOTE, "kmem debugging disabled.");
#else
/*
* For non-debug kernels, the only "normal" flags are 0, KMF_LITE,
* KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled
* if KMF_AUDIT is set). We should warn the user about the performance
* penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE
* isn't set (since that disables AUDIT).
*/
if (!(kmem_flags & KMF_LITE) &&
(kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0)
cmn_err(CE_WARN, "High-overhead kmem debugging features "
"enabled (kmem_flags = 0x%x). Performance degradation "
"and large memory overhead possible. See the Solaris "
"Tunable Parameters Reference Manual.", kmem_flags);
#endif /* not DEBUG */
kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP);
kmem_ready = 1;
/*
* Initialize the platform-specific aligned/DMA memory allocator.
*/
ka_init();
/*
* Initialize 32-bit ID cache.
*/
id32_init();
/*
* Initialize the networking stack so modules loaded can
* register their callbacks.
*/
netstack_init();
}
void
kmem_thread_init(void)
{
kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri,
300, INT_MAX, TASKQ_PREPOPULATE);
}
void
kmem_mp_init(void)
{
mutex_enter(&cpu_lock);
register_cpu_setup_func(kmem_cpu_setup, NULL);
mutex_exit(&cpu_lock);
kmem_update_timeout(NULL);
}