devcfg.c revision 39cddb10a31c1c2e66aed69e6871d09caa4c8147
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2012 Nexenta Systems, Inc. All rights reserved.
* Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
*/
#include <sys/note.h>
#include <sys/t_lock.h>
#include <sys/cmn_err.h>
#include <sys/instance.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/hwconf.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ddi_impldefs.h>
#include <sys/ndi_impldefs.h>
#include <sys/modctl.h>
#include <sys/contract/device_impl.h>
#include <sys/dacf.h>
#include <sys/promif.h>
#include <sys/pci.h>
#include <sys/cpuvar.h>
#include <sys/pathname.h>
#include <sys/taskq.h>
#include <sys/sysevent.h>
#include <sys/sunmdi.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/fs/snode.h>
#include <sys/fs/dv_node.h>
#include <sys/reboot.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/fs/sdev_impl.h>
#include <sys/sunldi.h>
#include <sys/sunldi_impl.h>
#include <sys/bootprops.h>
#include <sys/varargs.h>
#include <sys/modhash.h>
#include <sys/instance.h>
#if defined(__amd64) && !defined(__xpv)
#include <sys/iommulib.h>
#endif
#ifdef DEBUG
int ddidebug = DDI_AUDIT;
#else
int ddidebug = 0;
#endif
#define MT_CONFIG_OP 0
#define MT_UNCONFIG_OP 1
/* Multi-threaded configuration */
struct mt_config_handle {
kmutex_t mtc_lock;
kcondvar_t mtc_cv;
int mtc_thr_count;
dev_info_t *mtc_pdip; /* parent dip for mt_config_children */
dev_info_t **mtc_fdip; /* "a" dip where unconfigure failed */
major_t mtc_parmajor; /* parent major for mt_config_driver */
major_t mtc_major;
int mtc_flags;
int mtc_op; /* config or unconfig */
int mtc_error; /* operation error */
struct brevq_node **mtc_brevqp; /* outstanding branch events queue */
#ifdef DEBUG
int total_time;
timestruc_t start_time;
#endif /* DEBUG */
};
struct devi_nodeid {
pnode_t nodeid;
dev_info_t *dip;
struct devi_nodeid *next;
};
struct devi_nodeid_list {
kmutex_t dno_lock; /* Protects other fields */
struct devi_nodeid *dno_head; /* list of devi nodeid elements */
struct devi_nodeid *dno_free; /* Free list */
uint_t dno_list_length; /* number of dips in list */
};
/* used to keep track of branch remove events to be generated */
struct brevq_node {
char *brn_deviname;
struct brevq_node *brn_sibling;
struct brevq_node *brn_child;
};
static struct devi_nodeid_list devi_nodeid_list;
static struct devi_nodeid_list *devimap = &devi_nodeid_list;
/*
* Well known nodes which are attached first at boot time.
*/
dev_info_t *top_devinfo; /* root of device tree */
dev_info_t *options_dip;
dev_info_t *pseudo_dip;
dev_info_t *clone_dip;
dev_info_t *scsi_vhci_dip; /* MPXIO dip */
major_t clone_major;
/*
* A non-global zone's /dev is derived from the device tree.
* This generation number serves to indicate when a zone's
* /dev may need to be updated.
*/
volatile ulong_t devtree_gen; /* generation number */
/* block all future dev_info state changes */
hrtime_t volatile devinfo_freeze = 0;
/* number of dev_info attaches/detaches currently in progress */
static ulong_t devinfo_attach_detach = 0;
extern int sys_shutdown;
extern kmutex_t global_vhci_lock;
/* bitset of DS_SYSAVAIL & DS_RECONFIG - no races, no lock */
static int devname_state = 0;
/*
* The devinfo snapshot cache and related variables.
* The only field in the di_cache structure that needs initialization
* is the mutex (cache_lock). However, since this is an adaptive mutex
* (MUTEX_DEFAULT) - it is automatically initialized by being allocated
* in zeroed memory (static storage class). Therefore no explicit
* initialization of the di_cache structure is needed.
*/
struct di_cache di_cache = {1};
int di_cache_debug = 0;
/* For ddvis, which needs pseudo children under PCI */
int pci_allow_pseudo_children = 0;
/* Allow path-oriented alias driver binding on driver.conf enumerated nodes */
int driver_conf_allow_path_alias = 1;
/*
* The following switch is for service people, in case a
* 3rd party driver depends on identify(9e) being called.
*/
int identify_9e = 0;
/*
* Add flag so behaviour of preventing attach for retired persistant nodes
* can be disabled.
*/
int retire_prevents_attach = 1;
int mtc_off; /* turn off mt config */
int quiesce_debug = 0;
boolean_t ddi_aliases_present = B_FALSE;
ddi_alias_t ddi_aliases;
uint_t tsd_ddi_redirect;
#define DDI_ALIAS_HASH_SIZE (2700)
static kmem_cache_t *ddi_node_cache; /* devinfo node cache */
static devinfo_log_header_t *devinfo_audit_log; /* devinfo log */
static int devinfo_log_size; /* size in pages */
boolean_t ddi_err_panic = B_FALSE;
static int lookup_compatible(dev_info_t *, uint_t);
static char *encode_composite_string(char **, uint_t, size_t *, uint_t);
static void link_to_driver_list(dev_info_t *);
static void unlink_from_driver_list(dev_info_t *);
static void add_to_dn_list(struct devnames *, dev_info_t *);
static void remove_from_dn_list(struct devnames *, dev_info_t *);
static dev_info_t *find_duplicate_child();
static void add_global_props(dev_info_t *);
static void remove_global_props(dev_info_t *);
static int uninit_node(dev_info_t *);
static void da_log_init(void);
static void da_log_enter(dev_info_t *);
static int walk_devs(dev_info_t *, int (*f)(dev_info_t *, void *), void *, int);
static int reset_nexus_flags(dev_info_t *, void *);
static void ddi_optimize_dtree(dev_info_t *);
static int is_leaf_node(dev_info_t *);
static struct mt_config_handle *mt_config_init(dev_info_t *, dev_info_t **,
int, major_t, int, struct brevq_node **);
static void mt_config_children(struct mt_config_handle *);
static void mt_config_driver(struct mt_config_handle *);
static int mt_config_fini(struct mt_config_handle *);
static int devi_unconfig_common(dev_info_t *, dev_info_t **, int, major_t,
struct brevq_node **);
static int
ndi_devi_config_obp_args(dev_info_t *parent, char *devnm,
dev_info_t **childp, int flags);
static void i_link_vhci_node(dev_info_t *);
static void ndi_devi_exit_and_wait(dev_info_t *dip,
int circular, clock_t end_time);
static int ndi_devi_unbind_driver(dev_info_t *dip);
static int i_ddi_check_retire(dev_info_t *dip);
static void quiesce_one_device(dev_info_t *, void *);
dev_info_t *ddi_alias_redirect(char *alias);
char *ddi_curr_redirect(char *currpath);
/*
* dev_info cache and node management
*/
/* initialize dev_info node cache */
void
i_ddi_node_cache_init()
{
ASSERT(ddi_node_cache == NULL);
ddi_node_cache = kmem_cache_create("dev_info_node_cache",
sizeof (struct dev_info), 0, NULL, NULL, NULL, NULL, NULL, 0);
if (ddidebug & DDI_AUDIT)
da_log_init();
}
/*
* Allocating a dev_info node, callable from interrupt context with KM_NOSLEEP
* The allocated node has a reference count of 0.
*/
dev_info_t *
i_ddi_alloc_node(dev_info_t *pdip, char *node_name, pnode_t nodeid,
int instance, ddi_prop_t *sys_prop, int flag)
{
struct dev_info *devi;
struct devi_nodeid *elem;
static char failed[] = "i_ddi_alloc_node: out of memory";
ASSERT(node_name != NULL);
if ((devi = kmem_cache_alloc(ddi_node_cache, flag)) == NULL) {
cmn_err(CE_NOTE, failed);
return (NULL);
}
bzero(devi, sizeof (struct dev_info));
if (devinfo_audit_log) {
devi->devi_audit = kmem_zalloc(sizeof (devinfo_audit_t), flag);
if (devi->devi_audit == NULL)
goto fail;
}
if ((devi->devi_node_name = i_ddi_strdup(node_name, flag)) == NULL)
goto fail;
/* default binding name is node name */
devi->devi_binding_name = devi->devi_node_name;
devi->devi_major = DDI_MAJOR_T_NONE; /* unbound by default */
/*
* Make a copy of system property
*/
if (sys_prop &&
(devi->devi_sys_prop_ptr = i_ddi_prop_list_dup(sys_prop, flag))
== NULL)
goto fail;
/*
* Assign devi_nodeid, devi_node_class, devi_node_attributes
* according to the following algorithm:
*
* nodeid arg node class node attributes
*
* DEVI_PSEUDO_NODEID DDI_NC_PSEUDO A
* DEVI_SID_NODEID DDI_NC_PSEUDO A,P
* DEVI_SID_HIDDEN_NODEID DDI_NC_PSEUDO A,P,H
* DEVI_SID_HP_NODEID DDI_NC_PSEUDO A,P,h
* DEVI_SID_HP_HIDDEN_NODEID DDI_NC_PSEUDO A,P,H,h
* other DDI_NC_PROM P
*
* Where A = DDI_AUTO_ASSIGNED_NODEID (auto-assign a nodeid)
* and P = DDI_PERSISTENT
* and H = DDI_HIDDEN_NODE
* and h = DDI_HOTPLUG_NODE
*
* auto-assigned nodeids are also auto-freed.
*/
devi->devi_node_attributes = 0;
switch (nodeid) {
case DEVI_SID_HIDDEN_NODEID:
devi->devi_node_attributes |= DDI_HIDDEN_NODE;
goto sid;
case DEVI_SID_HP_NODEID:
devi->devi_node_attributes |= DDI_HOTPLUG_NODE;
goto sid;
case DEVI_SID_HP_HIDDEN_NODEID:
devi->devi_node_attributes |= DDI_HIDDEN_NODE;
devi->devi_node_attributes |= DDI_HOTPLUG_NODE;
goto sid;
case DEVI_SID_NODEID:
sid: devi->devi_node_attributes |= DDI_PERSISTENT;
if ((elem = kmem_zalloc(sizeof (*elem), flag)) == NULL)
goto fail;
/*FALLTHROUGH*/
case DEVI_PSEUDO_NODEID:
devi->devi_node_attributes |= DDI_AUTO_ASSIGNED_NODEID;
devi->devi_node_class = DDI_NC_PSEUDO;
if (impl_ddi_alloc_nodeid(&devi->devi_nodeid)) {
panic("i_ddi_alloc_node: out of nodeids");
/*NOTREACHED*/
}
break;
default:
if ((elem = kmem_zalloc(sizeof (*elem), flag)) == NULL)
goto fail;
/*
* the nodetype is 'prom', try to 'take' the nodeid now.
* This requires memory allocation, so check for failure.
*/
if (impl_ddi_take_nodeid(nodeid, flag) != 0) {
kmem_free(elem, sizeof (*elem));
goto fail;
}
devi->devi_nodeid = nodeid;
devi->devi_node_class = DDI_NC_PROM;
devi->devi_node_attributes = DDI_PERSISTENT;
break;
}
if (ndi_dev_is_persistent_node((dev_info_t *)devi)) {
mutex_enter(&devimap->dno_lock);
elem->next = devimap->dno_free;
devimap->dno_free = elem;
mutex_exit(&devimap->dno_lock);
}
/*
* Instance is normally initialized to -1. In a few special
* cases, the caller may specify an instance (e.g. CPU nodes).
*/
devi->devi_instance = instance;
/*
* set parent and bus_ctl parent
*/
devi->devi_parent = DEVI(pdip);
devi->devi_bus_ctl = DEVI(pdip);
NDI_CONFIG_DEBUG((CE_CONT,
"i_ddi_alloc_node: name=%s id=%d\n", node_name, devi->devi_nodeid));
cv_init(&(devi->devi_cv), NULL, CV_DEFAULT, NULL);
mutex_init(&(devi->devi_lock), NULL, MUTEX_DEFAULT, NULL);
mutex_init(&(devi->devi_pm_lock), NULL, MUTEX_DEFAULT, NULL);
mutex_init(&(devi->devi_pm_busy_lock), NULL, MUTEX_DEFAULT, NULL);
RIO_TRACE((CE_NOTE, "i_ddi_alloc_node: Initing contract fields: "
"dip=%p, name=%s", (void *)devi, node_name));
mutex_init(&(devi->devi_ct_lock), NULL, MUTEX_DEFAULT, NULL);
cv_init(&(devi->devi_ct_cv), NULL, CV_DEFAULT, NULL);
devi->devi_ct_count = -1; /* counter not in use if -1 */
list_create(&(devi->devi_ct), sizeof (cont_device_t),
offsetof(cont_device_t, cond_next));
i_ddi_set_node_state((dev_info_t *)devi, DS_PROTO);
da_log_enter((dev_info_t *)devi);
return ((dev_info_t *)devi);
fail:
if (devi->devi_sys_prop_ptr)
i_ddi_prop_list_delete(devi->devi_sys_prop_ptr);
if (devi->devi_node_name)
kmem_free(devi->devi_node_name, strlen(node_name) + 1);
if (devi->devi_audit)
kmem_free(devi->devi_audit, sizeof (devinfo_audit_t));
kmem_cache_free(ddi_node_cache, devi);
cmn_err(CE_NOTE, failed);
return (NULL);
}
/*
* free a dev_info structure.
* NB. Not callable from interrupt since impl_ddi_free_nodeid may block.
*/
void
i_ddi_free_node(dev_info_t *dip)
{
struct dev_info *devi = DEVI(dip);
struct devi_nodeid *elem;
ASSERT(devi->devi_ref == 0);
ASSERT(devi->devi_addr == NULL);
ASSERT(devi->devi_node_state == DS_PROTO);
ASSERT(devi->devi_child == NULL);
ASSERT(devi->devi_hp_hdlp == NULL);
/* free devi_addr_buf allocated by ddi_set_name_addr() */
if (devi->devi_addr_buf)
kmem_free(devi->devi_addr_buf, 2 * MAXNAMELEN);
if (i_ndi_dev_is_auto_assigned_node(dip))
impl_ddi_free_nodeid(DEVI(dip)->devi_nodeid);
if (ndi_dev_is_persistent_node(dip)) {
mutex_enter(&devimap->dno_lock);
ASSERT(devimap->dno_free);
elem = devimap->dno_free;
devimap->dno_free = elem->next;
mutex_exit(&devimap->dno_lock);
kmem_free(elem, sizeof (*elem));
}
if (DEVI(dip)->devi_compat_names)
kmem_free(DEVI(dip)->devi_compat_names,
DEVI(dip)->devi_compat_length);
if (DEVI(dip)->devi_rebinding_name)
kmem_free(DEVI(dip)->devi_rebinding_name,
strlen(DEVI(dip)->devi_rebinding_name) + 1);
ddi_prop_remove_all(dip); /* remove driver properties */
if (devi->devi_sys_prop_ptr)
i_ddi_prop_list_delete(devi->devi_sys_prop_ptr);
if (devi->devi_hw_prop_ptr)
i_ddi_prop_list_delete(devi->devi_hw_prop_ptr);
if (DEVI(dip)->devi_devid_str)
ddi_devid_str_free(DEVI(dip)->devi_devid_str);
i_ddi_set_node_state(dip, DS_INVAL);
da_log_enter(dip);
if (devi->devi_audit) {
kmem_free(devi->devi_audit, sizeof (devinfo_audit_t));
}
if (devi->devi_device_class)
kmem_free(devi->devi_device_class,
strlen(devi->devi_device_class) + 1);
cv_destroy(&(devi->devi_cv));
mutex_destroy(&(devi->devi_lock));
mutex_destroy(&(devi->devi_pm_lock));
mutex_destroy(&(devi->devi_pm_busy_lock));
RIO_TRACE((CE_NOTE, "i_ddi_free_node: destroying contract fields: "
"dip=%p", (void *)dip));
contract_device_remove_dip(dip);
ASSERT(devi->devi_ct_count == -1);
ASSERT(list_is_empty(&(devi->devi_ct)));
cv_destroy(&(devi->devi_ct_cv));
list_destroy(&(devi->devi_ct));
/* free this last since contract_device_remove_dip() uses it */
mutex_destroy(&(devi->devi_ct_lock));
RIO_TRACE((CE_NOTE, "i_ddi_free_node: destroyed all contract fields: "
"dip=%p, name=%s", (void *)dip, devi->devi_node_name));
kmem_free(devi->devi_node_name, strlen(devi->devi_node_name) + 1);
/* free event data */
if (devi->devi_ev_path)
kmem_free(devi->devi_ev_path, MAXPATHLEN);
kmem_cache_free(ddi_node_cache, devi);
}
/*
* Node state transitions
*/
/*
* Change the node name
*/
int
ndi_devi_set_nodename(dev_info_t *dip, char *name, int flags)
{
_NOTE(ARGUNUSED(flags))
char *nname, *oname;
ASSERT(dip && name);
oname = DEVI(dip)->devi_node_name;
if (strcmp(oname, name) == 0)
return (DDI_SUCCESS);
/*
* pcicfg_fix_ethernet requires a name change after node
* is linked into the tree. When pcicfg is fixed, we
* should only allow name change in DS_PROTO state.
*/
if (i_ddi_node_state(dip) >= DS_BOUND) {
/*
* Don't allow name change once node is bound
*/
cmn_err(CE_NOTE,
"ndi_devi_set_nodename: node already bound dip = %p,"
" %s -> %s", (void *)dip, ddi_node_name(dip), name);
return (NDI_FAILURE);
}
nname = i_ddi_strdup(name, KM_SLEEP);
DEVI(dip)->devi_node_name = nname;
i_ddi_set_binding_name(dip, nname);
kmem_free(oname, strlen(oname) + 1);
da_log_enter(dip);
return (NDI_SUCCESS);
}
void
i_ddi_add_devimap(dev_info_t *dip)
{
struct devi_nodeid *elem;
ASSERT(dip);
if (!ndi_dev_is_persistent_node(dip))
return;
ASSERT(ddi_get_parent(dip) == NULL || (DEVI_VHCI_NODE(dip)) ||
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
mutex_enter(&devimap->dno_lock);
ASSERT(devimap->dno_free);
elem = devimap->dno_free;
devimap->dno_free = elem->next;
elem->nodeid = ddi_get_nodeid(dip);
elem->dip = dip;
elem->next = devimap->dno_head;
devimap->dno_head = elem;
devimap->dno_list_length++;
mutex_exit(&devimap->dno_lock);
}
static int
i_ddi_remove_devimap(dev_info_t *dip)
{
struct devi_nodeid *prev, *elem;
static const char *fcn = "i_ddi_remove_devimap";
ASSERT(dip);
if (!ndi_dev_is_persistent_node(dip))
return (DDI_SUCCESS);
mutex_enter(&devimap->dno_lock);
/*
* The following check is done with dno_lock held
* to prevent race between dip removal and
* e_ddi_prom_node_to_dip()
*/
if (e_ddi_devi_holdcnt(dip)) {
mutex_exit(&devimap->dno_lock);
return (DDI_FAILURE);
}
ASSERT(devimap->dno_head);
ASSERT(devimap->dno_list_length > 0);
prev = NULL;
for (elem = devimap->dno_head; elem; elem = elem->next) {
if (elem->dip == dip) {
ASSERT(elem->nodeid == ddi_get_nodeid(dip));
break;
}
prev = elem;
}
if (elem && prev)
prev->next = elem->next;
else if (elem)
devimap->dno_head = elem->next;
else
panic("%s: devinfo node(%p) not found",
fcn, (void *)dip);
devimap->dno_list_length--;
elem->nodeid = 0;
elem->dip = NULL;
elem->next = devimap->dno_free;
devimap->dno_free = elem;
mutex_exit(&devimap->dno_lock);
return (DDI_SUCCESS);
}
/*
* Link this node into the devinfo tree and add to orphan list
* Not callable from interrupt context
*/
static void
link_node(dev_info_t *dip)
{
struct dev_info *devi = DEVI(dip);
struct dev_info *parent = devi->devi_parent;
dev_info_t **dipp;
ASSERT(parent); /* never called for root node */
NDI_CONFIG_DEBUG((CE_CONT, "link_node: parent = %s child = %s\n",
parent->devi_node_name, devi->devi_node_name));
/*
* Hold the global_vhci_lock before linking any direct
* children of rootnex driver. This special lock protects
* linking and unlinking for rootnext direct children.
*/
if ((dev_info_t *)parent == ddi_root_node())
mutex_enter(&global_vhci_lock);
/*
* attach the node to end of the list unless the node is already there
*/
dipp = (dev_info_t **)(&DEVI(parent)->devi_child);
while (*dipp && (*dipp != dip)) {
dipp = (dev_info_t **)(&DEVI(*dipp)->devi_sibling);
}
ASSERT(*dipp == NULL); /* node is not linked */
/*
* Now that we are in the tree, update the devi-nodeid map.
*/
i_ddi_add_devimap(dip);
/*
* This is a temporary workaround for Bug 4618861.
* We keep the scsi_vhci nexus node on the left side of the devinfo
* tree (under the root nexus driver), so that virtual nodes under
* scsi_vhci will be SUSPENDed first and RESUMEd last. This ensures
* that the pHCI nodes are active during times when their clients
* may be depending on them. This workaround embodies the knowledge
* that system PM and CPR both traverse the tree left-to-right during
* SUSPEND and right-to-left during RESUME.
* Extending the workaround to IB Nexus/VHCI
* driver also.
*/
if (strcmp(devi->devi_binding_name, "scsi_vhci") == 0) {
/* Add scsi_vhci to beginning of list */
ASSERT((dev_info_t *)parent == top_devinfo);
/* scsi_vhci under rootnex */
devi->devi_sibling = parent->devi_child;
parent->devi_child = devi;
} else if (strcmp(devi->devi_binding_name, "ib") == 0) {
i_link_vhci_node(dip);
} else {
/* Add to end of list */
*dipp = dip;
DEVI(dip)->devi_sibling = NULL;
}
/*
* Release the global_vhci_lock before linking any direct
* children of rootnex driver.
*/
if ((dev_info_t *)parent == ddi_root_node())
mutex_exit(&global_vhci_lock);
/* persistent nodes go on orphan list */
if (ndi_dev_is_persistent_node(dip))
add_to_dn_list(&orphanlist, dip);
}
/*
* Unlink this node from the devinfo tree
*/
static int
unlink_node(dev_info_t *dip)
{
struct dev_info *devi = DEVI(dip);
struct dev_info *parent = devi->devi_parent;
dev_info_t **dipp;
ddi_hp_cn_handle_t *hdlp;
ASSERT(parent != NULL);
ASSERT(devi->devi_node_state == DS_LINKED);
NDI_CONFIG_DEBUG((CE_CONT, "unlink_node: name = %s\n",
ddi_node_name(dip)));
/* check references */
if (devi->devi_ref || i_ddi_remove_devimap(dip) != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Hold the global_vhci_lock before linking any direct
* children of rootnex driver.
*/
if ((dev_info_t *)parent == ddi_root_node())
mutex_enter(&global_vhci_lock);
dipp = (dev_info_t **)(&DEVI(parent)->devi_child);
while (*dipp && (*dipp != dip)) {
dipp = (dev_info_t **)(&DEVI(*dipp)->devi_sibling);
}
if (*dipp) {
*dipp = (dev_info_t *)(devi->devi_sibling);
devi->devi_sibling = NULL;
} else {
NDI_CONFIG_DEBUG((CE_NOTE, "unlink_node: %s not linked",
devi->devi_node_name));
}
/*
* Release the global_vhci_lock before linking any direct
* children of rootnex driver.
*/
if ((dev_info_t *)parent == ddi_root_node())
mutex_exit(&global_vhci_lock);
/* Remove node from orphan list */
if (ndi_dev_is_persistent_node(dip)) {
remove_from_dn_list(&orphanlist, dip);
}
/* Update parent's hotplug handle list */
for (hdlp = DEVI(parent)->devi_hp_hdlp; hdlp; hdlp = hdlp->next) {
if (hdlp->cn_info.cn_child == dip)
hdlp->cn_info.cn_child = NULL;
}
return (DDI_SUCCESS);
}
/*
* Bind this devinfo node to a driver. If compat is NON-NULL, try that first.
* Else, use the node-name.
*
* NOTE: IEEE1275 specifies that nodename should be tried before compatible.
* Solaris implementation binds nodename after compatible.
*
* If we find a binding,
* - set the binding name to the string,
* - set major number to driver major
*
* If we don't find a binding,
* - return failure
*/
static int
bind_node(dev_info_t *dip)
{
char *p = NULL;
major_t major = DDI_MAJOR_T_NONE;
struct dev_info *devi = DEVI(dip);
dev_info_t *parent = ddi_get_parent(dip);
ASSERT(devi->devi_node_state == DS_LINKED);
NDI_CONFIG_DEBUG((CE_CONT, "bind_node: 0x%p(name = %s)\n",
(void *)dip, ddi_node_name(dip)));
mutex_enter(&DEVI(dip)->devi_lock);
if (DEVI(dip)->devi_flags & DEVI_NO_BIND) {
mutex_exit(&DEVI(dip)->devi_lock);
return (DDI_FAILURE);
}
mutex_exit(&DEVI(dip)->devi_lock);
/* find the driver with most specific binding using compatible */
major = ddi_compatible_driver_major(dip, &p);
if (major == DDI_MAJOR_T_NONE)
return (DDI_FAILURE);
devi->devi_major = major;
if (p != NULL) {
i_ddi_set_binding_name(dip, p);
NDI_CONFIG_DEBUG((CE_CONT, "bind_node: %s bound to %s\n",
devi->devi_node_name, p));
}
/* Link node to per-driver list */
link_to_driver_list(dip);
/*
* reset parent flag so that nexus will merge .conf props
*/
if (ndi_dev_is_persistent_node(dip)) {
mutex_enter(&DEVI(parent)->devi_lock);
DEVI(parent)->devi_flags &=
~(DEVI_ATTACHED_CHILDREN|DEVI_MADE_CHILDREN);
mutex_exit(&DEVI(parent)->devi_lock);
}
return (DDI_SUCCESS);
}
/*
* Unbind this devinfo node
* Called before the node is destroyed or driver is removed from system
*/
static int
unbind_node(dev_info_t *dip)
{
ASSERT(DEVI(dip)->devi_node_state == DS_BOUND);
ASSERT(DEVI(dip)->devi_major != DDI_MAJOR_T_NONE);
/* check references */
if (DEVI(dip)->devi_ref)
return (DDI_FAILURE);
NDI_CONFIG_DEBUG((CE_CONT, "unbind_node: 0x%p(name = %s)\n",
(void *)dip, ddi_node_name(dip)));
unlink_from_driver_list(dip);
DEVI(dip)->devi_major = DDI_MAJOR_T_NONE;
DEVI(dip)->devi_binding_name = DEVI(dip)->devi_node_name;
return (DDI_SUCCESS);
}
/*
* Initialize a node: calls the parent nexus' bus_ctl ops to do the operation.
* Must hold parent and per-driver list while calling this function.
* A successful init_node() returns with an active ndi_hold_devi() hold on
* the parent.
*/
static int
init_node(dev_info_t *dip)
{
int error;
dev_info_t *pdip = ddi_get_parent(dip);
int (*f)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *);
char *path;
major_t major;
ddi_devid_t devid = NULL;
ASSERT(i_ddi_node_state(dip) == DS_BOUND);
/* should be DS_READY except for pcmcia ... */
ASSERT(i_ddi_node_state(pdip) >= DS_PROBED);
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
NDI_CONFIG_DEBUG((CE_CONT, "init_node: entry: path %s 0x%p\n",
path, (void *)dip));
/*
* The parent must have a bus_ctl operation.
*/
if ((DEVI(pdip)->devi_ops->devo_bus_ops == NULL) ||
(f = DEVI(pdip)->devi_ops->devo_bus_ops->bus_ctl) == NULL) {
error = DDI_FAILURE;
goto out;
}
add_global_props(dip);
/*
* Invoke the parent's bus_ctl operation with the DDI_CTLOPS_INITCHILD
* command to transform the child to canonical form 1. If there
* is an error, ddi_remove_child should be called, to clean up.
*/
error = (*f)(pdip, pdip, DDI_CTLOPS_INITCHILD, dip, NULL);
if (error != DDI_SUCCESS) {
NDI_CONFIG_DEBUG((CE_CONT, "init_node: %s 0x%p failed\n",
path, (void *)dip));
remove_global_props(dip);
/*
* If a nexus INITCHILD implementation calls ddi_devid_regster()
* prior to setting devi_addr, the devid is not recorded in
* the devid cache (i.e. DEVI_CACHED_DEVID is not set).
* With mpxio, while the vhci client path may be missing
* from the cache, phci pathinfo paths may have already be
* added to the cache, against the client dip, by use of
* e_devid_cache_pathinfo(). Because of this, when INITCHILD
* of the client fails, we need to purge the client dip from
* the cache even if DEVI_CACHED_DEVID is not set - if only
* devi_devid_str is set.
*/
mutex_enter(&DEVI(dip)->devi_lock);
if ((DEVI(dip)->devi_flags & DEVI_CACHED_DEVID) ||
DEVI(dip)->devi_devid_str) {
DEVI(dip)->devi_flags &= ~DEVI_CACHED_DEVID;
mutex_exit(&DEVI(dip)->devi_lock);
ddi_devid_unregister(dip);
} else
mutex_exit(&DEVI(dip)->devi_lock);
/* in case nexus driver didn't clear this field */
ddi_set_name_addr(dip, NULL);
error = DDI_FAILURE;
goto out;
}
ndi_hold_devi(pdip); /* initial hold of parent */
/* recompute path after initchild for @addr information */
(void) ddi_pathname(dip, path);
/* Check for duplicate nodes */
if (find_duplicate_child(pdip, dip) != NULL) {
/*
* uninit_node() the duplicate - a successful uninit_node()
* will release inital hold of parent using ndi_rele_devi().
*/
if ((error = uninit_node(dip)) != DDI_SUCCESS) {
ndi_rele_devi(pdip); /* release initial hold */
cmn_err(CE_WARN, "init_node: uninit of duplicate "
"node %s failed", path);
}
NDI_CONFIG_DEBUG((CE_CONT, "init_node: duplicate uninit "
"%s 0x%p%s\n", path, (void *)dip,
(error == DDI_SUCCESS) ? "" : " failed"));
error = DDI_FAILURE;
goto out;
}
/*
* If a devid was registered for a DS_BOUND node then the devid_cache
* may not have captured the path. Detect this situation and ensure that
* the path enters the cache now that devi_addr is established.
*/
if (!(DEVI(dip)->devi_flags & DEVI_CACHED_DEVID) &&
(ddi_devid_get(dip, &devid) == DDI_SUCCESS)) {
if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) {
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_flags |= DEVI_CACHED_DEVID;
mutex_exit(&DEVI(dip)->devi_lock);
}
ddi_devid_free(devid);
}
/*
* Check to see if we have a path-oriented driver alias that overrides
* the current driver binding. If so, we need to rebind. This check
* needs to be delayed until after a successful DDI_CTLOPS_INITCHILD,
* so the unit-address is established on the last component of the path.
*
* NOTE: Allowing a path-oriented alias to change the driver binding
* of a driver.conf node results in non-intuitive property behavior.
* We provide a tunable (driver_conf_allow_path_alias) to control
* this behavior. See uninit_node() for more details.
*
* NOTE: If you are adding a path-oriented alias for the boot device,
* and there is mismatch between OBP and the kernel in regard to
* generic name use, like "disk" .vs. "ssd", then you will need
* to add a path-oriented alias for both paths.
*/
major = ddi_name_to_major(path);
if (driver_active(major) && (major != DEVI(dip)->devi_major) &&
(ndi_dev_is_persistent_node(dip) || driver_conf_allow_path_alias)) {
/* Mark node for rebind processing. */
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_flags |= DEVI_REBIND;
mutex_exit(&DEVI(dip)->devi_lock);
/*
* Add an extra hold on the parent to prevent it from ever
* having a zero devi_ref during the child rebind process.
* This is necessary to ensure that the parent will never
* detach(9E) during the rebind.
*/
ndi_hold_devi(pdip); /* extra hold of parent */
/*
* uninit_node() current binding - a successful uninit_node()
* will release extra hold of parent using ndi_rele_devi().
*/
if ((error = uninit_node(dip)) != DDI_SUCCESS) {
ndi_rele_devi(pdip); /* release extra hold */
ndi_rele_devi(pdip); /* release initial hold */
cmn_err(CE_WARN, "init_node: uninit for rebind "
"of node %s failed", path);
goto out;
}
/* Unbind: demote the node back to DS_LINKED. */
if ((error = ndi_devi_unbind_driver(dip)) != DDI_SUCCESS) {
ndi_rele_devi(pdip); /* release initial hold */
cmn_err(CE_WARN, "init_node: unbind for rebind "
"of node %s failed", path);
goto out;
}
/* establish rebinding name */
if (DEVI(dip)->devi_rebinding_name == NULL)
DEVI(dip)->devi_rebinding_name =
i_ddi_strdup(path, KM_SLEEP);
/*
* Now that we are demoted and marked for rebind, repromote.
* We need to do this in steps, instead of just calling
* ddi_initchild, so that we can redo the merge operation
* after we are rebound to the path-bound driver.
*
* Start by rebinding node to the path-bound driver.
*/
if ((error = ndi_devi_bind_driver(dip, 0)) != DDI_SUCCESS) {
ndi_rele_devi(pdip); /* release initial hold */
cmn_err(CE_WARN, "init_node: rebind "
"of node %s failed", path);
goto out;
}
/*
* If the node is not a driver.conf node then merge
* driver.conf properties from new path-bound driver.conf.
*/
if (ndi_dev_is_persistent_node(dip))
(void) i_ndi_make_spec_children(pdip, 0);
/*
* Now that we have taken care of merge, repromote back
* to DS_INITIALIZED.
*/
error = ddi_initchild(pdip, dip);
NDI_CONFIG_DEBUG((CE_CONT, "init_node: rebind "
"%s 0x%p\n", path, (void *)dip));
/*
* Release our initial hold. If ddi_initchild() was
* successful then it will return with the active hold.
*/
ndi_rele_devi(pdip);
goto out;
}
/*
* Apply multi-parent/deep-nexus optimization to the new node
*/
DEVI(dip)->devi_instance = e_ddi_assign_instance(dip);
ddi_optimize_dtree(dip);
error = DDI_SUCCESS; /* return with active hold */
out: if (error != DDI_SUCCESS) {
/* On failure ensure that DEVI_REBIND is cleared */
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_flags &= ~DEVI_REBIND;
mutex_exit(&DEVI(dip)->devi_lock);
}
kmem_free(path, MAXPATHLEN);
return (error);
}
/*
* Uninitialize node
* The per-driver list must be held busy during the call.
* A successful uninit_node() releases the init_node() hold on
* the parent by calling ndi_rele_devi().
*/
static int
uninit_node(dev_info_t *dip)
{
int node_state_entry;
dev_info_t *pdip;
struct dev_ops *ops;
int (*f)();
int error;
char *addr;
/*
* Don't check for references here or else a ref-counted
* dip cannot be downgraded by the framework.
*/
node_state_entry = i_ddi_node_state(dip);
ASSERT((node_state_entry == DS_BOUND) ||
(node_state_entry == DS_INITIALIZED));
pdip = ddi_get_parent(dip);
ASSERT(pdip);
NDI_CONFIG_DEBUG((CE_CONT, "uninit_node: 0x%p(%s%d)\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
if (((ops = ddi_get_driver(pdip)) == NULL) ||
(ops->devo_bus_ops == NULL) ||
((f = ops->devo_bus_ops->bus_ctl) == NULL)) {
return (DDI_FAILURE);
}
/*
* save the @addr prior to DDI_CTLOPS_UNINITCHILD for use in
* freeing the instance if it succeeds.
*/
if (node_state_entry == DS_INITIALIZED) {
addr = ddi_get_name_addr(dip);
if (addr)
addr = i_ddi_strdup(addr, KM_SLEEP);
} else {
addr = NULL;
}
error = (*f)(pdip, pdip, DDI_CTLOPS_UNINITCHILD, dip, (void *)NULL);
if (error == DDI_SUCCESS) {
/* ensure that devids are unregistered */
mutex_enter(&DEVI(dip)->devi_lock);
if ((DEVI(dip)->devi_flags & DEVI_CACHED_DEVID)) {
DEVI(dip)->devi_flags &= ~DEVI_CACHED_DEVID;
mutex_exit(&DEVI(dip)->devi_lock);
ddi_devid_unregister(dip);
} else
mutex_exit(&DEVI(dip)->devi_lock);
/* if uninitchild forgot to set devi_addr to NULL do it now */
ddi_set_name_addr(dip, NULL);
/*
* Free instance number. This is a no-op if instance has
* been kept by probe_node(). Avoid free when we are called
* from init_node (DS_BOUND) because the instance has not yet
* been assigned.
*/
if (node_state_entry == DS_INITIALIZED) {
e_ddi_free_instance(dip, addr);
DEVI(dip)->devi_instance = -1;
}
/* release the init_node hold */
ndi_rele_devi(pdip);
remove_global_props(dip);
/*
* NOTE: The decision on whether to allow a path-oriented
* rebind of a driver.conf enumerated node is made by
* init_node() based on driver_conf_allow_path_alias. The
* rebind code below prevents deletion of system properties
* on driver.conf nodes.
*
* When driver_conf_allow_path_alias is set, property behavior
* on rebound driver.conf file is non-intuitive. For a
* driver.conf node, the unit-address properties come from
* the driver.conf file as system properties. Removing system
* properties from a driver.conf node makes the node
* useless (we get node without unit-address properties) - so
* we leave system properties in place. The result is a node
* where system properties come from the node being rebound,
* and global properties come from the driver.conf file
* of the driver we are rebinding to. If we could determine
* that the path-oriented alias driver.conf file defined a
* node at the same unit address, it would be best to use
* that node and avoid the non-intuitive property behavior.
* Unfortunately, the current "merge" code does not support
* this, so we live with the non-intuitive property behavior.
*/
if (!((ndi_dev_is_persistent_node(dip) == 0) &&
(DEVI(dip)->devi_flags & DEVI_REBIND)))
e_ddi_prop_remove_all(dip);
} else {
NDI_CONFIG_DEBUG((CE_CONT, "uninit_node failed: 0x%p(%s%d)\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
}
if (addr)
kmem_free(addr, strlen(addr) + 1);
return (error);
}
/*
* Invoke driver's probe entry point to probe for existence of hardware.
* Keep instance permanent for successful probe and leaf nodes.
*
* Per-driver list must be held busy while calling this function.
*/
static int
probe_node(dev_info_t *dip)
{
int rv;
ASSERT(i_ddi_node_state(dip) == DS_INITIALIZED);
NDI_CONFIG_DEBUG((CE_CONT, "probe_node: 0x%p(%s%d)\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
/* temporarily hold the driver while we probe */
DEVI(dip)->devi_ops = ndi_hold_driver(dip);
if (DEVI(dip)->devi_ops == NULL) {
NDI_CONFIG_DEBUG((CE_CONT,
"probe_node: 0x%p(%s%d) cannot load driver\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
return (DDI_FAILURE);
}
if (identify_9e != 0)
(void) devi_identify(dip);
rv = devi_probe(dip);
/* release the driver now that probe is complete */
ndi_rele_driver(dip);
DEVI(dip)->devi_ops = NULL;
switch (rv) {
case DDI_PROBE_SUCCESS: /* found */
case DDI_PROBE_DONTCARE: /* ddi_dev_is_sid */
e_ddi_keep_instance(dip); /* persist instance */
rv = DDI_SUCCESS;
break;
case DDI_PROBE_PARTIAL: /* maybe later */
case DDI_PROBE_FAILURE: /* not found */
NDI_CONFIG_DEBUG((CE_CONT,
"probe_node: 0x%p(%s%d) no hardware found%s\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip),
(rv == DDI_PROBE_PARTIAL) ? " yet" : ""));
rv = DDI_FAILURE;
break;
default:
#ifdef DEBUG
cmn_err(CE_WARN, "probe_node: %s%d: illegal probe(9E) value",
ddi_driver_name(dip), ddi_get_instance(dip));
#endif /* DEBUG */
rv = DDI_FAILURE;
break;
}
return (rv);
}
/*
* Unprobe a node. Simply reset the node state.
* Per-driver list must be held busy while calling this function.
*/
static int
unprobe_node(dev_info_t *dip)
{
ASSERT(i_ddi_node_state(dip) == DS_PROBED);
/*
* Don't check for references here or else a ref-counted
* dip cannot be downgraded by the framework.
*/
NDI_CONFIG_DEBUG((CE_CONT, "unprobe_node: 0x%p(name = %s)\n",
(void *)dip, ddi_node_name(dip)));
return (DDI_SUCCESS);
}
/*
* Attach devinfo node.
* Per-driver list must be held busy.
*/
static int
attach_node(dev_info_t *dip)
{
int rv;
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip)));
ASSERT(i_ddi_node_state(dip) == DS_PROBED);
NDI_CONFIG_DEBUG((CE_CONT, "attach_node: 0x%p(%s%d)\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
/*
* Tell mpxio framework that a node is about to online.
*/
if ((rv = mdi_devi_online(dip, 0)) != NDI_SUCCESS) {
return (DDI_FAILURE);
}
/* no recursive attachment */
ASSERT(DEVI(dip)->devi_ops == NULL);
/*
* Hold driver the node is bound to.
*/
DEVI(dip)->devi_ops = ndi_hold_driver(dip);
if (DEVI(dip)->devi_ops == NULL) {
/*
* We were able to load driver for probing, so we should
* not get here unless something really bad happened.
*/
cmn_err(CE_WARN, "attach_node: no driver for major %d",
DEVI(dip)->devi_major);
return (DDI_FAILURE);
}
if (NEXUS_DRV(DEVI(dip)->devi_ops))
DEVI(dip)->devi_taskq = ddi_taskq_create(dip,
"nexus_enum_tq", 1,
TASKQ_DEFAULTPRI, 0);
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_ATTACHING(dip);
DEVI_SET_NEED_RESET(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
rv = devi_attach(dip, DDI_ATTACH);
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_CLR_ATTACHING(dip);
if (rv != DDI_SUCCESS) {
DEVI_CLR_NEED_RESET(dip);
mutex_exit(&DEVI(dip)->devi_lock);
/*
* Cleanup dacf reservations
*/
mutex_enter(&dacf_lock);
dacf_clr_rsrvs(dip, DACF_OPID_POSTATTACH);
dacf_clr_rsrvs(dip, DACF_OPID_PREDETACH);
mutex_exit(&dacf_lock);
if (DEVI(dip)->devi_taskq)
ddi_taskq_destroy(DEVI(dip)->devi_taskq);
ddi_remove_minor_node(dip, NULL);
/* release the driver if attach failed */
ndi_rele_driver(dip);
DEVI(dip)->devi_ops = NULL;
NDI_CONFIG_DEBUG((CE_CONT, "attach_node: 0x%p(%s%d) failed\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
return (DDI_FAILURE);
} else
mutex_exit(&DEVI(dip)->devi_lock);
/* successful attach, return with driver held */
return (DDI_SUCCESS);
}
/*
* Detach devinfo node.
* Per-driver list must be held busy.
*/
static int
detach_node(dev_info_t *dip, uint_t flag)
{
struct devnames *dnp;
int rv;
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip)));
ASSERT(i_ddi_node_state(dip) == DS_ATTACHED);
/* check references */
if (DEVI(dip)->devi_ref)
return (DDI_FAILURE);
NDI_CONFIG_DEBUG((CE_CONT, "detach_node: 0x%p(%s%d)\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
/*
* NOTE: If we are processing a pHCI node then the calling code
* must detect this and ndi_devi_enter() in (vHCI, parent(pHCI))
* order unless pHCI and vHCI are siblings. Code paths leading
* here that must ensure this ordering include:
* unconfig_immediate_children(), devi_unconfig_one(),
* ndi_devi_unconfig_one(), ndi_devi_offline().
*/
ASSERT(!MDI_PHCI(dip) ||
(ddi_get_parent(mdi_devi_get_vdip(dip)) == ddi_get_parent(dip)) ||
DEVI_BUSY_OWNED(mdi_devi_get_vdip(dip)));
/* Offline the device node with the mpxio framework. */
if (mdi_devi_offline(dip, flag) != NDI_SUCCESS) {
return (DDI_FAILURE);
}
/* drain the taskq */
if (DEVI(dip)->devi_taskq)
ddi_taskq_wait(DEVI(dip)->devi_taskq);
rv = devi_detach(dip, DDI_DETACH);
if (rv != DDI_SUCCESS) {
NDI_CONFIG_DEBUG((CE_CONT,
"detach_node: 0x%p(%s%d) failed\n",
(void *)dip, ddi_driver_name(dip), ddi_get_instance(dip)));
return (DDI_FAILURE);
}
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_CLR_NEED_RESET(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
#if defined(__amd64) && !defined(__xpv)
/*
* Close any iommulib mediated linkage to an IOMMU
*/
if (IOMMU_USED(dip))
iommulib_nex_close(dip);
#endif
/* destroy the taskq */
if (DEVI(dip)->devi_taskq) {
ddi_taskq_destroy(DEVI(dip)->devi_taskq);
DEVI(dip)->devi_taskq = NULL;
}
/* Cleanup dacf reservations */
mutex_enter(&dacf_lock);
dacf_clr_rsrvs(dip, DACF_OPID_POSTATTACH);
dacf_clr_rsrvs(dip, DACF_OPID_PREDETACH);
mutex_exit(&dacf_lock);
/* remove any additional flavors that were added */
if (DEVI(dip)->devi_flavorv_n > 1 && DEVI(dip)->devi_flavorv != NULL) {
kmem_free(DEVI(dip)->devi_flavorv,
(DEVI(dip)->devi_flavorv_n - 1) * sizeof (void *));
DEVI(dip)->devi_flavorv = NULL;
}
/* Remove properties and minor nodes in case driver forgots */
ddi_remove_minor_node(dip, NULL);
ddi_prop_remove_all(dip);
/* a detached node can't have attached or .conf children */
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_flags &= ~(DEVI_MADE_CHILDREN|DEVI_ATTACHED_CHILDREN);
mutex_exit(&DEVI(dip)->devi_lock);
/*
* If the instance has successfully detached in detach_driver() context,
* clear DN_DRIVER_HELD for correct ddi_hold_installed_driver()
* behavior. Consumers like qassociate() depend on this (via clnopen()).
*/
if (flag & NDI_DETACH_DRIVER) {
dnp = &(devnamesp[DEVI(dip)->devi_major]);
LOCK_DEV_OPS(&dnp->dn_lock);
dnp->dn_flags &= ~DN_DRIVER_HELD;
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
/* successful detach, release the driver */
ndi_rele_driver(dip);
DEVI(dip)->devi_ops = NULL;
return (DDI_SUCCESS);
}
/*
* Run dacf post_attach routines
*/
static int
postattach_node(dev_info_t *dip)
{
int rval;
/*
* For hotplug busses like USB, it's possible that devices
* are removed but dip is still around. We don't want to
* run dacf routines as part of detach failure recovery.
*
* Pretend success until we figure out how to prevent
* access to such devinfo nodes.
*/
if (DEVI_IS_DEVICE_REMOVED(dip))
return (DDI_SUCCESS);
/*
* if dacf_postattach failed, report it to the framework
* so that it can be retried later at the open time.
*/
mutex_enter(&dacf_lock);
rval = dacfc_postattach(dip);
mutex_exit(&dacf_lock);
/*
* Plumbing during postattach may fail because of the
* underlying device is not ready. This will fail ndi_devi_config()
* in dv_filldir() and a warning message is issued. The message
* from here will explain what happened
*/
if (rval != DACF_SUCCESS) {
cmn_err(CE_WARN, "Postattach failed for %s%d\n",
ddi_driver_name(dip), ddi_get_instance(dip));
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* Run dacf pre-detach routines
*/
static int
predetach_node(dev_info_t *dip, uint_t flag)
{
int ret;
/*
* Don't auto-detach if DDI_FORCEATTACH or DDI_NO_AUTODETACH
* properties are set.
*/
if (flag & NDI_AUTODETACH) {
struct devnames *dnp;
int pflag = DDI_PROP_NOTPROM | DDI_PROP_DONTPASS;
if ((ddi_prop_get_int(DDI_DEV_T_ANY, dip,
pflag, DDI_FORCEATTACH, 0) == 1) ||
(ddi_prop_get_int(DDI_DEV_T_ANY, dip,
pflag, DDI_NO_AUTODETACH, 0) == 1))
return (DDI_FAILURE);
/* check for driver global version of DDI_NO_AUTODETACH */
dnp = &devnamesp[DEVI(dip)->devi_major];
LOCK_DEV_OPS(&dnp->dn_lock);
if (dnp->dn_flags & DN_NO_AUTODETACH) {
UNLOCK_DEV_OPS(&dnp->dn_lock);
return (DDI_FAILURE);
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
mutex_enter(&dacf_lock);
ret = dacfc_predetach(dip);
mutex_exit(&dacf_lock);
return (ret);
}
/*
* Wrapper for making multiple state transitions
*/
/*
* i_ndi_config_node: upgrade dev_info node into a specified state.
* It is a bit tricky because the locking protocol changes before and
* after a node is bound to a driver. All locks are held external to
* this function.
*/
int
i_ndi_config_node(dev_info_t *dip, ddi_node_state_t state, uint_t flag)
{
_NOTE(ARGUNUSED(flag))
int rv = DDI_SUCCESS;
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip)));
while ((i_ddi_node_state(dip) < state) && (rv == DDI_SUCCESS)) {
/* don't allow any more changes to the device tree */
if (devinfo_freeze) {
rv = DDI_FAILURE;
break;
}
switch (i_ddi_node_state(dip)) {
case DS_PROTO:
/*
* only caller can reference this node, no external
* locking needed.
*/
link_node(dip);
translate_devid((dev_info_t *)dip);
i_ddi_set_node_state(dip, DS_LINKED);
break;
case DS_LINKED:
/*
* Three code path may attempt to bind a node:
* - boot code
* - add_drv
* - hotplug thread
* Boot code is single threaded, add_drv synchronize
* on a userland lock, and hotplug synchronize on
* hotplug_lk. There could be a race between add_drv
* and hotplug thread. We'll live with this until the
* conversion to top-down loading.
*/
if ((rv = bind_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_BOUND);
break;
case DS_BOUND:
/*
* The following transitions synchronizes on the
* per-driver busy changing flag, since we already
* have a driver.
*/
if ((rv = init_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_INITIALIZED);
break;
case DS_INITIALIZED:
if ((rv = probe_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_PROBED);
break;
case DS_PROBED:
/*
* If node is retired and persistent, then prevent
* attach. We can't do this for non-persistent nodes
* as we would lose evidence that the node existed.
*/
if (i_ddi_check_retire(dip) == 1 &&
ndi_dev_is_persistent_node(dip) &&
retire_prevents_attach == 1) {
rv = DDI_FAILURE;
break;
}
atomic_add_long(&devinfo_attach_detach, 1);
if ((rv = attach_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_ATTACHED);
atomic_add_long(&devinfo_attach_detach, -1);
break;
case DS_ATTACHED:
if ((rv = postattach_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_READY);
break;
case DS_READY:
break;
default:
/* should never reach here */
ASSERT("unknown devinfo state");
}
}
if (ddidebug & DDI_AUDIT)
da_log_enter(dip);
return (rv);
}
/*
* i_ndi_unconfig_node: downgrade dev_info node into a specified state.
*/
int
i_ndi_unconfig_node(dev_info_t *dip, ddi_node_state_t state, uint_t flag)
{
int rv = DDI_SUCCESS;
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip)));
while ((i_ddi_node_state(dip) > state) && (rv == DDI_SUCCESS)) {
/* don't allow any more changes to the device tree */
if (devinfo_freeze) {
rv = DDI_FAILURE;
break;
}
switch (i_ddi_node_state(dip)) {
case DS_PROTO:
break;
case DS_LINKED:
/*
* Persistent nodes are only removed by hotplug code
* .conf nodes synchronizes on per-driver list.
*/
if ((rv = unlink_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_PROTO);
break;
case DS_BOUND:
/*
* The following transitions synchronizes on the
* per-driver busy changing flag, since we already
* have a driver.
*/
if ((rv = unbind_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_LINKED);
break;
case DS_INITIALIZED:
if ((rv = uninit_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_BOUND);
break;
case DS_PROBED:
if ((rv = unprobe_node(dip)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_INITIALIZED);
break;
case DS_ATTACHED:
atomic_add_long(&devinfo_attach_detach, 1);
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_DETACHING(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
membar_enter(); /* ensure visibility for hold_devi */
if ((rv = detach_node(dip, flag)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_PROBED);
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_CLR_DETACHING(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
atomic_add_long(&devinfo_attach_detach, -1);
break;
case DS_READY:
if ((rv = predetach_node(dip, flag)) == DDI_SUCCESS)
i_ddi_set_node_state(dip, DS_ATTACHED);
break;
default:
ASSERT("unknown devinfo state");
}
}
da_log_enter(dip);
return (rv);
}
/*
* ddi_initchild: transform node to DS_INITIALIZED state
*/
int
ddi_initchild(dev_info_t *parent, dev_info_t *proto)
{
int ret, circ;
ndi_devi_enter(parent, &circ);
ret = i_ndi_config_node(proto, DS_INITIALIZED, 0);
ndi_devi_exit(parent, circ);
return (ret);
}
/*
* ddi_uninitchild: transform node down to DS_BOUND state
*/
int
ddi_uninitchild(dev_info_t *dip)
{
int ret, circ;
dev_info_t *parent = ddi_get_parent(dip);
ASSERT(parent);
ndi_devi_enter(parent, &circ);
ret = i_ndi_unconfig_node(dip, DS_BOUND, 0);
ndi_devi_exit(parent, circ);
return (ret);
}
/*
* i_ddi_attachchild: transform node to DS_READY/i_ddi_devi_attached() state
*/
static int
i_ddi_attachchild(dev_info_t *dip)
{
dev_info_t *parent = ddi_get_parent(dip);
int ret;
ASSERT(parent && DEVI_BUSY_OWNED(parent));
if ((i_ddi_node_state(dip) < DS_BOUND) || DEVI_IS_DEVICE_OFFLINE(dip))
return (DDI_FAILURE);
ret = i_ndi_config_node(dip, DS_READY, 0);
if (ret == NDI_SUCCESS) {
ret = DDI_SUCCESS;
} else {
/*
* Take it down to DS_INITIALIZED so pm_pre_probe is run
* on the next attach
*/
(void) i_ndi_unconfig_node(dip, DS_INITIALIZED, 0);
ret = DDI_FAILURE;
}
return (ret);
}
/*
* i_ddi_detachchild: transform node down to DS_PROBED state
* If it fails, put it back to DS_READY state.
* NOTE: A node that fails detach may be at DS_ATTACHED instead
* of DS_READY for a small amount of time - this is the source of
* transient DS_READY->DS_ATTACHED->DS_READY state changes.
*/
static int
i_ddi_detachchild(dev_info_t *dip, uint_t flags)
{
dev_info_t *parent = ddi_get_parent(dip);
int ret;
ASSERT(parent && DEVI_BUSY_OWNED(parent));
ret = i_ndi_unconfig_node(dip, DS_PROBED, flags);
if (ret != DDI_SUCCESS)
(void) i_ndi_config_node(dip, DS_READY, 0);
else
/* allow pm_pre_probe to reestablish pm state */
(void) i_ndi_unconfig_node(dip, DS_INITIALIZED, 0);
return (ret);
}
/*
* Add a child and bind to driver
*/
dev_info_t *
ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t unit)
{
int circ;
dev_info_t *dip;
/* allocate a new node */
dip = i_ddi_alloc_node(pdip, name, nodeid, (int)unit, NULL, KM_SLEEP);
ndi_devi_enter(pdip, &circ);
(void) i_ndi_config_node(dip, DS_BOUND, 0);
ndi_devi_exit(pdip, circ);
return (dip);
}
/*
* ddi_remove_child: remove the dip. The parent must be attached and held
*/
int
ddi_remove_child(dev_info_t *dip, int dummy)
{
_NOTE(ARGUNUSED(dummy))
int circ, ret;
dev_info_t *parent = ddi_get_parent(dip);
ASSERT(parent);
ndi_devi_enter(parent, &circ);
/*
* If we still have children, for example SID nodes marked
* as persistent but not attached, attempt to remove them.
*/
if (DEVI(dip)->devi_child) {
ret = ndi_devi_unconfig(dip, NDI_DEVI_REMOVE);
if (ret != NDI_SUCCESS) {
ndi_devi_exit(parent, circ);
return (DDI_FAILURE);
}
ASSERT(DEVI(dip)->devi_child == NULL);
}
ret = i_ndi_unconfig_node(dip, DS_PROTO, 0);
ndi_devi_exit(parent, circ);
if (ret != DDI_SUCCESS)
return (ret);
ASSERT(i_ddi_node_state(dip) == DS_PROTO);
i_ddi_free_node(dip);
return (DDI_SUCCESS);
}
/*
* NDI wrappers for ref counting, node allocation, and transitions
*/
/*
* Hold/release the devinfo node itself.
* Caller is assumed to prevent the devi from detaching during this call
*/
void
ndi_hold_devi(dev_info_t *dip)
{
mutex_enter(&DEVI(dip)->devi_lock);
ASSERT(DEVI(dip)->devi_ref >= 0);
DEVI(dip)->devi_ref++;
membar_enter(); /* make sure stores are flushed */
mutex_exit(&DEVI(dip)->devi_lock);
}
void
ndi_rele_devi(dev_info_t *dip)
{
ASSERT(DEVI(dip)->devi_ref > 0);
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_ref--;
membar_enter(); /* make sure stores are flushed */
mutex_exit(&DEVI(dip)->devi_lock);
}
int
e_ddi_devi_holdcnt(dev_info_t *dip)
{
return (DEVI(dip)->devi_ref);
}
/*
* Hold/release the driver the devinfo node is bound to.
*/
struct dev_ops *
ndi_hold_driver(dev_info_t *dip)
{
if (i_ddi_node_state(dip) < DS_BOUND)
return (NULL);
ASSERT(DEVI(dip)->devi_major != -1);
return (mod_hold_dev_by_major(DEVI(dip)->devi_major));
}
void
ndi_rele_driver(dev_info_t *dip)
{
ASSERT(i_ddi_node_state(dip) >= DS_BOUND);
mod_rele_dev_by_major(DEVI(dip)->devi_major);
}
/*
* Single thread entry into devinfo node for modifying its children (devinfo,
* pathinfo, and minor). To verify in ASSERTS use DEVI_BUSY_OWNED macro.
*/
void
ndi_devi_enter(dev_info_t *dip, int *circular)
{
struct dev_info *devi = DEVI(dip);
ASSERT(dip != NULL);
/* for vHCI, enforce (vHCI, pHCI) ndi_deve_enter() order */
ASSERT(!MDI_VHCI(dip) || (mdi_devi_pdip_entered(dip) == 0) ||
DEVI_BUSY_OWNED(dip));
mutex_enter(&devi->devi_lock);
if (devi->devi_busy_thread == curthread) {
devi->devi_circular++;
} else {
while (DEVI_BUSY_CHANGING(devi) && !panicstr)
cv_wait(&(devi->devi_cv), &(devi->devi_lock));
if (panicstr) {
mutex_exit(&devi->devi_lock);
return;
}
devi->devi_flags |= DEVI_BUSY;
devi->devi_busy_thread = curthread;
}
*circular = devi->devi_circular;
mutex_exit(&devi->devi_lock);
}
/*
* Release ndi_devi_enter or successful ndi_devi_tryenter.
*/
void
ndi_devi_exit(dev_info_t *dip, int circular)
{
struct dev_info *devi = DEVI(dip);
struct dev_info *vdevi;
ASSERT(dip != NULL);
if (panicstr)
return;
mutex_enter(&(devi->devi_lock));
if (circular != 0) {
devi->devi_circular--;
} else {
devi->devi_flags &= ~DEVI_BUSY;
ASSERT(devi->devi_busy_thread == curthread);
devi->devi_busy_thread = NULL;
cv_broadcast(&(devi->devi_cv));
}
mutex_exit(&(devi->devi_lock));
/*
* For pHCI exit we issue a broadcast to vHCI for ndi_devi_config_one()
* doing cv_wait on vHCI.
*/
if (MDI_PHCI(dip)) {
vdevi = DEVI(mdi_devi_get_vdip(dip));
if (vdevi) {
mutex_enter(&(vdevi->devi_lock));
if (vdevi->devi_flags & DEVI_PHCI_SIGNALS_VHCI) {
vdevi->devi_flags &= ~DEVI_PHCI_SIGNALS_VHCI;
cv_broadcast(&(vdevi->devi_cv));
}
mutex_exit(&(vdevi->devi_lock));
}
}
}
/*
* Release ndi_devi_enter and wait for possibility of new children, avoiding
* possibility of missing broadcast before getting to cv_timedwait().
*/
static void
ndi_devi_exit_and_wait(dev_info_t *dip, int circular, clock_t end_time)
{
struct dev_info *devi = DEVI(dip);
ASSERT(dip != NULL);
if (panicstr)
return;
/*
* We are called to wait for of a new child, and new child can
* only be added if circular is zero.
*/
ASSERT(circular == 0);
/* like ndi_devi_exit with circular of zero */
mutex_enter(&(devi->devi_lock));
devi->devi_flags &= ~DEVI_BUSY;
ASSERT(devi->devi_busy_thread == curthread);
devi->devi_busy_thread = NULL;
cv_broadcast(&(devi->devi_cv));
/* now wait for new children while still holding devi_lock */
(void) cv_timedwait(&devi->devi_cv, &(devi->devi_lock), end_time);
mutex_exit(&(devi->devi_lock));
}
/*
* Attempt to single thread entry into devinfo node for modifying its children.
*/
int
ndi_devi_tryenter(dev_info_t *dip, int *circular)
{
int rval = 1; /* assume we enter */
struct dev_info *devi = DEVI(dip);
ASSERT(dip != NULL);
mutex_enter(&devi->devi_lock);
if (devi->devi_busy_thread == (void *)curthread) {
devi->devi_circular++;
} else {
if (!DEVI_BUSY_CHANGING(devi)) {
devi->devi_flags |= DEVI_BUSY;
devi->devi_busy_thread = (void *)curthread;
} else {
rval = 0; /* devi is busy */
}
}
*circular = devi->devi_circular;
mutex_exit(&devi->devi_lock);
return (rval);
}
/*
* Allocate and initialize a new dev_info structure.
*
* This routine may be called at interrupt time by a nexus in
* response to a hotplug event, therefore memory allocations are
* not allowed to sleep.
*/
int
ndi_devi_alloc(dev_info_t *parent, char *node_name, pnode_t nodeid,
dev_info_t **ret_dip)
{
ASSERT(node_name != NULL);
ASSERT(ret_dip != NULL);
*ret_dip = i_ddi_alloc_node(parent, node_name, nodeid, -1, NULL,
KM_NOSLEEP);
if (*ret_dip == NULL) {
return (NDI_NOMEM);
}
return (NDI_SUCCESS);
}
/*
* Allocate and initialize a new dev_info structure
* This routine may sleep and should not be called at interrupt time
*/
void
ndi_devi_alloc_sleep(dev_info_t *parent, char *node_name, pnode_t nodeid,
dev_info_t **ret_dip)
{
ASSERT(node_name != NULL);
ASSERT(ret_dip != NULL);
*ret_dip = i_ddi_alloc_node(parent, node_name, nodeid, -1, NULL,
KM_SLEEP);
ASSERT(*ret_dip);
}
/*
* Remove an initialized (but not yet attached) dev_info
* node from it's parent.
*/
int
ndi_devi_free(dev_info_t *dip)
{
ASSERT(dip != NULL);
if (i_ddi_node_state(dip) >= DS_INITIALIZED)
return (DDI_FAILURE);
NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_free: %s%d (%p)\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip));
(void) ddi_remove_child(dip, 0);
return (NDI_SUCCESS);
}
/*
* ndi_devi_bind_driver() binds a driver to a given device. If it fails
* to bind the driver, it returns an appropriate error back. Some drivers
* may want to know if the actually failed to bind.
*/
int
ndi_devi_bind_driver(dev_info_t *dip, uint_t flags)
{
int ret = NDI_FAILURE;
int circ;
dev_info_t *pdip = ddi_get_parent(dip);
ASSERT(pdip);
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_bind_driver: %s%d (%p) flags: %x\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags));
ndi_devi_enter(pdip, &circ);
if (i_ndi_config_node(dip, DS_BOUND, flags) == DDI_SUCCESS)
ret = NDI_SUCCESS;
ndi_devi_exit(pdip, circ);
return (ret);
}
/*
* ndi_devi_unbind_driver: unbind the dip
*/
static int
ndi_devi_unbind_driver(dev_info_t *dip)
{
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip)));
return (i_ndi_unconfig_node(dip, DS_LINKED, 0));
}
/*
* Misc. help routines called by framework only
*/
/*
* Get the state of node
*/
ddi_node_state_t
i_ddi_node_state(dev_info_t *dip)
{
return (DEVI(dip)->devi_node_state);
}
/*
* Set the state of node
*/
void
i_ddi_set_node_state(dev_info_t *dip, ddi_node_state_t state)
{
DEVI(dip)->devi_node_state = state;
membar_enter(); /* make sure stores are flushed */
}
/*
* Determine if node is attached. The implementation accommodates transient
* DS_READY->DS_ATTACHED->DS_READY state changes. Outside this file, this
* function should be instead of i_ddi_node_state() DS_ATTACHED/DS_READY
* state checks.
*/
int
i_ddi_devi_attached(dev_info_t *dip)
{
return (DEVI(dip)->devi_node_state >= DS_ATTACHED);
}
/*
* Common function for finding a node in a sibling list given name and addr.
*
* By default, name is matched with devi_node_name. The following
* alternative match strategies are supported:
*
* FIND_NODE_BY_NODENAME: Match on node name - typical use.
*
* FIND_NODE_BY_DRIVER: A match on driver name bound to node is conducted.
* This support is used for support of OBP generic names and
* for the conversion from driver names to generic names. When
* more consistency in the generic name environment is achieved
* (and not needed for upgrade) this support can be removed.
*
* FIND_NODE_BY_ADDR: Match on just the addr.
* This support is only used/needed during boot to match
* a node bound via a path-based driver alias.
*
* If a child is not named (dev_addr == NULL), there are three
* possible actions:
*
* (1) skip it
* (2) FIND_ADDR_BY_INIT: bring child to DS_INITIALIZED state
* (3) FIND_ADDR_BY_CALLBACK: use a caller-supplied callback function
*/
#define FIND_NODE_BY_NODENAME 0x01
#define FIND_NODE_BY_DRIVER 0x02
#define FIND_NODE_BY_ADDR 0x04
#define FIND_ADDR_BY_INIT 0x10
#define FIND_ADDR_BY_CALLBACK 0x20
static dev_info_t *
find_sibling(dev_info_t *head, char *cname, char *caddr, uint_t flag,
int (*callback)(dev_info_t *, char *, int))
{
dev_info_t *dip;
char *addr, *buf;
major_t major;
uint_t by;
/* only one way to find a node */
by = flag &
(FIND_NODE_BY_DRIVER | FIND_NODE_BY_NODENAME | FIND_NODE_BY_ADDR);
ASSERT(by && BIT_ONLYONESET(by));
/* only one way to name a node */
ASSERT(((flag & FIND_ADDR_BY_INIT) == 0) ||
((flag & FIND_ADDR_BY_CALLBACK) == 0));
if (by == FIND_NODE_BY_DRIVER) {
major = ddi_name_to_major(cname);
if (major == DDI_MAJOR_T_NONE)
return (NULL);
}
/* preallocate buffer of naming node by callback */
if (flag & FIND_ADDR_BY_CALLBACK)
buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
/*
* Walk the child list to find a match
*/
if (head == NULL)
return (NULL);
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(head)));
for (dip = head; dip; dip = ddi_get_next_sibling(dip)) {
if (by == FIND_NODE_BY_NODENAME) {
/* match node name */
if (strcmp(cname, DEVI(dip)->devi_node_name) != 0)
continue;
} else if (by == FIND_NODE_BY_DRIVER) {
/* match driver major */
if (DEVI(dip)->devi_major != major)
continue;
}
if ((addr = DEVI(dip)->devi_addr) == NULL) {
/* name the child based on the flag */
if (flag & FIND_ADDR_BY_INIT) {
if (ddi_initchild(ddi_get_parent(dip), dip)
!= DDI_SUCCESS)
continue;
addr = DEVI(dip)->devi_addr;
} else if (flag & FIND_ADDR_BY_CALLBACK) {
if ((callback == NULL) || (callback(
dip, buf, MAXNAMELEN) != DDI_SUCCESS))
continue;
addr = buf;
} else {
continue; /* skip */
}
}
/* match addr */
ASSERT(addr != NULL);
if (strcmp(caddr, addr) == 0)
break; /* node found */
}
if (flag & FIND_ADDR_BY_CALLBACK)
kmem_free(buf, MAXNAMELEN);
return (dip);
}
/*
* Find child of pdip with name: cname@caddr
* Called by init_node() to look for duplicate nodes
*/
static dev_info_t *
find_duplicate_child(dev_info_t *pdip, dev_info_t *dip)
{
dev_info_t *dup;
char *cname = DEVI(dip)->devi_node_name;
char *caddr = DEVI(dip)->devi_addr;
/* search nodes before dip */
dup = find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_NODENAME, NULL);
if (dup != dip)
return (dup);
/*
* search nodes after dip; normally this is not needed,
*/
return (find_sibling(ddi_get_next_sibling(dip), cname, caddr,
FIND_NODE_BY_NODENAME, NULL));
}
/*
* Find a child of a given name and address, using a callback to name
* unnamed children. cname is the binding name.
*/
dev_info_t *
ndi_devi_findchild_by_callback(dev_info_t *pdip, char *dname, char *ua,
int (*make_ua)(dev_info_t *, char *, int))
{
int by = FIND_ADDR_BY_CALLBACK;
ASSERT(DEVI_BUSY_OWNED(pdip));
by |= dname ? FIND_NODE_BY_DRIVER : FIND_NODE_BY_ADDR;
return (find_sibling(ddi_get_child(pdip), dname, ua, by, make_ua));
}
/*
* Find a child of a given name and address, invoking initchild to name
* unnamed children. cname is the node name.
*/
static dev_info_t *
find_child_by_name(dev_info_t *pdip, char *cname, char *caddr)
{
dev_info_t *dip;
/* attempt search without changing state of preceding siblings */
dip = find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_NODENAME, NULL);
if (dip)
return (dip);
return (find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_NODENAME|FIND_ADDR_BY_INIT, NULL));
}
/*
* Find a child of a given name and address, invoking initchild to name
* unnamed children. cname is the node name.
*/
static dev_info_t *
find_child_by_driver(dev_info_t *pdip, char *cname, char *caddr)
{
dev_info_t *dip;
/* attempt search without changing state of preceding siblings */
dip = find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_DRIVER, NULL);
if (dip)
return (dip);
return (find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_DRIVER|FIND_ADDR_BY_INIT, NULL));
}
/*
* Find a child of a given address, invoking initchild to name
* unnamed children. cname is the node name.
*
* NOTE: This function is only used during boot. One would hope that
* unique sibling unit-addresses on hardware branches of the tree would
* be a requirement to avoid two drivers trying to control the same
* piece of hardware. Unfortunately there are some cases where this
* situation exists (/ssm@0,0/pci@1c,700000 /ssm@0,0/sghsc@1c,700000).
* Until unit-address uniqueness of siblings is guaranteed, use of this
* interface for purposes other than boot should be avoided.
*/
static dev_info_t *
find_child_by_addr(dev_info_t *pdip, char *caddr)
{
dev_info_t *dip;
/* return NULL if called without a unit-address */
if ((caddr == NULL) || (*caddr == '\0'))
return (NULL);
/* attempt search without changing state of preceding siblings */
dip = find_sibling(ddi_get_child(pdip), NULL, caddr,
FIND_NODE_BY_ADDR, NULL);
if (dip)
return (dip);
return (find_sibling(ddi_get_child(pdip), NULL, caddr,
FIND_NODE_BY_ADDR|FIND_ADDR_BY_INIT, NULL));
}
/*
* Deleting a property list. Take care, since some property structures
* may not be fully built.
*/
void
i_ddi_prop_list_delete(ddi_prop_t *prop)
{
while (prop) {
ddi_prop_t *next = prop->prop_next;
if (prop->prop_name)
kmem_free(prop->prop_name, strlen(prop->prop_name) + 1);
if ((prop->prop_len != 0) && prop->prop_val)
kmem_free(prop->prop_val, prop->prop_len);
kmem_free(prop, sizeof (struct ddi_prop));
prop = next;
}
}
/*
* Duplicate property list
*/
ddi_prop_t *
i_ddi_prop_list_dup(ddi_prop_t *prop, uint_t flag)
{
ddi_prop_t *result, *prev, *copy;
if (prop == NULL)
return (NULL);
result = prev = NULL;
for (; prop != NULL; prop = prop->prop_next) {
ASSERT(prop->prop_name != NULL);
copy = kmem_zalloc(sizeof (struct ddi_prop), flag);
if (copy == NULL)
goto fail;
copy->prop_dev = prop->prop_dev;
copy->prop_flags = prop->prop_flags;
copy->prop_name = i_ddi_strdup(prop->prop_name, flag);
if (copy->prop_name == NULL)
goto fail;
if ((copy->prop_len = prop->prop_len) != 0) {
copy->prop_val = kmem_zalloc(prop->prop_len, flag);
if (copy->prop_val == NULL)
goto fail;
bcopy(prop->prop_val, copy->prop_val, prop->prop_len);
}
if (prev == NULL)
result = prev = copy;
else
prev->prop_next = copy;
prev = copy;
}
return (result);
fail:
i_ddi_prop_list_delete(result);
return (NULL);
}
/*
* Create a reference property list, currently used only for
* driver global properties. Created with ref count of 1.
*/
ddi_prop_list_t *
i_ddi_prop_list_create(ddi_prop_t *props)
{
ddi_prop_list_t *list = kmem_alloc(sizeof (*list), KM_SLEEP);
list->prop_list = props;
list->prop_ref = 1;
return (list);
}
/*
* Increment/decrement reference count. The reference is
* protected by dn_lock. The only interfaces modifying
* dn_global_prop_ptr is in impl_make[free]_parlist().
*/
void
i_ddi_prop_list_hold(ddi_prop_list_t *prop_list, struct devnames *dnp)
{
ASSERT(prop_list->prop_ref >= 0);
ASSERT(mutex_owned(&dnp->dn_lock));
prop_list->prop_ref++;
}
void
i_ddi_prop_list_rele(ddi_prop_list_t *prop_list, struct devnames *dnp)
{
ASSERT(prop_list->prop_ref > 0);
ASSERT(mutex_owned(&dnp->dn_lock));
prop_list->prop_ref--;
if (prop_list->prop_ref == 0) {
i_ddi_prop_list_delete(prop_list->prop_list);
kmem_free(prop_list, sizeof (*prop_list));
}
}
/*
* Free table of classes by drivers
*/
void
i_ddi_free_exported_classes(char **classes, int n)
{
if ((n == 0) || (classes == NULL))
return;
kmem_free(classes, n * sizeof (char *));
}
/*
* Get all classes exported by dip
*/
int
i_ddi_get_exported_classes(dev_info_t *dip, char ***classes)
{
extern void lock_hw_class_list();
extern void unlock_hw_class_list();
extern int get_class(const char *, char **);
static char *rootclass = "root";
int n = 0, nclass = 0;
char **buf;
ASSERT(i_ddi_node_state(dip) >= DS_BOUND);
if (dip == ddi_root_node()) /* rootnode exports class "root" */
nclass = 1;
lock_hw_class_list();
nclass += get_class(ddi_driver_name(dip), NULL);
if (nclass == 0) {
unlock_hw_class_list();
return (0); /* no class exported */
}
*classes = buf = kmem_alloc(nclass * sizeof (char *), KM_SLEEP);
if (dip == ddi_root_node()) {
*buf++ = rootclass;
n = 1;
}
n += get_class(ddi_driver_name(dip), buf);
unlock_hw_class_list();
ASSERT(n == nclass); /* make sure buf wasn't overrun */
return (nclass);
}
/*
* Helper functions, returns NULL if no memory.
*/
char *
i_ddi_strdup(char *str, uint_t flag)
{
char *copy;
if (str == NULL)
return (NULL);
copy = kmem_alloc(strlen(str) + 1, flag);
if (copy == NULL)
return (NULL);
(void) strcpy(copy, str);
return (copy);
}
/*
* Load driver.conf file for major. Load all if major == -1.
*
* This is called
* - early in boot after devnames array is initialized
* - from vfs code when certain file systems are mounted
* - from add_drv when a new driver is added
*/
int
i_ddi_load_drvconf(major_t major)
{
extern int modrootloaded;
major_t low, high, m;
if (major == DDI_MAJOR_T_NONE) {
low = 0;
high = devcnt - 1;
} else {
if (major >= devcnt)
return (EINVAL);
low = high = major;
}
for (m = low; m <= high; m++) {
struct devnames *dnp = &devnamesp[m];
LOCK_DEV_OPS(&dnp->dn_lock);
dnp->dn_flags &= ~(DN_DRIVER_HELD|DN_DRIVER_INACTIVE);
(void) impl_make_parlist(m);
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
if (modrootloaded) {
ddi_walk_devs(ddi_root_node(), reset_nexus_flags,
(void *)(uintptr_t)major);
}
/* build dn_list from old entries in path_to_inst */
e_ddi_unorphan_instance_nos();
return (0);
}
/*
* Unload a specific driver.conf.
* Don't support unload all because it doesn't make any sense
*/
int
i_ddi_unload_drvconf(major_t major)
{
int error;
struct devnames *dnp;
if (major >= devcnt)
return (EINVAL);
/*
* Take the per-driver lock while unloading driver.conf
*/
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
error = impl_free_parlist(major);
UNLOCK_DEV_OPS(&dnp->dn_lock);
return (error);
}
/*
* Merge a .conf node. This is called by nexus drivers to augment
* hw node with properties specified in driver.conf file. This function
* takes a callback routine to name nexus children.
* The parent node must be held busy.
*
* It returns DDI_SUCCESS if the node is merged and DDI_FAILURE otherwise.
*/
int
ndi_merge_node(dev_info_t *dip, int (*make_ua)(dev_info_t *, char *, int))
{
dev_info_t *hwdip;
ASSERT(ndi_dev_is_persistent_node(dip) == 0);
ASSERT(ddi_get_name_addr(dip) != NULL);
hwdip = ndi_devi_findchild_by_callback(ddi_get_parent(dip),
ddi_binding_name(dip), ddi_get_name_addr(dip), make_ua);
/*
* Look for the hardware node that is the target of the merge;
* return failure if not found.
*/
if ((hwdip == NULL) || (hwdip == dip)) {
char *buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
NDI_CONFIG_DEBUG((CE_WARN, "No HW node to merge conf node %s",
ddi_deviname(dip, buf)));
kmem_free(buf, MAXNAMELEN);
return (DDI_FAILURE);
}
/*
* Make sure the hardware node is uninitialized and has no property.
* This may not be the case if new .conf files are load after some
* hardware nodes have already been initialized and attached.
*
* N.B. We return success here because the node was *intended*
* to be a merge node because there is a hw node with the name.
*/
mutex_enter(&DEVI(hwdip)->devi_lock);
if (ndi_dev_is_persistent_node(hwdip) == 0) {
char *buf;
mutex_exit(&DEVI(hwdip)->devi_lock);
buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
NDI_CONFIG_DEBUG((CE_NOTE, "Duplicate .conf node %s",
ddi_deviname(dip, buf)));
kmem_free(buf, MAXNAMELEN);
return (DDI_SUCCESS);
}
/*
* If it is possible that the hardware has already been touched
* then don't merge.
*/
if (i_ddi_node_state(hwdip) >= DS_INITIALIZED ||
(DEVI(hwdip)->devi_sys_prop_ptr != NULL) ||
(DEVI(hwdip)->devi_drv_prop_ptr != NULL)) {
char *buf;
mutex_exit(&DEVI(hwdip)->devi_lock);
buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
NDI_CONFIG_DEBUG((CE_NOTE,
"!Cannot merge .conf node %s with hw node %p "
"-- not in proper state",
ddi_deviname(dip, buf), (void *)hwdip));
kmem_free(buf, MAXNAMELEN);
return (DDI_SUCCESS);
}
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(hwdip)->devi_sys_prop_ptr = DEVI(dip)->devi_sys_prop_ptr;
DEVI(hwdip)->devi_drv_prop_ptr = DEVI(dip)->devi_drv_prop_ptr;
DEVI(dip)->devi_sys_prop_ptr = NULL;
DEVI(dip)->devi_drv_prop_ptr = NULL;
mutex_exit(&DEVI(dip)->devi_lock);
mutex_exit(&DEVI(hwdip)->devi_lock);
return (DDI_SUCCESS);
}
/*
* Merge a "wildcard" .conf node. This is called by nexus drivers to
* augment a set of hw node with properties specified in driver.conf file.
* The parent node must be held busy.
*
* There is no failure mode, since the nexus may or may not have child
* node bound the driver specified by the wildcard node.
*/
void
ndi_merge_wildcard_node(dev_info_t *dip)
{
dev_info_t *hwdip;
dev_info_t *pdip = ddi_get_parent(dip);
major_t major = ddi_driver_major(dip);
/* never attempt to merge a hw node */
ASSERT(ndi_dev_is_persistent_node(dip) == 0);
/* must be bound to a driver major number */
ASSERT(major != DDI_MAJOR_T_NONE);
/*
* Walk the child list to find all nodes bound to major
* and copy properties.
*/
mutex_enter(&DEVI(dip)->devi_lock);
ASSERT(DEVI_BUSY_OWNED(pdip));
for (hwdip = ddi_get_child(pdip); hwdip;
hwdip = ddi_get_next_sibling(hwdip)) {
/*
* Skip nodes not bound to same driver
*/
if (ddi_driver_major(hwdip) != major)
continue;
/*
* Skip .conf nodes
*/
if (ndi_dev_is_persistent_node(hwdip) == 0)
continue;
/*
* Make sure the node is uninitialized and has no property.
*/
mutex_enter(&DEVI(hwdip)->devi_lock);
if (i_ddi_node_state(hwdip) >= DS_INITIALIZED ||
(DEVI(hwdip)->devi_sys_prop_ptr != NULL) ||
(DEVI(hwdip)->devi_drv_prop_ptr != NULL)) {
mutex_exit(&DEVI(hwdip)->devi_lock);
NDI_CONFIG_DEBUG((CE_NOTE, "HW node %p state not "
"suitable for merging wildcard conf node %s",
(void *)hwdip, ddi_node_name(dip)));
continue;
}
DEVI(hwdip)->devi_sys_prop_ptr =
i_ddi_prop_list_dup(DEVI(dip)->devi_sys_prop_ptr, KM_SLEEP);
DEVI(hwdip)->devi_drv_prop_ptr =
i_ddi_prop_list_dup(DEVI(dip)->devi_drv_prop_ptr, KM_SLEEP);
mutex_exit(&DEVI(hwdip)->devi_lock);
}
mutex_exit(&DEVI(dip)->devi_lock);
}
/*
* Return the major number based on the compatible property. This interface
* may be used in situations where we are trying to detect if a better driver
* now exists for a device, so it must use the 'compatible' property. If
* a non-NULL formp is specified and the binding was based on compatible then
* return the pointer to the form used in *formp.
*/
major_t
ddi_compatible_driver_major(dev_info_t *dip, char **formp)
{
struct dev_info *devi = DEVI(dip);
void *compat;
size_t len;
char *p = NULL;
major_t major = DDI_MAJOR_T_NONE;
if (formp)
*formp = NULL;
if (ddi_prop_exists(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
"ddi-assigned")) {
major = ddi_name_to_major("nulldriver");
return (major);
}
/*
* Highest precedence binding is a path-oriented alias. Since this
* requires a 'path', this type of binding occurs via more obtuse
* 'rebind'. The need for a path-oriented alias 'rebind' is detected
* after a successful DDI_CTLOPS_INITCHILD to another driver: this is
* is the first point at which the unit-address (or instance) of the
* last component of the path is available (even though the path is
* bound to the wrong driver at this point).
*/
if (devi->devi_flags & DEVI_REBIND) {
p = devi->devi_rebinding_name;
major = ddi_name_to_major(p);
if (driver_active(major)) {
if (formp)
*formp = p;
return (major);
}
/*
* If for some reason devi_rebinding_name no longer resolves
* to a proper driver then clear DEVI_REBIND.
*/
mutex_enter(&devi->devi_lock);
devi->devi_flags &= ~DEVI_REBIND;
mutex_exit(&devi->devi_lock);
}
/* look up compatible property */
(void) lookup_compatible(dip, KM_SLEEP);
compat = (void *)(devi->devi_compat_names);
len = devi->devi_compat_length;
/* find the highest precedence compatible form with a driver binding */
while ((p = prom_decode_composite_string(compat, len, p)) != NULL) {
major = ddi_name_to_major(p);
if (driver_active(major)) {
if (formp)
*formp = p;
return (major);
}
}
/*
* none of the compatible forms have a driver binding, see if
* the node name has a driver binding.
*/
major = ddi_name_to_major(ddi_node_name(dip));
if (driver_active(major))
return (major);
/* no driver */
return (DDI_MAJOR_T_NONE);
}
/*
* Static help functions
*/
/*
* lookup the "compatible" property and cache it's contents in the
* device node.
*/
static int
lookup_compatible(dev_info_t *dip, uint_t flag)
{
int rv;
int prop_flags;
uint_t ncompatstrs;
char **compatstrpp;
char *di_compat_strp;
size_t di_compat_strlen;
if (DEVI(dip)->devi_compat_names) {
return (DDI_SUCCESS);
}
prop_flags = DDI_PROP_TYPE_STRING | DDI_PROP_DONTPASS;
if (flag & KM_NOSLEEP) {
prop_flags |= DDI_PROP_DONTSLEEP;
}
if (ndi_dev_is_prom_node(dip) == 0) {
prop_flags |= DDI_PROP_NOTPROM;
}
rv = ddi_prop_lookup_common(DDI_DEV_T_ANY, dip, prop_flags,
"compatible", &compatstrpp, &ncompatstrs,
ddi_prop_fm_decode_strings);
if (rv == DDI_PROP_NOT_FOUND) {
return (DDI_SUCCESS);
}
if (rv != DDI_PROP_SUCCESS) {
return (DDI_FAILURE);
}
/*
* encode the compatible property data in the dev_info node
*/
rv = DDI_SUCCESS;
if (ncompatstrs != 0) {
di_compat_strp = encode_composite_string(compatstrpp,
ncompatstrs, &di_compat_strlen, flag);
if (di_compat_strp != NULL) {
DEVI(dip)->devi_compat_names = di_compat_strp;
DEVI(dip)->devi_compat_length = di_compat_strlen;
} else {
rv = DDI_FAILURE;
}
}
ddi_prop_free(compatstrpp);
return (rv);
}
/*
* Create a composite string from a list of strings.
*
* A composite string consists of a single buffer containing one
* or more NULL terminated strings.
*/
static char *
encode_composite_string(char **strings, uint_t nstrings, size_t *retsz,
uint_t flag)
{
uint_t index;
char **strpp;
uint_t slen;
size_t cbuf_sz = 0;
char *cbuf_p;
char *cbuf_ip;
if (strings == NULL || nstrings == 0 || retsz == NULL) {
return (NULL);
}
for (index = 0, strpp = strings; index < nstrings; index++)
cbuf_sz += strlen(*(strpp++)) + 1;
if ((cbuf_p = kmem_alloc(cbuf_sz, flag)) == NULL) {
cmn_err(CE_NOTE,
"?failed to allocate device node compatstr");
return (NULL);
}
cbuf_ip = cbuf_p;
for (index = 0, strpp = strings; index < nstrings; index++) {
slen = strlen(*strpp);
bcopy(*(strpp++), cbuf_ip, slen);
cbuf_ip += slen;
*(cbuf_ip++) = '\0';
}
*retsz = cbuf_sz;
return (cbuf_p);
}
static void
link_to_driver_list(dev_info_t *dip)
{
major_t major = DEVI(dip)->devi_major;
struct devnames *dnp;
ASSERT(major != DDI_MAJOR_T_NONE);
/*
* Remove from orphan list
*/
if (ndi_dev_is_persistent_node(dip)) {
dnp = &orphanlist;
remove_from_dn_list(dnp, dip);
}
/*
* Add to per driver list
*/
dnp = &devnamesp[major];
add_to_dn_list(dnp, dip);
}
static void
unlink_from_driver_list(dev_info_t *dip)
{
major_t major = DEVI(dip)->devi_major;
struct devnames *dnp;
ASSERT(major != DDI_MAJOR_T_NONE);
/*
* Remove from per-driver list
*/
dnp = &devnamesp[major];
remove_from_dn_list(dnp, dip);
/*
* Add to orphan list
*/
if (ndi_dev_is_persistent_node(dip)) {
dnp = &orphanlist;
add_to_dn_list(dnp, dip);
}
}
/*
* scan the per-driver list looking for dev_info "dip"
*/
static dev_info_t *
in_dn_list(struct devnames *dnp, dev_info_t *dip)
{
struct dev_info *idevi;
if ((idevi = DEVI(dnp->dn_head)) == NULL)
return (NULL);
while (idevi) {
if (idevi == DEVI(dip))
return (dip);
idevi = idevi->devi_next;
}
return (NULL);
}
/*
* insert devinfo node 'dip' into the per-driver instance list
* headed by 'dnp'
*
* Nodes on the per-driver list are ordered: HW - SID - PSEUDO. The order is
* required for merging of .conf file data to work properly.
*/
static void
add_to_ordered_dn_list(struct devnames *dnp, dev_info_t *dip)
{
dev_info_t **dipp;
ASSERT(mutex_owned(&(dnp->dn_lock)));
dipp = &dnp->dn_head;
if (ndi_dev_is_prom_node(dip)) {
/*
* Find the first non-prom node or end of list
*/
while (*dipp && (ndi_dev_is_prom_node(*dipp) != 0)) {
dipp = (dev_info_t **)&DEVI(*dipp)->devi_next;
}
} else if (ndi_dev_is_persistent_node(dip)) {
/*
* Find the first non-persistent node
*/
while (*dipp && (ndi_dev_is_persistent_node(*dipp) != 0)) {
dipp = (dev_info_t **)&DEVI(*dipp)->devi_next;
}
} else {
/*
* Find the end of the list
*/
while (*dipp) {
dipp = (dev_info_t **)&DEVI(*dipp)->devi_next;
}
}
DEVI(dip)->devi_next = DEVI(*dipp);
*dipp = dip;
}
/*
* add a list of device nodes to the device node list in the
* devnames structure
*/
static void
add_to_dn_list(struct devnames *dnp, dev_info_t *dip)
{
/*
* Look to see if node already exists
*/
LOCK_DEV_OPS(&(dnp->dn_lock));
if (in_dn_list(dnp, dip)) {
cmn_err(CE_NOTE, "add_to_dn_list: node %s already in list",
DEVI(dip)->devi_node_name);
} else {
add_to_ordered_dn_list(dnp, dip);
}
UNLOCK_DEV_OPS(&(dnp->dn_lock));
}
static void
remove_from_dn_list(struct devnames *dnp, dev_info_t *dip)
{
dev_info_t **plist;
LOCK_DEV_OPS(&(dnp->dn_lock));
plist = (dev_info_t **)&dnp->dn_head;
while (*plist && (*plist != dip)) {
plist = (dev_info_t **)&DEVI(*plist)->devi_next;
}
if (*plist != NULL) {
ASSERT(*plist == dip);
*plist = (dev_info_t *)(DEVI(dip)->devi_next);
DEVI(dip)->devi_next = NULL;
} else {
NDI_CONFIG_DEBUG((CE_NOTE,
"remove_from_dn_list: node %s not found in list",
DEVI(dip)->devi_node_name));
}
UNLOCK_DEV_OPS(&(dnp->dn_lock));
}
/*
* Add and remove reference driver global property list
*/
static void
add_global_props(dev_info_t *dip)
{
struct devnames *dnp;
ddi_prop_list_t *plist;
ASSERT(DEVI(dip)->devi_global_prop_list == NULL);
ASSERT(DEVI(dip)->devi_major != DDI_MAJOR_T_NONE);
dnp = &devnamesp[DEVI(dip)->devi_major];
LOCK_DEV_OPS(&dnp->dn_lock);
plist = dnp->dn_global_prop_ptr;
if (plist == NULL) {
UNLOCK_DEV_OPS(&dnp->dn_lock);
return;
}
i_ddi_prop_list_hold(plist, dnp);
UNLOCK_DEV_OPS(&dnp->dn_lock);
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_global_prop_list = plist;
mutex_exit(&DEVI(dip)->devi_lock);
}
static void
remove_global_props(dev_info_t *dip)
{
ddi_prop_list_t *proplist;
mutex_enter(&DEVI(dip)->devi_lock);
proplist = DEVI(dip)->devi_global_prop_list;
DEVI(dip)->devi_global_prop_list = NULL;
mutex_exit(&DEVI(dip)->devi_lock);
if (proplist) {
major_t major;
struct devnames *dnp;
major = ddi_driver_major(dip);
ASSERT(major != DDI_MAJOR_T_NONE);
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
i_ddi_prop_list_rele(proplist, dnp);
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
}
#ifdef DEBUG
/*
* Set this variable to '0' to disable the optimization,
* and to 2 to print debug message.
*/
static int optimize_dtree = 1;
static void
debug_dtree(dev_info_t *devi, struct dev_info *adevi, char *service)
{
char *adeviname, *buf;
/*
* Don't print unless optimize dtree is set to 2+
*/
if (optimize_dtree <= 1)
return;
buf = kmem_alloc(MAXNAMELEN, KM_SLEEP);
adeviname = ddi_deviname((dev_info_t *)adevi, buf);
if (*adeviname == '\0')
adeviname = "root";
cmn_err(CE_CONT, "%s %s -> %s\n",
ddi_deviname(devi, buf), service, adeviname);
kmem_free(buf, MAXNAMELEN);
}
#else /* DEBUG */
#define debug_dtree(a1, a2, a3) /* nothing */
#endif /* DEBUG */
static void
ddi_optimize_dtree(dev_info_t *devi)
{
struct dev_info *pdevi;
struct bus_ops *b;
pdevi = DEVI(devi)->devi_parent;
ASSERT(pdevi);
/*
* Set the unoptimized values
*/
DEVI(devi)->devi_bus_map_fault = pdevi;
DEVI(devi)->devi_bus_dma_allochdl = pdevi;
DEVI(devi)->devi_bus_dma_freehdl = pdevi;
DEVI(devi)->devi_bus_dma_bindhdl = pdevi;
DEVI(devi)->devi_bus_dma_bindfunc =
pdevi->devi_ops->devo_bus_ops->bus_dma_bindhdl;
DEVI(devi)->devi_bus_dma_unbindhdl = pdevi;
DEVI(devi)->devi_bus_dma_unbindfunc =
pdevi->devi_ops->devo_bus_ops->bus_dma_unbindhdl;
DEVI(devi)->devi_bus_dma_flush = pdevi;
DEVI(devi)->devi_bus_dma_win = pdevi;
DEVI(devi)->devi_bus_dma_ctl = pdevi;
DEVI(devi)->devi_bus_ctl = pdevi;
#ifdef DEBUG
if (optimize_dtree == 0)
return;
#endif /* DEBUG */
b = pdevi->devi_ops->devo_bus_ops;
if (i_ddi_map_fault == b->bus_map_fault) {
DEVI(devi)->devi_bus_map_fault = pdevi->devi_bus_map_fault;
debug_dtree(devi, DEVI(devi)->devi_bus_map_fault,
"bus_map_fault");
}
if (ddi_dma_allochdl == b->bus_dma_allochdl) {
DEVI(devi)->devi_bus_dma_allochdl =
pdevi->devi_bus_dma_allochdl;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_allochdl,
"bus_dma_allochdl");
}
if (ddi_dma_freehdl == b->bus_dma_freehdl) {
DEVI(devi)->devi_bus_dma_freehdl = pdevi->devi_bus_dma_freehdl;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_freehdl,
"bus_dma_freehdl");
}
if (ddi_dma_bindhdl == b->bus_dma_bindhdl) {
DEVI(devi)->devi_bus_dma_bindhdl = pdevi->devi_bus_dma_bindhdl;
DEVI(devi)->devi_bus_dma_bindfunc =
pdevi->devi_bus_dma_bindhdl->devi_ops->
devo_bus_ops->bus_dma_bindhdl;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_bindhdl,
"bus_dma_bindhdl");
}
if (ddi_dma_unbindhdl == b->bus_dma_unbindhdl) {
DEVI(devi)->devi_bus_dma_unbindhdl =
pdevi->devi_bus_dma_unbindhdl;
DEVI(devi)->devi_bus_dma_unbindfunc =
pdevi->devi_bus_dma_unbindhdl->devi_ops->
devo_bus_ops->bus_dma_unbindhdl;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_unbindhdl,
"bus_dma_unbindhdl");
}
if (ddi_dma_flush == b->bus_dma_flush) {
DEVI(devi)->devi_bus_dma_flush = pdevi->devi_bus_dma_flush;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_flush,
"bus_dma_flush");
}
if (ddi_dma_win == b->bus_dma_win) {
DEVI(devi)->devi_bus_dma_win = pdevi->devi_bus_dma_win;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_win,
"bus_dma_win");
}
if (ddi_dma_mctl == b->bus_dma_ctl) {
DEVI(devi)->devi_bus_dma_ctl = pdevi->devi_bus_dma_ctl;
debug_dtree(devi, DEVI(devi)->devi_bus_dma_ctl, "bus_dma_ctl");
}
if (ddi_ctlops == b->bus_ctl) {
DEVI(devi)->devi_bus_ctl = pdevi->devi_bus_ctl;
debug_dtree(devi, DEVI(devi)->devi_bus_ctl, "bus_ctl");
}
}
#define MIN_DEVINFO_LOG_SIZE max_ncpus
#define MAX_DEVINFO_LOG_SIZE max_ncpus * 10
static void
da_log_init()
{
devinfo_log_header_t *dh;
int logsize = devinfo_log_size;
if (logsize == 0)
logsize = MIN_DEVINFO_LOG_SIZE;
else if (logsize > MAX_DEVINFO_LOG_SIZE)
logsize = MAX_DEVINFO_LOG_SIZE;
dh = kmem_alloc(logsize * PAGESIZE, KM_SLEEP);
mutex_init(&dh->dh_lock, NULL, MUTEX_DEFAULT, NULL);
dh->dh_max = ((logsize * PAGESIZE) - sizeof (*dh)) /
sizeof (devinfo_audit_t) + 1;
dh->dh_curr = -1;
dh->dh_hits = 0;
devinfo_audit_log = dh;
}
/*
* Log the stack trace in per-devinfo audit structure and also enter
* it into a system wide log for recording the time history.
*/
static void
da_log_enter(dev_info_t *dip)
{
devinfo_audit_t *da_log, *da = DEVI(dip)->devi_audit;
devinfo_log_header_t *dh = devinfo_audit_log;
if (devinfo_audit_log == NULL)
return;
ASSERT(da != NULL);
da->da_devinfo = dip;
da->da_timestamp = gethrtime();
da->da_thread = curthread;
da->da_node_state = DEVI(dip)->devi_node_state;
da->da_device_state = DEVI(dip)->devi_state;
da->da_depth = getpcstack(da->da_stack, DDI_STACK_DEPTH);
/*
* Copy into common log and note the location for tracing history
*/
mutex_enter(&dh->dh_lock);
dh->dh_hits++;
dh->dh_curr++;
if (dh->dh_curr >= dh->dh_max)
dh->dh_curr -= dh->dh_max;
da_log = &dh->dh_entry[dh->dh_curr];
mutex_exit(&dh->dh_lock);
bcopy(da, da_log, sizeof (devinfo_audit_t));
da->da_lastlog = da_log;
}
static void
attach_drivers()
{
int i;
for (i = 0; i < devcnt; i++) {
struct devnames *dnp = &devnamesp[i];
if ((dnp->dn_flags & DN_FORCE_ATTACH) &&
(ddi_hold_installed_driver((major_t)i) != NULL))
ddi_rele_driver((major_t)i);
}
}
/*
* Launch a thread to force attach drivers. This avoids penalty on boot time.
*/
void
i_ddi_forceattach_drivers()
{
/*
* Attach IB VHCI driver before the force-attach thread attaches the
* IB HCA driver. IB HCA driver will fail if IB Nexus has not yet
* been attached.
*/
(void) ddi_hold_installed_driver(ddi_name_to_major("ib"));
(void) thread_create(NULL, 0, (void (*)())attach_drivers, NULL, 0, &p0,
TS_RUN, minclsyspri);
}
/*
* This is a private DDI interface for optimizing boot performance.
* I/O subsystem initialization is considered complete when devfsadm
* is executed.
*
* NOTE: The start of syseventd happens to be a convenient indicator
* of the completion of I/O initialization during boot.
* The implementation should be replaced by something more robust.
*/
int
i_ddi_io_initialized()
{
extern int sysevent_daemon_init;
return (sysevent_daemon_init);
}
/*
* May be used to determine system boot state
* "Available" means the system is for the most part up
* and initialized, with all system services either up or
* capable of being started. This state is set by devfsadm
* during the boot process. The /dev filesystem infers
* from this when implicit reconfig can be performed,
* ie, devfsadm can be invoked. Please avoid making
* further use of this unless it's really necessary.
*/
int
i_ddi_sysavail()
{
return (devname_state & DS_SYSAVAIL);
}
/*
* May be used to determine if boot is a reconfigure boot.
*/
int
i_ddi_reconfig()
{
return (devname_state & DS_RECONFIG);
}
/*
* Note system services are up, inform /dev.
*/
void
i_ddi_set_sysavail()
{
if ((devname_state & DS_SYSAVAIL) == 0) {
devname_state |= DS_SYSAVAIL;
sdev_devstate_change();
}
}
/*
* Note reconfiguration boot, inform /dev.
*/
void
i_ddi_set_reconfig()
{
if ((devname_state & DS_RECONFIG) == 0) {
devname_state |= DS_RECONFIG;
sdev_devstate_change();
}
}
/*
* device tree walking
*/
struct walk_elem {
struct walk_elem *next;
dev_info_t *dip;
};
static void
free_list(struct walk_elem *list)
{
while (list) {
struct walk_elem *next = list->next;
kmem_free(list, sizeof (*list));
list = next;
}
}
static void
append_node(struct walk_elem **list, dev_info_t *dip)
{
struct walk_elem *tail;
struct walk_elem *elem = kmem_alloc(sizeof (*elem), KM_SLEEP);
elem->next = NULL;
elem->dip = dip;
if (*list == NULL) {
*list = elem;
return;
}
tail = *list;
while (tail->next)
tail = tail->next;
tail->next = elem;
}
/*
* The implementation of ddi_walk_devs().
*/
static int
walk_devs(dev_info_t *dip, int (*f)(dev_info_t *, void *), void *arg,
int do_locking)
{
struct walk_elem *head = NULL;
/*
* Do it in two passes. First pass invoke callback on each
* dip on the sibling list. Second pass invoke callback on
* children of each dip.
*/
while (dip) {
switch ((*f)(dip, arg)) {
case DDI_WALK_TERMINATE:
free_list(head);
return (DDI_WALK_TERMINATE);
case DDI_WALK_PRUNESIB:
/* ignore sibling by setting dip to NULL */
append_node(&head, dip);
dip = NULL;
break;
case DDI_WALK_PRUNECHILD:
/* don't worry about children */
dip = ddi_get_next_sibling(dip);
break;
case DDI_WALK_CONTINUE:
default:
append_node(&head, dip);
dip = ddi_get_next_sibling(dip);
break;
}
}
/* second pass */
while (head) {
int circ;
struct walk_elem *next = head->next;
if (do_locking)
ndi_devi_enter(head->dip, &circ);
if (walk_devs(ddi_get_child(head->dip), f, arg, do_locking) ==
DDI_WALK_TERMINATE) {
if (do_locking)
ndi_devi_exit(head->dip, circ);
free_list(head);
return (DDI_WALK_TERMINATE);
}
if (do_locking)
ndi_devi_exit(head->dip, circ);
kmem_free(head, sizeof (*head));
head = next;
}
return (DDI_WALK_CONTINUE);
}
/*
* This general-purpose routine traverses the tree of dev_info nodes,
* starting from the given node, and calls the given function for each
* node that it finds with the current node and the pointer arg (which
* can point to a structure of information that the function
* needs) as arguments.
*
* It does the walk a layer at a time, not depth-first. The given function
* must return one of the following values:
* DDI_WALK_CONTINUE
* DDI_WALK_PRUNESIB
* DDI_WALK_PRUNECHILD
* DDI_WALK_TERMINATE
*
* N.B. Since we walk the sibling list, the caller must ensure that
* the parent of dip is held against changes, unless the parent
* is rootnode. ndi_devi_enter() on the parent is sufficient.
*
* To avoid deadlock situations, caller must not attempt to
* configure/unconfigure/remove device node in (*f)(), nor should
* it attempt to recurse on other nodes in the system. Any
* ndi_devi_enter() done by (*f)() must occur 'at-or-below' the
* node entered prior to ddi_walk_devs(). Furthermore, if (*f)()
* does any multi-threading (in framework *or* in driver) then the
* ndi_devi_enter() calls done by dependent threads must be
* 'strictly-below'.
*
* This is not callable from device autoconfiguration routines.
* They include, but not limited to, _init(9e), _fini(9e), probe(9e),
* attach(9e), and detach(9e).
*/
void
ddi_walk_devs(dev_info_t *dip, int (*f)(dev_info_t *, void *), void *arg)
{
ASSERT(dip == NULL || ddi_get_parent(dip) == NULL ||
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
(void) walk_devs(dip, f, arg, 1);
}
/*
* This is a general-purpose routine traverses the per-driver list
* and calls the given function for each node. must return one of
* the following values:
* DDI_WALK_CONTINUE
* DDI_WALK_TERMINATE
*
* N.B. The same restrictions from ddi_walk_devs() apply.
*/
void
e_ddi_walk_driver(char *drv, int (*f)(dev_info_t *, void *), void *arg)
{
major_t major;
struct devnames *dnp;
dev_info_t *dip;
major = ddi_name_to_major(drv);
if (major == DDI_MAJOR_T_NONE)
return;
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
dip = dnp->dn_head;
while (dip) {
ndi_hold_devi(dip);
UNLOCK_DEV_OPS(&dnp->dn_lock);
if ((*f)(dip, arg) == DDI_WALK_TERMINATE) {
ndi_rele_devi(dip);
return;
}
LOCK_DEV_OPS(&dnp->dn_lock);
ndi_rele_devi(dip);
dip = ddi_get_next(dip);
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
}
/*
* argument to i_find_devi, a devinfo node search callback function.
*/
struct match_info {
dev_info_t *dip; /* result */
char *nodename; /* if non-null, nodename must match */
int instance; /* if != -1, instance must match */
int attached; /* if != 0, i_ddi_devi_attached() */
};
static int
i_find_devi(dev_info_t *dip, void *arg)
{
struct match_info *info = (struct match_info *)arg;
if (((info->nodename == NULL) ||
(strcmp(ddi_node_name(dip), info->nodename) == 0)) &&
((info->instance == -1) ||
(ddi_get_instance(dip) == info->instance)) &&
((info->attached == 0) || i_ddi_devi_attached(dip))) {
info->dip = dip;
ndi_hold_devi(dip);
return (DDI_WALK_TERMINATE);
}
return (DDI_WALK_CONTINUE);
}
/*
* Find dip with a known node name and instance and return with it held
*/
dev_info_t *
ddi_find_devinfo(char *nodename, int instance, int attached)
{
struct match_info info;
info.nodename = nodename;
info.instance = instance;
info.attached = attached;
info.dip = NULL;
ddi_walk_devs(ddi_root_node(), i_find_devi, &info);
return (info.dip);
}
extern ib_boot_prop_t *iscsiboot_prop;
static void
i_ddi_parse_iscsi_name(char *name, char **nodename, char **addrname,
char **minorname)
{
char *cp, *colon;
static char nulladdrname[] = "";
/* default values */
if (nodename)
*nodename = name;
if (addrname)
*addrname = nulladdrname;
if (minorname)
*minorname = NULL;
cp = colon = name;
while (*cp != '\0') {
if (addrname && *cp == '@') {
*addrname = cp + 1;
*cp = '\0';
} else if (minorname && *cp == ':') {
*minorname = cp + 1;
colon = cp;
}
++cp;
}
if (colon != name) {
*colon = '\0';
}
}
/*
* Parse for name, addr, and minor names. Some args may be NULL.
*/
void
i_ddi_parse_name(char *name, char **nodename, char **addrname, char **minorname)
{
char *cp;
static char nulladdrname[] = "";
/* default values */
if (nodename)
*nodename = name;
if (addrname)
*addrname = nulladdrname;
if (minorname)
*minorname = NULL;
cp = name;
while (*cp != '\0') {
if (addrname && *cp == '@') {
*addrname = cp + 1;
*cp = '\0';
} else if (minorname && *cp == ':') {
*minorname = cp + 1;
*cp = '\0';
}
++cp;
}
}
static char *
child_path_to_driver(dev_info_t *parent, char *child_name, char *unit_address)
{
char *p, *drvname = NULL;
major_t maj;
/*
* Construct the pathname and ask the implementation
* if it can do a driver = f(pathname) for us, if not
* we'll just default to using the node-name that
* was given to us. We want to do this first to
* allow the platform to use 'generic' names for
* legacy device drivers.
*/
p = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(parent, p);
(void) strcat(p, "/");
(void) strcat(p, child_name);
if (unit_address && *unit_address) {
(void) strcat(p, "@");
(void) strcat(p, unit_address);
}
/*
* Get the binding. If there is none, return the child_name
* and let the caller deal with it.
*/
maj = path_to_major(p);
kmem_free(p, MAXPATHLEN);
if (maj != DDI_MAJOR_T_NONE)
drvname = ddi_major_to_name(maj);
if (drvname == NULL)
drvname = child_name;
return (drvname);
}
#define PCI_EX_CLASS "pciexclass"
#define PCI_EX "pciex"
#define PCI_CLASS "pciclass"
#define PCI "pci"
int
ddi_is_pci_dip(dev_info_t *dip)
{
char *prop = NULL;
if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"compatible", &prop) == DDI_PROP_SUCCESS) {
ASSERT(prop);
if (strncmp(prop, PCI_EX_CLASS, sizeof (PCI_EX_CLASS) - 1)
== 0 ||
strncmp(prop, PCI_EX, sizeof (PCI_EX)- 1)
== 0 ||
strncmp(prop, PCI_CLASS, sizeof (PCI_CLASS) - 1)
== 0 ||
strncmp(prop, PCI, sizeof (PCI) - 1)
== 0) {
ddi_prop_free(prop);
return (1);
}
}
if (prop != NULL) {
ddi_prop_free(prop);
}
return (0);
}
/*
* Given the pathname of a device, fill in the dev_info_t value and/or the
* dev_t value and/or the spectype, depending on which parameters are non-NULL.
* If there is an error, this function returns -1.
*
* NOTE: If this function returns the dev_info_t structure, then it
* does so with a hold on the devi. Caller should ensure that they get
* decremented via ddi_release_devi() or ndi_rele_devi();
*
* This function can be invoked in the boot case for a pathname without
* device argument (:xxxx), traditionally treated as a minor name.
* In this case, we do the following
* (1) search the minor node of type DDM_DEFAULT.
* (2) if no DDM_DEFAULT minor exists, then the first non-alias minor is chosen.
* (3) if neither exists, a dev_t is faked with minor number = instance.
* As of S9 FCS, no instance of #1 exists. #2 is used by several platforms
* to default the boot partition to :a possibly by other OBP definitions.
* #3 is used for booting off network interfaces, most SPARC network
* drivers support Style-2 only, so only DDM_ALIAS minor exists.
*
* It is possible for OBP to present device args at the end of the path as
* well as in the middle. For example, with IB the following strings are
* valid boot paths.
* a /pci@8,700000/ib@1,2:port=1,pkey=ff,dhcp,...
* b /pci@8,700000/ib@1,1:port=1/ioc@xxxxxx,yyyyyyy:dhcp
* Case (a), we first look for minor node "port=1,pkey...".
* Failing that, we will pass "port=1,pkey..." to the bus_config
* entry point of ib (HCA) driver.
* Case (b), configure ib@1,1 as usual. Then invoke ib's bus_config
* with argument "ioc@xxxxxxx,yyyyyyy:port=1". After configuring
* the ioc, look for minor node dhcp. If not found, pass ":dhcp"
* to ioc's bus_config entry point.
*/
int
resolve_pathname(char *pathname,
dev_info_t **dipp, dev_t *devtp, int *spectypep)
{
int error;
dev_info_t *parent, *child;
struct pathname pn;
char *component, *config_name;
char *minorname = NULL;
char *prev_minor = NULL;
dev_t devt = NODEV;
int spectype;
struct ddi_minor_data *dmn;
int circ;
if (*pathname != '/')
return (EINVAL);
parent = ddi_root_node(); /* Begin at the top of the tree */
if (error = pn_get(pathname, UIO_SYSSPACE, &pn))
return (error);
pn_skipslash(&pn);
ASSERT(i_ddi_devi_attached(parent));
ndi_hold_devi(parent);
component = kmem_alloc(MAXNAMELEN, KM_SLEEP);
config_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
while (pn_pathleft(&pn)) {
/* remember prev minor (:xxx) in the middle of path */
if (minorname)
prev_minor = i_ddi_strdup(minorname, KM_SLEEP);
/* Get component and chop off minorname */
(void) pn_getcomponent(&pn, component);
if ((iscsiboot_prop != NULL) &&
(strcmp((DEVI(parent)->devi_node_name), "iscsi") == 0)) {
i_ddi_parse_iscsi_name(component, NULL, NULL,
&minorname);
} else {
i_ddi_parse_name(component, NULL, NULL, &minorname);
}
if (prev_minor == NULL) {
(void) snprintf(config_name, MAXNAMELEN, "%s",
component);
} else {
(void) snprintf(config_name, MAXNAMELEN, "%s:%s",
component, prev_minor);
kmem_free(prev_minor, strlen(prev_minor) + 1);
prev_minor = NULL;
}
/*
* Find and configure the child
*/
if (ndi_devi_config_one(parent, config_name, &child,
NDI_PROMNAME | NDI_NO_EVENT) != NDI_SUCCESS) {
ndi_rele_devi(parent);
pn_free(&pn);
kmem_free(component, MAXNAMELEN);
kmem_free(config_name, MAXNAMELEN);
return (-1);
}
ASSERT(i_ddi_devi_attached(child));
ndi_rele_devi(parent);
parent = child;
pn_skipslash(&pn);
}
/*
* First look for a minor node matching minorname.
* Failing that, try to pass minorname to bus_config().
*/
if (minorname && i_ddi_minorname_to_devtspectype(parent,
minorname, &devt, &spectype) == DDI_FAILURE) {
(void) snprintf(config_name, MAXNAMELEN, "%s", minorname);
if (ndi_devi_config_obp_args(parent,
config_name, &child, 0) != NDI_SUCCESS) {
ndi_rele_devi(parent);
pn_free(&pn);
kmem_free(component, MAXNAMELEN);
kmem_free(config_name, MAXNAMELEN);
NDI_CONFIG_DEBUG((CE_NOTE,
"%s: minor node not found\n", pathname));
return (-1);
}
minorname = NULL; /* look for default minor */
ASSERT(i_ddi_devi_attached(child));
ndi_rele_devi(parent);
parent = child;
}
if (devtp || spectypep) {
if (minorname == NULL) {
/*
* Search for a default entry with an active
* ndi_devi_enter to protect the devi_minor list.
*/
ndi_devi_enter(parent, &circ);
for (dmn = DEVI(parent)->devi_minor; dmn;
dmn = dmn->next) {
if (dmn->type == DDM_DEFAULT) {
devt = dmn->ddm_dev;
spectype = dmn->ddm_spec_type;
break;
}
}
if (devt == NODEV) {
/*
* No default minor node, try the first one;
* else, assume 1-1 instance-minor mapping
*/
dmn = DEVI(parent)->devi_minor;
if (dmn && ((dmn->type == DDM_MINOR) ||
(dmn->type == DDM_INTERNAL_PATH))) {
devt = dmn->ddm_dev;
spectype = dmn->ddm_spec_type;
} else {
devt = makedevice(
DEVI(parent)->devi_major,
ddi_get_instance(parent));
spectype = S_IFCHR;
}
}
ndi_devi_exit(parent, circ);
}
if (devtp)
*devtp = devt;
if (spectypep)
*spectypep = spectype;
}
pn_free(&pn);
kmem_free(component, MAXNAMELEN);
kmem_free(config_name, MAXNAMELEN);
/*
* If there is no error, return the appropriate parameters
*/
if (dipp != NULL)
*dipp = parent;
else {
/*
* We should really keep the ref count to keep the node from
* detaching but ddi_pathname_to_dev_t() specifies a NULL dipp,
* so we have no way of passing back the held dip. Not holding
* the dip allows detaches to occur - which can cause problems
* for subsystems which call ddi_pathname_to_dev_t (console).
*
* Instead of holding the dip, we place a ddi-no-autodetach
* property on the node to prevent auto detaching.
*
* The right fix is to remove ddi_pathname_to_dev_t and replace
* it, and all references, with a call that specifies a dipp.
* In addition, the callers of this new interfaces would then
* need to call ndi_rele_devi when the reference is complete.
*
*/
(void) ddi_prop_update_int(DDI_DEV_T_NONE, parent,
DDI_NO_AUTODETACH, 1);
ndi_rele_devi(parent);
}
return (0);
}
/*
* Given the pathname of a device, return the dev_t of the corresponding
* device. Returns NODEV on failure.
*
* Note that this call sets the DDI_NO_AUTODETACH property on the devinfo node.
*/
dev_t
ddi_pathname_to_dev_t(char *pathname)
{
dev_t devt;
int error;
error = resolve_pathname(pathname, NULL, &devt, NULL);
return (error ? NODEV : devt);
}
/*
* Translate a prom pathname to kernel devfs pathname.
* Caller is assumed to allocate devfspath memory of
* size at least MAXPATHLEN
*
* The prom pathname may not include minor name, but
* devfs pathname has a minor name portion.
*/
int
i_ddi_prompath_to_devfspath(char *prompath, char *devfspath)
{
dev_t devt = (dev_t)NODEV;
dev_info_t *dip = NULL;
char *minor_name = NULL;
int spectype;
int error;
int circ;
error = resolve_pathname(prompath, &dip, &devt, &spectype);
if (error)
return (DDI_FAILURE);
ASSERT(dip && devt != NODEV);
/*
* Get in-kernel devfs pathname
*/
(void) ddi_pathname(dip, devfspath);
ndi_devi_enter(dip, &circ);
minor_name = i_ddi_devtspectype_to_minorname(dip, devt, spectype);
if (minor_name) {
(void) strcat(devfspath, ":");
(void) strcat(devfspath, minor_name);
} else {
/*
* If minor_name is NULL, we have an alias minor node.
* So manufacture a path to the corresponding clone minor.
*/
(void) snprintf(devfspath, MAXPATHLEN, "%s:%s",
CLONE_PATH, ddi_driver_name(dip));
}
ndi_devi_exit(dip, circ);
/* release hold from resolve_pathname() */
ndi_rele_devi(dip);
return (0);
}
/*
* This function is intended to identify drivers that must quiesce for fast
* reboot to succeed. It does not claim to have more knowledge about the device
* than its driver. If a driver has implemented quiesce(), it will be invoked;
* if a so identified driver does not manage any device that needs to be
* quiesced, it must explicitly set its devo_quiesce dev_op to
* ddi_quiesce_not_needed.
*/
static int skip_pseudo = 1; /* Skip pseudo devices */
static int skip_non_hw = 1; /* Skip devices with no hardware property */
static int
should_implement_quiesce(dev_info_t *dip)
{
struct dev_info *devi = DEVI(dip);
dev_info_t *pdip;
/*
* If dip is pseudo and skip_pseudo is set, driver doesn't have to
* implement quiesce().
*/
if (skip_pseudo &&
strncmp(ddi_binding_name(dip), "pseudo", sizeof ("pseudo")) == 0)
return (0);
/*
* If parent dip is pseudo and skip_pseudo is set, driver doesn't have
* to implement quiesce().
*/
if (skip_pseudo && (pdip = ddi_get_parent(dip)) != NULL &&
strncmp(ddi_binding_name(pdip), "pseudo", sizeof ("pseudo")) == 0)
return (0);
/*
* If not attached, driver doesn't have to implement quiesce().
*/
if (!i_ddi_devi_attached(dip))
return (0);
/*
* If dip has no hardware property and skip_non_hw is set,
* driver doesn't have to implement quiesce().
*/
if (skip_non_hw && devi->devi_hw_prop_ptr == NULL)
return (0);
return (1);
}
static int
driver_has_quiesce(struct dev_ops *ops)
{
if ((ops->devo_rev >= 4) && (ops->devo_quiesce != nodev) &&
(ops->devo_quiesce != NULL) && (ops->devo_quiesce != nulldev) &&
(ops->devo_quiesce != ddi_quiesce_not_supported))
return (1);
else
return (0);
}
/*
* Check to see if a driver has implemented the quiesce() DDI function.
*/
int
check_driver_quiesce(dev_info_t *dip, void *arg)
{
struct dev_ops *ops;
if (!should_implement_quiesce(dip))
return (DDI_WALK_CONTINUE);
if ((ops = ddi_get_driver(dip)) == NULL)
return (DDI_WALK_CONTINUE);
if (driver_has_quiesce(ops)) {
if ((quiesce_debug & 0x2) == 0x2) {
if (ops->devo_quiesce == ddi_quiesce_not_needed)
cmn_err(CE_CONT, "%s does not need to be "
"quiesced", ddi_driver_name(dip));
else
cmn_err(CE_CONT, "%s has quiesce routine",
ddi_driver_name(dip));
}
} else {
if (arg != NULL)
*((int *)arg) = -1;
cmn_err(CE_WARN, "%s has no quiesce()", ddi_driver_name(dip));
}
return (DDI_WALK_CONTINUE);
}
/*
* Quiesce device.
*/
static void
quiesce_one_device(dev_info_t *dip, void *arg)
{
struct dev_ops *ops;
int should_quiesce = 0;
/*
* If the device is not attached it doesn't need to be quiesced.
*/
if (!i_ddi_devi_attached(dip))
return;
if ((ops = ddi_get_driver(dip)) == NULL)
return;
should_quiesce = should_implement_quiesce(dip);
/*
* If there's an implementation of quiesce(), always call it even if
* some of the drivers don't have quiesce() or quiesce() have failed
* so we can do force fast reboot. The implementation of quiesce()
* should not negatively affect a regular reboot.
*/
if (driver_has_quiesce(ops)) {
int rc = DDI_SUCCESS;
if (ops->devo_quiesce == ddi_quiesce_not_needed)
return;
rc = devi_quiesce(dip);
if (rc != DDI_SUCCESS && should_quiesce) {
#ifdef DEBUG
cmn_err(CE_WARN, "quiesce() failed for %s%d",
ddi_driver_name(dip), ddi_get_instance(dip));
#endif /* DEBUG */
if (arg != NULL)
*((int *)arg) = -1;
}
} else if (should_quiesce && arg != NULL) {
*((int *)arg) = -1;
}
}
/*
* Traverse the dev info tree in a breadth-first manner so that we quiesce
* children first. All subtrees under the parent of dip will be quiesced.
*/
void
quiesce_devices(dev_info_t *dip, void *arg)
{
/*
* if we're reached here, the device tree better not be changing.
* so either devinfo_freeze better be set or we better be panicing.
*/
ASSERT(devinfo_freeze || panicstr);
for (; dip != NULL; dip = ddi_get_next_sibling(dip)) {
quiesce_devices(ddi_get_child(dip), arg);
quiesce_one_device(dip, arg);
}
}
/*
* Reset all the pure leaf drivers on the system at halt time
*/
static int
reset_leaf_device(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
struct dev_ops *ops;
/* if the device doesn't need to be reset then there's nothing to do */
if (!DEVI_NEED_RESET(dip))
return (DDI_WALK_CONTINUE);
/*
* if the device isn't a char/block device or doesn't have a
* reset entry point then there's nothing to do.
*/
ops = ddi_get_driver(dip);
if ((ops == NULL) || (ops->devo_cb_ops == NULL) ||
(ops->devo_reset == nodev) || (ops->devo_reset == nulldev) ||
(ops->devo_reset == NULL))
return (DDI_WALK_CONTINUE);
if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) {
static char path[MAXPATHLEN];
/*
* bad news, this device has blocked in it's attach or
* detach routine, which means it not safe to call it's
* devo_reset() entry point.
*/
cmn_err(CE_WARN, "unable to reset device: %s",
ddi_pathname(dip, path));
return (DDI_WALK_CONTINUE);
}
NDI_CONFIG_DEBUG((CE_NOTE, "resetting %s%d\n",
ddi_driver_name(dip), ddi_get_instance(dip)));
(void) devi_reset(dip, DDI_RESET_FORCE);
return (DDI_WALK_CONTINUE);
}
void
reset_leaves(void)
{
/*
* if we're reached here, the device tree better not be changing.
* so either devinfo_freeze better be set or we better be panicing.
*/
ASSERT(devinfo_freeze || panicstr);
(void) walk_devs(top_devinfo, reset_leaf_device, NULL, 0);
}
/*
* devtree_freeze() must be called before quiesce_devices() and reset_leaves()
* during a normal system shutdown. It attempts to ensure that there are no
* outstanding attach or detach operations in progress when quiesce_devices() or
* reset_leaves()is invoked. It must be called before the system becomes
* single-threaded because device attach and detach are multi-threaded
* operations. (note that during system shutdown the system doesn't actually
* become single-thread since other threads still exist, but the shutdown thread
* will disable preemption for itself, raise it's pil, and stop all the other
* cpus in the system there by effectively making the system single-threaded.)
*/
void
devtree_freeze(void)
{
int delayed = 0;
/* if we're panicing then the device tree isn't going to be changing */
if (panicstr)
return;
/* stop all dev_info state changes in the device tree */
devinfo_freeze = gethrtime();
/*
* if we're not panicing and there are on-going attach or detach
* operations, wait for up to 3 seconds for them to finish. This
* is a randomly chosen interval but this should be ok because:
* - 3 seconds is very small relative to the deadman timer.
* - normal attach and detach operations should be very quick.
* - attach and detach operations are fairly rare.
*/
while (!panicstr && atomic_add_long_nv(&devinfo_attach_detach, 0) &&
(delayed < 3)) {
delayed += 1;
/* do a sleeping wait for one second */
ASSERT(!servicing_interrupt());
delay(drv_usectohz(MICROSEC));
}
}
static int
bind_dip(dev_info_t *dip, void *arg)
{
_NOTE(ARGUNUSED(arg))
char *path;
major_t major, pmajor;
/*
* If the node is currently bound to the wrong driver, try to unbind
* so that we can rebind to the correct driver.
*/
if (i_ddi_node_state(dip) >= DS_BOUND) {
major = ddi_compatible_driver_major(dip, NULL);
if ((DEVI(dip)->devi_major == major) &&
(i_ddi_node_state(dip) >= DS_INITIALIZED)) {
/*
* Check for a path-oriented driver alias that
* takes precedence over current driver binding.
*/
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
pmajor = ddi_name_to_major(path);
if (driver_active(pmajor))
major = pmajor;
kmem_free(path, MAXPATHLEN);
}
/* attempt unbind if current driver is incorrect */
if (driver_active(major) &&
(major != DEVI(dip)->devi_major))
(void) ndi_devi_unbind_driver(dip);
}
/* If unbound, try to bind to a driver */
if (i_ddi_node_state(dip) < DS_BOUND)
(void) ndi_devi_bind_driver(dip, 0);
return (DDI_WALK_CONTINUE);
}
void
i_ddi_bind_devs(void)
{
/* flush devfs so that ndi_devi_unbind_driver will work when possible */
(void) devfs_clean(top_devinfo, NULL, 0);
ddi_walk_devs(top_devinfo, bind_dip, (void *)NULL);
}
/* callback data for unbind_children_by_alias() */
typedef struct unbind_data {
major_t drv_major;
char *drv_alias;
int ndevs_bound;
int unbind_errors;
} unbind_data_t;
/*
* A utility function provided for testing and support convenience
* Called for each device during an upgrade_drv -d bound to the alias
* that cannot be unbound due to device in use.
*/
static void
unbind_alias_dev_in_use(dev_info_t *dip, char *alias)
{
if (moddebug & MODDEBUG_BINDING) {
cmn_err(CE_CONT, "%s%d: state %d: bound to %s\n",
ddi_driver_name(dip), ddi_get_instance(dip),
i_ddi_node_state(dip), alias);
}
}
/*
* walkdevs callback for unbind devices bound to specific driver
* and alias. Invoked within the context of update_drv -d <alias>.
*/
static int
unbind_children_by_alias(dev_info_t *dip, void *arg)
{
int circ;
dev_info_t *cdip;
dev_info_t *next;
unbind_data_t *ub = (unbind_data_t *)(uintptr_t)arg;
int rv;
/*
* We are called from update_drv to try to unbind a specific
* set of aliases for a driver. Unbind what persistent nodes
* we can, and return the number of nodes which cannot be unbound.
* If not all nodes can be unbound, update_drv leaves the
* state of the driver binding files unchanged, except in
* the case of -f.
*/
ndi_devi_enter(dip, &circ);
for (cdip = ddi_get_child(dip); cdip; cdip = next) {
next = ddi_get_next_sibling(cdip);
if ((ddi_driver_major(cdip) != ub->drv_major) ||
(strcmp(DEVI(cdip)->devi_node_name, ub->drv_alias) != 0))
continue;
if (i_ddi_node_state(cdip) >= DS_BOUND) {
rv = ndi_devi_unbind_driver(cdip);
if (rv != DDI_SUCCESS ||
(i_ddi_node_state(cdip) >= DS_BOUND)) {
unbind_alias_dev_in_use(cdip, ub->drv_alias);
ub->ndevs_bound++;
continue;
}
if (ndi_dev_is_persistent_node(cdip) == 0)
(void) ddi_remove_child(cdip, 0);
}
}
ndi_devi_exit(dip, circ);
return (DDI_WALK_CONTINUE);
}
/*
* Unbind devices by driver & alias
* Context: update_drv [-f] -d -i <alias> <driver>
*/
int
i_ddi_unbind_devs_by_alias(major_t major, char *alias)
{
unbind_data_t *ub;
int rv;
ub = kmem_zalloc(sizeof (*ub), KM_SLEEP);
ub->drv_major = major;
ub->drv_alias = alias;
ub->ndevs_bound = 0;
ub->unbind_errors = 0;
/* flush devfs so that ndi_devi_unbind_driver will work when possible */
(void) devfs_clean(top_devinfo, NULL, 0);
ddi_walk_devs(top_devinfo, unbind_children_by_alias,
(void *)(uintptr_t)ub);
/* return the number of devices remaining bound to the alias */
rv = ub->ndevs_bound + ub->unbind_errors;
kmem_free(ub, sizeof (*ub));
return (rv);
}
/*
* walkdevs callback for unbind devices by driver
*/
static int
unbind_children_by_driver(dev_info_t *dip, void *arg)
{
int circ;
dev_info_t *cdip;
dev_info_t *next;
major_t major = (major_t)(uintptr_t)arg;
int rv;
/*
* We are called either from rem_drv or update_drv when reloading
* a driver.conf file. In either case, we unbind persistent nodes
* and destroy .conf nodes. In the case of rem_drv, this will be
* the final state. In the case of update_drv, i_ddi_bind_devs()
* may be invoked later to re-enumerate (new) driver.conf rebind
* persistent nodes.
*/
ndi_devi_enter(dip, &circ);
for (cdip = ddi_get_child(dip); cdip; cdip = next) {
next = ddi_get_next_sibling(cdip);
if (ddi_driver_major(cdip) != major)
continue;
if (i_ddi_node_state(cdip) >= DS_BOUND) {
rv = ndi_devi_unbind_driver(cdip);
if (rv == DDI_FAILURE ||
(i_ddi_node_state(cdip) >= DS_BOUND))
continue;
if (ndi_dev_is_persistent_node(cdip) == 0)
(void) ddi_remove_child(cdip, 0);
}
}
ndi_devi_exit(dip, circ);
return (DDI_WALK_CONTINUE);
}
/*
* Unbind devices by driver
* Context: rem_drv or unload driver.conf
*/
void
i_ddi_unbind_devs(major_t major)
{
/* flush devfs so that ndi_devi_unbind_driver will work when possible */
(void) devfs_clean(top_devinfo, NULL, 0);
ddi_walk_devs(top_devinfo, unbind_children_by_driver,
(void *)(uintptr_t)major);
}
/*
* I/O Hotplug control
*/
/*
* create and attach a dev_info node from a .conf file spec
*/
static void
init_spec_child(dev_info_t *pdip, struct hwc_spec *specp, uint_t flags)
{
_NOTE(ARGUNUSED(flags))
dev_info_t *dip;
char *node_name;
if (((node_name = specp->hwc_devi_name) == NULL) ||
(ddi_name_to_major(node_name) == DDI_MAJOR_T_NONE)) {
char *tmp = node_name;
if (tmp == NULL)
tmp = "<none>";
cmn_err(CE_CONT,
"init_spec_child: parent=%s, bad spec (%s)\n",
ddi_node_name(pdip), tmp);
return;
}
dip = i_ddi_alloc_node(pdip, node_name, (pnode_t)DEVI_PSEUDO_NODEID,
-1, specp->hwc_devi_sys_prop_ptr, KM_SLEEP);
if (dip == NULL)
return;
if (ddi_initchild(pdip, dip) != DDI_SUCCESS)
(void) ddi_remove_child(dip, 0);
}
/*
* Lookup hwc specs from hash tables and make children from the spec
* Because some .conf children are "merge" nodes, we also initialize
* .conf children to merge properties onto hardware nodes.
*
* The pdip must be held busy.
*/
int
i_ndi_make_spec_children(dev_info_t *pdip, uint_t flags)
{
extern struct hwc_spec *hwc_get_child_spec(dev_info_t *, major_t);
int circ;
struct hwc_spec *list, *spec;
ndi_devi_enter(pdip, &circ);
if (DEVI(pdip)->devi_flags & DEVI_MADE_CHILDREN) {
ndi_devi_exit(pdip, circ);
return (DDI_SUCCESS);
}
list = hwc_get_child_spec(pdip, DDI_MAJOR_T_NONE);
for (spec = list; spec != NULL; spec = spec->hwc_next) {
init_spec_child(pdip, spec, flags);
}
hwc_free_spec_list(list);
mutex_enter(&DEVI(pdip)->devi_lock);
DEVI(pdip)->devi_flags |= DEVI_MADE_CHILDREN;
mutex_exit(&DEVI(pdip)->devi_lock);
ndi_devi_exit(pdip, circ);
return (DDI_SUCCESS);
}
/*
* Run initchild on all child nodes such that instance assignment
* for multiport network cards are contiguous.
*
* The pdip must be held busy.
*/
static void
i_ndi_init_hw_children(dev_info_t *pdip, uint_t flags)
{
dev_info_t *dip;
ASSERT(DEVI(pdip)->devi_flags & DEVI_MADE_CHILDREN);
/* contiguous instance assignment */
e_ddi_enter_instance();
dip = ddi_get_child(pdip);
while (dip) {
if (ndi_dev_is_persistent_node(dip))
(void) i_ndi_config_node(dip, DS_INITIALIZED, flags);
dip = ddi_get_next_sibling(dip);
}
e_ddi_exit_instance();
}
/*
* report device status
*/
static void
i_ndi_devi_report_status_change(dev_info_t *dip, char *path)
{
char *status;
if (!DEVI_NEED_REPORT(dip) ||
(i_ddi_node_state(dip) < DS_INITIALIZED) ||
ndi_dev_is_hidden_node(dip)) {
return;
}
/* Invalidate the devinfo snapshot cache */
i_ddi_di_cache_invalidate();
if (DEVI_IS_DEVICE_REMOVED(dip)) {
status = "removed";
} else if (DEVI_IS_DEVICE_OFFLINE(dip)) {
status = "offline";
} else if (DEVI_IS_DEVICE_DOWN(dip)) {
status = "down";
} else if (DEVI_IS_BUS_QUIESCED(dip)) {
status = "quiesced";
} else if (DEVI_IS_BUS_DOWN(dip)) {
status = "down";
} else if (i_ddi_devi_attached(dip)) {
status = "online";
} else {
status = "unknown";
}
if (path == NULL) {
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
cmn_err(CE_CONT, "?%s (%s%d) %s\n",
ddi_pathname(dip, path), ddi_driver_name(dip),
ddi_get_instance(dip), status);
kmem_free(path, MAXPATHLEN);
} else {
cmn_err(CE_CONT, "?%s (%s%d) %s\n",
path, ddi_driver_name(dip),
ddi_get_instance(dip), status);
}
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_REPORT_DONE(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
}
/*
* log a notification that a dev_info node has been configured.
*/
static int
i_log_devfs_add_devinfo(dev_info_t *dip, uint_t flags)
{
int se_err;
char *pathname;
sysevent_t *ev;
sysevent_id_t eid;
sysevent_value_t se_val;
sysevent_attr_list_t *ev_attr_list = NULL;
char *class_name;
int no_transport = 0;
ASSERT(dip && ddi_get_parent(dip) &&
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
/* do not generate ESC_DEVFS_DEVI_ADD event during boot */
if (!i_ddi_io_initialized())
return (DDI_SUCCESS);
/* Invalidate the devinfo snapshot cache */
i_ddi_di_cache_invalidate();
ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_DEVI_ADD, EP_DDI, SE_SLEEP);
pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, pathname);
ASSERT(strlen(pathname));
se_val.value_type = SE_DATA_TYPE_STRING;
se_val.value.sv_string = pathname;
if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
&se_val, SE_SLEEP) != 0) {
goto fail;
}
/* add the device class attribute */
if ((class_name = i_ddi_devi_class(dip)) != NULL) {
se_val.value_type = SE_DATA_TYPE_STRING;
se_val.value.sv_string = class_name;
if (sysevent_add_attr(&ev_attr_list,
DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
}
/*
* must log a branch event too unless NDI_BRANCH_EVENT_OP is set,
* in which case the branch event will be logged by the caller
* after the entire branch has been configured.
*/
if ((flags & NDI_BRANCH_EVENT_OP) == 0) {
/*
* Instead of logging a separate branch event just add
* DEVFS_BRANCH_EVENT attribute. It indicates devfsadmd to
* generate a EC_DEV_BRANCH event.
*/
se_val.value_type = SE_DATA_TYPE_INT32;
se_val.value.sv_int32 = 1;
if (sysevent_add_attr(&ev_attr_list,
DEVFS_BRANCH_EVENT, &se_val, SE_SLEEP) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
}
if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
if ((se_err = log_sysevent(ev, SE_SLEEP, &eid)) != 0) {
if (se_err == SE_NO_TRANSPORT)
no_transport = 1;
goto fail;
}
sysevent_free(ev);
kmem_free(pathname, MAXPATHLEN);
return (DDI_SUCCESS);
fail:
cmn_err(CE_WARN, "failed to log ESC_DEVFS_DEVI_ADD event for %s%s",
pathname, (no_transport) ? " (syseventd not responding)" : "");
cmn_err(CE_WARN, "/dev may not be current for driver %s. "
"Run devfsadm -i %s",
ddi_driver_name(dip), ddi_driver_name(dip));
sysevent_free(ev);
kmem_free(pathname, MAXPATHLEN);
return (DDI_SUCCESS);
}
/*
* log a notification that a dev_info node has been unconfigured.
*/
static int
i_log_devfs_remove_devinfo(char *pathname, char *class_name, char *driver_name,
int instance, uint_t flags)
{
sysevent_t *ev;
sysevent_id_t eid;
sysevent_value_t se_val;
sysevent_attr_list_t *ev_attr_list = NULL;
int se_err;
int no_transport = 0;
if (!i_ddi_io_initialized())
return (DDI_SUCCESS);
/* Invalidate the devinfo snapshot cache */
i_ddi_di_cache_invalidate();
ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_DEVI_REMOVE, EP_DDI, SE_SLEEP);
se_val.value_type = SE_DATA_TYPE_STRING;
se_val.value.sv_string = pathname;
if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
&se_val, SE_SLEEP) != 0) {
goto fail;
}
if (class_name) {
/* add the device class, driver name and instance attributes */
se_val.value_type = SE_DATA_TYPE_STRING;
se_val.value.sv_string = class_name;
if (sysevent_add_attr(&ev_attr_list,
DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
se_val.value_type = SE_DATA_TYPE_STRING;
se_val.value.sv_string = driver_name;
if (sysevent_add_attr(&ev_attr_list,
DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
se_val.value_type = SE_DATA_TYPE_INT32;
se_val.value.sv_int32 = instance;
if (sysevent_add_attr(&ev_attr_list,
DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
}
/*
* must log a branch event too unless NDI_BRANCH_EVENT_OP is set,
* in which case the branch event will be logged by the caller
* after the entire branch has been unconfigured.
*/
if ((flags & NDI_BRANCH_EVENT_OP) == 0) {
/*
* Instead of logging a separate branch event just add
* DEVFS_BRANCH_EVENT attribute. It indicates devfsadmd to
* generate a EC_DEV_BRANCH event.
*/
se_val.value_type = SE_DATA_TYPE_INT32;
se_val.value.sv_int32 = 1;
if (sysevent_add_attr(&ev_attr_list,
DEVFS_BRANCH_EVENT, &se_val, SE_SLEEP) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
}
if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
if ((se_err = log_sysevent(ev, SE_SLEEP, &eid)) != 0) {
if (se_err == SE_NO_TRANSPORT)
no_transport = 1;
goto fail;
}
sysevent_free(ev);
return (DDI_SUCCESS);
fail:
sysevent_free(ev);
cmn_err(CE_WARN, "failed to log ESC_DEVFS_DEVI_REMOVE event for %s%s",
pathname, (no_transport) ? " (syseventd not responding)" : "");
return (DDI_SUCCESS);
}
static void
i_ddi_log_devfs_device_remove(dev_info_t *dip)
{
char *path;
ASSERT(dip && ddi_get_parent(dip) &&
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
ASSERT(DEVI_IS_DEVICE_REMOVED(dip));
ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED);
if (i_ddi_node_state(dip) < DS_INITIALIZED)
return;
/* Inform LDI_EV_DEVICE_REMOVE callbacks. */
ldi_invoke_finalize(dip, DDI_DEV_T_ANY, 0, LDI_EV_DEVICE_REMOVE,
LDI_EV_SUCCESS, NULL);
/* Generate EC_DEVFS_DEVI_REMOVE sysevent. */
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) i_log_devfs_remove_devinfo(ddi_pathname(dip, path),
i_ddi_devi_class(dip), (char *)ddi_driver_name(dip),
ddi_get_instance(dip), 0);
kmem_free(path, MAXPATHLEN);
}
static void
i_ddi_log_devfs_device_insert(dev_info_t *dip)
{
ASSERT(dip && ddi_get_parent(dip) &&
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
ASSERT(!DEVI_IS_DEVICE_REMOVED(dip));
(void) i_log_devfs_add_devinfo(dip, 0);
}
/*
* log an event that a dev_info branch has been configured or unconfigured.
*/
static int
i_log_devfs_branch(char *node_path, char *subclass)
{
int se_err;
sysevent_t *ev;
sysevent_id_t eid;
sysevent_value_t se_val;
sysevent_attr_list_t *ev_attr_list = NULL;
int no_transport = 0;
/* do not generate the event during boot */
if (!i_ddi_io_initialized())
return (DDI_SUCCESS);
/* Invalidate the devinfo snapshot cache */
i_ddi_di_cache_invalidate();
ev = sysevent_alloc(EC_DEVFS, subclass, EP_DDI, SE_SLEEP);
se_val.value_type = SE_DATA_TYPE_STRING;
se_val.value.sv_string = node_path;
if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME,
&se_val, SE_SLEEP) != 0) {
goto fail;
}
if (sysevent_attach_attributes(ev, ev_attr_list) != 0) {
sysevent_free_attr(ev_attr_list);
goto fail;
}
if ((se_err = log_sysevent(ev, SE_SLEEP, &eid)) != 0) {
if (se_err == SE_NO_TRANSPORT)
no_transport = 1;
goto fail;
}
sysevent_free(ev);
return (DDI_SUCCESS);
fail:
cmn_err(CE_WARN, "failed to log %s branch event for %s%s",
subclass, node_path,
(no_transport) ? " (syseventd not responding)" : "");
sysevent_free(ev);
return (DDI_FAILURE);
}
/*
* log an event that a dev_info tree branch has been configured.
*/
static int
i_log_devfs_branch_add(dev_info_t *dip)
{
char *node_path;
int rv;
node_path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, node_path);
rv = i_log_devfs_branch(node_path, ESC_DEVFS_BRANCH_ADD);
kmem_free(node_path, MAXPATHLEN);
return (rv);
}
/*
* log an event that a dev_info tree branch has been unconfigured.
*/
static int
i_log_devfs_branch_remove(char *node_path)
{
return (i_log_devfs_branch(node_path, ESC_DEVFS_BRANCH_REMOVE));
}
/*
* enqueue the dip's deviname on the branch event queue.
*/
static struct brevq_node *
brevq_enqueue(struct brevq_node **brevqp, dev_info_t *dip,
struct brevq_node *child)
{
struct brevq_node *brn;
char *deviname;
deviname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
(void) ddi_deviname(dip, deviname);
brn = kmem_zalloc(sizeof (*brn), KM_SLEEP);
brn->brn_deviname = i_ddi_strdup(deviname, KM_SLEEP);
kmem_free(deviname, MAXNAMELEN);
brn->brn_child = child;
brn->brn_sibling = *brevqp;
*brevqp = brn;
return (brn);
}
/*
* free the memory allocated for the elements on the branch event queue.
*/
static void
free_brevq(struct brevq_node *brevq)
{
struct brevq_node *brn, *next_brn;
for (brn = brevq; brn != NULL; brn = next_brn) {
next_brn = brn->brn_sibling;
ASSERT(brn->brn_child == NULL);
kmem_free(brn->brn_deviname, strlen(brn->brn_deviname) + 1);
kmem_free(brn, sizeof (*brn));
}
}
/*
* log the events queued up on the branch event queue and free the
* associated memory.
*
* node_path must have been allocated with at least MAXPATHLEN bytes.
*/
static void
log_and_free_brevq(char *node_path, struct brevq_node *brevq)
{
struct brevq_node *brn;
char *p;
p = node_path + strlen(node_path);
for (brn = brevq; brn != NULL; brn = brn->brn_sibling) {
(void) strcpy(p, brn->brn_deviname);
(void) i_log_devfs_branch_remove(node_path);
}
*p = '\0';
free_brevq(brevq);
}
/*
* log the events queued up on the branch event queue and free the
* associated memory. Same as the previous function but operates on dip.
*/
static void
log_and_free_brevq_dip(dev_info_t *dip, struct brevq_node *brevq)
{
char *path;
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
log_and_free_brevq(path, brevq);
kmem_free(path, MAXPATHLEN);
}
/*
* log the outstanding branch remove events for the grand children of the dip
* and free the associated memory.
*/
static void
log_and_free_br_events_on_grand_children(dev_info_t *dip,
struct brevq_node *brevq)
{
struct brevq_node *brn;
char *path;
char *p;
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
p = path + strlen(path);
for (brn = brevq; brn != NULL; brn = brn->brn_sibling) {
if (brn->brn_child) {
(void) strcpy(p, brn->brn_deviname);
/* now path contains the node path to the dip's child */
log_and_free_brevq(path, brn->brn_child);
brn->brn_child = NULL;
}
}
kmem_free(path, MAXPATHLEN);
}
/*
* log and cleanup branch remove events for the grand children of the dip.
*/
static void
cleanup_br_events_on_grand_children(dev_info_t *dip, struct brevq_node **brevqp)
{
dev_info_t *child;
struct brevq_node *brevq, *brn, *prev_brn, *next_brn;
char *path;
int circ;
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
prev_brn = NULL;
brevq = *brevqp;
ndi_devi_enter(dip, &circ);
for (brn = brevq; brn != NULL; brn = next_brn) {
next_brn = brn->brn_sibling;
for (child = ddi_get_child(dip); child != NULL;
child = ddi_get_next_sibling(child)) {
if (i_ddi_node_state(child) >= DS_INITIALIZED) {
(void) ddi_deviname(child, path);
if (strcmp(path, brn->brn_deviname) == 0)
break;
}
}
if (child != NULL && !(DEVI_EVREMOVE(child))) {
/*
* Event state is not REMOVE. So branch remove event
* is not going be generated on brn->brn_child.
* If any branch remove events were queued up on
* brn->brn_child log them and remove the brn
* from the queue.
*/
if (brn->brn_child) {
(void) ddi_pathname(dip, path);
(void) strcat(path, brn->brn_deviname);
log_and_free_brevq(path, brn->brn_child);
}
if (prev_brn)
prev_brn->brn_sibling = next_brn;
else
*brevqp = next_brn;
kmem_free(brn->brn_deviname,
strlen(brn->brn_deviname) + 1);
kmem_free(brn, sizeof (*brn));
} else {
/*
* Free up the outstanding branch remove events
* queued on brn->brn_child since brn->brn_child
* itself is eligible for branch remove event.
*/
if (brn->brn_child) {
free_brevq(brn->brn_child);
brn->brn_child = NULL;
}
prev_brn = brn;
}
}
ndi_devi_exit(dip, circ);
kmem_free(path, MAXPATHLEN);
}
static int
need_remove_event(dev_info_t *dip, int flags)
{
if ((flags & (NDI_NO_EVENT | NDI_AUTODETACH)) == 0 &&
(flags & (NDI_DEVI_OFFLINE | NDI_UNCONFIG | NDI_DEVI_REMOVE)) &&
!(DEVI_EVREMOVE(dip)))
return (1);
else
return (0);
}
/*
* Unconfigure children/descendants of the dip.
*
* If the operation involves a branch event NDI_BRANCH_EVENT_OP is set
* through out the unconfiguration. On successful return *brevqp is set to
* a queue of dip's child devinames for which branch remove events need
* to be generated.
*/
static int
devi_unconfig_branch(dev_info_t *dip, dev_info_t **dipp, int flags,
struct brevq_node **brevqp)
{
int rval;
*brevqp = NULL;
if ((!(flags & NDI_BRANCH_EVENT_OP)) && need_remove_event(dip, flags))
flags |= NDI_BRANCH_EVENT_OP;
if (flags & NDI_BRANCH_EVENT_OP) {
rval = devi_unconfig_common(dip, dipp, flags, DDI_MAJOR_T_NONE,
brevqp);
if (rval != NDI_SUCCESS && (*brevqp)) {
log_and_free_brevq_dip(dip, *brevqp);
*brevqp = NULL;
}
} else
rval = devi_unconfig_common(dip, dipp, flags, DDI_MAJOR_T_NONE,
NULL);
return (rval);
}
/*
* If the dip is already bound to a driver transition to DS_INITIALIZED
* in order to generate an event in the case where the node was left in
* DS_BOUND state since boot (never got attached) and the node is now
* being offlined.
*/
static void
init_bound_node_ev(dev_info_t *pdip, dev_info_t *dip, int flags)
{
if (need_remove_event(dip, flags) &&
i_ddi_node_state(dip) == DS_BOUND &&
i_ddi_devi_attached(pdip) && !DEVI_IS_DEVICE_OFFLINE(dip))
(void) ddi_initchild(pdip, dip);
}
/*
* attach a node/branch with parent already held busy
*/
static int
devi_attach_node(dev_info_t *dip, uint_t flags)
{
dev_info_t *pdip = ddi_get_parent(dip);
ASSERT(pdip && DEVI_BUSY_OWNED(pdip));
mutex_enter(&(DEVI(dip)->devi_lock));
if (flags & NDI_DEVI_ONLINE) {
if (!i_ddi_devi_attached(dip))
DEVI_SET_REPORT(dip);
DEVI_SET_DEVICE_ONLINE(dip);
}
if (DEVI_IS_DEVICE_OFFLINE(dip)) {
mutex_exit(&(DEVI(dip)->devi_lock));
return (NDI_FAILURE);
}
mutex_exit(&(DEVI(dip)->devi_lock));
if (i_ddi_attachchild(dip) != DDI_SUCCESS) {
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_EVUNINIT(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
if (ndi_dev_is_persistent_node(dip))
(void) ddi_uninitchild(dip);
else {
/*
* Delete .conf nodes and nodes that are not
* well formed.
*/
(void) ddi_remove_child(dip, 0);
}
return (NDI_FAILURE);
}
i_ndi_devi_report_status_change(dip, NULL);
/*
* log an event, but not during devfs lookups in which case
* NDI_NO_EVENT is set.
*/
if ((flags & NDI_NO_EVENT) == 0 && !(DEVI_EVADD(dip))) {
(void) i_log_devfs_add_devinfo(dip, flags);
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_EVADD(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
} else if (!(flags & NDI_NO_EVENT_STATE_CHNG)) {
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_EVADD(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
}
return (NDI_SUCCESS);
}
/* internal function to config immediate children */
static int
config_immediate_children(dev_info_t *pdip, uint_t flags, major_t major)
{
dev_info_t *child, *next;
int circ;
ASSERT(i_ddi_devi_attached(pdip));
if (!NEXUS_DRV(ddi_get_driver(pdip)))
return (NDI_SUCCESS);
NDI_CONFIG_DEBUG((CE_CONT,
"config_immediate_children: %s%d (%p), flags=%x\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
(void *)pdip, flags));
ndi_devi_enter(pdip, &circ);
if (flags & NDI_CONFIG_REPROBE) {
mutex_enter(&DEVI(pdip)->devi_lock);
DEVI(pdip)->devi_flags &= ~DEVI_MADE_CHILDREN;
mutex_exit(&DEVI(pdip)->devi_lock);
}
(void) i_ndi_make_spec_children(pdip, flags);
i_ndi_init_hw_children(pdip, flags);
child = ddi_get_child(pdip);
while (child) {
/* NOTE: devi_attach_node() may remove the dip */
next = ddi_get_next_sibling(child);
/*
* Configure all nexus nodes or leaf nodes with
* matching driver major
*/
if ((major == DDI_MAJOR_T_NONE) ||
(major == ddi_driver_major(child)) ||
((flags & NDI_CONFIG) && (is_leaf_node(child) == 0)))
(void) devi_attach_node(child, flags);
child = next;
}
ndi_devi_exit(pdip, circ);
return (NDI_SUCCESS);
}
/* internal function to config grand children */
static int
config_grand_children(dev_info_t *pdip, uint_t flags, major_t major)
{
struct mt_config_handle *hdl;
/* multi-threaded configuration of child nexus */
hdl = mt_config_init(pdip, NULL, flags, major, MT_CONFIG_OP, NULL);
mt_config_children(hdl);
return (mt_config_fini(hdl)); /* wait for threads to exit */
}
/*
* Common function for device tree configuration,
* either BUS_CONFIG_ALL or BUS_CONFIG_DRIVER.
* The NDI_CONFIG flag causes recursive configuration of
* grandchildren, devfs usage should not recurse.
*/
static int
devi_config_common(dev_info_t *dip, int flags, major_t major)
{
int error;
int (*f)();
if (!i_ddi_devi_attached(dip))
return (NDI_FAILURE);
if (pm_pre_config(dip, NULL) != DDI_SUCCESS)
return (NDI_FAILURE);
if ((DEVI(dip)->devi_ops->devo_bus_ops == NULL) ||
(DEVI(dip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) ||
(f = DEVI(dip)->devi_ops->devo_bus_ops->bus_config) == NULL) {
error = config_immediate_children(dip, flags, major);
} else {
/* call bus_config entry point */
ddi_bus_config_op_t bus_op = (major == DDI_MAJOR_T_NONE) ?
BUS_CONFIG_ALL : BUS_CONFIG_DRIVER;
error = (*f)(dip,
flags, bus_op, (void *)(uintptr_t)major, NULL, 0);
}
if (error) {
pm_post_config(dip, NULL);
return (error);
}
/*
* Some callers, notably SCSI, need to mark the devfs cache
* to be rebuilt together with the config operation.
*/
if (flags & NDI_DEVFS_CLEAN)
(void) devfs_clean(dip, NULL, 0);
if (flags & NDI_CONFIG)
(void) config_grand_children(dip, flags, major);
pm_post_config(dip, NULL);
return (NDI_SUCCESS);
}
/*
* Framework entry point for BUS_CONFIG_ALL
*/
int
ndi_devi_config(dev_info_t *dip, int flags)
{
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_config: par = %s%d (%p), flags = 0x%x\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags));
return (devi_config_common(dip, flags, DDI_MAJOR_T_NONE));
}
/*
* Framework entry point for BUS_CONFIG_DRIVER, bound to major
*/
int
ndi_devi_config_driver(dev_info_t *dip, int flags, major_t major)
{
/* don't abuse this function */
ASSERT(major != DDI_MAJOR_T_NONE);
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_config_driver: par = %s%d (%p), flags = 0x%x\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags));
return (devi_config_common(dip, flags, major));
}
/*
* Called by nexus drivers to configure its children.
*/
static int
devi_config_one(dev_info_t *pdip, char *devnm, dev_info_t **cdipp,
uint_t flags, clock_t timeout)
{
dev_info_t *vdip = NULL;
char *drivername = NULL;
int find_by_addr = 0;
char *name, *addr;
int v_circ, p_circ;
clock_t end_time; /* 60 sec */
int probed;
dev_info_t *cdip;
mdi_pathinfo_t *cpip;
*cdipp = NULL;
if (!NEXUS_DRV(ddi_get_driver(pdip)))
return (NDI_FAILURE);
/* split name into "name@addr" parts */
i_ddi_parse_name(devnm, &name, &addr, NULL);
/*
* If the nexus is a pHCI and we are not processing a pHCI from
* mdi bus_config code then we need to know the vHCI.
*/
if (MDI_PHCI(pdip))
vdip = mdi_devi_get_vdip(pdip);
/*
* We may have a genericname on a system that creates drivername
* nodes (from .conf files). Find the drivername by nodeid. If we
* can't find a node with devnm as the node name then we search by
* drivername. This allows an implementation to supply a genericly
* named boot path (disk) and locate drivename nodes (sd). The
* NDI_PROMNAME flag does not apply to /devices/pseudo paths.
*/
if ((flags & NDI_PROMNAME) && (pdip != pseudo_dip)) {
drivername = child_path_to_driver(pdip, name, addr);
find_by_addr = 1;
}
/*
* Determine end_time: This routine should *not* be called with a
* constant non-zero timeout argument, the caller should be adjusting
* the timeout argument relative to when it *started* its asynchronous
* enumeration.
*/
if (timeout > 0)
end_time = ddi_get_lbolt() + timeout;
for (;;) {
/*
* For pHCI, enter (vHCI, pHCI) and search for pathinfo/client
* child - break out of for(;;) loop if child found.
* NOTE: Lock order for ndi_devi_enter is (vHCI, pHCI).
*/
if (vdip) {
/* use mdi_devi_enter ordering */
ndi_devi_enter(vdip, &v_circ);
ndi_devi_enter(pdip, &p_circ);
cpip = mdi_pi_find(pdip, NULL, addr);
cdip = mdi_pi_get_client(cpip);
if (cdip)
break;
} else
ndi_devi_enter(pdip, &p_circ);
/*
* When not a vHCI or not all pHCI devices are required to
* enumerated under the vHCI (NDI_MDI_FALLBACK) search for
* devinfo child.
*/
if ((vdip == NULL) || (flags & NDI_MDI_FALLBACK)) {
/* determine if .conf nodes already built */
probed = (DEVI(pdip)->devi_flags & DEVI_MADE_CHILDREN);
/*
* Search for child by name, if not found then search
* for a node bound to the drivername driver with the
* specified "@addr". Break out of for(;;) loop if
* child found. To support path-oriented aliases
* binding on boot-device, we do a search_by_addr too.
*/
again: (void) i_ndi_make_spec_children(pdip, flags);
cdip = find_child_by_name(pdip, name, addr);
if ((cdip == NULL) && drivername)
cdip = find_child_by_driver(pdip,
drivername, addr);
if ((cdip == NULL) && find_by_addr)
cdip = find_child_by_addr(pdip, addr);
if (cdip)
break;
/*
* determine if we should reenumerate .conf nodes
* and look for child again.
*/
if (probed &&
i_ddi_io_initialized() &&
(flags & NDI_CONFIG_REPROBE) &&
((timeout <= 0) || (ddi_get_lbolt() >= end_time))) {
probed = 0;
mutex_enter(&DEVI(pdip)->devi_lock);
DEVI(pdip)->devi_flags &= ~DEVI_MADE_CHILDREN;
mutex_exit(&DEVI(pdip)->devi_lock);
goto again;
}
}
/* break out of for(;;) if time expired */
if ((timeout <= 0) || (ddi_get_lbolt() >= end_time))
break;
/*
* Child not found, exit and wait for asynchronous enumeration
* to add child (or timeout). The addition of a new child (vhci
* or phci) requires the asynchronous enumeration thread to
* ndi_devi_enter/ndi_devi_exit. This exit will signal devi_cv
* and cause us to return from ndi_devi_exit_and_wait, after
* which we loop and search for the requested child again.
*/
NDI_DEBUG(flags, (CE_CONT,
"%s%d: waiting for child %s@%s, timeout %ld",
ddi_driver_name(pdip), ddi_get_instance(pdip),
name, addr, timeout));
if (vdip) {
/*
* Mark vHCI for pHCI ndi_devi_exit broadcast.
*/
mutex_enter(&DEVI(vdip)->devi_lock);
DEVI(vdip)->devi_flags |=
DEVI_PHCI_SIGNALS_VHCI;
mutex_exit(&DEVI(vdip)->devi_lock);
ndi_devi_exit(pdip, p_circ);
/*
* NB: There is a small race window from above
* ndi_devi_exit() of pdip to cv_wait() in
* ndi_devi_exit_and_wait() which can result in
* not immediately finding a new pHCI child
* of a pHCI that uses NDI_MDI_FAILBACK.
*/
ndi_devi_exit_and_wait(vdip, v_circ, end_time);
} else {
ndi_devi_exit_and_wait(pdip, p_circ, end_time);
}
}
/* done with paddr, fixup i_ddi_parse_name '@'->'\0' change */
if (addr && *addr != '\0')
*(addr - 1) = '@';
/* attach and hold the child, returning pointer to child */
if (cdip && (devi_attach_node(cdip, flags) == NDI_SUCCESS)) {
ndi_hold_devi(cdip);
*cdipp = cdip;
}
ndi_devi_exit(pdip, p_circ);
if (vdip)
ndi_devi_exit(vdip, v_circ);
return (*cdipp ? NDI_SUCCESS : NDI_FAILURE);
}
/*
* Enumerate and attach a child specified by name 'devnm'.
* Called by devfs lookup and DR to perform a BUS_CONFIG_ONE.
* Note: devfs does not make use of NDI_CONFIG to configure
* an entire branch.
*/
int
ndi_devi_config_one(dev_info_t *pdip, char *devnm, dev_info_t **dipp, int flags)
{
int error;
int (*f)();
char *nmdup;
int duplen;
int branch_event = 0;
ASSERT(pdip);
ASSERT(devnm);
ASSERT(dipp);
ASSERT(i_ddi_devi_attached(pdip));
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_config_one: par = %s%d (%p), child = %s\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
(void *)pdip, devnm));
*dipp = NULL;
if (pm_pre_config(pdip, devnm) != DDI_SUCCESS) {
cmn_err(CE_WARN, "preconfig failed: %s", devnm);
return (NDI_FAILURE);
}
if ((flags & (NDI_NO_EVENT | NDI_BRANCH_EVENT_OP)) == 0 &&
(flags & NDI_CONFIG)) {
flags |= NDI_BRANCH_EVENT_OP;
branch_event = 1;
}
nmdup = strdup(devnm);
duplen = strlen(devnm) + 1;
if ((DEVI(pdip)->devi_ops->devo_bus_ops == NULL) ||
(DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) ||
(f = DEVI(pdip)->devi_ops->devo_bus_ops->bus_config) == NULL) {
error = devi_config_one(pdip, devnm, dipp, flags, 0);
} else {
/* call bus_config entry point */
error = (*f)(pdip, flags, BUS_CONFIG_ONE, (void *)devnm, dipp);
}
if (error) {
*dipp = NULL;
}
/*
* if we fail to lookup and this could be an alias, lookup currdip
* To prevent recursive lookups into the same hash table, only
* do the currdip lookups once the hash table init is complete.
* Use tsd so that redirection doesn't recurse
*/
if (error) {
char *alias = kmem_alloc(MAXPATHLEN, KM_NOSLEEP);
if (alias == NULL) {
ddi_err(DER_PANIC, pdip, "alias alloc failed: %s",
nmdup);
}
(void) ddi_pathname(pdip, alias);
(void) strlcat(alias, "/", MAXPATHLEN);
(void) strlcat(alias, nmdup, MAXPATHLEN);
*dipp = ddi_alias_redirect(alias);
error = (*dipp ? NDI_SUCCESS : NDI_FAILURE);
kmem_free(alias, MAXPATHLEN);
}
kmem_free(nmdup, duplen);
if (error || !(flags & NDI_CONFIG)) {
pm_post_config(pdip, devnm);
return (error);
}
/*
* DR usage (i.e. call with NDI_CONFIG) recursively configures
* grandchildren, performing a BUS_CONFIG_ALL from the node attached
* by the BUS_CONFIG_ONE.
*/
ASSERT(*dipp);
error = devi_config_common(*dipp, flags, DDI_MAJOR_T_NONE);
pm_post_config(pdip, devnm);
if (branch_event)
(void) i_log_devfs_branch_add(*dipp);
return (error);
}
/*
* Enumerate and attach a child specified by name 'devnm'.
* Called during configure the OBP options. This configures
* only one node.
*/
static int
ndi_devi_config_obp_args(dev_info_t *parent, char *devnm,
dev_info_t **childp, int flags)
{
int error;
int (*f)();
ASSERT(childp);
ASSERT(i_ddi_devi_attached(parent));
NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_config_obp_args: "
"par = %s%d (%p), child = %s\n", ddi_driver_name(parent),
ddi_get_instance(parent), (void *)parent, devnm));
if ((DEVI(parent)->devi_ops->devo_bus_ops == NULL) ||
(DEVI(parent)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) ||
(f = DEVI(parent)->devi_ops->devo_bus_ops->bus_config) == NULL) {
error = NDI_FAILURE;
} else {
/* call bus_config entry point */
error = (*f)(parent, flags,
BUS_CONFIG_OBP_ARGS, (void *)devnm, childp);
}
return (error);
}
/*
* Pay attention, the following is a bit tricky:
* There are three possible cases when constraints are applied
*
* - A constraint is applied and the offline is disallowed.
* Simply return failure and block the offline
*
* - A constraint is applied and the offline is allowed.
* Mark the dip as having passed the constraint and allow
* offline to proceed.
*
* - A constraint is not applied. Allow the offline to proceed for now.
*
* In the latter two cases we allow the offline to proceed. If the
* offline succeeds (no users) everything is fine. It is ok for an unused
* device to be offlined even if no constraints were imposed on the offline.
* If the offline fails because there are users, we look at the constraint
* flag on the dip. If the constraint flag is set (implying that it passed
* a constraint) we allow the dip to be retired. If not, we don't allow
* the retire. This ensures that we don't allow unconstrained retire.
*/
int
e_ddi_offline_notify(dev_info_t *dip)
{
int retval;
int constraint;
int failure;
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): entered: dip=%p",
(void *) dip));
constraint = 0;
failure = 0;
/*
* Start with userland constraints first - applied via device contracts
*/
retval = contract_device_offline(dip, DDI_DEV_T_ANY, 0);
switch (retval) {
case CT_NACK:
RIO_DEBUG((CE_NOTE, "Received NACK for dip=%p", (void *)dip));
failure = 1;
goto out;
case CT_ACK:
constraint = 1;
RIO_DEBUG((CE_NOTE, "Received ACK for dip=%p", (void *)dip));
break;
case CT_NONE:
/* no contracts */
RIO_DEBUG((CE_NOTE, "No contracts on dip=%p", (void *)dip));
break;
default:
ASSERT(retval == CT_NONE);
}
/*
* Next, use LDI to impose kernel constraints
*/
retval = ldi_invoke_notify(dip, DDI_DEV_T_ANY, 0, LDI_EV_OFFLINE, NULL);
switch (retval) {
case LDI_EV_FAILURE:
contract_device_negend(dip, DDI_DEV_T_ANY, 0, CT_EV_FAILURE);
RIO_DEBUG((CE_NOTE, "LDI callback failed on dip=%p",
(void *)dip));
failure = 1;
goto out;
case LDI_EV_SUCCESS:
constraint = 1;
RIO_DEBUG((CE_NOTE, "LDI callback success on dip=%p",
(void *)dip));
break;
case LDI_EV_NONE:
/* no matching LDI callbacks */
RIO_DEBUG((CE_NOTE, "No LDI callbacks for dip=%p",
(void *)dip));
break;
default:
ASSERT(retval == LDI_EV_NONE);
}
out:
mutex_enter(&(DEVI(dip)->devi_lock));
if ((DEVI(dip)->devi_flags & DEVI_RETIRING) && failure) {
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): setting "
"BLOCKED flag. dip=%p", (void *)dip));
DEVI(dip)->devi_flags |= DEVI_R_BLOCKED;
if (DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT) {
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): "
"blocked. clearing RCM CONSTRAINT flag. dip=%p",
(void *)dip));
DEVI(dip)->devi_flags &= ~DEVI_R_CONSTRAINT;
}
} else if ((DEVI(dip)->devi_flags & DEVI_RETIRING) && constraint) {
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): setting "
"CONSTRAINT flag. dip=%p", (void *)dip));
DEVI(dip)->devi_flags |= DEVI_R_CONSTRAINT;
} else if ((DEVI(dip)->devi_flags & DEVI_RETIRING) &&
((DEVI(dip)->devi_ops != NULL &&
DEVI(dip)->devi_ops->devo_bus_ops != NULL) ||
DEVI(dip)->devi_ref == 0)) {
/* also allow retire if nexus or if device is not in use */
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): device not in "
"use. Setting CONSTRAINT flag. dip=%p", (void *)dip));
DEVI(dip)->devi_flags |= DEVI_R_CONSTRAINT;
} else {
/*
* Note: We cannot ASSERT here that DEVI_R_CONSTRAINT is
* not set, since other sources (such as RCM) may have
* set the flag.
*/
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): not setting "
"constraint flag. dip=%p", (void *)dip));
}
mutex_exit(&(DEVI(dip)->devi_lock));
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): exit: dip=%p",
(void *) dip));
return (failure ? DDI_FAILURE : DDI_SUCCESS);
}
void
e_ddi_offline_finalize(dev_info_t *dip, int result)
{
RIO_DEBUG((CE_NOTE, "e_ddi_offline_finalize(): entry: result=%s, "
"dip=%p", result == DDI_SUCCESS ? "SUCCESS" : "FAILURE",
(void *)dip));
contract_device_negend(dip, DDI_DEV_T_ANY, 0, result == DDI_SUCCESS ?
CT_EV_SUCCESS : CT_EV_FAILURE);
ldi_invoke_finalize(dip, DDI_DEV_T_ANY, 0,
LDI_EV_OFFLINE, result == DDI_SUCCESS ?
LDI_EV_SUCCESS : LDI_EV_FAILURE, NULL);
RIO_VERBOSE((CE_NOTE, "e_ddi_offline_finalize(): exit: dip=%p",
(void *)dip));
}
void
e_ddi_degrade_finalize(dev_info_t *dip)
{
RIO_DEBUG((CE_NOTE, "e_ddi_degrade_finalize(): entry: "
"result always = DDI_SUCCESS, dip=%p", (void *)dip));
contract_device_degrade(dip, DDI_DEV_T_ANY, 0);
contract_device_negend(dip, DDI_DEV_T_ANY, 0, CT_EV_SUCCESS);
ldi_invoke_finalize(dip, DDI_DEV_T_ANY, 0, LDI_EV_DEGRADE,
LDI_EV_SUCCESS, NULL);
RIO_VERBOSE((CE_NOTE, "e_ddi_degrade_finalize(): exit: dip=%p",
(void *)dip));
}
void
e_ddi_undegrade_finalize(dev_info_t *dip)
{
RIO_DEBUG((CE_NOTE, "e_ddi_undegrade_finalize(): entry: "
"result always = DDI_SUCCESS, dip=%p", (void *)dip));
contract_device_undegrade(dip, DDI_DEV_T_ANY, 0);
contract_device_negend(dip, DDI_DEV_T_ANY, 0, CT_EV_SUCCESS);
RIO_VERBOSE((CE_NOTE, "e_ddi_undegrade_finalize(): exit: dip=%p",
(void *)dip));
}
/*
* detach a node with parent already held busy
*/
static int
devi_detach_node(dev_info_t *dip, uint_t flags)
{
dev_info_t *pdip = ddi_get_parent(dip);
int ret = NDI_SUCCESS;
ddi_eventcookie_t cookie;
char *path = NULL;
char *class = NULL;
char *driver = NULL;
int instance = -1;
int post_event = 0;
ASSERT(pdip && DEVI_BUSY_OWNED(pdip));
/*
* Invoke notify if offlining
*/
if (flags & NDI_DEVI_OFFLINE) {
RIO_DEBUG((CE_NOTE, "devi_detach_node: offlining dip=%p",
(void *)dip));
if (e_ddi_offline_notify(dip) != DDI_SUCCESS) {
RIO_DEBUG((CE_NOTE, "devi_detach_node: offline NACKed"
"dip=%p", (void *)dip));
return (NDI_FAILURE);
}
}
if (flags & NDI_POST_EVENT) {
if (i_ddi_devi_attached(pdip)) {
if (ddi_get_eventcookie(dip, DDI_DEVI_REMOVE_EVENT,
&cookie) == NDI_SUCCESS)
(void) ndi_post_event(dip, dip, cookie, NULL);
}
}
/*
* dv_mknod places a hold on the dev_info_t for each devfs node
* created. If we're to succeed in detaching this device, we must
* first release all outstanding references held by devfs.
*/
(void) devfs_clean(pdip, NULL, DV_CLEAN_FORCE);
if (i_ddi_detachchild(dip, flags) != DDI_SUCCESS) {
if (flags & NDI_DEVI_OFFLINE) {
RIO_DEBUG((CE_NOTE, "devi_detach_node: offline failed."
" Calling e_ddi_offline_finalize with result=%d. "
"dip=%p", DDI_FAILURE, (void *)dip));
e_ddi_offline_finalize(dip, DDI_FAILURE);
}
return (NDI_FAILURE);
}
if (flags & NDI_DEVI_OFFLINE) {
RIO_DEBUG((CE_NOTE, "devi_detach_node: offline succeeded."
" Calling e_ddi_offline_finalize with result=%d, "
"dip=%p", DDI_SUCCESS, (void *)dip));
e_ddi_offline_finalize(dip, DDI_SUCCESS);
}
if (flags & NDI_AUTODETACH)
return (NDI_SUCCESS);
/*
* For DR, even bound nodes may need to have offline
* flag set.
*/
if (flags & NDI_DEVI_OFFLINE) {
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_DEVICE_OFFLINE(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
}
if (i_ddi_node_state(dip) == DS_INITIALIZED) {
struct dev_info *devi = DEVI(dip);
if (devi->devi_ev_path == NULL) {
devi->devi_ev_path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, devi->devi_ev_path);
}
if (flags & NDI_DEVI_OFFLINE)
i_ndi_devi_report_status_change(dip,
devi->devi_ev_path);
if (need_remove_event(dip, flags)) {
/*
* instance and path data are lost in call to
* ddi_uninitchild
*/
devi->devi_ev_instance = ddi_get_instance(dip);
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_EVREMOVE(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
}
}
if (flags & (NDI_UNCONFIG | NDI_DEVI_REMOVE)) {
ret = ddi_uninitchild(dip);
if (ret == NDI_SUCCESS) {
/*
* Remove uninitialized pseudo nodes because
* system props are lost and the node cannot be
* reattached.
*/
if (!ndi_dev_is_persistent_node(dip))
flags |= NDI_DEVI_REMOVE;
if (flags & NDI_DEVI_REMOVE) {
/*
* NOTE: If there is a consumer of LDI events,
* ddi_uninitchild above would have failed
* because of active devi_ref from ldi_open().
*/
if (DEVI_EVREMOVE(dip)) {
path = i_ddi_strdup(
DEVI(dip)->devi_ev_path,
KM_SLEEP);
class =
i_ddi_strdup(i_ddi_devi_class(dip),
KM_SLEEP);
driver =
i_ddi_strdup(
(char *)ddi_driver_name(dip),
KM_SLEEP);
instance = DEVI(dip)->devi_ev_instance;
post_event = 1;
}
ret = ddi_remove_child(dip, 0);
if (post_event && ret == NDI_SUCCESS) {
/* Generate EC_DEVFS_DEVI_REMOVE */
(void) i_log_devfs_remove_devinfo(path,
class, driver, instance, flags);
}
}
}
}
if (path)
strfree(path);
if (class)
strfree(class);
if (driver)
strfree(driver);
return (ret);
}
/*
* unconfigure immediate children of bus nexus device
*/
static int
unconfig_immediate_children(
dev_info_t *dip,
dev_info_t **dipp,
int flags,
major_t major)
{
int rv = NDI_SUCCESS;
int circ, vcirc;
dev_info_t *child;
dev_info_t *vdip = NULL;
dev_info_t *next;
ASSERT(dipp == NULL || *dipp == NULL);
/*
* Scan forward to see if we will be processing a pHCI child. If we
* have a child that is a pHCI and vHCI and pHCI are not siblings then
* enter vHCI before parent(pHCI) to prevent deadlock with mpxio
* Client power management operations.
*/
ndi_devi_enter(dip, &circ);
for (child = ddi_get_child(dip); child;
child = ddi_get_next_sibling(child)) {
/* skip same nodes we skip below */
if (((major != DDI_MAJOR_T_NONE) &&
(major != ddi_driver_major(child))) ||
((flags & NDI_AUTODETACH) && !is_leaf_node(child)))
continue;
if (MDI_PHCI(child)) {
vdip = mdi_devi_get_vdip(child);
/*
* If vHCI and vHCI is not a sibling of pHCI
* then enter in (vHCI, parent(pHCI)) order.
*/
if (vdip && (ddi_get_parent(vdip) != dip)) {
ndi_devi_exit(dip, circ);
/* use mdi_devi_enter ordering */
ndi_devi_enter(vdip, &vcirc);
ndi_devi_enter(dip, &circ);
break;
} else
vdip = NULL;
}
}
child = ddi_get_child(dip);
while (child) {
next = ddi_get_next_sibling(child);
if ((major != DDI_MAJOR_T_NONE) &&
(major != ddi_driver_major(child))) {
child = next;
continue;
}
/* skip nexus nodes during autodetach */
if ((flags & NDI_AUTODETACH) && !is_leaf_node(child)) {
child = next;
continue;
}
if (devi_detach_node(child, flags) != NDI_SUCCESS) {
if (dipp && *dipp == NULL) {
ndi_hold_devi(child);
*dipp = child;
}
rv = NDI_FAILURE;
}
/*
* Continue upon failure--best effort algorithm
*/
child = next;
}
ndi_devi_exit(dip, circ);
if (vdip)
ndi_devi_exit(vdip, vcirc);
return (rv);
}
/*
* unconfigure grand children of bus nexus device
*/
static int
unconfig_grand_children(
dev_info_t *dip,
dev_info_t **dipp,
int flags,
major_t major,
struct brevq_node **brevqp)
{
struct mt_config_handle *hdl;
if (brevqp)
*brevqp = NULL;
/* multi-threaded configuration of child nexus */
hdl = mt_config_init(dip, dipp, flags, major, MT_UNCONFIG_OP, brevqp);
mt_config_children(hdl);
return (mt_config_fini(hdl)); /* wait for threads to exit */
}
/*
* Unconfigure children/descendants of the dip.
*
* If brevqp is not NULL, on return *brevqp is set to a queue of dip's
* child devinames for which branch remove events need to be generated.
*/
static int
devi_unconfig_common(
dev_info_t *dip,
dev_info_t **dipp,
int flags,
major_t major,
struct brevq_node **brevqp)
{
int rv;
int pm_cookie;
int (*f)();
ddi_bus_config_op_t bus_op;
if (dipp)
*dipp = NULL;
if (brevqp)
*brevqp = NULL;
/*
* Power up the dip if it is powered off. If the flag bit
* NDI_AUTODETACH is set and the dip is not at its full power,
* skip the rest of the branch.
*/
if (pm_pre_unconfig(dip, flags, &pm_cookie, NULL) != DDI_SUCCESS)
return ((flags & NDI_AUTODETACH) ? NDI_SUCCESS :
NDI_FAILURE);
/*
* Some callers, notably SCSI, need to clear out the devfs
* cache together with the unconfig to prevent stale entries.
*/
if (flags & NDI_DEVFS_CLEAN)
(void) devfs_clean(dip, NULL, 0);
rv = unconfig_grand_children(dip, dipp, flags, major, brevqp);
if ((rv != NDI_SUCCESS) && ((flags & NDI_AUTODETACH) == 0)) {
if (brevqp && *brevqp) {
log_and_free_br_events_on_grand_children(dip, *brevqp);
free_brevq(*brevqp);
*brevqp = NULL;
}
pm_post_unconfig(dip, pm_cookie, NULL);
return (rv);
}
if (dipp && *dipp) {
ndi_rele_devi(*dipp);
*dipp = NULL;
}
/*
* It is possible to have a detached nexus with children
* and grandchildren (for example: a branch consisting
* entirely of bound nodes.) Since the nexus is detached
* the bus_unconfig entry point cannot be used to remove
* or unconfigure the descendants.
*/
if (!i_ddi_devi_attached(dip) ||
(DEVI(dip)->devi_ops->devo_bus_ops == NULL) ||
(DEVI(dip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) ||
(f = DEVI(dip)->devi_ops->devo_bus_ops->bus_unconfig) == NULL) {
rv = unconfig_immediate_children(dip, dipp, flags, major);
} else {
/*
* call bus_unconfig entry point
* It should reset nexus flags if unconfigure succeeds.
*/
bus_op = (major == DDI_MAJOR_T_NONE) ?
BUS_UNCONFIG_ALL : BUS_UNCONFIG_DRIVER;
rv = (*f)(dip, flags, bus_op, (void *)(uintptr_t)major);
}
pm_post_unconfig(dip, pm_cookie, NULL);
if (brevqp && *brevqp)
cleanup_br_events_on_grand_children(dip, brevqp);
return (rv);
}
/*
* called by devfs/framework to unconfigure children bound to major
* If NDI_AUTODETACH is specified, this is invoked by either the
* moduninstall daemon or the modunload -i 0 command.
*/
int
ndi_devi_unconfig_driver(dev_info_t *dip, int flags, major_t major)
{
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_unconfig_driver: par = %s%d (%p), flags = 0x%x\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags));
return (devi_unconfig_common(dip, NULL, flags, major, NULL));
}
int
ndi_devi_unconfig(dev_info_t *dip, int flags)
{
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_unconfig: par = %s%d (%p), flags = 0x%x\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags));
return (devi_unconfig_common(dip, NULL, flags, DDI_MAJOR_T_NONE, NULL));
}
int
e_ddi_devi_unconfig(dev_info_t *dip, dev_info_t **dipp, int flags)
{
NDI_CONFIG_DEBUG((CE_CONT,
"e_ddi_devi_unconfig: par = %s%d (%p), flags = 0x%x\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags));
return (devi_unconfig_common(dip, dipp, flags, DDI_MAJOR_T_NONE, NULL));
}
/*
* Unconfigure child by name
*/
static int
devi_unconfig_one(dev_info_t *pdip, char *devnm, int flags)
{
int rv, circ;
dev_info_t *child;
dev_info_t *vdip = NULL;
int v_circ;
ndi_devi_enter(pdip, &circ);
child = ndi_devi_findchild(pdip, devnm);
/*
* If child is pHCI and vHCI and pHCI are not siblings then enter vHCI
* before parent(pHCI) to avoid deadlock with mpxio Client power
* management operations.
*/
if (child && MDI_PHCI(child)) {
vdip = mdi_devi_get_vdip(child);
if (vdip && (ddi_get_parent(vdip) != pdip)) {
ndi_devi_exit(pdip, circ);
/* use mdi_devi_enter ordering */
ndi_devi_enter(vdip, &v_circ);
ndi_devi_enter(pdip, &circ);
child = ndi_devi_findchild(pdip, devnm);
} else
vdip = NULL;
}
if (child) {
rv = devi_detach_node(child, flags);
} else {
NDI_CONFIG_DEBUG((CE_CONT,
"devi_unconfig_one: %s not found\n", devnm));
rv = NDI_SUCCESS;
}
ndi_devi_exit(pdip, circ);
if (vdip)
ndi_devi_exit(vdip, v_circ);
return (rv);
}
int
ndi_devi_unconfig_one(
dev_info_t *pdip,
char *devnm,
dev_info_t **dipp,
int flags)
{
int (*f)();
int circ, rv;
int pm_cookie;
dev_info_t *child;
dev_info_t *vdip = NULL;
int v_circ;
struct brevq_node *brevq = NULL;
ASSERT(i_ddi_devi_attached(pdip));
NDI_CONFIG_DEBUG((CE_CONT,
"ndi_devi_unconfig_one: par = %s%d (%p), child = %s\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
(void *)pdip, devnm));
if (pm_pre_unconfig(pdip, flags, &pm_cookie, devnm) != DDI_SUCCESS)
return (NDI_FAILURE);
if (dipp)
*dipp = NULL;
ndi_devi_enter(pdip, &circ);
child = ndi_devi_findchild(pdip, devnm);
/*
* If child is pHCI and vHCI and pHCI are not siblings then enter vHCI
* before parent(pHCI) to avoid deadlock with mpxio Client power
* management operations.
*/
if (child && MDI_PHCI(child)) {
vdip = mdi_devi_get_vdip(child);
if (vdip && (ddi_get_parent(vdip) != pdip)) {
ndi_devi_exit(pdip, circ);
/* use mdi_devi_enter ordering */
ndi_devi_enter(vdip, &v_circ);
ndi_devi_enter(pdip, &circ);
child = ndi_devi_findchild(pdip, devnm);
} else
vdip = NULL;
}
if (child == NULL) {
NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_unconfig_one: %s"
" not found\n", devnm));
rv = NDI_SUCCESS;
goto out;
}
/*
* Unconfigure children/descendants of named child
*/
rv = devi_unconfig_branch(child, dipp, flags | NDI_UNCONFIG, &brevq);
if (rv != NDI_SUCCESS)
goto out;
init_bound_node_ev(pdip, child, flags);
if ((DEVI(pdip)->devi_ops->devo_bus_ops == NULL) ||
(DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) ||
(f = DEVI(pdip)->devi_ops->devo_bus_ops->bus_unconfig) == NULL) {
rv = devi_detach_node(child, flags);
} else {
/* call bus_config entry point */
rv = (*f)(pdip, flags, BUS_UNCONFIG_ONE, (void *)devnm);
}
if (brevq) {
if (rv != NDI_SUCCESS)
log_and_free_brevq_dip(child, brevq);
else
free_brevq(brevq);
}
if (dipp && rv != NDI_SUCCESS) {
ndi_hold_devi(child);
ASSERT(*dipp == NULL);
*dipp = child;
}
out:
ndi_devi_exit(pdip, circ);
if (vdip)
ndi_devi_exit(vdip, v_circ);
pm_post_unconfig(pdip, pm_cookie, devnm);
return (rv);
}
struct async_arg {
dev_info_t *dip;
uint_t flags;
};
/*
* Common async handler for:
* ndi_devi_bind_driver_async
* ndi_devi_online_async
*/
static int
i_ndi_devi_async_common(dev_info_t *dip, uint_t flags, void (*func)())
{
int tqflag;
int kmflag;
struct async_arg *arg;
dev_info_t *pdip = ddi_get_parent(dip);
ASSERT(pdip);
ASSERT(DEVI(pdip)->devi_taskq);
ASSERT(ndi_dev_is_persistent_node(dip));
if (flags & NDI_NOSLEEP) {
kmflag = KM_NOSLEEP;
tqflag = TQ_NOSLEEP;
} else {
kmflag = KM_SLEEP;
tqflag = TQ_SLEEP;
}
arg = kmem_alloc(sizeof (*arg), kmflag);
if (arg == NULL)
goto fail;
arg->flags = flags;
arg->dip = dip;
if (ddi_taskq_dispatch(DEVI(pdip)->devi_taskq, func, arg, tqflag) ==
DDI_SUCCESS) {
return (NDI_SUCCESS);
}
fail:
NDI_CONFIG_DEBUG((CE_CONT, "%s%d: ddi_taskq_dispatch failed",
ddi_driver_name(pdip), ddi_get_instance(pdip)));
if (arg)
kmem_free(arg, sizeof (*arg));
return (NDI_FAILURE);
}
static void
i_ndi_devi_bind_driver_cb(struct async_arg *arg)
{
(void) ndi_devi_bind_driver(arg->dip, arg->flags);
kmem_free(arg, sizeof (*arg));
}
int
ndi_devi_bind_driver_async(dev_info_t *dip, uint_t flags)
{
return (i_ndi_devi_async_common(dip, flags,
(void (*)())i_ndi_devi_bind_driver_cb));
}
/*
* place the devinfo in the ONLINE state.
*/
int
ndi_devi_online(dev_info_t *dip, uint_t flags)
{
int circ, rv;
dev_info_t *pdip = ddi_get_parent(dip);
int branch_event = 0;
ASSERT(pdip);
NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_online: %s%d (%p)\n",
ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip));
ndi_devi_enter(pdip, &circ);
/* bind child before merging .conf nodes */
rv = i_ndi_config_node(dip, DS_BOUND, flags);
if (rv != NDI_SUCCESS) {
ndi_devi_exit(pdip, circ);
return (rv);
}
/* merge .conf properties */
(void) i_ndi_make_spec_children(pdip, flags);
flags |= (NDI_DEVI_ONLINE | NDI_CONFIG);
if (flags & NDI_NO_EVENT) {
/*
* Caller is specifically asking for not to generate an event.
* Set the following flag so that devi_attach_node() don't
* change the event state.
*/
flags |= NDI_NO_EVENT_STATE_CHNG;
}
if ((flags & (NDI_NO_EVENT | NDI_BRANCH_EVENT_OP)) == 0 &&
((flags & NDI_CONFIG) || DEVI_NEED_NDI_CONFIG(dip))) {
flags |= NDI_BRANCH_EVENT_OP;
branch_event = 1;
}
/*
* devi_attach_node() may remove dip on failure
*/
if ((rv = devi_attach_node(dip, flags)) == NDI_SUCCESS) {
if ((flags & NDI_CONFIG) || DEVI_NEED_NDI_CONFIG(dip)) {
/*
* Hold the attached dip, and exit the parent while
* we drive configuration of children below the
* attached dip.
*/
ndi_hold_devi(dip);
ndi_devi_exit(pdip, circ);
(void) ndi_devi_config(dip, flags);
ndi_devi_enter(pdip, &circ);
ndi_rele_devi(dip);
}
if (branch_event)
(void) i_log_devfs_branch_add(dip);
}
ndi_devi_exit(pdip, circ);
/*
* Notify devfs that we have a new node. Devfs needs to invalidate
* cached directory contents.
*
* For PCMCIA devices, it is possible the pdip is not fully
* attached. In this case, calling back into devfs will
* result in a loop or assertion error. Hence, the check
* on node state.
*
* If we own parent lock, this is part of a branch operation.
* We skip the devfs_clean() step because the cache invalidation
* is done higher up in the device tree.
*/
if (rv == NDI_SUCCESS && i_ddi_devi_attached(pdip) &&
!DEVI_BUSY_OWNED(pdip))
(void) devfs_clean(pdip, NULL, 0);
return (rv);
}
static void
i_ndi_devi_online_cb(struct async_arg *arg)
{
(void) ndi_devi_online(arg->dip, arg->flags);
kmem_free(arg, sizeof (*arg));
}
int
ndi_devi_online_async(dev_info_t *dip, uint_t flags)
{
/* mark child as need config if requested. */
if (flags & NDI_CONFIG) {
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_NDI_CONFIG(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
}
return (i_ndi_devi_async_common(dip, flags,
(void (*)())i_ndi_devi_online_cb));
}
/*
* Take a device node Offline
* To take a device Offline means to detach the device instance from
* the driver and prevent devfs requests from re-attaching the device
* instance.
*
* The flag NDI_DEVI_REMOVE causes removes the device node from
* the driver list and the device tree. In this case, the device
* is assumed to be removed from the system.
*/
int
ndi_devi_offline(dev_info_t *dip, uint_t flags)
{
int circ, rval = 0;
dev_info_t *pdip = ddi_get_parent(dip);
dev_info_t *vdip = NULL;
int v_circ;
struct brevq_node *brevq = NULL;
ASSERT(pdip);
flags |= NDI_DEVI_OFFLINE;
/*
* If child is pHCI and vHCI and pHCI are not siblings then enter vHCI
* before parent(pHCI) to avoid deadlock with mpxio Client power
* management operations.
*/
if (MDI_PHCI(dip)) {
vdip = mdi_devi_get_vdip(dip);
if (vdip && (ddi_get_parent(vdip) != pdip))
ndi_devi_enter(vdip, &v_circ);
else
vdip = NULL;
}
ndi_devi_enter(pdip, &circ);
if (i_ddi_devi_attached(dip)) {
/*
* If dip is in DS_READY state, there may be cached dv_nodes
* referencing this dip, so we invoke devfs code path.
* Note that we must release busy changing on pdip to
* avoid deadlock against devfs.
*/
char *devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
(void) ddi_deviname(dip, devname);
ndi_devi_exit(pdip, circ);
if (vdip)
ndi_devi_exit(vdip, v_circ);
/*
* If we are explictly told to clean, then clean. If we own the
* parent lock then this is part of a branch operation, and we
* skip the devfs_clean() step.
*
* NOTE: A thread performing a devfs file system lookup/
* bus_config can't call devfs_clean to unconfig without
* causing rwlock problems in devfs. For ndi_devi_offline, this
* means that the NDI_DEVFS_CLEAN flag is safe from ioctl code
* or from an async hotplug thread, but is not safe from a
* nexus driver's bus_config implementation.
*/
if ((flags & NDI_DEVFS_CLEAN) ||
(!DEVI_BUSY_OWNED(pdip)))
(void) devfs_clean(pdip, devname + 1, DV_CLEAN_FORCE);
kmem_free(devname, MAXNAMELEN + 1);
rval = devi_unconfig_branch(dip, NULL, flags|NDI_UNCONFIG,
&brevq);
if (rval)
return (NDI_FAILURE);
if (vdip)
ndi_devi_enter(vdip, &v_circ);
ndi_devi_enter(pdip, &circ);
}
init_bound_node_ev(pdip, dip, flags);
rval = devi_detach_node(dip, flags);
if (brevq) {
if (rval != NDI_SUCCESS)
log_and_free_brevq_dip(dip, brevq);
else
free_brevq(brevq);
}
ndi_devi_exit(pdip, circ);
if (vdip)
ndi_devi_exit(vdip, v_circ);
return (rval);
}
/*
* Find the child dev_info node of parent nexus 'p' whose unit address
* matches "cname@caddr". Recommend use of ndi_devi_findchild() instead.
*/
dev_info_t *
ndi_devi_find(dev_info_t *pdip, char *cname, char *caddr)
{
dev_info_t *child;
int circ;
if (pdip == NULL || cname == NULL || caddr == NULL)
return ((dev_info_t *)NULL);
ndi_devi_enter(pdip, &circ);
child = find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_NODENAME, NULL);
ndi_devi_exit(pdip, circ);
return (child);
}
/*
* Find the child dev_info node of parent nexus 'p' whose unit address
* matches devname "name@addr". Permits caller to hold the parent.
*/
dev_info_t *
ndi_devi_findchild(dev_info_t *pdip, char *devname)
{
dev_info_t *child;
char *cname, *caddr;
char *devstr;
ASSERT(DEVI_BUSY_OWNED(pdip));
devstr = i_ddi_strdup(devname, KM_SLEEP);
i_ddi_parse_name(devstr, &cname, &caddr, NULL);
if (cname == NULL || caddr == NULL) {
kmem_free(devstr, strlen(devname)+1);
return ((dev_info_t *)NULL);
}
child = find_sibling(ddi_get_child(pdip), cname, caddr,
FIND_NODE_BY_NODENAME, NULL);
kmem_free(devstr, strlen(devname)+1);
return (child);
}
/*
* Misc. routines called by framework only
*/
/*
* Clear the DEVI_MADE_CHILDREN/DEVI_ATTACHED_CHILDREN flags
* if new child spec has been added.
*/
static int
reset_nexus_flags(dev_info_t *dip, void *arg)
{
struct hwc_spec *list;
int circ;
if (((DEVI(dip)->devi_flags & DEVI_MADE_CHILDREN) == 0) ||
((list = hwc_get_child_spec(dip, (major_t)(uintptr_t)arg)) == NULL))
return (DDI_WALK_CONTINUE);
hwc_free_spec_list(list);
/* coordinate child state update */
ndi_devi_enter(dip, &circ);
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_flags &= ~(DEVI_MADE_CHILDREN | DEVI_ATTACHED_CHILDREN);
mutex_exit(&DEVI(dip)->devi_lock);
ndi_devi_exit(dip, circ);
return (DDI_WALK_CONTINUE);
}
/*
* Helper functions, returns NULL if no memory.
*/
/*
* path_to_major:
*
* Return an alternate driver name binding for the leaf device
* of the given pathname, if there is one. The purpose of this
* function is to deal with generic pathnames. The default action
* for platforms that can't do this (ie: x86 or any platform that
* does not have prom_finddevice functionality, which matches
* nodenames and unit-addresses without the drivers participation)
* is to return DDI_MAJOR_T_NONE.
*
* Used in loadrootmodules() in the swapgeneric module to
* associate a given pathname with a given leaf driver.
*
*/
major_t
path_to_major(char *path)
{
dev_info_t *dip;
char *p, *q;
pnode_t nodeid;
major_t major;
/* check for path-oriented alias */
major = ddi_name_to_major(path);
if (driver_active(major)) {
NDI_CONFIG_DEBUG((CE_NOTE, "path_to_major: %s path bound %s\n",
path, ddi_major_to_name(major)));
return (major);
}
/*
* Get the nodeid of the given pathname, if such a mapping exists.
*/
dip = NULL;
nodeid = prom_finddevice(path);
if (nodeid != OBP_BADNODE) {
/*
* Find the nodeid in our copy of the device tree and return
* whatever name we used to bind this node to a driver.
*/
dip = e_ddi_nodeid_to_dip(nodeid);
}
if (dip == NULL) {
NDI_CONFIG_DEBUG((CE_WARN,
"path_to_major: can't bind <%s>\n", path));
return (DDI_MAJOR_T_NONE);
}
/*
* If we're bound to something other than the nodename,
* note that in the message buffer and system log.
*/
p = ddi_binding_name(dip);
q = ddi_node_name(dip);
if (p && q && (strcmp(p, q) != 0))
NDI_CONFIG_DEBUG((CE_NOTE, "path_to_major: %s bound to %s\n",
path, p));
major = ddi_name_to_major(p);
ndi_rele_devi(dip); /* release e_ddi_nodeid_to_dip hold */
return (major);
}
/*
* Return the held dip for the specified major and instance, attempting to do
* an attach if specified. Return NULL if the devi can't be found or put in
* the proper state. The caller must release the hold via ddi_release_devi if
* a non-NULL value is returned.
*
* Some callers expect to be able to perform a hold_devi() while in a context
* where using ndi_devi_enter() to ensure the hold might cause deadlock (see
* open-from-attach code in consconfig_dacf.c). Such special-case callers
* must ensure that an ndi_devi_enter(parent)/ndi_hold_devi() from a safe
* context is already active. The hold_devi() implementation must accommodate
* these callers.
*/
static dev_info_t *
hold_devi(major_t major, int instance, int flags)
{
struct devnames *dnp;
dev_info_t *dip;
char *path;
char *vpath;
if ((major >= devcnt) || (instance == -1))
return (NULL);
/* try to find the instance in the per driver list */
dnp = &(devnamesp[major]);
LOCK_DEV_OPS(&(dnp->dn_lock));
for (dip = dnp->dn_head; dip;
dip = (dev_info_t *)DEVI(dip)->devi_next) {
/* skip node if instance field is not valid */
if (i_ddi_node_state(dip) < DS_INITIALIZED)
continue;
/* look for instance match */
if (DEVI(dip)->devi_instance == instance) {
/*
* To accommodate callers that can't block in
* ndi_devi_enter() we do an ndi_hold_devi(), and
* afterwards check that the node is in a state where
* the hold prevents detach(). If we did not manage to
* prevent detach then we ndi_rele_devi() and perform
* the slow path below (which can result in a blocking
* ndi_devi_enter() while driving attach top-down).
* This code depends on the ordering of
* DEVI_SET_DETACHING and the devi_ref check in the
* detach_node() code path.
*/
ndi_hold_devi(dip);
if (i_ddi_devi_attached(dip) &&
!DEVI_IS_DETACHING(dip)) {
UNLOCK_DEV_OPS(&(dnp->dn_lock));
return (dip); /* fast-path with devi held */
}
ndi_rele_devi(dip);
/* try slow-path */
dip = NULL;
break;
}
}
ASSERT(dip == NULL);
UNLOCK_DEV_OPS(&(dnp->dn_lock));
if (flags & E_DDI_HOLD_DEVI_NOATTACH)
return (NULL); /* told not to drive attach */
/* slow-path may block, so it should not occur from interrupt */
ASSERT(!servicing_interrupt());
if (servicing_interrupt())
return (NULL);
/* reconstruct the path and drive attach by path through devfs. */
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
if (e_ddi_majorinstance_to_path(major, instance, path) == 0) {
dip = e_ddi_hold_devi_by_path(path, flags);
/*
* Verify that we got the correct device - a path_to_inst file
* with a bogus/corrupt path (or a nexus that changes its
* unit-address format) could result in an incorrect answer
*
* Verify major, instance, and path.
*/
vpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
if (dip &&
((DEVI(dip)->devi_major != major) ||
((DEVI(dip)->devi_instance != instance)) ||
(strcmp(path, ddi_pathname(dip, vpath)) != 0))) {
ndi_rele_devi(dip);
dip = NULL; /* no answer better than wrong answer */
}
kmem_free(vpath, MAXPATHLEN);
}
kmem_free(path, MAXPATHLEN);
return (dip); /* with devi held */
}
/*
* The {e_}ddi_hold_devi{_by_{instance|dev|path}} hold the devinfo node
* associated with the specified arguments. This hold should be released
* by calling ddi_release_devi.
*
* The E_DDI_HOLD_DEVI_NOATTACH flag argument allows the caller to to specify
* a failure return if the node is not already attached.
*
* NOTE: by the time we make e_ddi_hold_devi public, we should be able to reuse
* ddi_hold_devi again.
*/
dev_info_t *
ddi_hold_devi_by_instance(major_t major, int instance, int flags)
{
return (hold_devi(major, instance, flags));
}
dev_info_t *
e_ddi_hold_devi_by_dev(dev_t dev, int flags)
{
major_t major = getmajor(dev);
dev_info_t *dip;
struct dev_ops *ops;
dev_info_t *ddip = NULL;
dip = hold_devi(major, dev_to_instance(dev), flags);
/*
* The rest of this routine is legacy support for drivers that
* have broken DDI_INFO_DEVT2INSTANCE implementations but may have
* functional DDI_INFO_DEVT2DEVINFO implementations. This code will
* diagnose inconsistency and, for maximum compatibility with legacy
* drivers, give preference to the drivers DDI_INFO_DEVT2DEVINFO
* implementation over the above derived dip based the driver's
* DDI_INFO_DEVT2INSTANCE implementation. This legacy support should
* be removed when DDI_INFO_DEVT2DEVINFO is deprecated.
*
* NOTE: The following code has a race condition. DEVT2DEVINFO
* returns a dip which is not held. By the time we ref ddip,
* it could have been freed. The saving grace is that for
* most drivers, the dip returned from hold_devi() is the
* same one as the one returned by DEVT2DEVINFO, so we are
* safe for drivers with the correct getinfo(9e) impl.
*/
if (((ops = ddi_hold_driver(major)) != NULL) &&
CB_DRV_INSTALLED(ops) && ops->devo_getinfo) {
if ((*ops->devo_getinfo)(NULL, DDI_INFO_DEVT2DEVINFO,
(void *)dev, (void **)&ddip) != DDI_SUCCESS)
ddip = NULL;
}
/* give preference to the driver returned DEVT2DEVINFO dip */
if (ddip && (dip != ddip)) {
#ifdef DEBUG
cmn_err(CE_WARN, "%s: inconsistent getinfo(9E) implementation",
ddi_driver_name(ddip));
#endif /* DEBUG */
ndi_hold_devi(ddip);
if (dip)
ndi_rele_devi(dip);
dip = ddip;
}
if (ops)
ddi_rele_driver(major);
return (dip);
}
/*
* For compatibility only. Do not call this function!
*/
dev_info_t *
e_ddi_get_dev_info(dev_t dev, vtype_t type)
{
dev_info_t *dip = NULL;
if (getmajor(dev) >= devcnt)
return (NULL);
switch (type) {
case VCHR:
case VBLK:
dip = e_ddi_hold_devi_by_dev(dev, 0);
default:
break;
}
/*
* For compatibility reasons, we can only return the dip with
* the driver ref count held. This is not a safe thing to do.
* For certain broken third-party software, we are willing
* to venture into unknown territory.
*/
if (dip) {
(void) ndi_hold_driver(dip);
ndi_rele_devi(dip);
}
return (dip);
}
dev_info_t *
e_ddi_hold_devi_by_path(char *path, int flags)
{
dev_info_t *dip;
/* can't specify NOATTACH by path */
ASSERT(!(flags & E_DDI_HOLD_DEVI_NOATTACH));
return (resolve_pathname(path, &dip, NULL, NULL) ? NULL : dip);
}
void
e_ddi_hold_devi(dev_info_t *dip)
{
ndi_hold_devi(dip);
}
void
ddi_release_devi(dev_info_t *dip)
{
ndi_rele_devi(dip);
}
/*
* Associate a streams queue with a devinfo node
* NOTE: This function is called by STREAM driver's put procedure.
* It cannot block.
*/
void
ddi_assoc_queue_with_devi(queue_t *q, dev_info_t *dip)
{
queue_t *rq = _RD(q);
struct stdata *stp;
vnode_t *vp;
/* set flag indicating that ddi_assoc_queue_with_devi was called */
mutex_enter(QLOCK(rq));
rq->q_flag |= _QASSOCIATED;
mutex_exit(QLOCK(rq));
/* get the vnode associated with the queue */
stp = STREAM(rq);
vp = stp->sd_vnode;
ASSERT(vp);
/* change the hardware association of the vnode */
spec_assoc_vp_with_devi(vp, dip);
}
/*
* ddi_install_driver(name)
*
* Driver installation is currently a byproduct of driver loading. This
* may change.
*/
int
ddi_install_driver(char *name)
{
major_t major = ddi_name_to_major(name);
if ((major == DDI_MAJOR_T_NONE) ||
(ddi_hold_installed_driver(major) == NULL)) {
return (DDI_FAILURE);
}
ddi_rele_driver(major);
return (DDI_SUCCESS);
}
struct dev_ops *
ddi_hold_driver(major_t major)
{
return (mod_hold_dev_by_major(major));
}
void
ddi_rele_driver(major_t major)
{
mod_rele_dev_by_major(major);
}
/*
* This is called during boot to force attachment order of special dips
* dip must be referenced via ndi_hold_devi()
*/
int
i_ddi_attach_node_hierarchy(dev_info_t *dip)
{
dev_info_t *parent;
int ret, circ;
/*
* Recurse up until attached parent is found.
*/
if (i_ddi_devi_attached(dip))
return (DDI_SUCCESS);
parent = ddi_get_parent(dip);
if (i_ddi_attach_node_hierarchy(parent) != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Come top-down, expanding .conf nodes under this parent
* and driving attach.
*/
ndi_devi_enter(parent, &circ);
(void) i_ndi_make_spec_children(parent, 0);
ret = i_ddi_attachchild(dip);
ndi_devi_exit(parent, circ);
return (ret);
}
/* keep this function static */
static int
attach_driver_nodes(major_t major)
{
struct devnames *dnp;
dev_info_t *dip;
int error = DDI_FAILURE;
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
dip = dnp->dn_head;
while (dip) {
ndi_hold_devi(dip);
UNLOCK_DEV_OPS(&dnp->dn_lock);
if (i_ddi_attach_node_hierarchy(dip) == DDI_SUCCESS)
error = DDI_SUCCESS;
/*
* Set the 'ddi-config-driver-node' property on a nexus
* node to cause attach_driver_nodes() to configure all
* immediate children of the nexus. This property should
* be set on nodes with immediate children that bind to
* the same driver as parent.
*/
if ((error == DDI_SUCCESS) && (ddi_prop_exists(DDI_DEV_T_ANY,
dip, DDI_PROP_DONTPASS, "ddi-config-driver-node"))) {
(void) ndi_devi_config(dip, NDI_NO_EVENT);
}
LOCK_DEV_OPS(&dnp->dn_lock);
ndi_rele_devi(dip);
dip = ddi_get_next(dip);
}
if (error == DDI_SUCCESS)
dnp->dn_flags |= DN_NO_AUTODETACH;
UNLOCK_DEV_OPS(&dnp->dn_lock);
return (error);
}
/*
* i_ddi_attach_hw_nodes configures and attaches all hw nodes
* bound to a specific driver. This function replaces calls to
* ddi_hold_installed_driver() for drivers with no .conf
* enumerated nodes.
*
* This facility is typically called at boot time to attach
* platform-specific hardware nodes, such as ppm nodes on xcal
* and grover and keyswitch nodes on cherrystone. It does not
* deal with .conf enumerated node. Calling it beyond the boot
* process is strongly discouraged.
*/
int
i_ddi_attach_hw_nodes(char *driver)
{
major_t major;
major = ddi_name_to_major(driver);
if (major == DDI_MAJOR_T_NONE)
return (DDI_FAILURE);
return (attach_driver_nodes(major));
}
/*
* i_ddi_attach_pseudo_node configures pseudo drivers which
* has a single node. The .conf nodes must be enumerated
* before calling this interface. The dip is held attached
* upon returning.
*
* This facility should only be called only at boot time
* by the I/O framework.
*/
dev_info_t *
i_ddi_attach_pseudo_node(char *driver)
{
major_t major;
dev_info_t *dip;
major = ddi_name_to_major(driver);
if (major == DDI_MAJOR_T_NONE)
return (NULL);
if (attach_driver_nodes(major) != DDI_SUCCESS)
return (NULL);
dip = devnamesp[major].dn_head;
ASSERT(dip && ddi_get_next(dip) == NULL);
ndi_hold_devi(dip);
return (dip);
}
static void
diplist_to_parent_major(dev_info_t *head, char parents[])
{
major_t major;
dev_info_t *dip, *pdip;
for (dip = head; dip != NULL; dip = ddi_get_next(dip)) {
pdip = ddi_get_parent(dip);
ASSERT(pdip); /* disallow rootnex.conf nodes */
major = ddi_driver_major(pdip);
if ((major != DDI_MAJOR_T_NONE) && parents[major] == 0)
parents[major] = 1;
}
}
/*
* Call ddi_hold_installed_driver() on each parent major
* and invoke mt_config_driver() to attach child major.
* This is part of the implementation of ddi_hold_installed_driver.
*/
static int
attach_driver_by_parent(major_t child_major, char parents[])
{
major_t par_major;
struct mt_config_handle *hdl;
int flags = NDI_DEVI_PERSIST | NDI_NO_EVENT;
hdl = mt_config_init(NULL, NULL, flags, child_major, MT_CONFIG_OP,
NULL);
for (par_major = 0; par_major < devcnt; par_major++) {
/* disallow recursion on the same driver */
if (parents[par_major] == 0 || par_major == child_major)
continue;
if (ddi_hold_installed_driver(par_major) == NULL)
continue;
hdl->mtc_parmajor = par_major;
mt_config_driver(hdl);
ddi_rele_driver(par_major);
}
(void) mt_config_fini(hdl);
return (i_ddi_devs_attached(child_major));
}
int
i_ddi_devs_attached(major_t major)
{
dev_info_t *dip;
struct devnames *dnp;
int error = DDI_FAILURE;
/* check for attached instances */
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
for (dip = dnp->dn_head; dip != NULL; dip = ddi_get_next(dip)) {
if (i_ddi_devi_attached(dip)) {
error = DDI_SUCCESS;
break;
}
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
return (error);
}
int
i_ddi_minor_node_count(dev_info_t *ddip, const char *node_type)
{
int circ;
struct ddi_minor_data *dp;
int count = 0;
ndi_devi_enter(ddip, &circ);
for (dp = DEVI(ddip)->devi_minor; dp != NULL; dp = dp->next) {
if (strcmp(dp->ddm_node_type, node_type) == 0)
count++;
}
ndi_devi_exit(ddip, circ);
return (count);
}
/*
* ddi_hold_installed_driver configures and attaches all
* instances of the specified driver. To accomplish this
* it configures and attaches all possible parents of
* the driver, enumerated both in h/w nodes and in the
* driver's .conf file.
*
* NOTE: This facility is for compatibility purposes only and will
* eventually go away. Its usage is strongly discouraged.
*/
static void
enter_driver(struct devnames *dnp)
{
mutex_enter(&dnp->dn_lock);
ASSERT(dnp->dn_busy_thread != curthread);
while (dnp->dn_flags & DN_DRIVER_BUSY)
cv_wait(&dnp->dn_wait, &dnp->dn_lock);
dnp->dn_flags |= DN_DRIVER_BUSY;
dnp->dn_busy_thread = curthread;
mutex_exit(&dnp->dn_lock);
}
static void
exit_driver(struct devnames *dnp)
{
mutex_enter(&dnp->dn_lock);
ASSERT(dnp->dn_busy_thread == curthread);
dnp->dn_flags &= ~DN_DRIVER_BUSY;
dnp->dn_busy_thread = NULL;
cv_broadcast(&dnp->dn_wait);
mutex_exit(&dnp->dn_lock);
}
struct dev_ops *
ddi_hold_installed_driver(major_t major)
{
struct dev_ops *ops;
struct devnames *dnp;
char *parents;
int error;
ops = ddi_hold_driver(major);
if (ops == NULL)
return (NULL);
/*
* Return immediately if all the attach operations associated
* with a ddi_hold_installed_driver() call have already been done.
*/
dnp = &devnamesp[major];
enter_driver(dnp);
ASSERT(driver_active(major));
if (dnp->dn_flags & DN_DRIVER_HELD) {
exit_driver(dnp);
if (i_ddi_devs_attached(major) == DDI_SUCCESS)
return (ops);
ddi_rele_driver(major);
return (NULL);
}
LOCK_DEV_OPS(&dnp->dn_lock);
dnp->dn_flags |= (DN_DRIVER_HELD | DN_NO_AUTODETACH);
UNLOCK_DEV_OPS(&dnp->dn_lock);
DCOMPATPRINTF((CE_CONT,
"ddi_hold_installed_driver: %s\n", dnp->dn_name));
/*
* When the driver has no .conf children, it is sufficient
* to attach existing nodes in the device tree. Nodes not
* enumerated by the OBP are not attached.
*/
if (dnp->dn_pl == NULL) {
if (attach_driver_nodes(major) == DDI_SUCCESS) {
exit_driver(dnp);
return (ops);
}
exit_driver(dnp);
ddi_rele_driver(major);
return (NULL);
}
/*
* Driver has .conf nodes. We find all possible parents
* and recursively all ddi_hold_installed_driver on the
* parent driver; then we invoke ndi_config_driver()
* on all possible parent node in parallel to speed up
* performance.
*/
parents = kmem_zalloc(devcnt * sizeof (char), KM_SLEEP);
LOCK_DEV_OPS(&dnp->dn_lock);
/* find .conf parents */
(void) impl_parlist_to_major(dnp->dn_pl, parents);
/* find hw node parents */
diplist_to_parent_major(dnp->dn_head, parents);
UNLOCK_DEV_OPS(&dnp->dn_lock);
error = attach_driver_by_parent(major, parents);
kmem_free(parents, devcnt * sizeof (char));
if (error == DDI_SUCCESS) {
exit_driver(dnp);
return (ops);
}
exit_driver(dnp);
ddi_rele_driver(major);
return (NULL);
}
/*
* Default bus_config entry point for nexus drivers
*/
int
ndi_busop_bus_config(dev_info_t *pdip, uint_t flags, ddi_bus_config_op_t op,
void *arg, dev_info_t **child, clock_t timeout)
{
major_t major;
/*
* A timeout of 30 minutes or more is probably a mistake
* This is intended to catch uses where timeout is in
* the wrong units. timeout must be in units of ticks.
*/
ASSERT(timeout < SEC_TO_TICK(1800));
major = DDI_MAJOR_T_NONE;
switch (op) {
case BUS_CONFIG_ONE:
NDI_DEBUG(flags, (CE_CONT, "%s%d: bus config %s timeout=%ld\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
(char *)arg, timeout));
return (devi_config_one(pdip, (char *)arg, child, flags,
timeout));
case BUS_CONFIG_DRIVER:
major = (major_t)(uintptr_t)arg;
/*FALLTHROUGH*/
case BUS_CONFIG_ALL:
NDI_DEBUG(flags, (CE_CONT, "%s%d: bus config timeout=%ld\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
timeout));
if (timeout > 0) {
NDI_DEBUG(flags, (CE_CONT,
"%s%d: bus config all timeout=%ld\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
timeout));
delay(timeout);
}
return (config_immediate_children(pdip, flags, major));
default:
return (NDI_FAILURE);
}
/*NOTREACHED*/
}
/*
* Default busop bus_unconfig handler for nexus drivers
*/
int
ndi_busop_bus_unconfig(dev_info_t *pdip, uint_t flags, ddi_bus_config_op_t op,
void *arg)
{
major_t major;
major = DDI_MAJOR_T_NONE;
switch (op) {
case BUS_UNCONFIG_ONE:
NDI_DEBUG(flags, (CE_CONT, "%s%d: bus unconfig %s\n",
ddi_driver_name(pdip), ddi_get_instance(pdip),
(char *)arg));
return (devi_unconfig_one(pdip, (char *)arg, flags));
case BUS_UNCONFIG_DRIVER:
major = (major_t)(uintptr_t)arg;
/*FALLTHROUGH*/
case BUS_UNCONFIG_ALL:
NDI_DEBUG(flags, (CE_CONT, "%s%d: bus unconfig all\n",
ddi_driver_name(pdip), ddi_get_instance(pdip)));
return (unconfig_immediate_children(pdip, NULL, flags, major));
default:
return (NDI_FAILURE);
}
/*NOTREACHED*/
}
/*
* dummy functions to be removed
*/
void
impl_rem_dev_props(dev_info_t *dip)
{
_NOTE(ARGUNUSED(dip))
/* do nothing */
}
/*
* Determine if a node is a leaf node. If not sure, return false (0).
*/
static int
is_leaf_node(dev_info_t *dip)
{
major_t major = ddi_driver_major(dip);
if (major == DDI_MAJOR_T_NONE)
return (0);
return (devnamesp[major].dn_flags & DN_LEAF_DRIVER);
}
/*
* Multithreaded [un]configuration
*/
static struct mt_config_handle *
mt_config_init(dev_info_t *pdip, dev_info_t **dipp, int flags,
major_t major, int op, struct brevq_node **brevqp)
{
struct mt_config_handle *hdl = kmem_alloc(sizeof (*hdl), KM_SLEEP);
mutex_init(&hdl->mtc_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&hdl->mtc_cv, NULL, CV_DEFAULT, NULL);
hdl->mtc_pdip = pdip;
hdl->mtc_fdip = dipp;
hdl->mtc_parmajor = DDI_MAJOR_T_NONE;
hdl->mtc_flags = flags;
hdl->mtc_major = major;
hdl->mtc_thr_count = 0;
hdl->mtc_op = op;
hdl->mtc_error = 0;
hdl->mtc_brevqp = brevqp;
#ifdef DEBUG
gethrestime(&hdl->start_time);
hdl->total_time = 0;
#endif /* DEBUG */
return (hdl);
}
#ifdef DEBUG
static int
time_diff_in_msec(timestruc_t start, timestruc_t end)
{
int nsec, sec;
sec = end.tv_sec - start.tv_sec;
nsec = end.tv_nsec - start.tv_nsec;
if (nsec < 0) {
nsec += NANOSEC;
sec -= 1;
}
return (sec * (NANOSEC >> 20) + (nsec >> 20));
}
#endif /* DEBUG */
static int
mt_config_fini(struct mt_config_handle *hdl)
{
int rv;
#ifdef DEBUG
int real_time;
timestruc_t end_time;
#endif /* DEBUG */
mutex_enter(&hdl->mtc_lock);
while (hdl->mtc_thr_count > 0)
cv_wait(&hdl->mtc_cv, &hdl->mtc_lock);
rv = hdl->mtc_error;
mutex_exit(&hdl->mtc_lock);
#ifdef DEBUG
gethrestime(&end_time);
real_time = time_diff_in_msec(hdl->start_time, end_time);
if ((ddidebug & DDI_MTCONFIG) && hdl->mtc_pdip)
cmn_err(CE_NOTE,
"config %s%d: total time %d msec, real time %d msec",
ddi_driver_name(hdl->mtc_pdip),
ddi_get_instance(hdl->mtc_pdip),
hdl->total_time, real_time);
#endif /* DEBUG */
cv_destroy(&hdl->mtc_cv);
mutex_destroy(&hdl->mtc_lock);
kmem_free(hdl, sizeof (*hdl));
return (rv);
}
struct mt_config_data {
struct mt_config_handle *mtc_hdl;
dev_info_t *mtc_dip;
major_t mtc_major;
int mtc_flags;
struct brevq_node *mtc_brn;
struct mt_config_data *mtc_next;
};
static void
mt_config_thread(void *arg)
{
struct mt_config_data *mcd = (struct mt_config_data *)arg;
struct mt_config_handle *hdl = mcd->mtc_hdl;
dev_info_t *dip = mcd->mtc_dip;
dev_info_t *rdip, **dipp;
major_t major = mcd->mtc_major;
int flags = mcd->mtc_flags;
int rv = 0;
#ifdef DEBUG
timestruc_t start_time, end_time;
gethrestime(&start_time);
#endif /* DEBUG */
rdip = NULL;
dipp = hdl->mtc_fdip ? &rdip : NULL;
switch (hdl->mtc_op) {
case MT_CONFIG_OP:
rv = devi_config_common(dip, flags, major);
break;
case MT_UNCONFIG_OP:
if (mcd->mtc_brn) {
struct brevq_node *brevq = NULL;
rv = devi_unconfig_common(dip, dipp, flags, major,
&brevq);
mcd->mtc_brn->brn_child = brevq;
} else
rv = devi_unconfig_common(dip, dipp, flags, major,
NULL);
break;
}
mutex_enter(&hdl->mtc_lock);
#ifdef DEBUG
gethrestime(&end_time);
hdl->total_time += time_diff_in_msec(start_time, end_time);
#endif /* DEBUG */
if ((rv != NDI_SUCCESS) && (hdl->mtc_error == 0)) {
hdl->mtc_error = rv;
#ifdef DEBUG
if ((ddidebug & DDI_DEBUG) && (major != DDI_MAJOR_T_NONE)) {
char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
cmn_err(CE_NOTE, "mt_config_thread: "
"op %d.%d.%x at %s failed %d",
hdl->mtc_op, major, flags, path, rv);
kmem_free(path, MAXPATHLEN);
}
#endif /* DEBUG */
}
if (hdl->mtc_fdip && *hdl->mtc_fdip == NULL) {
*hdl->mtc_fdip = rdip;
rdip = NULL;
}
if (rdip) {
ASSERT(rv != NDI_SUCCESS);
ndi_rele_devi(rdip);
}
ndi_rele_devi(dip);
if (--hdl->mtc_thr_count == 0)
cv_broadcast(&hdl->mtc_cv);
mutex_exit(&hdl->mtc_lock);
kmem_free(mcd, sizeof (*mcd));
}
/*
* Multi-threaded config/unconfig of child nexus
*/
static void
mt_config_children(struct mt_config_handle *hdl)
{
dev_info_t *pdip = hdl->mtc_pdip;
major_t major = hdl->mtc_major;
dev_info_t *dip;
int circ;
struct brevq_node *brn;
struct mt_config_data *mcd_head = NULL;
struct mt_config_data *mcd_tail = NULL;
struct mt_config_data *mcd;
#ifdef DEBUG
timestruc_t end_time;
/* Update total_time in handle */
gethrestime(&end_time);
hdl->total_time += time_diff_in_msec(hdl->start_time, end_time);
#endif
ndi_devi_enter(pdip, &circ);
dip = ddi_get_child(pdip);
while (dip) {
if (hdl->mtc_op == MT_UNCONFIG_OP && hdl->mtc_brevqp &&
!(DEVI_EVREMOVE(dip)) &&
i_ddi_node_state(dip) >= DS_INITIALIZED) {
/*
* Enqueue this dip's deviname.
* No need to hold a lock while enqueuing since this
* is the only thread doing the enqueue and no one
* walks the queue while we are in multithreaded
* unconfiguration.
*/
brn = brevq_enqueue(hdl->mtc_brevqp, dip, NULL);
} else
brn = NULL;
/*
* Hold the child that we are processing so he does not get
* removed. The corrisponding ndi_rele_devi() for children
* that are not being skipped is done at the end of
* mt_config_thread().
*/
ndi_hold_devi(dip);
/*
* skip leaf nodes and (for configure) nodes not
* fully attached.
*/
if (is_leaf_node(dip) ||
(hdl->mtc_op == MT_CONFIG_OP &&
i_ddi_node_state(dip) < DS_READY)) {
ndi_rele_devi(dip);
dip = ddi_get_next_sibling(dip);
continue;
}
mcd = kmem_alloc(sizeof (*mcd), KM_SLEEP);
mcd->mtc_dip = dip;
mcd->mtc_hdl = hdl;
mcd->mtc_brn = brn;
/*
* Switch a 'driver' operation to an 'all' operation below a
* node bound to the driver.
*/
if ((major == DDI_MAJOR_T_NONE) ||
(major == ddi_driver_major(dip)))
mcd->mtc_major = DDI_MAJOR_T_NONE;
else
mcd->mtc_major = major;
/*
* The unconfig-driver to unconfig-all conversion above
* constitutes an autodetach for NDI_DETACH_DRIVER calls,
* set NDI_AUTODETACH.
*/
mcd->mtc_flags = hdl->mtc_flags;
if ((mcd->mtc_flags & NDI_DETACH_DRIVER) &&
(hdl->mtc_op == MT_UNCONFIG_OP) &&
(major == ddi_driver_major(pdip)))
mcd->mtc_flags |= NDI_AUTODETACH;
mutex_enter(&hdl->mtc_lock);
hdl->mtc_thr_count++;
mutex_exit(&hdl->mtc_lock);
/*
* Add to end of list to process after ndi_devi_exit to avoid
* locking differences depending on value of mtc_off.
*/
mcd->mtc_next = NULL;
if (mcd_head == NULL)
mcd_head = mcd;
else
mcd_tail->mtc_next = mcd;
mcd_tail = mcd;
dip = ddi_get_next_sibling(dip);
}
ndi_devi_exit(pdip, circ);
/* go through the list of held children */
for (mcd = mcd_head; mcd; mcd = mcd_head) {
mcd_head = mcd->mtc_next;
if (mtc_off || (mcd->mtc_flags & NDI_MTC_OFF))
mt_config_thread(mcd);
else
(void) thread_create(NULL, 0, mt_config_thread, mcd,
0, &p0, TS_RUN, minclsyspri);
}
}
static void
mt_config_driver(struct mt_config_handle *hdl)
{
major_t par_major = hdl->mtc_parmajor;
major_t major = hdl->mtc_major;
struct devnames *dnp = &devnamesp[par_major];
dev_info_t *dip;
struct mt_config_data *mcd_head = NULL;
struct mt_config_data *mcd_tail = NULL;
struct mt_config_data *mcd;
#ifdef DEBUG
timestruc_t end_time;
/* Update total_time in handle */
gethrestime(&end_time);
hdl->total_time += time_diff_in_msec(hdl->start_time, end_time);
#endif
ASSERT(par_major != DDI_MAJOR_T_NONE);
ASSERT(major != DDI_MAJOR_T_NONE);
LOCK_DEV_OPS(&dnp->dn_lock);
dip = devnamesp[par_major].dn_head;
while (dip) {
/*
* Hold the child that we are processing so he does not get
* removed. The corrisponding ndi_rele_devi() for children
* that are not being skipped is done at the end of
* mt_config_thread().
*/
ndi_hold_devi(dip);
/* skip leaf nodes and nodes not fully attached */
if (!i_ddi_devi_attached(dip) || is_leaf_node(dip)) {
ndi_rele_devi(dip);
dip = ddi_get_next(dip);
continue;
}
mcd = kmem_alloc(sizeof (*mcd), KM_SLEEP);
mcd->mtc_dip = dip;
mcd->mtc_hdl = hdl;
mcd->mtc_major = major;
mcd->mtc_flags = hdl->mtc_flags;
mutex_enter(&hdl->mtc_lock);
hdl->mtc_thr_count++;
mutex_exit(&hdl->mtc_lock);
/*
* Add to end of list to process after UNLOCK_DEV_OPS to avoid
* locking differences depending on value of mtc_off.
*/
mcd->mtc_next = NULL;
if (mcd_head == NULL)
mcd_head = mcd;
else
mcd_tail->mtc_next = mcd;
mcd_tail = mcd;
dip = ddi_get_next(dip);
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
/* go through the list of held children */
for (mcd = mcd_head; mcd; mcd = mcd_head) {
mcd_head = mcd->mtc_next;
if (mtc_off || (mcd->mtc_flags & NDI_MTC_OFF))
mt_config_thread(mcd);
else
(void) thread_create(NULL, 0, mt_config_thread, mcd,
0, &p0, TS_RUN, minclsyspri);
}
}
/*
* Given the nodeid for a persistent (PROM or SID) node, return
* the corresponding devinfo node
* NOTE: This function will return NULL for .conf nodeids.
*/
dev_info_t *
e_ddi_nodeid_to_dip(pnode_t nodeid)
{
dev_info_t *dip = NULL;
struct devi_nodeid *prev, *elem;
mutex_enter(&devimap->dno_lock);
prev = NULL;
for (elem = devimap->dno_head; elem; elem = elem->next) {
if (elem->nodeid == nodeid) {
ndi_hold_devi(elem->dip);
dip = elem->dip;
break;
}
prev = elem;
}
/*
* Move to head for faster lookup next time
*/
if (elem && prev) {
prev->next = elem->next;
elem->next = devimap->dno_head;
devimap->dno_head = elem;
}
mutex_exit(&devimap->dno_lock);
return (dip);
}
static void
free_cache_task(void *arg)
{
ASSERT(arg == NULL);
mutex_enter(&di_cache.cache_lock);
/*
* The cache can be invalidated without holding the lock
* but it can be made valid again only while the lock is held.
* So if the cache is invalid when the lock is held, it will
* stay invalid until lock is released.
*/
if (!di_cache.cache_valid)
i_ddi_di_cache_free(&di_cache);
mutex_exit(&di_cache.cache_lock);
if (di_cache_debug)
cmn_err(CE_NOTE, "system_taskq: di_cache freed");
}
extern int modrootloaded;
void
i_ddi_di_cache_free(struct di_cache *cache)
{
int error;
extern int sys_shutdown;
ASSERT(mutex_owned(&cache->cache_lock));
if (cache->cache_size) {
ASSERT(cache->cache_size > 0);
ASSERT(cache->cache_data);
kmem_free(cache->cache_data, cache->cache_size);
cache->cache_data = NULL;
cache->cache_size = 0;
if (di_cache_debug)
cmn_err(CE_NOTE, "i_ddi_di_cache_free: freed cachemem");
} else {
ASSERT(cache->cache_data == NULL);
if (di_cache_debug)
cmn_err(CE_NOTE, "i_ddi_di_cache_free: NULL cache");
}
if (!modrootloaded || rootvp == NULL ||
vn_is_readonly(rootvp) || sys_shutdown) {
if (di_cache_debug) {
cmn_err(CE_WARN, "/ not mounted/RDONLY. Skip unlink");
}
return;
}
error = vn_remove(DI_CACHE_FILE, UIO_SYSSPACE, RMFILE);
if (di_cache_debug && error && error != ENOENT) {
cmn_err(CE_WARN, "%s: unlink failed: %d", DI_CACHE_FILE, error);
} else if (di_cache_debug && !error) {
cmn_err(CE_NOTE, "i_ddi_di_cache_free: unlinked cache file");
}
}
void
i_ddi_di_cache_invalidate()
{
int cache_valid;
if (!modrootloaded || !i_ddi_io_initialized()) {
if (di_cache_debug)
cmn_err(CE_NOTE, "I/O not inited. Skipping invalidate");
return;
}
/* Increment devtree generation number. */
atomic_inc_ulong(&devtree_gen);
/* Invalidate the in-core cache and dispatch free on valid->invalid */
cache_valid = atomic_swap_uint(&di_cache.cache_valid, 0);
if (cache_valid) {
/*
* This is an optimization to start cleaning up a cached
* snapshot early. For this reason, it is OK for
* taskq_dispatach to fail (and it is OK to not track calling
* context relative to sleep, and assume NOSLEEP).
*/
(void) taskq_dispatch(system_taskq, free_cache_task, NULL,
TQ_NOSLEEP);
}
if (di_cache_debug) {
cmn_err(CE_NOTE, "invalidation");
}
}
static void
i_bind_vhci_node(dev_info_t *dip)
{
DEVI(dip)->devi_major = ddi_name_to_major(ddi_node_name(dip));
i_ddi_set_node_state(dip, DS_BOUND);
}
static char vhci_node_addr[2];
static int
i_init_vhci_node(dev_info_t *dip)
{
add_global_props(dip);
DEVI(dip)->devi_ops = ndi_hold_driver(dip);
if (DEVI(dip)->devi_ops == NULL)
return (-1);
DEVI(dip)->devi_instance = e_ddi_assign_instance(dip);
e_ddi_keep_instance(dip);
vhci_node_addr[0] = '\0';
ddi_set_name_addr(dip, vhci_node_addr);
i_ddi_set_node_state(dip, DS_INITIALIZED);
return (0);
}
static void
i_link_vhci_node(dev_info_t *dip)
{
ASSERT(MUTEX_HELD(&global_vhci_lock));
/*
* scsi_vhci should be kept left most of the device tree.
*/
if (scsi_vhci_dip) {
DEVI(dip)->devi_sibling = DEVI(scsi_vhci_dip)->devi_sibling;
DEVI(scsi_vhci_dip)->devi_sibling = DEVI(dip);
} else {
DEVI(dip)->devi_sibling = DEVI(top_devinfo)->devi_child;
DEVI(top_devinfo)->devi_child = DEVI(dip);
}
}
/*
* This a special routine to enumerate vhci node (child of rootnex
* node) without holding the ndi_devi_enter() lock. The device node
* is allocated, initialized and brought into DS_READY state before
* inserting into the device tree. The VHCI node is handcrafted
* here to bring the node to DS_READY, similar to rootnex node.
*
* The global_vhci_lock protects linking the node into the device
* as same lock is held before linking/unlinking any direct child
* of rootnex children.
*
* This routine is a workaround to handle a possible deadlock
* that occurs while trying to enumerate node in a different sub-tree
* during _init/_attach entry points.
*/
/*ARGSUSED*/
dev_info_t *
ndi_devi_config_vhci(char *drvname, int flags)
{
struct devnames *dnp;
dev_info_t *dip;
major_t major = ddi_name_to_major(drvname);
if (major == -1)
return (NULL);
/* Make sure we create the VHCI node only once */
dnp = &devnamesp[major];
LOCK_DEV_OPS(&dnp->dn_lock);
if (dnp->dn_head) {
dip = dnp->dn_head;
UNLOCK_DEV_OPS(&dnp->dn_lock);
return (dip);
}
UNLOCK_DEV_OPS(&dnp->dn_lock);
/* Allocate the VHCI node */
ndi_devi_alloc_sleep(top_devinfo, drvname, DEVI_SID_NODEID, &dip);
ndi_hold_devi(dip);
/* Mark the node as VHCI */
DEVI(dip)->devi_node_attributes |= DDI_VHCI_NODE;
i_ddi_add_devimap(dip);
i_bind_vhci_node(dip);
if (i_init_vhci_node(dip) == -1) {
ndi_rele_devi(dip);
(void) ndi_devi_free(dip);
return (NULL);
}
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_SET_ATTACHING(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
if (devi_attach(dip, DDI_ATTACH) != DDI_SUCCESS) {
cmn_err(CE_CONT, "Could not attach %s driver", drvname);
e_ddi_free_instance(dip, vhci_node_addr);
ndi_rele_devi(dip);
(void) ndi_devi_free(dip);
return (NULL);
}
mutex_enter(&(DEVI(dip)->devi_lock));
DEVI_CLR_ATTACHING(dip);
mutex_exit(&(DEVI(dip)->devi_lock));
mutex_enter(&global_vhci_lock);
i_link_vhci_node(dip);
mutex_exit(&global_vhci_lock);
i_ddi_set_node_state(dip, DS_READY);
LOCK_DEV_OPS(&dnp->dn_lock);
dnp->dn_flags |= DN_DRIVER_HELD;
dnp->dn_head = dip;
UNLOCK_DEV_OPS(&dnp->dn_lock);
i_ndi_devi_report_status_change(dip, NULL);
return (dip);
}
/*
* Maintain DEVI_DEVICE_REMOVED hotplug devi_state for remove/reinsert hotplug
* of open devices. Currently, because of tight coupling between the devfs file
* system and the Solaris device tree, a driver can't always make the device
* tree state (esp devi_node_state) match device hardware hotplug state. Until
* resolved, to overcome this deficiency we use the following interfaces that
* maintain the DEVI_DEVICE_REMOVED devi_state status bit. These interface
* report current state, and drive operation (like events and cache
* invalidation) when a driver changes remove/insert state of an open device.
*
* The ndi_devi_device_isremoved() returns 1 if the device is currently removed.
*
* The ndi_devi_device_remove() interface declares the device as removed, and
* returns 1 if there was a state change associated with this declaration.
*
* The ndi_devi_device_insert() declares the device as inserted, and returns 1
* if there was a state change associated with this declaration.
*/
int
ndi_devi_device_isremoved(dev_info_t *dip)
{
return (DEVI_IS_DEVICE_REMOVED(dip));
}
int
ndi_devi_device_remove(dev_info_t *dip)
{
ASSERT(dip && ddi_get_parent(dip) &&
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
/* Return if already marked removed. */
if (ndi_devi_device_isremoved(dip))
return (0);
/* Mark the device as having been physically removed. */
mutex_enter(&(DEVI(dip)->devi_lock));
ndi_devi_set_hidden(dip); /* invisible: lookup/snapshot */
DEVI_SET_DEVICE_REMOVED(dip);
DEVI_SET_EVREMOVE(dip); /* this clears EVADD too */
mutex_exit(&(DEVI(dip)->devi_lock));
/* report remove (as 'removed') */
i_ndi_devi_report_status_change(dip, NULL);
/*
* Invalidate the cache to ensure accurate
* (di_state() & DI_DEVICE_REMOVED).
*/
i_ddi_di_cache_invalidate();
/*
* Generate sysevent for those interested in removal (either
* directly via private EC_DEVFS or indirectly via devfsadmd
* generated EC_DEV). This will generate LDI DEVICE_REMOVE
* event too.
*/
i_ddi_log_devfs_device_remove(dip);
return (1); /* DEVICE_REMOVED state changed */
}
int
ndi_devi_device_insert(dev_info_t *dip)
{
ASSERT(dip && ddi_get_parent(dip) &&
DEVI_BUSY_OWNED(ddi_get_parent(dip)));
/* Return if not marked removed. */
if (!ndi_devi_device_isremoved(dip))
return (0);
/* Mark the device as having been physically reinserted. */
mutex_enter(&(DEVI(dip)->devi_lock));
ndi_devi_clr_hidden(dip); /* visible: lookup/snapshot */
DEVI_SET_DEVICE_REINSERTED(dip);
DEVI_SET_EVADD(dip); /* this clears EVREMOVE too */
mutex_exit(&(DEVI(dip)->devi_lock));
/* report insert (as 'online') */
i_ndi_devi_report_status_change(dip, NULL);
/*
* Invalidate the cache to ensure accurate
* (di_state() & DI_DEVICE_REMOVED).
*/
i_ddi_di_cache_invalidate();
/*
* Generate sysevent for those interested in removal (either directly
* via EC_DEVFS or indirectly via devfsadmd generated EC_DEV).
*/
i_ddi_log_devfs_device_insert(dip);
return (1); /* DEVICE_REMOVED state changed */
}
/*
* ibt_hw_is_present() returns 0 when there is no IB hardware actively
* running. This is primarily useful for modules like rpcmod which
* needs a quick check to decide whether or not it should try to use
* InfiniBand
*/
int ib_hw_status = 0;
int
ibt_hw_is_present()
{
return (ib_hw_status);
}
/*
* ASSERT that constraint flag is not set and then set the "retire attempt"
* flag.
*/
int
e_ddi_mark_retiring(dev_info_t *dip, void *arg)
{
char **cons_array = (char **)arg;
char *path;
int constraint;
int i;
constraint = 0;
if (cons_array) {
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
for (i = 0; cons_array[i] != NULL; i++) {
if (strcmp(path, cons_array[i]) == 0) {
constraint = 1;
break;
}
}
kmem_free(path, MAXPATHLEN);
}
mutex_enter(&DEVI(dip)->devi_lock);
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT));
DEVI(dip)->devi_flags |= DEVI_RETIRING;
if (constraint)
DEVI(dip)->devi_flags |= DEVI_R_CONSTRAINT;
mutex_exit(&DEVI(dip)->devi_lock);
RIO_VERBOSE((CE_NOTE, "marked dip as undergoing retire process dip=%p",
(void *)dip));
if (constraint)
RIO_DEBUG((CE_NOTE, "marked dip as constrained, dip=%p",
(void *)dip));
if (MDI_PHCI(dip))
mdi_phci_mark_retiring(dip, cons_array);
return (DDI_WALK_CONTINUE);
}
static void
free_array(char **cons_array)
{
int i;
if (cons_array == NULL)
return;
for (i = 0; cons_array[i] != NULL; i++) {
kmem_free(cons_array[i], strlen(cons_array[i]) + 1);
}
kmem_free(cons_array, (i+1) * sizeof (char *));
}
/*
* Walk *every* node in subtree and check if it blocks, allows or has no
* comment on a proposed retire.
*/
int
e_ddi_retire_notify(dev_info_t *dip, void *arg)
{
int *constraint = (int *)arg;
RIO_DEBUG((CE_NOTE, "retire notify: dip = %p", (void *)dip));
(void) e_ddi_offline_notify(dip);
mutex_enter(&(DEVI(dip)->devi_lock));
if (!(DEVI(dip)->devi_flags & DEVI_RETIRING)) {
RIO_DEBUG((CE_WARN, "retire notify: dip in retire "
"subtree is not marked: dip = %p", (void *)dip));
*constraint = 0;
} else if (DEVI(dip)->devi_flags & DEVI_R_BLOCKED) {
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT));
RIO_DEBUG((CE_NOTE, "retire notify: BLOCKED: dip = %p",
(void *)dip));
*constraint = 0;
} else if (!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)) {
RIO_DEBUG((CE_NOTE, "retire notify: NO CONSTRAINT: "
"dip = %p", (void *)dip));
*constraint = 0;
} else {
RIO_DEBUG((CE_NOTE, "retire notify: CONSTRAINT set: "
"dip = %p", (void *)dip));
}
mutex_exit(&DEVI(dip)->devi_lock);
if (MDI_PHCI(dip))
mdi_phci_retire_notify(dip, constraint);
return (DDI_WALK_CONTINUE);
}
int
e_ddi_retire_finalize(dev_info_t *dip, void *arg)
{
int constraint = *(int *)arg;
int finalize;
int phci_only;
mutex_enter(&DEVI(dip)->devi_lock);
if (!(DEVI(dip)->devi_flags & DEVI_RETIRING)) {
RIO_DEBUG((CE_WARN,
"retire: unmarked dip(%p) in retire subtree",
(void *)dip));
ASSERT(!(DEVI(dip)->devi_flags & DEVI_RETIRED));
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT));
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_BLOCKED));
mutex_exit(&DEVI(dip)->devi_lock);
return (DDI_WALK_CONTINUE);
}
/*
* retire the device if constraints have been applied
* or if the device is not in use
*/
finalize = 0;
if (constraint) {
ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip)));
ASSERT(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT);
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_BLOCKED));
DEVI(dip)->devi_flags &= ~DEVI_R_CONSTRAINT;
DEVI(dip)->devi_flags &= ~DEVI_RETIRING;
DEVI(dip)->devi_flags |= DEVI_RETIRED;
mutex_exit(&DEVI(dip)->devi_lock);
(void) spec_fence_snode(dip, NULL);
RIO_DEBUG((CE_NOTE, "Fenced off: dip = %p", (void *)dip));
e_ddi_offline_finalize(dip, DDI_SUCCESS);
} else {
if (DEVI(dip)->devi_flags & DEVI_R_BLOCKED) {
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT));
DEVI(dip)->devi_flags &= ~DEVI_R_BLOCKED;
DEVI(dip)->devi_flags &= ~DEVI_RETIRING;
/* we have already finalized during notify */
} else if (DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT) {
DEVI(dip)->devi_flags &= ~DEVI_R_CONSTRAINT;
DEVI(dip)->devi_flags &= ~DEVI_RETIRING;
finalize = 1;
} else {
DEVI(dip)->devi_flags &= ~DEVI_RETIRING;
/*
* even if no contracts, need to call finalize
* to clear the contract barrier on the dip
*/
finalize = 1;
}
mutex_exit(&DEVI(dip)->devi_lock);
RIO_DEBUG((CE_NOTE, "finalize: NOT retired: dip = %p",
(void *)dip));
if (finalize)
e_ddi_offline_finalize(dip, DDI_FAILURE);
}
/*
* phci_only variable indicates no client checking, just
* offline the PHCI. We set that to 0 to enable client
* checking
*/
phci_only = 0;
if (MDI_PHCI(dip))
mdi_phci_retire_finalize(dip, phci_only, arg);
return (DDI_WALK_CONTINUE);
}
/*
* Returns
* DDI_SUCCESS if constraints allow retire
* DDI_FAILURE if constraints don't allow retire.
* cons_array is a NULL terminated array of node paths for
* which constraints have already been applied.
*/
int
e_ddi_retire_device(char *path, char **cons_array)
{
dev_info_t *dip;
dev_info_t *pdip;
int circ;
int circ2;
int constraint;
char *devnm;
/*
* First, lookup the device
*/
dip = e_ddi_hold_devi_by_path(path, 0);
if (dip == NULL) {
/*
* device does not exist. This device cannot be
* a critical device since it is not in use. Thus
* this device is always retireable. Return DDI_SUCCESS
* to indicate this. If this device is ever
* instantiated, I/O framework will consult the
* the persistent retire store, mark it as
* retired and fence it off.
*/
RIO_DEBUG((CE_NOTE, "Retire device: device doesn't exist."
" NOP. Just returning SUCCESS. path=%s", path));
free_array(cons_array);
return (DDI_SUCCESS);
}
RIO_DEBUG((CE_NOTE, "Retire device: found dip = %p.", (void *)dip));
pdip = ddi_get_parent(dip);
ndi_hold_devi(pdip);
/*
* Run devfs_clean() in case dip has no constraints and is
* not in use, so is retireable but there are dv_nodes holding
* ref-count on the dip. Note that devfs_clean() always returns
* success.
*/
devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
(void) ddi_deviname(dip, devnm);
(void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
kmem_free(devnm, MAXNAMELEN + 1);
ndi_devi_enter(pdip, &circ);
/* release hold from e_ddi_hold_devi_by_path */
ndi_rele_devi(dip);
/*
* If it cannot make a determination, is_leaf_node() assumes
* dip is a nexus.
*/
(void) e_ddi_mark_retiring(dip, cons_array);
if (!is_leaf_node(dip)) {
ndi_devi_enter(dip, &circ2);
ddi_walk_devs(ddi_get_child(dip), e_ddi_mark_retiring,
cons_array);
ndi_devi_exit(dip, circ2);
}
free_array(cons_array);
/*
* apply constraints
*/
RIO_DEBUG((CE_NOTE, "retire: subtree retire notify: path = %s", path));
constraint = 1; /* assume constraints allow retire */
(void) e_ddi_retire_notify(dip, &constraint);
if (!is_leaf_node(dip)) {
ndi_devi_enter(dip, &circ2);
ddi_walk_devs(ddi_get_child(dip), e_ddi_retire_notify,
&constraint);
ndi_devi_exit(dip, circ2);
}
/*
* Now finalize the retire
*/
(void) e_ddi_retire_finalize(dip, &constraint);
if (!is_leaf_node(dip)) {
ndi_devi_enter(dip, &circ2);
ddi_walk_devs(ddi_get_child(dip), e_ddi_retire_finalize,
&constraint);
ndi_devi_exit(dip, circ2);
}
if (!constraint) {
RIO_DEBUG((CE_WARN, "retire failed: path = %s", path));
} else {
RIO_DEBUG((CE_NOTE, "retire succeeded: path = %s", path));
}
ndi_devi_exit(pdip, circ);
ndi_rele_devi(pdip);
return (constraint ? DDI_SUCCESS : DDI_FAILURE);
}
static int
unmark_and_unfence(dev_info_t *dip, void *arg)
{
char *path = (char *)arg;
ASSERT(path);
(void) ddi_pathname(dip, path);
mutex_enter(&DEVI(dip)->devi_lock);
DEVI(dip)->devi_flags &= ~DEVI_RETIRED;
DEVI_SET_DEVICE_ONLINE(dip);
mutex_exit(&DEVI(dip)->devi_lock);
RIO_VERBOSE((CE_NOTE, "Cleared RETIRED flag: dip=%p, path=%s",
(void *)dip, path));
(void) spec_unfence_snode(dip);
RIO_DEBUG((CE_NOTE, "Unfenced device: %s", path));
if (MDI_PHCI(dip))
mdi_phci_unretire(dip);
return (DDI_WALK_CONTINUE);
}
struct find_dip {
char *fd_buf;
char *fd_path;
dev_info_t *fd_dip;
};
static int
find_dip_fcn(dev_info_t *dip, void *arg)
{
struct find_dip *findp = (struct find_dip *)arg;
(void) ddi_pathname(dip, findp->fd_buf);
if (strcmp(findp->fd_path, findp->fd_buf) != 0)
return (DDI_WALK_CONTINUE);
ndi_hold_devi(dip);
findp->fd_dip = dip;
return (DDI_WALK_TERMINATE);
}
int
e_ddi_unretire_device(char *path)
{
int circ;
int circ2;
char *path2;
dev_info_t *pdip;
dev_info_t *dip;
struct find_dip find_dip;
ASSERT(path);
ASSERT(*path == '/');
if (strcmp(path, "/") == 0) {
cmn_err(CE_WARN, "Root node cannot be retired. Skipping "
"device unretire: %s", path);
return (0);
}
/*
* We can't lookup the dip (corresponding to path) via
* e_ddi_hold_devi_by_path() because the dip may be offline
* and may not attach. Use ddi_walk_devs() instead;
*/
find_dip.fd_buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
find_dip.fd_path = path;
find_dip.fd_dip = NULL;
pdip = ddi_root_node();
ndi_devi_enter(pdip, &circ);
ddi_walk_devs(ddi_get_child(pdip), find_dip_fcn, &find_dip);
ndi_devi_exit(pdip, circ);
kmem_free(find_dip.fd_buf, MAXPATHLEN);
if (find_dip.fd_dip == NULL) {
cmn_err(CE_WARN, "Device not found in device tree. Skipping "
"device unretire: %s", path);
return (0);
}
dip = find_dip.fd_dip;
pdip = ddi_get_parent(dip);
ndi_hold_devi(pdip);
ndi_devi_enter(pdip, &circ);
path2 = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) unmark_and_unfence(dip, path2);
if (!is_leaf_node(dip)) {
ndi_devi_enter(dip, &circ2);
ddi_walk_devs(ddi_get_child(dip), unmark_and_unfence, path2);
ndi_devi_exit(dip, circ2);
}
kmem_free(path2, MAXPATHLEN);
/* release hold from find_dip_fcn() */
ndi_rele_devi(dip);
ndi_devi_exit(pdip, circ);
ndi_rele_devi(pdip);
return (0);
}
/*
* Called before attach on a dip that has been retired.
*/
static int
mark_and_fence(dev_info_t *dip, void *arg)
{
char *fencepath = (char *)arg;
/*
* We have already decided to retire this device. The various
* constraint checking should not be set.
* NOTE that the retire flag may already be set due to
* fenced -> detach -> fenced transitions.
*/
mutex_enter(&DEVI(dip)->devi_lock);
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT));
ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_BLOCKED));
ASSERT(!(DEVI(dip)->devi_flags & DEVI_RETIRING));
DEVI(dip)->devi_flags |= DEVI_RETIRED;
mutex_exit(&DEVI(dip)->devi_lock);
RIO_VERBOSE((CE_NOTE, "marked as RETIRED dip=%p", (void *)dip));
if (fencepath) {
(void) spec_fence_snode(dip, NULL);
RIO_DEBUG((CE_NOTE, "Fenced: %s",
ddi_pathname(dip, fencepath)));
}
return (DDI_WALK_CONTINUE);
}
/*
* Checks the retire database and:
*
* - if device is present in the retire database, marks the device retired
* and fences it off.
* - if device is not in retire database, allows the device to attach normally
*
* To be called only by framework attach code on first attach attempt.
*
*/
static int
i_ddi_check_retire(dev_info_t *dip)
{
char *path;
dev_info_t *pdip;
int circ;
int phci_only;
int constraint;
pdip = ddi_get_parent(dip);
/*
* Root dip is treated special and doesn't take this code path.
* Also root can never be retired.
*/
ASSERT(pdip);
ASSERT(DEVI_BUSY_OWNED(pdip));
ASSERT(i_ddi_node_state(dip) < DS_ATTACHED);
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(dip, path);
RIO_VERBOSE((CE_NOTE, "Checking if dip should attach: dip=%p, path=%s",
(void *)dip, path));
/*
* Check if this device is in the "retired" store i.e. should
* be retired. If not, we have nothing to do.
*/
if (e_ddi_device_retired(path) == 0) {
RIO_VERBOSE((CE_NOTE, "device is NOT retired: path=%s", path));
if (DEVI(dip)->devi_flags & DEVI_RETIRED)
(void) e_ddi_unretire_device(path);
kmem_free(path, MAXPATHLEN);
return (0);
}
RIO_DEBUG((CE_NOTE, "attach: device is retired: path=%s", path));
/*
* Mark dips and fence off snodes (if any)
*/
RIO_DEBUG((CE_NOTE, "attach: Mark and fence subtree: path=%s", path));
(void) mark_and_fence(dip, path);
if (!is_leaf_node(dip)) {
ndi_devi_enter(dip, &circ);
ddi_walk_devs(ddi_get_child(dip), mark_and_fence, path);
ndi_devi_exit(dip, circ);
}
kmem_free(path, MAXPATHLEN);
/*
* We don't want to check the client. We just want to
* offline the PHCI
*/
phci_only = 1;
constraint = 1;
if (MDI_PHCI(dip))
mdi_phci_retire_finalize(dip, phci_only, &constraint);
return (1);
}
#define VAL_ALIAS(array, x) (strlen(array[x].pair_alias))
#define VAL_CURR(array, x) (strlen(array[x].pair_curr))
#define SWAP(array, x, y) \
{ \
alias_pair_t tmpair = array[x]; \
array[x] = array[y]; \
array[y] = tmpair; \
}
static int
partition_curr(alias_pair_t *array, int start, int end)
{
int i = start - 1;
int j = end + 1;
int pivot = start;
for (;;) {
do {
j--;
} while (VAL_CURR(array, j) > VAL_CURR(array, pivot));
do {
i++;
} while (VAL_CURR(array, i) < VAL_CURR(array, pivot));
if (i < j)
SWAP(array, i, j)
else
return (j);
}
}
static int
partition_aliases(alias_pair_t *array, int start, int end)
{
int i = start - 1;
int j = end + 1;
int pivot = start;
for (;;) {
do {
j--;
} while (VAL_ALIAS(array, j) > VAL_ALIAS(array, pivot));
do {
i++;
} while (VAL_ALIAS(array, i) < VAL_ALIAS(array, pivot));
if (i < j)
SWAP(array, i, j)
else
return (j);
}
}
static void
sort_alias_pairs(alias_pair_t *array, int start, int end)
{
int mid;
if (start < end) {
mid = partition_aliases(array, start, end);
sort_alias_pairs(array, start, mid);
sort_alias_pairs(array, mid + 1, end);
}
}
static void
sort_curr_pairs(alias_pair_t *array, int start, int end)
{
int mid;
if (start < end) {
mid = partition_curr(array, start, end);
sort_curr_pairs(array, start, mid);
sort_curr_pairs(array, mid + 1, end);
}
}
static void
create_sorted_pairs(plat_alias_t *pali, int npali)
{
int i;
int j;
int k;
int count;
count = 0;
for (i = 0; i < npali; i++) {
count += pali[i].pali_naliases;
}
ddi_aliases.dali_alias_pairs = kmem_zalloc(
(sizeof (alias_pair_t)) * count, KM_NOSLEEP);
if (ddi_aliases.dali_alias_pairs == NULL) {
cmn_err(CE_PANIC, "alias path-pair alloc failed");
/*NOTREACHED*/
}
ddi_aliases.dali_curr_pairs = kmem_zalloc(
(sizeof (alias_pair_t)) * count, KM_NOSLEEP);
if (ddi_aliases.dali_curr_pairs == NULL) {
cmn_err(CE_PANIC, "curr path-pair alloc failed");
/*NOTREACHED*/
}
for (i = 0, k = 0; i < npali; i++) {
for (j = 0; j < pali[i].pali_naliases; j++, k++) {
ddi_aliases.dali_alias_pairs[k].pair_curr =
ddi_aliases.dali_curr_pairs[k].pair_curr =
pali[i].pali_current;
ddi_aliases.dali_alias_pairs[k].pair_alias =
ddi_aliases.dali_curr_pairs[k].pair_alias =
pali[i].pali_aliases[j];
}
}
ASSERT(k == count);
ddi_aliases.dali_num_pairs = count;
/* Now sort the array based on length of pair_alias */
sort_alias_pairs(ddi_aliases.dali_alias_pairs, 0, count - 1);
sort_curr_pairs(ddi_aliases.dali_curr_pairs, 0, count - 1);
}
void
ddi_register_aliases(plat_alias_t *pali, uint64_t npali)
{
ASSERT((pali == NULL) ^ (npali != 0));
if (npali == 0) {
ddi_err(DER_PANIC, NULL, "npali == 0");
/*NOTREACHED*/
}
if (ddi_aliases_present == B_TRUE) {
ddi_err(DER_PANIC, NULL, "multiple init");
/*NOTREACHED*/
}
ddi_aliases.dali_alias_TLB = mod_hash_create_strhash(
"ddi-alias-tlb", DDI_ALIAS_HASH_SIZE, mod_hash_null_valdtor);
if (ddi_aliases.dali_alias_TLB == NULL) {
ddi_err(DER_PANIC, NULL, "alias TLB hash alloc failed");
/*NOTREACHED*/
}
ddi_aliases.dali_curr_TLB = mod_hash_create_strhash(
"ddi-curr-tlb", DDI_ALIAS_HASH_SIZE, mod_hash_null_valdtor);
if (ddi_aliases.dali_curr_TLB == NULL) {
ddi_err(DER_PANIC, NULL, "curr TLB hash alloc failed");
/*NOTREACHED*/
}
create_sorted_pairs(pali, npali);
tsd_create(&tsd_ddi_redirect, NULL);
ddi_aliases_present = B_TRUE;
}
static dev_info_t *
path_to_dip(char *path)
{
dev_info_t *currdip;
int error;
char *pdup;
pdup = ddi_strdup(path, KM_NOSLEEP);
if (pdup == NULL) {
cmn_err(CE_PANIC, "path strdup failed: %s", path);
/*NOTREACHED*/
}
error = resolve_pathname(pdup, &currdip, NULL, NULL);
kmem_free(pdup, strlen(path) + 1);
return (error ? NULL : currdip);
}
dev_info_t *
ddi_alias_to_currdip(char *alias, int i)
{
alias_pair_t *pair;
char *curr;
dev_info_t *currdip = NULL;
char *aliasdup;
int rv, len;
pair = &(ddi_aliases.dali_alias_pairs[i]);
len = strlen(pair->pair_alias);
curr = NULL;
aliasdup = ddi_strdup(alias, KM_NOSLEEP);
if (aliasdup == NULL) {
cmn_err(CE_PANIC, "aliasdup alloc failed");
/*NOTREACHED*/
}
if (strncmp(alias, pair->pair_alias, len) != 0)
goto out;
if (alias[len] != '/' && alias[len] != '\0')
goto out;
curr = kmem_alloc(MAXPATHLEN, KM_NOSLEEP);
if (curr == NULL) {
cmn_err(CE_PANIC, "curr alloc failed");
/*NOTREACHED*/
}
(void) strlcpy(curr, pair->pair_curr, MAXPATHLEN);
if (alias[len] == '/') {
(void) strlcat(curr, "/", MAXPATHLEN);
(void) strlcat(curr, &alias[len + 1], MAXPATHLEN);
}
currdip = path_to_dip(curr);
out:
if (currdip) {
rv = mod_hash_insert(ddi_aliases.dali_alias_TLB,
(mod_hash_key_t)aliasdup, (mod_hash_val_t)curr);
if (rv != 0) {
kmem_free(curr, MAXPATHLEN);
strfree(aliasdup);
}
} else {
rv = mod_hash_insert(ddi_aliases.dali_alias_TLB,
(mod_hash_key_t)aliasdup, (mod_hash_val_t)NULL);
if (rv != 0) {
strfree(aliasdup);
}
if (curr)
kmem_free(curr, MAXPATHLEN);
}
return (currdip);
}
char *
ddi_curr_to_alias(char *curr, int i)
{
alias_pair_t *pair;
char *alias;
char *currdup;
int len;
int rv;
pair = &(ddi_aliases.dali_curr_pairs[i]);
len = strlen(pair->pair_curr);
alias = NULL;
currdup = ddi_strdup(curr, KM_NOSLEEP);
if (currdup == NULL) {
cmn_err(CE_PANIC, "currdup alloc failed");
/*NOTREACHED*/
}
if (strncmp(curr, pair->pair_curr, len) != 0)
goto out;
if (curr[len] != '/' && curr[len] != '\0')
goto out;
alias = kmem_alloc(MAXPATHLEN, KM_NOSLEEP);
if (alias == NULL) {
cmn_err(CE_PANIC, "alias alloc failed");
/*NOTREACHED*/
}
(void) strlcpy(alias, pair->pair_alias, MAXPATHLEN);
if (curr[len] == '/') {
(void) strlcat(alias, "/", MAXPATHLEN);
(void) strlcat(alias, &curr[len + 1], MAXPATHLEN);
}
if (e_ddi_path_to_instance(alias) == NULL) {
kmem_free(alias, MAXPATHLEN);
alias = NULL;
}
out:
rv = mod_hash_insert(ddi_aliases.dali_curr_TLB,
(mod_hash_key_t)currdup, (mod_hash_val_t)alias);
if (rv != 0) {
strfree(currdup);
}
return (alias);
}
dev_info_t *
ddi_alias_redirect(char *alias)
{
char *curr;
dev_info_t *currdip;
int i;
if (ddi_aliases_present == B_FALSE)
return (NULL);
if (tsd_get(tsd_ddi_redirect))
return (NULL);
(void) tsd_set(tsd_ddi_redirect, (void *)1);
ASSERT(ddi_aliases.dali_alias_TLB);
ASSERT(ddi_aliases.dali_alias_pairs);
curr = NULL;
if (mod_hash_find(ddi_aliases.dali_alias_TLB,
(mod_hash_key_t)alias, (mod_hash_val_t *)&curr) == 0) {
currdip = curr ? path_to_dip(curr) : NULL;
goto out;
}
/* The TLB has no translation, do it the hard way */
currdip = NULL;
for (i = ddi_aliases.dali_num_pairs - 1; i >= 0; i--) {
currdip = ddi_alias_to_currdip(alias, i);
if (currdip)
break;
}
out:
(void) tsd_set(tsd_ddi_redirect, NULL);
return (currdip);
}
char *
ddi_curr_redirect(char *curr)
{
char *alias;
int i;
if (ddi_aliases_present == B_FALSE)
return (NULL);
if (tsd_get(tsd_ddi_redirect))
return (NULL);
(void) tsd_set(tsd_ddi_redirect, (void *)1);
ASSERT(ddi_aliases.dali_curr_TLB);
ASSERT(ddi_aliases.dali_curr_pairs);
alias = NULL;
if (mod_hash_find(ddi_aliases.dali_curr_TLB,
(mod_hash_key_t)curr, (mod_hash_val_t *)&alias) == 0) {
goto out;
}
/* The TLB has no translation, do it the slow way */
alias = NULL;
for (i = ddi_aliases.dali_num_pairs - 1; i >= 0; i--) {
alias = ddi_curr_to_alias(curr, i);
if (alias)
break;
}
out:
(void) tsd_set(tsd_ddi_redirect, NULL);
return (alias);
}
void
ddi_err(ddi_err_t ade, dev_info_t *rdip, const char *fmt, ...)
{
va_list ap;
char strbuf[256];
char *buf;
size_t buflen, tlen;
int ce;
int de;
const char *fmtbad = "Invalid arguments to ddi_err()";
de = DER_CONT;
strbuf[1] = '\0';
switch (ade) {
case DER_CONS:
strbuf[0] = '^';
break;
case DER_LOG:
strbuf[0] = '!';
break;
case DER_VERB:
strbuf[0] = '?';
break;
default:
strbuf[0] = '\0';
de = ade;
break;
}
tlen = strlen(strbuf);
buf = strbuf + tlen;
buflen = sizeof (strbuf) - tlen;
if (rdip && ddi_get_instance(rdip) == -1) {
(void) snprintf(buf, buflen, "%s: ",
ddi_driver_name(rdip));
} else if (rdip) {
(void) snprintf(buf, buflen, "%s%d: ",
ddi_driver_name(rdip), ddi_get_instance(rdip));
}
tlen = strlen(strbuf);
buf = strbuf + tlen;
buflen = sizeof (strbuf) - tlen;
va_start(ap, fmt);
switch (de) {
case DER_CONT:
(void) vsnprintf(buf, buflen, fmt, ap);
if (ade != DER_CONT) {
(void) strlcat(strbuf, "\n", sizeof (strbuf));
}
ce = CE_CONT;
break;
case DER_NOTE:
(void) vsnprintf(buf, buflen, fmt, ap);
ce = CE_NOTE;
break;
case DER_WARN:
(void) vsnprintf(buf, buflen, fmt, ap);
ce = CE_WARN;
break;
case DER_MODE:
(void) vsnprintf(buf, buflen, fmt, ap);
if (ddi_err_panic == B_TRUE) {
ce = CE_PANIC;
} else {
ce = CE_WARN;
}
break;
case DER_DEBUG:
(void) snprintf(buf, buflen, "DEBUG: ");
tlen = strlen("DEBUG: ");
(void) vsnprintf(buf + tlen, buflen - tlen, fmt, ap);
ce = CE_CONT;
break;
case DER_PANIC:
(void) vsnprintf(buf, buflen, fmt, ap);
ce = CE_PANIC;
break;
case DER_INVALID:
default:
(void) snprintf(buf, buflen, fmtbad);
tlen = strlen(fmtbad);
(void) vsnprintf(buf + tlen, buflen - tlen, fmt, ap);
ce = CE_PANIC;
break;
}
va_end(ap);
cmn_err(ce, strbuf);
}
/*ARGSUSED*/
void
ddi_mem_update(uint64_t addr, uint64_t size)
{
#if defined(__x86) && !defined(__xpv)
extern void immu_physmem_update(uint64_t addr, uint64_t size);
immu_physmem_update(addr, size);
#else
/*LINTED*/
;
#endif
}